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Abstract of the Thesis

Segmentation of 3D MR Images of the Brain

Using a PCA Atlas and Nonrigid Registration

by

Gautam Prasad

Master of Science in Computer Science

University of California, Los Angeles, 2010

Professor Demetri Terzopoulos, Chair

This thesis presents a method for the automatic segmentation of the brain in

magnetic resonance (MR) images of the human head. The method identifies

brain areas of interest, including the gyri and other subcortical structures, that

were manually delineated in a set of labeled training images. Principal com-

ponents analysis (PCA) is applied to the training ensemble in order to learn a

PCA atlas subspace, which is a dimensionality-reduced linear subspace of labeled

brain images. We employ this subspace to segment and label previously unseen

subject images. This is accomplished by finding the PCA atlas closest to an in-

put subject image through orthogonal projection of the latter into the subspace.

The PCA atlas is then nonrigidly registered to the subject image and the non-

rigid transformation is used to transfer the labels from the former to the latter,

thereby segmenting the subject image. Our method is compared with alternative

methods and the results are validated using overlap and distance metrics.
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CHAPTER 1

Introduction

The segmentation of brain images involves localizing and delineating the brain’s

different anatomical structures within three-dimensional (3D) tomographic im-

ages of the head. Brain image segmentation is important for longitudinal stud-

ies investigating how medications and other interventions affect the shapes and

volumes of brain tissues, for surgical planning and for diagnosing disease. Tra-

ditionally, the various parts of the brain are segmented by trained experts who

manually identify and delineate regions of interest. This process can be very

difficult and time consuming. It requires the design of complex protocols for

identifying brain structures. The results from different manual segmentations us-

ing the same protocol may be inconsistent, which raises issues if a set of images in

a study are delineated by different individuals. With the advent of non-invasive

medical imaging devices that can easily acquire large quantities of tomographic

data, manual segmentation becomes impractical for many studies. An alternative

to manual segmentation is to develop computer algorithms that can automatically

segment anatomical structures of interest in images of the brain.

The automatic 3D brain image segmentation algorithm developed in this the-

sis involves computing a 3D atlas consisting of labeled voxels, from among a

space of possible atlases learned from an ensemble of manually segmented train-

ing images, that is most suitable for segmenting an unlabeled subject image.

This optimal atlas is then nonrigidly registered to the subject image. Finally,
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the nonrigid transformation is used to transfer the labels from the atlas to the

subject image, thus segmenting the subject image.

In greater detail, our procedure is as follows: Registration is the process of

establishing correspondences between two images by finding a transformation

of a source image into the coordinate system of a target image. First a set of

training data comprising brain intensity images and their corresponding labels

are mutually registered to minimize the variance across the data. This ensures

that the variation in the data is attributed mostly to the differences in the shapes

and textures of the anatomical structures of the brain and not to their locations,

orientations, and sizes. Principal components analysis (PCA) is then performed

on the intensity and label training data to learn a dimensionally-reduced linear

subspace that is capable of generating labeled images that interpolate the training

data. We refer to this subspace as a PCA atlas subspace. Then, an orthogonal

projection is performed to find the point in the PCA atlas subspace that is closest

to the subject image. The point is used to generate an optimal intensity image

with its associated labels, which we call the PCA atlas. A nonrigid registration

algorithm is then used to deform the input subject image to match the intensity

image component of the PCA atlas and the resulting nonrigid transformation is

finally used to map the associated labels over to the subject image in order to

complete the segmentation.

We apply our algorithm to 3D magnetic resonance (MR) images of the brain.

1.1 Applications of Brain MR Image Segmentation

The results from brain MR image segmentation can provide a wealth of informa-

tion that is important in understanding and dealing with the brain. The insight
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that segmentation affords about the shape and volume of different brain struc-

tures helps in understanding how the brain changes over time. It enables us to

gain an understanding of the effects of disease and medication on the brain and

can enable us to detect the onset of disease through the classification of these

changes. Segmentation also allows us to reconstruct three-dimensional models of

the structures in the brain that can provide assistance to surgical planning and

guidance. The following is a survey of some of the literature that makes use of

the results from brain MR image segmentation, emphasizing its importance in

understanding the brain.

The segmentation of a 3D MR image of the head provides a delineation of

all the voxels that make up a particular anatomical region. From this, a model

of the shape and the volume of the region can be computed. A great deal of

research has focused on the shape and volume changes that occur in the brain

over periods of time. Giedd et al. (1999) examined a range of individuals from ages

four to twenty and scanned them every two years with a maximum of five scans.

The white and gray matter in these images was segmented using artificial neural

networks and automatic registration to a template image in which these areas

have been manually identified. The authors of this study were able to calculate

the volumes of the white and gray matter to understand how they change over

time. The white matter grew linearly over all regions of the brain, while the gray

matter had a nonlinear growth that was specific to different areas of the brain.

This discovery gave insight into how the different parts of the brain develop over

time.

Resnick et al. (2003) examined a group of healthy adults aged fifty-nine to

eighty-five years old and acquired MR head scans every two years for a total

of three scans. The extracranial tissue, cerebellum, and brainstem regions were
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manually removed from the images by a trained expert. Then the locations of the

white matter, gray matter, and cerebrospinal fluid (CSF) were found using an

adaptive Bayesian segmentation algorithm. From this, the volumes of the white

matter, gray matter, and CSF in different areas of the brain were calculated.

The results showed that there was a significant decline in the volume of white

and gray matter and an increase in the CSF filled ventricle volumes for healthy

elderly adults.

A related research thread examines how the brain is affected by disease over

time. Thompson et al. (2003) compared sets of elderly individuals with and

without Alzheimer’s disease. Two MR scans of the head were acquired two years

apart for each subject, and a series of image processing steps were applied to

measure how the brain changes across the set of images over time. The images

were registered to a standard brain imaging template and were each mapped into

the same space. A Gaussian mixture model was then used to classify each image

into white matter, gray matter and CSF. A three-dimensional cortical surface was

extracted from this segmentation and further analysis was performed to study

the changes in shape and tissue distribution over time. The analysis showed that

cortical atrophy was significantly greater in brains affected by Alzheimer’s disease

compared to those of control subjects. This study also allows an understanding

of where and when certain parts of the brain undergo atrophy, which can be used

as a biological marker for the disease.

The work presented in (Grimson et al., 1997) reports on an algorithm for

segmenting structures in whole head MR images and how that information can

assist in surgical planning. Their “augmented reality” method enables images of

the segmentation of a patient’s MR image to be projected onto the patient’s head

so that surgeons can visualize and localize the blood vessels of critical functional
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brain regions. The authors also describe methods for tracking the surgeons’

instruments in relation to the segmented MR images. This exposes the surgeon to

a three-dimensional reconstruction of the different segmented regions in relation

to the location of their instruments within the brain. It shows the surgeons

structures near the area in which they are working, which would otherwise be

very difficult to see or locate. Gering et al. (2001) built on this surgical planning

framework by creating a language to easily specify different anatomical structures

and their locations in the scenes created from the imaging data. That work

also contributed a procedure for fusing multi-modal imaging data to visualize

what occurs during surgery and to plan an optimal trajectory through the brain.

Additional information about the application of brain MR image segmentation

to surgical planning is available in the literature (Nowinski, 2001; Kikinis et al.,

1996; Jolesz et al., 2001).

1.2 Thesis Contributions and Overview

This thesis takes a machine learning approach that combines principal compo-

nents analysis, affine registration, and nonlinear registration to automatic image

segmentation, applied to the segmentation of 3D MR images of the brain. In

particular, we develop a novel method that

1. efficiently learns a PCA atlas subspace from a training ensemble of manually

segmented intensity and label image data,

2. identifies the particular PCA atlas within the learned subspace that is op-

timally customized to segmenting an input subject image of interest, and

3. nonrigidly registers this PCA atlas to the unlabeled subject image in order

to complete the segmentation.
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Furthermore, we apply our method to a significant clinical dataset of 3D MR

images of the brain and compare it against competing methods using a variety

of quantitative metrics, demonstrating its superior performance.

The remainder of this thesis is organized as follows: Chapter 2 reviews rel-

evant prior work in general segmentation methods, methods specific the brain

image segmentation, and reviews algorithms for image registration. Chapter 3

describes how we apply PCA to learn the atlas subspace from an intensity and

label training ensemble. Chapter 4 describes how, through projection, we can

compute a PCA atlas that is optimally adapted to segmenting the unlabeled

subject image. Chapter 5 gives an overview of the training and segmentation al-

gorithms. Chapter 6 presents the application of our method to clinical MR brain

image data and reports the results of our empirical evaluation. In Chapter 7 we

discuss various aspects of the method presented in this thesis and future work

that can be pursued to improve our algorithm.
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CHAPTER 2

Previous Work

The literature on image segmentation is enormous. Most algorithms model how

pixels within a group are related to each other and then find segments that

best fit this model across and within segments. The following is a description

of some of the many methods. These algorithms are designed for general use

in image processing applications. This differs from the situation of identifying

anatomical regions in MR images in that often the voxel-based information is

not enough in itself to distinguish the different parts of the brain. In those

cases, additional information, such as labeled training data, is needed to find an

accurate segmentation.

k-means is a clustering technique that segments or groups data into k different

mutually exclusive parts. Over all of the segments, it minimizes the following

within-segment sum-of-squares error:

e =
k∑
i=1

∑
j∈Si

|xj − µj|2, (2.1)

where Si represents one of the k subsets, xj is a vector representing a piece of

data in the jth segment, and µj represents the centroid of the jth group. This

approach is similar to estimating a mixture of Gaussians model of the data.

Recent work on the algorithm is discussed in (Arthur and Vassilvitskii, 2007).

Mean shift is another clustering algorithm that groups data together based on
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a non-parametric density estimation of the data. The following formula estimates

the density at a particular point x:

d(x) =
1

n

n∑
i=1

K(x− xi), (2.2)

where K is usually a Gaussian kernel and n is the total number of data points.

The points in the data will be grouped together based on the peak or mode in the

density to which they are closest. This will usually produce an over-segmentation

of the image, and some other criteria are used to combine the smaller segments.

A discussion of the mean-shift algorithm can be found in (Comaniciu and Meer,

2002).

Another widely used method is that of active contour models, or “snakes”

(Kass et al., 1988). Classical snakes represent 2D parametric contours in the

image plane. The geometry of the model, usually represented as splines, is

constrained by physically derived elastic forces—internal forces that govern the

smoothness of the model and external forces derived from the image. Formally,

snakes are parametric contours v(s) = [x(s), y(s)]
T
, where x and y denote the co-

ordinate functions of the contour parameterized by s ∈ [0, 1], that automatically

evolve to minimize the functional

S(v) =

∫ 1

0

w1(s)

∣∣∣∣∂v

∂s

∣∣∣∣2 + w2(s)

∣∣∣∣∂2v∂s2

∣∣∣∣2 ds+

∫ 1

0

P (v(s))ds, (2.3)

where w1(s) determines the tension and w2(s) determines the rigidity of the

snake. The scalar potential P (x, y) is an image-derived function whose minima

will correspond to features of interest in the image. For image intensity edges, this

potential could correspond to the gradient of the image intensity convolved with

a Gaussian. Snakes are a particularly popular instance of Deformable Models
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that have been formulated in an arbitrary number of dimensions and have been

applied to numerous segmentation tasks including medical imaging. A survey

of many of their medical imaging applications can be found in (McInerney and

Terzopoulos, 1996).

The region competition method presented by Zhu et al. (1995) uses a proba-

bilistic model to segment an image into M mutually exclusive regions. It assumes

that each region is generated from the same distribution, but with a different set

of parameters αi. This is used to create an energy function for the full segmen-

tation. The algorithm operates by initially seeding N regions throughout the

image. It then picks a boundary between the regions, and with that boundary

fixed it optimizes the parameters of each region. Then, the boundary is moved

to minimize the energy with all the αi parameters fixed. This is iterated until

convergence. The regions are then merged if their merger decrease the energy

function. Both the boundary optimization and region merging procedures are

repeated until the energy function cannot decrease further. This algorithm al-

lows segmentation when the number of regions is unknown and enables regions

to compete over boundaries in the images that they would model better. This

approach was further improved by allowing each region to be modeled by a set of

differently-parameterized distributions. Data Driven Markov Chain Monte Carlo

is required to perform inference in this more complicated setting. The approach

is described in (Tu and Zhu, 2002).

The normalized cut method treats an image as a graph and segmentation as

a graph partitioning problem (Shi and Malik, 2000). A 2D image is treated as

a weighted undirected graph G = (V,E), where the pixels represent the vertices

and there is an edge between every pair of vertices, i and j, and the weight W (i, j)

between the two pixels being a measure of their similarity. The goal is to split
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the image into two groups, A and B, by removing a set of edges connecting the

two. The weight of this cut is formalized by

cut(A,B) =
∑

a∈A,b∈B

W (a, b), (2.4)

where a and b are vertices in the segments A and B respectively. Minimizing

this cut will give a partition that separates vertices that are least similar. The

problem with this measure is that an optimal solution could be such that one of

the segments contains only a single vertex. The normalized cut approach weights

this measure as

NC(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(A, V )
, (2.5)

where assoc(A, V ) is the number of edges connecting the vertices in A to all the

vertices V in the graph. This prevents partitioning into one large and one small

segment, as that would not minimize NC(A,B). The minimization problem can

be solved efficiently in the form of a generalized eigenvalue problem. Each of the

segments can be further split into two pieces until some maximum number of

desired segments is obtained.

2.1 Brain Image Segmentation

There has been a great deal of work on the segmentation of medical images of

the brain. Most approaches rely on training data to learn the parameters of a

model of the different structures in the brain. This is necessary because of the

complex protocols used to specify where anatomical structures of interest appear

in the brain images and because in many instances different areas do not have
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a natural, easily recognizable boundary. The methods used to segment normal

structures in the brain typically differ from those used to segment tumors and

abnormalities in the brain because the former assume that the model created

from the training data provides a good representation of the brain’s anatomy in

general and they do not rely on features that are easily differentiated from normal

brain appearance and structure.

The methods used for segmenting normal brain images can roughly be cate-

gorized into voting methods, atlas based methods, and machine learning classifi-

cation methods.

Arno et al. (2005) registered every image in a set of manually labeled training

image data to a subject image. The labels are transferred to the subject image

from each of the images in the labeled training set and the most frequent label

at each voxel is used as the final labeling. This process can be computationally

expensive if the set of labeled images is very large because it needs to be performed

for every subject image. Aljabar et al. (2007) use a similar approach, but they

use a similarity criterion to select a subset of images from the training set that

are similar to the subject image. This method relies heavily on the quality of

the algorithm used to register the training data to the subject image. Compared

with the other approaches, it retains the training data set in its entirety instead

of creating a compact representation.

The work in (Fischl et al., 2002) uses a probabilistic atlas to segment a novel

subject image. It poses the problem in a Bayesian setting where the objective is

to maximize the probability of a labeling and transformation of a subject image

into the atlas space. This method allows the incorporation of prior information

such as the spatial structure of the different anatomical areas and restrictions on

the possible transformations of the subject image into the atlas space. It also
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incorporates Markov Random Fields (MRFs) to model the spatial relationship

between the voxels of different anatomical parts.

Babalola et al. (2008) used 3D volumetric Active Appearance Models (AAM)

to segment images of the brain. They start with a global AAM to obtain the

location of the different structures in the brain and then refine these locations

with AAMs trained specifically for each area. They then use linear regression

functions at each voxel in the image to compute the probability that it lies within

the domain of a certain anatomical area. The AAMs that they use rely on a grid of

corresponding points in the data that are transformed to produce different shapes

and a set of shape-free volumetric intensities that are transformed to the grid

shape for optimizing the locations of the AAM. This differs from (Fischl et al.,

2002) in that the structural information is learned for each specific structure

or label as a whole instead of only the relationship between a voxel and its

neighborhood found in MRFs.

The method described by Tu et al. (2008) uses a statistical hybrid discrim-

inative / generative method to segment images. The discriminative component

learns from thousands of features in the images to create an appearance model

that can classify a voxel by assigning a particular label using local information

from the image in a probabilistic boosting tree (PBT) framework. The generative

component uses PCA to create a global shape model of the different shapes. The

components are used together to create an energy function that is minimized to

find a final segmentation.

The method presented in this thesis relates to (Fischl et al., 2002) in that the

goal is to create an atlas that is tuned to the subject image, but we assume that

once such an atlas is found, an additional high performance nonrigid registration

will be performed to transform the subject image into the atlas space. PCA is
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used to create a linear subspace representing the training data. A subject image

is registered to the mean training image and then orthogonally projected into the

PCA atlas subspace to find the atlas image.

2.2 Image Registration

Image registration is the process of bringing a subject image into correspondence

with a target image. It involves finding a transformation of the subject image

that transforms its voxel locations such that they align as closely as possible to

the voxels in the target image with respect to some measure of the similarity be-

tween corresponding voxels in the two images. Registration is frequently used to

bring different modalities of imaging data into correspondence. Examples are the

registration of computed tomography (CT) and functional magnetic resonance

(fMR) images into the same space as MR images in order to gain more insight

from the different imaging modalities.

The algorithm developed in this thesis utilizes image registration in three

different places. The first is in registering all of the training data together. The

second is to register the subject image to the mean intensity training image. The

third is in registering the subject image to the PCA atlas.

A registration algorithm is composed of four different parts. First, a metric is

required that evaluates the quality of the registration. It measures the similarity

of the two images after the subject image has been transformed into the target

image space. Depending on the application, this measure may need to be robust

to the similarity of two images that are of two different modalities.

Second, a transformation model is needed to specify what deformations are

permissible in the transformation of the subject image. It can be as simple

13



as a global rigid-body transformation of the subject image to the much more

complicated situation of a nonrigid transformation, or deformation. Nonrigid

transformations are usually constrained to prevent deformations that fold onto

themselves or create other drastic changes. The deformation field specifies the

displacement for every voxel in the image. A common way of regulating the

deformations is to constrain the Jacobian determinant to be positive at every

voxel.

The third critical component is the optimization scheme used to find a trans-

formation that optimizes the metric. For example, this could be a randomized

search scheme for an optimal value, a gradient descent method, or the Levenberg-

Marquardt optimization method.

Fourth, when an image has been transformed, an interpolation method is

required to resample the subject image at locations that are displaced from the

original voxel grid. For example, the interpolation method can be a nearest

neighbor method that looks for the voxel that is closest to the point being sampled

or something more complex, such as trilinear interpolation among the 8 voxels

that surround the displaced voxel.

2.2.1 Rigid and Affine Registration

A critical aspect of a registration algorithm is the transformation model that

it uses. This specifies what possible transformations or deformations a subject

image can undergo. This also dictates the method used to optimize the regis-

tration and how many parameters are in the model. Rigid registration uses a

three-dimensional transformation model that takes into account translation and

rotation. It is represented using six parameters, three for translation and three for

rotation. An affine transformation model allows translation, rotation, stretching,
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and shearing. This is represented using a twelve-parameter model. Both rigid

and affine registration are linear and have a matrix representation.

In this thesis, we use an algorithm developed by the Oxford Centre for Func-

tional MRI of the Brain (FMRIB), called FMRIB’s linear image registration tool

(FLIRT). It is described in (Jenkinson et al., 2002). The algorithm performs

affine registration between two images of the same or different modalities. It uses

a correlation ratio as the default metric, which has the following form:

1

σ2
S

∑
b

nb
N
σ2
Sb
. (2.6)

Let the sets S and T be intensities from the voxels in the subject and target

images respectively. σ2
S is the variance of the set S. The intensities in the set T

are binned into B different bins containing nb elements in bin b. N =
∑

b nb and

Sb is the set of intensities at the voxel locations in the subject image that corre-

spond to the voxel locations that fell into bin b in the target image. This metric

is suitable for intramodal and intermodal images. The implementation of the

algorithm is capable of using mutual information, normalized cross correlation,

normalized mutual information, and least squared differences as the metric. Its

default is to use trilinear interpolation. It optimizes in a multiresolution frame-

work by combining local and global searching through the parameter space and

then refining possible solutions in an approach similar to simulated annealing.

2.2.2 Nonlinear Registration

Nonlinear registration algorithms provide many more degrees of freedom to de-

form a subject image into the target image space. In most cases constraints need

to be imposed in order to avoid unrealistic deformations. Klein et al. (2009)

15



compare fourteen nonlinear registration algorithms. The results of that study

show that the Automated Registration Tool (ART), developed by Ardekani et al.

(2005), is one of the top performing algorithms. In this thesis we use the ART al-

gorithm for nonlinear registration between two images. For a given subject image

the algorithm produces a deformation field that contains a displacement vector

for each voxel. This means that for an image of dimension 256× 124× 256, there

are three parameters for each voxel making 24,379,392 parameters that need to be

optimized. The metric used in the algorithm is the normalized cross-correlation

sTHt√
sTHt

, (2.7)

where H is a centering matrix, meaning that it is symmetric, idempotent (H =

H2), and removes the mean of what it multiplies, and where s and t are vectors

of voxel intensities in a neighborhood surrounding a particular voxel of interest

in the subject and target images, respectively.

2.2.3 Groupwise Registration

A traditional method used to register images into a common space is to select a

registration target and register all images to it. This target image can be derived

from a specific brain, such as the Talairach and Tournoux atlas (Talairach and

Tournoux, 1988), or from an average of brains registered to a common space

(e.g., MNI-305 or ICBM152). The target image may also be a member of the

set needing to be mutually registered. The problem with these methods when

applied to PCA is that the mean image should represent a point that requires an

approximately equal amount of deformation to conform to each of the training

images. This is desirable so that each of the training images are generated using

coefficients that are an equal distance from the null coefficient vector, which
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would generate the mean image. If the mean is preselected without respect to

the training data, then there is no guarantee that this will be true. Also, the

target image chosen may not be able to account for the anatomical variety in

the set of images and it may be difficult to register images into that space. An

alternative is to register the set of images together in a groupwise fashion (Witkin

et al., 1987), which avoids relying on a specific target image.

Studholme and Cardenas (2004) introduced a method to register images in

a groupwise manner by optimizing the joint probability distribution of all the

images together. Density estimation is used to calculate the deformations for

all the images where the sum of all the deformation needs to be zero. Bhatia

et al. (2004) performed registration groupwise by using a normalized mutual

information metric that looks at pairwise comparisons combined with 1D cubic

B-splines. The methods described by Twining et al. (2005) relies on information

theoretic methods to create a cost function taking into account similarities and

deformation to register the images.

The method used in this thesis takes advantage of the Insight Toolkit (ITK)

implementation of the algorithm described in (Balci et al., 2007), which is an

extension of the work in (Zollei, 2006). It minimizes a voxelwise entropy measure

across all images. Given a set of images {I1, ..., IN} a common reference frame

XR can be defined so that a set of transforms satisfy

{Tn : xn = Tn(xR), n = 1, ..., N}, (2.8)

where xR ∈ XR is a point in the reference frame and xn ∈ XN is a point in the

space of a particular image. The transforms map locations in the reference frame

to their corresponding locations in the images being registered. The entropy
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measure across the images is

f = −
V∑
v=1

1

N

N∑
i=1

log
1

N

N∑
j=1

Gσ (Ii(Ti(xv))− Ij(Tj(xv))) , (2.9)

where Gσ is a Gaussian kernel. The voxel locations through the set of images are

assumed to be independent and identically distributed samples and can thus be

evaluated as the product of the individual voxel locations across the images. This

entropy measure will become small as the difference across the voxels is reduced

and it is minimized to create a groupwise registration of the images. To improve

efficiency, this measure is computed over a random sample of the voxel locations.

It uses a gradient descent line search optimizer to optimize the registration and

trilinear or nearest neighborhood interpolation. The entropy measure is used

first to register the images groupwise using an affine transformation. This is

followed by a nonrigid registration using B-splines to further deform the images

into groupwise correspondence.
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CHAPTER 3

Learning the PCA Atlas Subspace From

Training Data

Learning a PCA atlas subspace from manually segmented and labeled training

data involves the application of principal components analysis.

3.1 Principal Components Analysis (PCA)

Principal Components Analysis (PCA) is a method that computes the mutually

orthogonal directions of maximum variance in a collection of d-dimensional data.

These d directions form an orthogonal basis that spans the data space. PCA is

usually used for dimensionality reduction, by projecting the data on a subset d̃ ≤

d of the basis vectors. The subset of vectors are termed the principal components,

and they account for a large percentage of the variance. They thus represent each

d-dimensional data point as a linear combination of the d̃ principal components

and, hence, by the d̃-dimensional vector of coefficients of the linear combination.

Among its many uses, PCA can be used to compress data, to classify data,

to visualize data trends in a lower-dimensional space, etc. Its application in the

context of the image segmentation method proposed in this thesis is to capture

within a compact representation the intensity and shape variation evident in the

training data.
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To apply PCA to image analysis, each of the n images in the training data set

is vectorized, yielding the set of vectors {x1,x2, ...,xn}. Then the mean vector µ

of this set is subtracted from each vector in order to center the data at the origin,

thus yielding the d× n data matrix

X =
[

x1 − µ x2 − µ ... xn − µ

]
(3.1)

The covariance matrix of the data is the d× d matrix XXT. Then, the eigen-

values and eigenvectors of the covariance matrix are computed. The eigenvectors

are the principal directions. The eigenvalues give a measure of the variance of

the data in the corresponding principal directions.

Because the dimension d of each vector x may be in the order of ten million

elements or larger when processing high-resolution 3D image data, the covariance

matrix could be huge. Computing the eigenvectors and eigenvalues of such a

matrix is prohibitive, so rather than doing so from XXT, they may be computed

from the (presumably much smaller) n × n matrix XTX. The eigenvectors will

be the same for both matrices, while the eigenvalues for XXT are calculated by

multiplying the eigenvectors of XTX by X. This can be shown as follows:

XTXe = λe,

XXTXe = λXe,

XXT(Xe) = λ(Xe), (3.2)

where e represents an eigenvector and λ represents an eigenvalue. This method

and its application is discussed in (Cootes et al., 1995) and (Trucco and Verri,

1998).

It is also assumed that, for natural image data, X will have rank n. Thus,
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Figure 3.1: PCA Error Graph

XXT will also be rank n and will have no zero eigenvalues. We can assume that

X is full rank because we are working with a set of real world image data where

the images do not have a linear relationship with each other. Each image used

to create X is represented by the mean vector plus a vector of the n coefficients

of the linear combination of each of the eigenvectors:

x ≈ µ + X
n∑
i=1

ciei, (3.3)

where ci is the coefficient weighting the eigenvector ei. If most of the variance in

the data is accounted for by just a few principal eigenvectors associated with the

largest eigenvalues, then each image may be well represented by a vector that is

significantly smaller than n, though n will probably be much smaller than the

dimension of the images d. The representation of the data by a subset of the

basis will not reconstruct the data exactly, and there is a trade-off between the
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Figure 3.2: PCA Processing of Label and Intensity Images

compactness of the representation and the error that it incurs. Figure 3.1 shows

this relationship. It displays the sum of squared differences error between a train-

ing image and its PCA representation as the number of eigenvectors (principal

components) is increased. The eigenvectors are ordered in decreasing order of

their corresponding eigenvalues. As the number of eigenvectors increases, those

that are added later account for less of the variance than the earlier ones.

3.2 Efficiently Computing the PCA Atlas Subspace

The training data from which we learn the PCA atlas subspace comprises an in-

tensity image and a corresponding label image for each manually segmented brain

scan. We would like a single vector of coefficients to represent each intensity/label

image pair in the PCA atlas subspace. The subspace is computed efficiently by

performing multiple PCAs. First, a PCA is performed on the intensity images

to create an intensity subspace while a separate PCA is performed on the label

images to create a label subspace. Then a final PCA is performed in order to

combine the subspaces into the desired PCA atlas subspace. Figure 3.2 presents

an overview of how the training data is processed to create the components for the

intensity images, label images, and the final combined intensity/label coefficients
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of the PCA atlas subspace.

For the purposes of the following mathematical development, let us assume

that there are N training images.

3.2.1 The Intensity Subspace

The intensity space is created using the N intensity images in the training image

set. Each three-dimensional training intensity image is vectorized as follows:

an =
[
a1 a2 ... aK

]T
, (3.4)

where K is the number of voxels in the image and voxel ak takes a value in [0, 1].

The PCA method detailed above is used to compute B eigenvectors where B ≤ N

that form a basis of the intensity space. Thus, each image in the training set is

represented by a coefficient vector cn, where n ∈ {1, ..., N}. The length B of cn

can be chosen to be smaller than N and still yield a good approximation of the

training data depending on the variance associated with each of the eigenvectors

in the chosen subset. Length B can be adjusted to reduce computation time at

the cost of precision. A training intensity image an is reconstructed by

an = µa + Eacn, (3.5)

where µa is the mean of the intensity training data and Ea is a matrix whose

B columns are the eigenvectors found from performing PCA on the intensity

training data.
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3.2.2 The Label Subspace

The label space is created using the N training label images that correspond

to the N intensity training images. Each training label image is vectorized as

follows:

ln =
[
l1 l2 ... lK

]T
, (3.6)

where K is the number of voxels in the image, and lk ∈ {g1, g2, ..., gP} is the label

value at the k-th voxel. There are P different label identifiers, each denoted by

gp.

Binary images are computed for each label, yielding N binary images for each

of the P labels. Then PCA is used to create a separate basis for each label using

its respective N binary images. The binary image bpn for a particular training

image n and a particular label identification number gp is generated as

bpn = µpl + Ep
lh

p
n, (3.7)

where µpl is the mean binary image, Ep
l is the eigenvector matrix, and hpn are the

coefficients for training image n, all with respect to label identification number

gp. B × P coefficients are needed to generate all P binary images. These binary

images are combined to create a complete label image that has a corresponding

intensity image. B being the number of eigenvectors preserved. These coefficients

are combined into a single vector

hn =
[

h1
n
T

h2
n
T

... hPn
T
]T
. (3.8)
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3.2.3 Combining the Intensity and Label Spaces

The coefficients that result from orthogonally projecting a training intensity im-

age onto the intensity subspace and the coefficients that result from projecting a

training label image onto the label subspace are combined into one vector

sn =
[

cn
T hn

T
]T
. (3.9)

Then, a PCA is performed on this set of N combined coefficients, one for each

training image. This will generate a basis for the combined coefficients, and a

coefficient vector of size B in this space will generate the coefficients for both the

intensity and label spaces.

3.3 Implementation Details

In practice, almost sixty percent of the voxels in the intensity images used as

training images are not located within the brain and are not important to the

segmentation process. Therefore a mask is used to suppress all irrelevant voxels

in the training intensity images. When an image is vectorized, only the unmasked

voxels are used. This reduces the computational burden substantially. When a

complete image needs to be generated, the missing voxels are constructed using

information from the pre-computed mask. The same issue occurs with the binary

images used to create the label PCA space. In this case even more of the voxels

in the image are not relevant to the construction of the basis and the use of a

mask is crucial.

When the binary images are created, the value 1 represents “on”, while 0

represents “off”. When a binary image is generated using the PCA basis, some
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voxels will have values between 0 and 1. Thus, when the P binary images are

generated for creating a full label image, the value at each voxel location across

the P images is compared and the largest value with the corresponding label

identification number gp is used to label that voxel. Uniform random noise in the

range [0, 10−10] is also added to every voxel in the image to differentiate between

two labels that may have the same value between 0 and 1.

3.4 PCA Atlas Subspace GUI

A graphical user interface (GUI) was developed using MATLAB to explore and

visualize the PCA atlas subspace. It works with the data described in Section 6.1.

It allows a user to interactively synthesize three-dimensional intensity images

along and their associated labels. These PCA atlas images are generated using

combined label-intensity coefficients and the PCA basis described earlier in this

section. The GUI allows a user to vary the coefficients corresponding to the

ten eigenvectors with the largest eigenvalues using sliders. Figure 3.3 shows all

the coefficients at zero, which yields the mean PCA atlas. Figure 3.4 shows

four examples of different coefficients that were selected to synthesize different

intensity and label images. Forty training images were used to create the PCA

atlas subspace in this example, but only the coefficients associated with the 10

eigenvectors with the largest eigenvalues are retained in the GUI, while the 30

less significant ones are set to zero.
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Figure 3.3: PCA Mean Image and Labels
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(a) (b)

(c) (d)

Figure 3.4: PCA Intensity and Label Examples
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CHAPTER 4

Computing the Optimal PCA Atlas

To obtain an atlas with which to segment an unlabeled subject image, the subject

image is orthogonally projected into the PCA atlas subspace created from the

intensity and label image training data, yielding the coefficients that represent

the PCA atlas that is closest to the subject image. The label and intensity

images of this optimal PCA atlas are then synthesized from those coefficients.

This step is performed after the subject image has been affinely registered to

the mean intensity training image because the subject image may not be in the

same space, meaning there could be some discrepency in rotation, scaling, or

translation.

4.1 Orthogonal Projection Into the Subspace

Subject image as is orthogonally projected on the intensity subspace by sub-

tracting the mean intensity and multiplying the result by the inverse eigenvector

matrix whose columns are the eigenvectors from the PCA. This gives a set of

coefficients

cas = Ea
+(as − µa). (4.1)
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Where the + superscript denotes the matrix pseudoinverse. This is required

because the matrix may not be square. These coefficients are then projected on

the label/intensity coefficient subspace.

The label/intensity coefficient subspace is represented by an eigenvector ma-

trix that is split into two parts

Ec =

Eac

Elc

 . (4.2)

Eac generates the intensity coefficients and Elc generates the label coefficients

when Ec is multiplied by a set of label/intensity coefficients. The mean of the

intensity coefficients is subtracted from the intensity coefficients of the subject

image, cas, and the result multiplied by the inverse of the Eac matrix:

cs = Eac
+(cas − µac). (4.3)

Vector cs is used to generate both the intensity and label PCA atlas images. The

PCA atlas intensity image is generated by

ap = EaEaccs. (4.4)

The PCA atlas label image is generated by

lp = ElElccs. (4.5)
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CHAPTER 5

Image Segmentation Using the PCA Atlas

To segment a subject image in an efficient manner, our algorithm combines affine

registration, nonlinear registration, and a PCA intensity/label model learned

from a data set with intensity images and their corresponding labels. All exper-

iments reported in this thesis use brain MR image data. However, the algorithm

can be generalized to any modality if a set of intensity and corresponding label

data is available for training.

5.1 Training the Algorithm

Algorithm 1 outlines the steps used to train the PCA-registration segmentation

algorithm. Our implementation uses the ITK implementation of the minimum

entropy registration algorithm described in (Balci et al., 2007) (see Section 2.2.3)

to find an affine registration of the training intensity data groupwise for Step 1.

It applies the computed transformations to the label training images. The re-

mainder of the algorithm goes through the steps to create a PCA subspace of the

registered training intensity and label images.
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Algorithm 1: Training Algorithm

Data: Intensity and label training images
Result: Intensity, label, and intensity/label coefficient PCA subspaces.
Affinely register the intensity training images groupwise;1

Apply transformations from the registration to the respective label data;2

Compute the PCA basis for the registered intensity training data;3

Compute the binary images from the registered training labels;4

Compute the PCA basis for the binary images;5

Project the binary label and intensity training images onto their respective6

bases;
Compute the PCA basis of the coefficients of the training data from the7

projection;

Algorithm 2: Segmenting a Subject Image

Data: Subject intensity image. Intensity, label, and coefficient PCA bases.
Result: Labels for the subject image.
Affinely register the subject image to the mean intensity image of the1

training data;
Orthogonally project the subject image into the PCA subspace to find2

label and intensity coefficients;
Use the coefficients to generate the intensity and label images of the3

PCA atlas;
Register the subject image again using a nonlinear registration algorithm4

to the PCA atlas;
Reverse transform the PCA atlas’s label image to the original subject5

image space for the final labeling;

5.2 Segmenting a Subject Image

Algorithm 2 outlines the steps used to segment a subject image. It assumes that

the results from the training algorithm have been computed. In our implemen-

tation, Step 1 is computed using FLIRT. An affine registration algorithm is used

in this step because the PCA subspace was created using images that were co-

registered as a group using an affine registration algorithm. Thus, this step serves

to project the subject image into the space where the PCA bases were created.
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Step 4 uses the ART algorithm for the nonlinear registration (see Section 2.2.2).

For brain MR data, the subject image would need to be preprocessed so that

it contains only brain voxels. A skull-stripping algorithm, such as brain surface

extractor (BSE) (Shattuck et al., 2001) or brain extraction tool (BET) (Smith,

2002) is needed to remove voxels that represent extraneous tissues around the

brain, such as cerebrospinal fluid, skull, and skin. Then inhomogeneity correc-

tion, such as the BFC algorithm, is required to remove changes in brightness

of the voxels caused by distortions from the MRI scanner, patient anatomy and

position, and static field inhomogeneity.
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CHAPTER 6

Experiments and Results

We evaluated our method against two other algorithms using a set of 40 manually

delineated MR images. The data included manual labelings of 56 brain struc-

tures, which were used as the gold standard. In validating our PCA-registration

algorithm, we used a leave-one-out strategy to test each of the 40 images in the

training set by selecting one of them to serve as a subject image while using the

remaining thirty-nine images as training data.

6.1 Data

The training images used to create the PCA space were the 40 labeled MR images

from the LONI Probabilistic Brain Atlas (LPBA40)1 (Shattuck et al., 2008). The

images consist of forty whole human head MR images. These images have been

manually labeled by experts who delineated fifty-six different structures in each

image. The images were then skull-stripped by using the information from the

labels combined with morphological operations. The skull-stripped images were

then inhomogeneity corrected using the Bias Field Corrector (BFC) developed

by Shattuck et al. (2001). The skull-stripped, inhomogeneity-corrected images

along with their labels were used to learn the PCA atlas subspace and also used

as test data. The images are of dimension 256×124×256 with a voxel resolution

1http://www.loni.ucla.edu/Atlases/LPBA40

34

http://www.loni.ucla.edu/Atlases/LPBA40


of 0.86× 1.50× 0.86 mm3.

6.2 Competing Algorithms

The two other algorithms used for comparison were a voting algorithm and the

LONI Brain Parser. The voting algorithm used the 40 images in the training set

using a leave-one-out strategy. Of the forty images in the LPBA40 data set, one

served as a subject image while the other 39 served as training data. This was

repeated 40 times so that each image was employed as a subject image. Once a

subject image was selected, each of the 39 other images was nonrigidly registered

to it using the ART algorithm. The registration was performed using only the

intensity information, as it is assumed that the subject image does not have any

labels. The ART algorithm computed deformations for each of the registrations

that are used to register all of the 39 training images to the subject image. Then

the mode, or most common label across all of the registered training labels for a

voxel in the subject image space, was chosen as its label classification. The label

selection was implemented in MATLAB. This method is similar to that described

by Arno et al. (2005), though their work focuses on how the number of labeled

atlases affects the segmentation results.

The LONI Brain Parser2 method uses a statistical hybrid generative / dis-

criminative method to segment the images and it is described by Tu et al. (2008).

It was trained on the 40 LPBA40 training images and then tested on the same

40 images; thus, it should have an advantage relative to our method when seg-

menting those images.

2http://www.loni.ucla.edu/Software/BrainParser
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6.3 Metrics

We used overlap metrics as well as a distance metric in our experiments.

6.3.1 Overlap Metrics

The following overlap metrics that were used to validate the results of the segmen-

tation are described in (Shattuck et al., 2009). They consist of Jaccard Similarity,

Dice Coefficient, Sensitivity, and Specificity measures. Each metric is a combina-

tion of the true positive (TP), false positive (FP), true negative (TN), and false

negative (FN) counts of the voxels in the label image resulting from the final

segmentation computed by an algorithm, compared to the manually traced gold

standard labels. The metrics are defined as follows:

Jaccard Similarity =
|TP|

|FP|+ |TP|+ |FN|
(6.1)

Dice Coefficient =
2|TP|

|FP|+ 2|TP|+ |FN|
(6.2)

Sensitivity =
|TP|

|TP|+ |FN|
(6.3)

Specificity =
|TN|

|TN|+ |FP|
. (6.4)

A score of 1.0 indicates that the two regions overlap exactly.

6.3.2 Distance Metric

The Hausdorff distance measure (Huttenlocher et al., 1993; Babalola et al., 2009)

computes the distance between two sets of voxel locations in an image. In our

work, this is the distance between the segmentation results and the gold standard

voxel locations for a particular label value. Given two sets of voxels, A and B,
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Method Jaccard Dice Sensitivity Specificity Hausdorff Distance
PCA Atlas 0.5975±0.0196 0.7442±0.0167 0.7998±0.0157 0.9994±0.0000 9.4502±0.5696
Voting 0.6106±0.0444 0.7472±0.0432 0.7457±0.0457 0.9995±0.0001 10.9123±2.2904
LONI Brain Parser 0.5656±0.0410 0.7164±0.0384 0.6716±0.0441 0.9996±0.0001 18.5963±1.6975

Table 6.1: Metric Results

the minimum distance from any voxel location a in A to all voxel locations in the

set B is represented as dABa . The corresponding smallest distance from any voxel

location b in B to the set A is represented as dBAb . The Haussdorff distance is

the maximum of the maximum smallest distance in each direction over all voxel

locations in each set, and it is expressed as

max{max{dABa },max{dBAb }} (6.5)

In practice, finding the minimum distance in each direction over all the possible

voxels in the two sets A and B is very time consuming when the images and the

label sets are large. To facilitate the computation, the border voxels of each set

are used in the computation instead of the complete set. The border is found

by eroding the set of voxels by a diamond shaped kernel and then taking the set

difference as the set of border voxels.

6.4 Results Tables

Table 6.1 shows results from applying the three different segmentation algorithms:

The PCA-registration method, the voting method, and the LONI Brain Parser.

Each of the metrics was calculated for each of the 56 labels on each of the 40

test images. These results were then averaged across the different labels and

then across the test images, yielding the results in the table (mean + standard

deviation).
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Tables 6.2, 6.3, and 6.4 show the results averaged over the data sets for our

method (PCA Atlas), the voting method, and the LONI Brain Parser. The grey

boxes in each of the tables indicate the particular method that achieved the best

score for that measure.

Examining the averages across the forty test images, the LONI Brain Parser

had a higher value for the Jaccard and Dice measures than the other two algo-

rithms on the left inferior gyrus, the right angular gyrus, and the left precuneus.

It also had a consistently higher value for the Specificity measure across all of

the different anatomical regions that were segmented. Since the other overlap

measures were lower for the Brain Parser, the fact that the Specificity was so

high may be because it did not include enough of the boundary in each of the

regions. It could also mean that it rejected too many voxels from the structure.

The voting method had the overall highest scores for the Jaccard and Dice mea-

sures and, in particular, had better performance than the other two algorithms

in all the metric categories for the left fusiform gyrus. In 14 of the 56 areas, the

voting method achieved better scores than the other two algorithms in all but

one metric measure.

Our method achieves a better overall result in the Sensitivity and Hausdorff

distance measures. In 16 of the 56 areas it achieved better measures than the

other two methods in all but one measure. It performed better on gyri that

were located in the anterior, superior, and posterior of the brain. The voting

method performed better with larger structures such as the cingulate gyrus and

brainstem as well as smaller structures found in the brain such as the putamen

and hippocampus. Our PCA method also seemed to cope better in regions with

many adjacent gyri in close proximity, whereas the voting method was better

with larger areas and areas with relatively sparse regions.
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Region Jaccard Dice Sensitivity Specificity Hausdorff Distance
L superior frontal gyrus 0.712792 0.831978 0.866102 0.998673 9.692282
R superior frontal gyrus 0.700557 0.823605 0.856137 0.998612 10.888745
L middle frontal gyrus 0.672906 0.803954 0.871948 0.998458 11.268219
R middle frontal gyrus 0.664498 0.797543 0.857354 0.998470 11.857572
L inferior frontal gyrus 0.609115 0.755713 0.829139 0.999227 10.684132
R inferior frontal gyrus 0.625044 0.767898 0.823930 0.999259 10.893739
L precentral gyrus 0.593943 0.743496 0.781037 0.999096 8.972878
R precentral gyrus 0.596230 0.745532 0.776929 0.999126 9.166451
L middle orbitofrontal gyrus 0.581004 0.732554 0.764327 0.999677 8.340211
R middle orbitofrontal gyrus 0.576053 0.729151 0.760620 0.999670 8.566678
L lateral orbitofrontal gyrus 0.503968 0.667401 0.706743 0.999735 9.545252
R lateral orbitofrontal gyrus 0.490486 0.653351 0.689254 0.999753 9.308912
L gyrus rectus 0.565781 0.720911 0.724615 0.999902 6.692414
R gyrus rectus 0.590600 0.740833 0.751003 0.999897 5.979427
L postcentral gyrus 0.540117 0.698488 0.739011 0.999114 10.875179
R postcentral gyrus 0.537880 0.698004 0.733088 0.999159 10.876567
L superior parietal gyrus 0.610466 0.757122 0.814690 0.999075 11.478200
R superior parietal gyrus 0.580074 0.732648 0.829965 0.998923 10.957222
L supramarginal gyrus 0.543592 0.701850 0.747353 0.999455 11.854969
R supramarginal gyrus 0.517858 0.678347 0.741617 0.999422 11.225909
L angular gyrus 0.512760 0.673397 0.725012 0.999219 13.400234
R angular gyrus 0.524947 0.685082 0.736968 0.999185 13.230522
L precuneus 0.560333 0.716709 0.761758 0.999611 8.998374
R precuneus 0.581279 0.733887 0.793133 0.999616 8.556240
L superior occipital gyrus 0.488755 0.653771 0.672003 0.999656 12.501387
R superior occipital gyrus 0.476805 0.641897 0.684086 0.999605 12.136082
L middle occipital gyrus 0.566697 0.720266 0.756372 0.999145 12.057395
R middle occipital gyrus 0.566473 0.720762 0.790711 0.999042 12.383315
L inferior occipital gyrus 0.552355 0.708562 0.713232 0.999643 9.806255
R inferior occipital gyrus 0.555188 0.711750 0.715881 0.999648 9.918910
L cuneus 0.525893 0.687175 0.707756 0.999768 9.324926
R cuneus 0.526709 0.686532 0.772635 0.999701 8.885530
L superior temporal gyrus 0.650053 0.786858 0.850857 0.999083 10.181602
R superior temporal gyrus 0.664863 0.798311 0.841000 0.999208 10.788142
L middle temporal gyrus 0.566209 0.721232 0.769410 0.999032 13.821012
R middle temporal gyrus 0.595898 0.745744 0.778516 0.999142 12.747502
L inferior temporal gyrus 0.560568 0.717173 0.759191 0.999197 12.269397
R inferior temporal gyrus 0.581699 0.734011 0.782656 0.999167 11.405524
L parahippocampal gyrus 0.610582 0.756944 0.787509 0.999795 7.412518
R parahippocampal gyrus 0.599976 0.748473 0.773667 0.999787 7.795251
L lingual gyrus 0.602026 0.747873 0.828893 0.999502 8.247752
R lingual gyrus 0.638689 0.777805 0.839301 0.999567 7.859232
L fusiform gyrus 0.611662 0.757277 0.784561 0.999628 9.932300
R fusiform gyrus 0.628098 0.769996 0.778077 0.999670 10.281410
L insular cortex 0.666046 0.799000 0.922064 0.999709 4.553200
R insular cortex 0.644132 0.782410 0.923967 0.999704 4.812814
L cingulate gyrus 0.616513 0.761667 0.796397 0.999594 8.230087
R cingulate gyrus 0.606571 0.754214 0.793898 0.999567 8.382270
L caudate 0.616566 0.761573 0.875873 0.999857 6.214841
R caudate 0.615949 0.761030 0.887008 0.999859 5.373920
L putamen 0.638358 0.778520 0.921826 0.999806 5.852025
R putamen 0.644151 0.782333 0.921171 0.999810 7.703920
L hippocampus 0.610517 0.757151 0.880389 0.999831 5.070776
R hippocampus 0.624292 0.767694 0.880912 0.999829 4.717766
cerebellum 0.823884 0.903208 0.971920 0.997405 9.179919
brainstem 0.789495 0.882174 0.947097 0.999350 6.052942

Table 6.2: PCA Mean Region Results
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Region Jaccard Dice Sensitivity Specificity Hausdorff Distance
L superior frontal gyrus 0.723767 0.838750 0.849444 0.998919 12.137237
R superior frontal gyrus 0.716343 0.833588 0.840000 0.998910 13.114236
L middle frontal gyrus 0.683542 0.810680 0.810366 0.998959 13.048929
R middle frontal gyrus 0.678911 0.807193 0.810803 0.998914 13.712247
L inferior frontal gyrus 0.634223 0.773686 0.778296 0.999487 11.677897
R inferior frontal gyrus 0.622534 0.763123 0.755243 0.999485 11.334471
L precentral gyrus 0.484236 0.633635 0.627026 0.998989 12.748230
R precentral gyrus 0.453115 0.606130 0.605297 0.998923 12.882180
L middle orbitofrontal gyrus 0.622257 0.763540 0.767390 0.999772 8.585295
R middle orbitofrontal gyrus 0.617847 0.760891 0.771864 0.999757 8.350426
L lateral orbitofrontal gyrus 0.552005 0.708425 0.690068 0.999837 9.824250
R lateral orbitofrontal gyrus 0.512180 0.672881 0.628887 0.999858 8.971915
L gyrus rectus 0.612163 0.756525 0.737975 0.999932 6.258452
R gyrus rectus 0.633144 0.772880 0.770307 0.999926 5.812882
L postcentral gyrus 0.434601 0.587804 0.558562 0.999223 14.099164
R postcentral gyrus 0.408743 0.563922 0.533328 0.999190 13.983447
L superior parietal gyrus 0.556056 0.704349 0.721987 0.999109 14.218304
R superior parietal gyrus 0.539259 0.693193 0.720794 0.998995 14.687505
L supramarginal gyrus 0.514577 0.668149 0.649829 0.999565 14.362728
R supramarginal gyrus 0.504165 0.660224 0.641158 0.999583 13.642907
L angular gyrus 0.465434 0.617921 0.617584 0.999288 16.512930
R angular gyrus 0.483538 0.643939 0.649569 0.999282 14.939041
L precuneus 0.554464 0.707743 0.709618 0.999667 11.868805
R precuneus 0.565814 0.716685 0.729749 0.999651 11.561882
L superior occipital gyrus 0.413742 0.572508 0.565408 0.999666 15.803370
R superior occipital gyrus 0.400113 0.559634 0.555124 0.999621 17.115829
L middle occipital gyrus 0.537925 0.690740 0.722123 0.999129 16.613628
R middle occipital gyrus 0.542587 0.696380 0.726612 0.999126 16.399083
L inferior occipital gyrus 0.536324 0.683110 0.653741 0.999776 10.995922
R inferior occipital gyrus 0.570695 0.716434 0.689606 0.999783 11.164366
L cuneus 0.505683 0.664888 0.677309 0.999777 16.413925
R cuneus 0.516368 0.674080 0.677865 0.999781 14.898427
L superior temporal gyrus 0.695325 0.818443 0.817113 0.999458 11.121614
R superior temporal gyrus 0.695856 0.818804 0.817505 0.999481 11.127415
L middle temporal gyrus 0.603225 0.750331 0.748772 0.999333 15.265366
R middle temporal gyrus 0.612659 0.757383 0.760437 0.999334 12.821224
L inferior temporal gyrus 0.611088 0.757054 0.756072 0.999484 12.207272
R inferior temporal gyrus 0.614081 0.758863 0.751244 0.999467 12.003975
L parahippocampal gyrus 0.658043 0.792791 0.791443 0.999867 7.343991
R parahippocampal gyrus 0.640200 0.779523 0.774728 0.999858 7.706724
L lingual gyrus 0.631806 0.765070 0.749558 0.999751 10.034694
R lingual gyrus 0.652529 0.779849 0.772876 0.999745 9.448630
L fusiform gyrus 0.667202 0.798645 0.800630 0.999741 9.563310
R fusiform gyrus 0.659260 0.791440 0.792009 0.999734 9.784716
L insular cortex 0.761747 0.864496 0.883379 0.999873 3.872961
R insular cortex 0.743345 0.852240 0.869554 0.999875 4.163772
L cingulate gyrus 0.657701 0.792143 0.803268 0.999708 8.494722
R cingulate gyrus 0.648280 0.784281 0.811811 0.999654 8.663810
L caudate 0.701569 0.822146 0.802079 0.999956 6.255313
R caudate 0.703240 0.823693 0.814325 0.999953 5.301520
L putamen 0.728026 0.841585 0.838632 0.999930 5.594183
R putamen 0.729981 0.843207 0.839252 0.999931 7.242599
L hippocampus 0.707747 0.828287 0.812041 0.999937 4.802703
R hippocampus 0.707886 0.828380 0.816703 0.999931 4.601887
cerebellum 0.899592 0.944718 0.961994 0.998728 10.361291
brainstem 0.866188 0.928009 0.929527 0.999757 5.563309

Table 6.3: Voting Mean Region Results
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Region Jaccard Dice Sensitivity Specificity Hausdorff Distance
L superior frontal gyrus 0.678743 0.808054 0.753098 0.999326 17.069348
R superior frontal gyrus 0.656778 0.792320 0.723673 0.999362 17.282361
L middle frontal gyrus 0.672356 0.803044 0.773569 0.999168 29.273995
R middle frontal gyrus 0.658671 0.793227 0.781069 0.998958 22.607256
L inferior frontal gyrus 0.636110 0.776630 0.780410 0.999470 13.228251
R inferior frontal gyrus 0.604309 0.751899 0.715032 0.999557 28.690861
L precentral gyrus 0.570494 0.724926 0.664507 0.999516 54.395750
R precentral gyrus 0.558411 0.714737 0.686981 0.999345 12.353161
L middle orbitofrontal gyrus 0.535188 0.694235 0.608764 0.999872 32.120356
R middle orbitofrontal gyrus 0.545058 0.703394 0.638090 0.999837 23.148568
L lateral orbitofrontal gyrus 0.479267 0.645062 0.589909 0.999843 16.574153
R lateral orbitofrontal gyrus 0.456399 0.622560 0.547078 0.999875 10.093706
L gyrus rectus 0.554474 0.711648 0.646522 0.999945 6.083291
R gyrus rectus 0.532776 0.691457 0.604104 0.999954 6.814861
L postcentral gyrus 0.511270 0.673389 0.611720 0.999515 14.761311
R postcentral gyrus 0.462263 0.629561 0.555988 0.999517 13.407234
L superior parietal gyrus 0.574400 0.728806 0.650314 0.999635 15.130718
R superior parietal gyrus 0.550334 0.708225 0.634895 0.999583 21.972708
L supramarginal gyrus 0.544695 0.701477 0.622686 0.999788 31.740162
R supramarginal gyrus 0.506434 0.668954 0.614908 0.999690 18.664096
L angular gyrus 0.492228 0.654937 0.581790 0.999658 18.939472
R angular gyrus 0.530550 0.690996 0.645568 0.999556 14.077258
L precuneus 0.572165 0.726179 0.746575 0.999648 24.893301
R precuneus 0.561450 0.717098 0.727721 0.999660 24.665593
L superior occipital gyrus 0.455392 0.619612 0.534642 0.999851 11.953124
R superior occipital gyrus 0.415086 0.581202 0.480320 0.999855 12.966847
L middle occipital gyrus 0.488718 0.652614 0.556426 0.999665 14.395611
R middle occipital gyrus 0.494044 0.658698 0.578075 0.999594 15.621224
L inferior occipital gyrus 0.473336 0.630992 0.550650 0.999789 12.081841
R inferior occipital gyrus 0.484961 0.641132 0.606433 0.999678 11.428252
L cuneus 0.508199 0.668576 0.626877 0.999853 17.824856
R cuneus 0.488342 0.652208 0.617406 0.999826 13.257395
L superior temporal gyrus 0.619336 0.763054 0.713458 0.999540 28.274902
R superior temporal gyrus 0.618017 0.762777 0.716168 0.999533 32.238738
L middle temporal gyrus 0.547221 0.704923 0.656755 0.999450 22.676242
R middle temporal gyrus 0.542005 0.701491 0.661062 0.999402 20.429677
L inferior temporal gyrus 0.525416 0.684424 0.649248 0.999475 43.423873
R inferior temporal gyrus 0.522779 0.683569 0.622011 0.999552 14.086580
L parahippocampal gyrus 0.578610 0.728195 0.678805 0.999884 14.311745
R parahippocampal gyrus 0.553277 0.705956 0.635450 0.999898 10.802467
L lingual gyrus 0.563192 0.712161 0.735183 0.999551 16.907396
R lingual gyrus 0.554125 0.705780 0.744865 0.999504 15.851577
L fusiform gyrus 0.574384 0.724035 0.729884 0.999638 14.599786
R fusiform gyrus 0.546420 0.699939 0.639211 0.999769 19.068377
L insular cortex 0.669949 0.801923 0.852205 0.999780 27.490853
R insular cortex 0.676771 0.805839 0.845952 0.999812 14.251284
L cingulate gyrus 0.584106 0.735887 0.734846 0.999655 40.698404
R cingulate gyrus 0.555581 0.710974 0.739240 0.999532 18.807962
L caudate 0.551473 0.707132 0.595558 0.999976 7.516682
R caudate 0.650945 0.786987 0.747466 0.999956 7.260142
L putamen 0.645613 0.784031 0.751637 0.999924 6.538608
R putamen 0.609282 0.754652 0.665459 0.999958 9.816367
L hippocampus 0.638602 0.778098 0.744393 0.999929 6.134519
R hippocampus 0.595932 0.744065 0.674819 0.999938 5.200453
cerebellum 0.742712 0.833347 0.801915 0.998509 24.948051
brainstem 0.755548 0.858797 0.817903 0.999728 22.538838

Table 6.4: LONI Brain Parser Mean Region Results
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Figure 6.1: Manual Segmentation Results

Figure 6.2: PCA-segmentation Results

6.5 Segmentation Images

Figure 6.1 shows horizontal, coronal, and sagittal slices of a typical brain im-

age with the manually segmented, gold standard labels overlaid on the image in

yellow. Figure 6.2 shows the same slices overlaid with the labels from the seg-

mentation that was automatically computed by the algorithm that we developed

in this thesis.
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CHAPTER 7

Conclusion

Our novel segmentation algorithm based on PCA atlases operates by learning a

combined statistical model of the training intensity images and their correspond-

ing label images—the linear, PCA atlas subspace—finding the point at which an

unlabeled subject image projects into this subspace, and nonlinearly registering

the intensity and label images associated with that projected point—the PCA

atlas—to a subject image in order to segment and label the image. The nonrigid

registration is needed in general because there will be a mismatch between the

intensity image component of the PCA atlas and the input subject image.

We tested our algorithm against the two competing methods. Its performance

is similar to that of the voting strategy in all but the Sensitivity measure, meaning

that it had the fewest false negatives or that it included more voxels in the

boundary of the regions that were true positives than the other algorithms. It

was able to describe the information from the training data in a very compact

form, which can be advantageous when there is a huge amount of training data.

In such a case, the voting strategy would have an exorbitantly long running time

and would be impractical for computing timely image segmentations because it

would need to register all the images together for each subject image. Our method

would be able to store this information in a basis comprising a significantly smaller

number of vectors than the number of training examples while maintaining a high

level of accuracy. Once the statistical model is created, it can be used to find
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the location of any subject image in its statistical space and not increase the

segmentation running time as would the voting strategy.

Another important aspect of these algorithms is the time that they take to

perform a complete segmentation. Since the voting procedure requires as many

registrations as there are images in the training set, it took more than two hours

to complete the segmentation using 39 training images in order to generate the

results reported in Section 6. This is required for any segmentation using the

voting algorithm, since any subject image is required to be in correspondence

with all the training data and this cannot be computed beforehand. Our method

took four hours to complete a segmentation using the full-resolution training data,

including the offline training and online segmentation phases of the algorithm.

The segmentation phase takes roughly 30 minutes to perform by itself. Also,

once our algorithm has been trained, it can be applied to any subject image that

is well represented by the training data. Similarly, the LONI brain parser, takes

roughly the same amount of time for the actual segmentation after it has been

trained. These times do not include the time to preprocess the image data, which

may include skull-stripping and inhomogeneity correction.

7.1 Future Work

The performance of our method is dependent on how well it is able to capture

information from the training data. In particular, when a model is built for

the label images contained in the training set, the generation of labels from the

basis is highly dependent on the thresholding that takes place. In its current

implementation, the threshold is selected as the midpoint of the range of possible

values that a generated label can take. This parameter may need to be optimized

for better performance. Also, when deciding the ownership of a particular voxel,
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random noise is added so as not to favor one over the other, but another strategy,

such as splitting the voxels evenly between the number of competing regions, may

be better. This is an issue that can be investigated in future work.

The nonrigid registration algorithm has a significant effect on the segmenta-

tion results. Our framework can be kept as is and different registration algorithms

can be employed. It would be informative to evaluate quantitatively the perfor-

mance of different nonrigid registration algorithms in order to determine how

dependent our method is on them.

Another aspect of our method that requires further investigation is the way

that the label data are analyzed. Currently, a binary image is created for each

of the labels in the image space and a separate PCA space is created for each

binary image space. One alternative to this would be to fit a mesh to a particular

label and register the points on the mesh to each of the training label images.

Then a PCA space can be created by processing the points in the mesh, instead

of treating a binary image as a point in a high dimensional space. This would

help to ease the computational burden of generating the labels and it would place

more importance on the surface of the anatomical regions in question instead of

the 3D volume structure. This notion can also be extended to the intensities.

We could focus our attention only on the image intensity values that occur at

the surface interface. PCA can be performed on these intensities to create a

statistical model. Compared to using the entire voxel space, which contains

useful intensity information, this alternative method would focus on relatively

few intensities. The underlying idea is that if the model is positioned initially in

approximately the correct location, it can use its learned knowledge to deform its

surface parameters to better fit the intensities of a subject image. However, by

considering intensity information only at the surface, the model may restrict its

45



intensity information so much that it will be unable to converge onto the correct

boundary. This could be improved by using the gradient of the intensity image

instead of the actual intensities. A neighborhood of intensities may be used

to compute a smoothed gradient. This affords intensities sampled from these

regions more information about the neighborhood of the mesh and will hopefully

improve its ability to capture how the model changes as it approaches the correct

boundary.

In the algorithm presented in this thesis, the intensity images and label images

were affinely registered together as a group. Then a statistical model was gener-

ated for the corresponding intensities and labels. Another possible way to model

the intensities would be to register them together nonlinearly to the same struc-

tural image. The structural images in our case are represented as label images.

The mean label image can be used as a target to register the remaining training

data. The transformation would thus put each training label image into close cor-

respondence with the mean label image. These transformations can be applied

to the intensity images. PCA of the intensity images can then be performed to

account for the change texture. A separate PCA is performed on the unregis-

tered label images so that its texture and structure are modeled separately. To

generate a new image, a label image and texture image are synthesized. Then the

texture image is transformed from the mean label shape to the synthesized label

shape. This type of modeling of the data is similar to the Active Appearance

Model (Cootes et al., 1998).

Another method that might improve the segmentation would be to create a

separate statistical model for each of the regions being segmented. Each specific

anatomical region would then have more freedom to adapt to fit a subject image,

because it would be independent of the other models. A bounding box could be
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created around each region to bound the area that the statistical model takes

into account, or the masking method that we use can be adapted to help restrict

the model to only the most essential voxels in the image.

Finally, we would like to develop potentially more powerful nonlinear gener-

alizations of the linear (matrix) algebraic PCA atlas subspace method developed

in this thesis, through the use of multilinear (tensor) algebra and the multilin-

ear PCA (Vasilescu and Terzopoulos, 2003, 2007). This should make it possible

to learn multilinear PCA (MPCA) atlas subspaces from more extensive training

image datasets associated with multiple causal factors, such as disease type, age,

and gender.
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