
Animat Vision 
Active Vision in Artificial Animals 

Tamer F. Rabie 

A thesis submitted in conformity with the requirements 
for the degree of Doctor of Philosophy 

Graduate Department of Electrical and Computer Engineering 
University of Toronto 

@ Copyright by Tamer F. Rabie 1999 



National Library Bibliotti&que nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services services bibliographiques 

395 Wellington Street 395. nie Wellington 
OttawaON KlAON4 Ottawa ON K I  A ON4 
Canada Canada 

The author has granted a non- 
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or seU 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copy~@t in this thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or othenvise 
reproduced without the author's 
permission. 

L'auteur a accordé une iicence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
Ia foxme de microfiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imphés 
ou autrement reproduits sans son 
autorisation. 

Canada 



Abstract 

Animat Vision 
Act ive Vision in Art ificial Animals 

Tamer F. Rabie 

Doctor of Philosophy 

Graduate Department of Electrical and Computer Engineering 

University of Toronto 

1999 

We propose and demonstrate a new paradigm for active vision research which draws 

upon recent advances in the fields of artificial life and computer graphies. A software 

alternative to the prevailing hardware vision mindset, animat vision prescribes artifi- 

cial animals, or animats, situated in physics-based virtual worlds as autonornous virtual 

robots with active perception systems. To be operative in its world, an animat must au- 

tonornously control its eyes and actuated body. Cornputer vision algorithms continuously 

analyze the retinal image streams acquired by the anirnat's eyes, enabling it to locomote 

purposefully through its world. We describe an initial anirnat vision implementation 

wit hin lifelike artificial fishes inhabit ing a physics-based, virtual marine world. Emulat- 

ing the appearance, motion, and behavior of real fishes in their natural habitats, these 

animats are capable of spatially nonuniform retinal imaging, foveation, retinal image 

st  abilization, color object recognition, color stereo obstacle avoidance, and perceptually- 

guided navigation. These capabilities allow them to foveate and pursue moving targets 

of interest, such as other artificial fishes, while exercising the sensorimotor control neces- 

sary to avoid collisions and predators. We demonstrate that the animat vision paradigrn 



extends to Mrtual environments inhabited by virtual humans. Animat vision offers a 

fertile approach to the development , implementation, and evaluation of comput ational 

theories that profess sensorimotor competence for animal or robotic situated agents. 
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Chapter 1 

Introduction 

Vision has been regarded in its early stages as the problem of determining "what is where 

by Looking." Three decades ago computer vision research \vas primarily concerned mith 

the passive inversion of the image formation process [Roberts, 19651- Almost two decades 

ago David Marr [ ~ a r r ,  19821 proposed a computational theory for vision which prescribes 

detailed three dimensional reconstruction to compute representations of scenes for the 

purpose of object identification. Until the mid-eighties, the limitations of computing 

power restricted experimentation in computer vision to the analysis of static scenes. In 

the last decade, powerful, general purpose processors have become widely available, as 

have special-purpose vision hardware such as video frame grabbers and pipelined low- 

level image analysis systems [ ~ r o w n  and Terzopoulos, 19941. This has resulted in an 

increased interest by vision researchers in the study of perception from the point of view 

of an active observer or agent in a dynamic word. It has Iead to a re-evaluation of the 

goals of computer vision itself and the emergence of a new dominant paradigrn commonly 

knom as active vision. 

In contrast to the earlier (passive vision) approach, the new objective is to construct 

active vision systems that possess visual skills which allow them to interact with a dy- 

namic environment. The agents in which active vision systems are usually embedded 

are typically mobile robots. Active vision research in most labs today is in reality the 

technologically driven pursuit of "hardware vision." To be sure, applications-minded 



researchers have legitimate reasons for building robot vision systems, but the necessary 

hardware paraphernalia-CCD cameras, pan-tilt mounts, ocular heads, frame-rate image 

processors, mobile platforrns, manipulators, controllers, interfaces, etc.-can be expensive 

to fabricate or acquire commercially and a burden to maintain in working order. 

Advances in the emerging field of artificial life (ALife) make possible a fresh approach 

to computational vision.' A major theme in ALife research is the synthesis of artificial 

animals, or "animats" [~usbands,  19941. Animats, a term coined by Wilson [Wilson; 

19911, are computational models of real anirnals situated in their natural habitats. -4 

recent breakthrough in animat research has produced situated virtual agents that realis- 

tically emulate anirnals of nontrivial complexity [ ~ e r z o ~ o u l o s  et al., 19941. This advance 

prompts us to propose animat vision, an approach which prescribes the use of artificial 

animals as autonomous virtual robots for active vision research. 

1.1 The Animat Vision Concept 

The animat vision concept in a nutshell is to implement, entirely in software, realistic 

artificial animals and to give them the ability to locomote, perceive, and in some sense 

understand the realistic virtual worlds in which they are situated so that they may achieve 

individual and social functionality within these worlds. To this end, each animat is an 

autonornous agent possessing a muscle-actuated body capable of locomotion and a mind 

with perception, motor, and behavior centers. The animat is endowed with functional 

eyes that can image the dynamic 3D virtual world onto ZD virtual retinas. The perceptual 

center of the animat's brain exploits active vision algorithrns to process continually the 

incoming stream of dynamic retinal images in order to rnake sense of what the animat 

sees so that it can purposefully navigate its world. 

'For an engaging introduction to the ALife field, see, e.g., S. Levy, Artificial Life (Pantheon, 1992). 



1.2 Benefits of Animat Vision 

The animat vision methodology that we propose in this thesis can potentially liberate 

a significant segment of the cornputer vision research community from the tyranny of 

robot hardware- It  addresses the needs of scientists who are motivated to  understand 

and ultimately reverse engineer the powerful vision systems found in higher anirnals. 

These researchers are well aware that animals do not have CCD chip eyes, electric rnotor 

muscles, and wheel legs. That is to Say, they realize that readily available hardware 

systems can be poor models of biologicaI animals. For lack of a better alternative: 

however, they have been struggling with inappropriste hardware in their ambition to 

understand the complex sensorimotor functions of real animals. Moreover, their mobile 

robots typically lacked the compute power to achieve real-time response within a fully 

dynamic worid while running active vision algorithms of much sophistication. Yet in 

t heir ambition to  understand the complex sensorimotor functions of real animals, active 

vision researchers have been forced to struggle with whatever hardware is available to 

them, for lack of a better research strategy; that is, until now. 

Animat vision offers an alternative research strategy for developing biologically in- 

spired active vision systems. It circumvents the aforementioned problems of hardware 

vision. The animat vision concept is realized with realistic artificial animals and ac- 

tive vision algorithms implemented entirely in software on readily available 3D graphics 

workstations. Animat vision offers several additional advantages: - One can arbitrarily slow d o m  the "cosmic clock7' of the virtual world relative to the 

cycle time of the CPU on which it is being simulated. This increases the amount 

of computation that each agent can consume between dock ticks without retarding 

the agent's responses relative to the temporal evolution of its virtual world. This 

in turn permits the development and evaluation of sophisticated new active vision 

algorithms that are not presently irnplementable in real- time hardware. 

m The quantitative photometric, geometric, and dynamic information that is needed 



to render the virtual world is available explicitly. Generally, the animats are privy 

to no environmental ground truth data, but must glean visual information "the hard 

wayn-from retinal image streams. However, the readily available ground truth can 

be extremely useful in assaying the effective accuracy of the vision algorithms or 

modules under development .* 

We will argue in this thesis that animat vision can offer a fertile approach to the 

development: irnplementation, and evaluation of computational theories that profess sen- 

sorimotor cornpetence for animal or robotic situated agents. 

1.3 Exarnples 

The reader may doubt the possibility of implernenting artificial animals rich enough to 

support serious active vision research. Fortunately, this hurdle has already been cleared. 

Recent animat theory encompasses the physics of the animal and its world, its ability to 

locomote using interna1 muscles, its adaptive, sensorimotor behavior, and its ability to 

learn. In particular, an animat with these essential capabilities has been implemented 

that emulates animals as complex as teleost fishes in their marine habitats [~e rzo~oulos  

et al., 1994, Tu and Terzopoulos, 1994al. 

Imagine a virtual marine world inhabited by a variety of realistic Bshes (Fig. 1.1). In 

the presence of underwater currents, the fishes employ their muscles and fins to swim 

gracefully around immobile obstacles and among moving aquatic plants and other fishes. 

They autonomously explore their dynamic world in search of food. Large, hungry preda- 

tor fishes stalk smaller prey fishes in the deceptively peaceful habitat. The sight of 

predators compels prey fishes to take evasive actioc. When a dangerous predator ap- 

pears, similar species of prey form schools to improve their chances of sumival (Fig. 1.2). 

As the predator nears a school, the fishes scatter in terror. A chase ensues in which the 

predator selects victims and consumes them until satiated. Some species of fishes seern 

"t is often convenient to represent ground truth data iconically in the form of retinocentric intrinsic 
images, including intensity, range, Uumination, reflectance, and object identity images, and these can 
be computed easily and quickly by the rendering pipelines of 3D graphics workstations. 



Figure 1.1: Artificial fishes in their physics-based virtual world as it appears to an under- 
water observer. The 3 reddish fish (center) are  engaged in mating behavior, the greenish 
fish (upper right) is a predator hunting for small prey, the remaining 3 fishes are feeding 
on plankton (white dots). Seaweeds grow from the ocean bed and sway in the current. 

untroubled by predators. They find comfortable niches and feed on floating plankton 

when they get hungry. 

A challenge undertaken in this thesis is t o  synthesize an active vision system for 

realistic artificial animais which is based solely on retinal image analysis. The vision 

system should be extensible so that it will eventually support the broad repertoire of 

individual and group behaviors described above. It is important to realize that we need 

not restrict ourselves to modeling the perceptual mechanisms of real fishes. In fact the 

animat vision paradigm applies to any animat that rnodels a n  animal to  a reasonable 

level of fidelity. The animat vision system developed in this thesis does not mode1 fish 

vision. Rather, the fish animat serves as a virtual piscatorial robot that  is an active 

observer of its world. 

The basic functionality of the animat vision system starts with binocular perspective 

projection of the 3D world ont0 the animat's 2D retinas. Retinai imaging is accomplished 

by photorealistic, color graphics rendering of the  world from the animat 's viewpoint. This 



Figure 1.2: A predator shark is stalking a school of prey fish in the background. 

projection respects occlusion relat ionships among ob jects. It forrns spatially variant 

visual fields with high resolution foveas and low resolution peripheries. Fig. 1.3 shows 

a stereo image pair rendered from the point of views of the animat's left and right 

eyes. It is clear frorn the figure that  the center of the left and right retinal images have 

higher resolution that decreases gradually towards the image borders to simulate the high 

resolution fovea and lower resolution periphery that characterises primate retinas- 

Based on an analysis of the incoming color retinal image Stream, the dynamic visual 

center of the animat's brain supplies saccade control signals to the eyes in order to 

stabilize the visual fields during locomotion through compensatory eye movements (an 

optokinetic reflex), and also supplies alerting signais to  the animat's motor controler when 

dangerous obstacles or predators are recognized in the low-resolution visual periphery. 

This optokinetic and sensorimotor control reflex allows the animat to attend to interesting 

colored targets, and to keep these dynamic targets fixated. The artificial fish is thus able 

to  approach and track other artificial fishes under visual guidance while exercising the 

sensorimotor control necessary to avoid collision and predators. Fig. 1.4 show an overhead 

view of the animat tracking a reddish fish which it has fixated in its high resolution fovea 



Figure 1.3: Stereo retinal images acquired by the eyes of the fish animat. 

of Fig. 1.3. The white lines emanating from the animat's eyes indicate the gaze direction. 

They show that the eyes are properly fixated on the target in the fovea. Fig. 1.5 shows 

the gaze geornetry from the animat's eyes to the fixated target. 

The proposed animat vision paradigm is flexible enough to be implanted into animats 

other than virtual fish. Fig. 1.6 shows the animat vision system in action in a human 

soldier animation API called DI-Guy developed by Boston Dynamics, Inc. The figure 

shows a DI-Guy soldier visually tracking and pursuing an enemy soldier. The green 

lines emanating from the soldier's eyes indicate the gaze direction. Fig. 1.7 shows stereo 

retinal images captured by the eyes of the observer. Fig. 1.8 demonstrates an anirnat 

vision systeni controlling a version of the lamous interactive computer garne DOOM 

developed by id Software, Inc. In the figure, the doom warrior is in the process of 

visually recognizing a hostile enemy. 

1.4 Contributions 

CVe have proposed and developed Our aniiiiat vision concept in the following articles: 

[Terzopoulos and Rabie, 1995, Rabie and Terzopoulos, 1996, Terzopoulos and Rabie, 

1997, Rabie and Terzopoulos, 19981. The major contributions of this thesis are as follows: 



Figure 1.4: Top- and Side-view of the animat tracking another fish which it has fixated 
in its fovea. 

We introduce the animat vision approach which prescribes the use of artificial ani- 

mals for active vision research. Artificial animals, which are implemented entirely 

in software, have the ability to locomote, perceive, and understand the virtual 

worlds in which they are situated. Our claim is that the animat vision approach 

is a fruitful approach which is complementary to the developrnent of active vision 

systems based on hardware implementations. 

We demonstrate the animat vision approach by building a prototype active vision 

system in the artificial fish animat. The vision system makes exclusive use of the 

stream of retinal images, which are acquired by the agent's mobile eyes, to  analyse 

the surrounding environment and interact accordingly. 

We further demonstrate the animat vision approach in two other virtual environ- 

ments. We implement a similar animat vision prototype for the DI-Guy animat: 

a realistic human mode1 with life-like human motions and actions. Furthermore, 

a simplified version of the algorithm is implemented for the warrior animat in the  

popular video game called Doom. 
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Figure 1.5: Gaze angles and range to target geometry. 

a We adapt and integrate a suite of active vision algorithms into the working pro- 

totype animat vision system. We integrate motion and color-based gaze control 

algorithms to enhance the prototype and to support more robust vision-guided 

navigation abilities in the animat . We further enhance the animat 's navigation 

and perception abilities by combining stereo and color-based motor control algo- 

rithms to extend the animat 's functionality by supporting obstacle recognition and 

avoidance. 

a We make improvements to the color histogram intersection methods originally intro- 

duced by Swain [swain and Ballard, 19911. We develop a more robust intersection 

measure that is invariant to scale changes- We adapt it to  foveated systems to make 

use of the information present in the lower resolution periphery. 

We adapt Black's [ ~ l a c k  and Anandan, 19931 robust incremental optical flow a p  

proach to the animat vision system. We develop an incremental motion segrnen- 

tation technique that makes use of the robust optical flow estimate at each time 

instant to refine an initial segmentation over time as the animat navigates and ac- 

quires more retinal image frames. -41~0, motion and color are integrated to increase 

the robustness of the animat's recognition senses. 



Figure 1.6: Top and side view of a DI-Guy soldier animat visually tracking another 
soldier. 

We exploit in the animat vision system stereo and color cues for enhanced dynamic 

obstacle recognition and avoidance. We develop stereo disparity algorit hms based 

on steerable filters that make use of the color signals available naturally €rom the 

photorealistic images acquired by the animat to improve the matching process and 

t o  obtain more accurate disparity estimates. We show that this method is very 

effective and, when combined with color cues, it gives the animat the abilities 

required to avoid obstacles. 

1.5 Thesis Overview 

This thesis is presented in 8 chapters. Chapters 3 to 6 present theoretical and practical 

aspects of system implementation, while the last chapter gives a discussion of the work 

presented and some concluding remarks. 

Chapter 2 briefly motivates the animat vision approach vis-a-vis convent ional active 

vision based on robot hardware and discusses the background of Our work. Chapter 

3 reviews the fish animat in more detail describing its physical mode1 implernentation- 

Chapter 4 presents an initial functional implementation of the animat vision systeni, with 



Figure 1.7: Stereoscopic retinal images captured by the virtual soldier's eyes. 

Figure 1.8: Stereoscopic retinal images captured by the Doom animat as it recognizes an 
adversary. 

a detailed description of its developrrient. 

Chapters 5 and 6 present active vision additions to the animat vision system enhancing 

the animat's functionality in its virtual environment. Tn Chapter 5 motion and color cues 

are integrated to increase the robustness of the animat's perceptual funct ions. Chapter 

6 adds dynamic obstacle recognition and avoidance capabilities by exploiting stereo and 

color cues naturally available frorn the photorealistic images acquired by the animat's 

binocular eyes. These chapters also give an example of how vision algorithnis can be 

evaluated within the proposed animat vision framework. 

Chapter 7 shows that  the proposed animat vision paradigm is flexible enough to be 



implanted into animats other than virtual fish by integrating the vision system into two 

different virtual environments inhabited by humans characters. This demonstrates the 

versatility of the paradigrn and that it is a general active vision framework applicable to  

robotic systems of varying degrees of cornplexity. 

Chapter 8 draws conclusions from our animat vision work and suggests possible di- 

rections for future research. 



Chapter 2 

Motivation and Background 

Our zoomimetic approach to computer vision is made possible by the confluence of three 

recent trends: 1) advanced physics-based artificial life modeling of natural animals? 2) 

photorealistic computer graphics rendering and its efficient implementation in modern 

3D graphics workstations, and 3) active computer vision algorithms. In this chapter we 

review approaches related to our animat vision approach, and give some background on 

areas of active vision that currently interest researchers. 

2.1 Related Work 

J.J. Gibson [Gibson, 19791, in a serise the grandfather of active vision, stresses in pre- 

computational terms the importance of modeling the active observer situated in the 

dynamic environment. In his theory of direct perception, the environment is to be re- 

garded as the repository for information. Thus, no interna1 representation is needed from 

this point of view since al1 the information required for action is already out there in the 

world and it is the responsibility of the active observer to choose what is needed from the 

images to carry out a particular task. Versions of this paradigm suitable for mainstream 

computer vision were introduced in the seminal papers of Bajcsy [ ~ a j c s ~ ,  19881 and 

Ballard  a al lard, 19911 under the names of active perception and animate vision, respec- 

tively. The active vision approach was further developed by Aloimonos et al.  l loi mon os 
et al., 19871 and many others (see, e-g.,  a alla rd and Brown, 1992, Blake and Yuille, 1992, 

Swain and Stricker, 19931) into the prevalent paradigm that it is today. 



CHAPTER 2. MOTIVATION AND BACKGROUND 14 

The artificial animals that we advocate in this thesis are active "vehicles" in the sense 

of Braitenberg [Braitenberg, 19841. We believe that they are as appropriate for ground- 

ing active vision systems as are hardware mobile robots. The first biologically inspired 

mobile robots were developed by Grey Walter in the 1950's A alter, 19531. His "turtle" 

robots, which were equipped with a simple controller using light sensors, e4xhibited inter- 

esting phototropic navigation t rajectories. This illustrated well t hat even simple control 

functions can generate quite complex behaviors when interacting with a dynamic environ- 

ment. Modern versions of these mobile robots have emerged from the situated robotics 

work of Brooks and his group [~rooks,  19911 and they have been an inspiration to nu- 

merous other robotics groups (see; e.g., the compilation [ ~ a e s ,  19911). Undeniably, how- 

ever, efforts to equip real-time mobile robots with general-purpose biologically inspired 

active vision systems have been hampered by the hardware and the reIatively modest 

abilities of on-board processors [~roko~owicz  and Cooper, 1995, Grosso et al., 1995, 

Murray e t  al., 1995, Seelen et al., 19951. 

-4rtificial fishes are animats of unprecedented sophistication. They are autonomous 

virtual robots situated in a 3D continuous virtual world governed by physical dynam- 

ics. This makes them suitable for grounding active vision systems. By contrast, Wilson's 

original animat   ils son, 1991], which  vas proposed for exploring the acquisition of simple 

behavior rules, is a point marker on a non-physical2D @d world that can move between 

squares containing food or obstacles. Other simple animats include the 2D cockroaches of 

Beer [ ~ e e r ,  19901. A more sophisticated animat is the kinematic dog described by Blum- 

berg and Galyean [~ lumberg  and Galyean, 19951. Prior animats make use of "perceptual 

oraclesn-schemes for directly interrogating the virtuai world models to extract sensory 

information about the environment as needed by the animat. One can also find sev- 

eral instances of "oracle vision" in the behavioral animation literature [ ~ e p o l d s ,  1987, 

Renault et  al., 1990, Tu and Terzopoulos, 1994bl. Of these, the "synthetic vision" work 

of Renault et al. is most relevant to animat vision. The animat vision approach is also 

related to that of Maes [ ~ a e s  et al., 19941, but there are major differences. Her ALIVE 
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system, which is inhabited by simple animats, images the outside world through a CCD 

camera. Image processing hardware executing region tracking algorithms analyzes the 

camera image in real time. This enables a person to interact with the animats through 

body gestures. Unlike oracle vision, for the animat vision approach to make sense, it 

is absolutely necessary that the animat and its world attain a high standard of visual 

fidelity. 

2.2 Background on Active Vision 

Looking a t  vision from the point of view of an active, autonomous agent changes our view 

of what the vision problem is and how it should be approached. Computer vision research 

carried out from this point of view is V ~ ~ O U S I ~  called active, animate o r  purposzve vision. 

A number of researchers have argued that it constitutes a new paradigm for computer 

vision, and may lead to significant advances in robotics and to a better understanding of 

vision in general. 

Active vision systems have mechanisms that can actively control camera parameters 

such as orientation, focus, zoom, and vergence in response to the requirernents of the 

task and external stimuli. They may also have anthropomorphic features such as Spa- 

tially variant (foveal) sensors, binoculanty, and high speed gaze control fo al lard, 1991, 

Prokopowicz and Cooper, 1995, Grosso et al., 19951. More broadly, active vision encom- 

passes attention (selectively sensing in space, resolution and time), whether it is achieved 

by modieing physical camera parameters or the way data is processed after leaving the 

camera [~so t sos  et al., 1995, Swain and Stricker, 19931. 

Active systems can dramatically simplify the computations of early vision: 

Enabling areas of interest to be examined a t  the desired resolution (inside the fovea) 

without the costs of uniforrnly high resolution sensing. 

Simplifying segmentation of an object of interest from its background, using con- 

trolled motions to disambiguate solutions that are othenvise underconstrained. 
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0 Examining unseen areas of the scene, and simplifying the transition from image to 

world coordinates. 

The tight coupling between perception and action proposed in the active-vision paradigm 

does not end with camera movements. In this paradigm, visual processing is tied closely 

with the activities it supports (navigation, manipulation, signaling danger or opportu- 

nity, etc.) allowing simplified control algorithms and scene representations, quick re- 

sponse time, and increased success at  supporting the goals of the activities- In addition, 

integration provides new metrics with which t o  judge vision algorithms that are better 

tuned to applications of computer vision. 

The important research areas in active vision can be briefly summarized as foliows: 

1. Attention: 

Visual attention in the most general sense consists of tuning visual processing to 

those aspects of the visual signal that are relevant to the task at  hand. It can often 

be viewed as signal selection. That is, it often consists of suppressing irrelevant 

information so that it does not consume resources or interfere with higher Ievel 

processing. The assumption underlying this is that the visual signal contains far 

more information than it is possible to analyze in a reasonable amount of time, and 

(usually) far more than is needed to exhibit useful behavior [~sotsos  et al., 19951. 

Signal selection can take place along wrious signal dimensions: space, velocity, and 

distance. 

r Focal Selection: For a given camera position. interest is spatially restricted to 

a small region within the camera's field of view. This (focal) region is observed 

a t  high spatial resolution, while the remaining (peripheral) field is observed 

a t  much reduced resolution. 

Motion Selection: Selection can be achieved in motion by tracking an object 

moving a t  a particular velocity. The tracked object will be rendered stationary 

while objects or patterns moving a t  other velocities are nonstationary and 
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perhaps blurred. Tracking is an effective means for isolating one pattern at  a 

time in a complex world containing many differently moving patterns. 

Selection in Depth: A system can select objects a t  a particular distance from 

the camera using focus, stereo, or motion parallax. Selection in stereo and mo- 

tion can be realized by transformations that align regions of interest between 

images from which the disparity cm be estimated and used t o  infer depth. 

2. Foveated Sensing: 

Biological systems make extensive use of foveated visual systems. In primates, 

the "fovea" of the retina defines the visual axis of the eye and is responsible for 

highly detailed and exact vision. The fovea is quite small, consisting of about 

a 1.5mm diameter depression (corresponding to 5.2O of the visual field of view) 

in the retina situated near the optic auis. The center of the fovea contains only 

cone receptors (responsible for color vision in bright light) that are much longer 

and thinner than those on the periphery. This rod free area is about 0.33mm in 

diameter and corresponds to only 1" of the visual field of view. Beyond the fovea is 

the peripheral retina which constitutes about 97.25% of the retinal concave surface 

and consists largely of rod receptors (responsible for night viewing) with a sparse 

distribution of cones in between. There are about an order of magnitude more rods 

than cones in the human retina: about 120 x 106 rods compared with 6.5 x 106 

cones in each eye [~ev ine ,  19851. 

While most current machine-vision architectures are uniform in spatial resolution, 

there are clear advantages to using a multiresolution system. It  can provide a 

wide angle of field with a high resolution in its center (the fovea) and decreasing 

resolution towards its periphery. If we assume a foveated sensor roughly analogous 

to the human retina, then the ratio of the sample points needed for this sensor 

to  the sample points needed to provide uniformly high resolution is approximately 

1:1000 to 1:10,000 [ ~ w a i n  and Stricker, 19931. 
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To realize these possibilities, several engineering and algorithmic research problems 

arise: 

Space-variant systems must be active in order to utilize the higher-resolution 

parts of the sensor. Actuators must be provided to 6xate the sensor on task- 

specific regions of interest. 

0 Space-variant systems must be able to effectively detect features that fa11 on 

lower resolution areas of the sensor in order to make a rapid fixation to the 

center (fovea). 

r Image-processing and pattern-recognition methods appropriate to space-variant 

sensors rnust be developed. Even a simple act such as convolution is "difFerentv 

in the space-variant context . 

3. Gaze Control: 

One of the central themes of active vision research is gaze control. Gaze control is 

the purposeful alteration of the imaging parameters (viewpoint , viewing directions, 

vergence angle, focus, etc.) to facili tate the performance of visual tasks. The 

parameters are typically controlled so as to produce fixation, a condition in which 

the optic axes of the cameras remain 6xated on a common point on some world 

surface. Visual attention and fixation are obviously closely related. It is generally 

assumed that agents fixate features and objects in the scene to which they are 

attending [Coombs and Brown, 1991, Coombs and Brown, 19931. 

The problem of gaze control can be partitioned into two primary categories: gaze 

stabilization and gaze change. The former, known as fixation, consists of controlling 

the available degrees of freedom to maintain clear images of some world object that 

may be stationary or in motion with respect to the camera. For moving targets, 

this typically involves target tracking. The latter category, also known as foveation, 

is more involved: in general, foveation may be directly motivated by the need 

to reduce the computational cornplexity of visual tasks. Foveation may be used 
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t o  transfer stabilized gaze to new fixation points, sirnilar to human saccadic eye 

movements, in order to  assist in solving low-level or high-level visual tasks. 

Gaze control is motivated by the fact that vision in an unrestricted environment 

must involve the control of imaging parameters. Imagine, for example, a person 

trying to pilot a vehicle without making any head or eye movements. With only 

"passivey7 imaging, these and many other tasks are extremely difficult. In contrast, 

an active observer will seek an advantageous configuration of camera parameters 

for a given situation. The ability to control imaging parameters in such a man- 

ner facilitates the close interaction of perception and action that is necessap- for 

autonomous interaction wi t h the environment. 

For practical, real-world situations, the problems of gaze stabilization and foveation 

can only be accomplished using active control mechanisms. These capabilities are 

important even wit hin static environments. In order to perform 3-D reconstruction 

of a general scene, for example: the cameras must be moved so that different por- 

tions of the scene come into view, and lens parameters must be tuned so that sharp, 

focused images are acquired with appropriate brightness vaIues. For moving ob- 

jects, the need to control gaze is even more compelling. The ability to stabilize the 

image of a moving object as the agent is moving also may not only be necessary for 

robust processing, but can also provide significant computational advantages over 

the passive case  a al lard, 1991, Aloimonos et ab, 19871- 

The advantages of gaze control for both static and dynamic situations are as follows: 

a Image Stabilization: For an object that moves relative to a camera, transla- 

tional image blur may result unless the object is tracked. Because tracking 

prevents the object 's image from translating, fixation permits simpler schemes 

for control and for processing of image sequences. Furthermore, tracking ob- 

jects of interest keeps them in the fovea for a longer period of time, permitting 

accurate high-resolution analysis. 
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a Overcome Limited Field of View: Any given camera system provides only 

a limited field of view. Gaze control is needed so that new portions of the 

scene can be brought into the image, and camera movements are often needed 

to overcome problems of occlusion. A special case of limited field of view 

involves sensors that have a central high-resolution fovea and a lower-resolution 

periphery. Although the overall field of view is very wide, the foveal region is 

typically very small and must be aimed at  locations of interest. Without the 

ability to fkate, these sensors are severely limited. To state this another way? 

gaze control makes possible al1 of the advantages offered by foveal sensors. 

0 Optimize Camera/Scene Relationship: With an active vision system, it is pos- 

sible to shift the operating point of the system so that imaging parameters are 

well matched to the object being fkated. For esample, when an object lies 

near the optical axis of a camera, the image rnay be closely approxirnated by 

orthographie projection. This simplifies many computations. An active vision 

system can also manipulate the level of detail in an image by moving a camera 

or changing focal length to coritrol the level of detail present in the image. 

a Figu~e/Background Separation: If a moving object is tracked, the optical flow 

in the image for that object is reduced to very small values relative to the rest 

of the scene. The large differences in the flow fields can be used to segment 

the image, so that the object being tracked is extracted from the background. 

r Range Calculations: If a stationary scene point is fixated by a carnera mounted 

on a moving vehicle, the image flow for that point d l  have zero magnitude. 

Direction of flow at  other points of the flow field gives relative range frorn 

the fixation point. Range data fusion is also possible; for example, a scene 

point predicted by stereo disparity can be examined by directing camera gaze 

toward the predicted location. Focus or vergence information can then be 

used to accept, reject, or improve the position estimate [ ~ l s o n  and Lockwood, 

19921. 



4. Where to  Look Next: 

Active vision requires a system that purposefully gathers information from the 

visual world. Information gathering is a dynamic process that responds a t  once to 

events in the visual world, to the system's evolving understanding of that  world, 

and to  changing requirements of the vision task [ ~ e  and Tsotsos, 19951. 

Vision must be understood as a spatioternporal process. This is true because events 

in the world are distributed in time as tvell as space. It is also true because cost and 

complexity considerations require that system resources be focused on restrïcted 

regions of the scene. Hence a sequence of such focal probes is needed to explore 

the visual world. Finally, it is true because sequential processing provides for hi& 

efficiency through directed analysis: results of each step direct subsequent steps to 

most important regions of a scene. 

Sequential purposive eye movements address the difficult problem of simultaneously 

associating many models to  many parts of the image. To make this problem com- 

putationally tractable within a single fkation, it must be simplified either into a 

location task (try to find a known object) or an identification task (try to  identify 

an object whose location can be fixated). A simplified model of visual organization 

consists of a center and a surround. The center is where-l'm-looking and the sur- 

round is a source of possible new gaze points. A location task is to find the image 

coordinates of a single model in the presence of many alternatives. In this task the 

image periphery m u t  be searched; one can assume that the model has been chosen 

a priori. An identification task is to associate the foveated part of the image with 

one of many possible modeIs. In this task one can assume that the location of the 

model to be estabIished is a t  the fkation point. 

In order for these suggestions to  be reasonable, there must be sorne way of changing 

gaze (foveation) to fixate a specific object. One difficulty is that it is unreasonable 

to  assume that the location of the object is known precisely, a t  l e s t  on the initial 

gaze change. Another is that wtiatever visual mechanism is posited, it must require 



only very low spatial resolution, since just pnor to gaze change, the target object 

is typicdly a t  the periphery of the visual field. Features that work under these 

circumst ances include motion and color [S wain and S tricker, 19931. 

Summary 

Interest in active vision research has increased in recent years with the advent of lightweight 

cameras and advances in real-time image-processing hardware. However, for the reasons 

mentioned earlier, active vision research in rnost labs today is in reality the technologi- 

cally driven pursuit of hardware vision. The animat vision methodology, proposed herein, 

with all its advantages over hardware vision is another alternative that can help expedite 

the development, implementation, and evaluation of computational t heories that profess 

sensorimotor cornpetence for animal or robotic situated agents. 



Chapter 3 

Review of the Fish Animat 

The artificial fish model is developed elsewhere [~e rzo~oulos  et al., 1994, Tu and Ter- 

zopoulos, 1994a, Tu and Terzopoulos, 1994b3. This chapter reviews the fish animat to a 

level of detail sufficient to comprehend the animat vision system developed in subsequent 

chapters. 

Each artificial fish is an autonomous agent with a deformable body comprising a 

graphical display model and a biomechanical model actuated by interna1 muscIes. As 

Fig. 3.1 illustrates, the body also includes eyes (among other on-board sensors) and a 

brain with rnotor, perception, behavior, and learning cent ers. Through controlled muscle 

actions, artificial fishes are able to swim in simulated water in accordance with simplified 

hydrodynamics. Their functional fins enabIe t hem to locomote, maintain balance, and 

maneuver in the water. Thus the artificial fish model captures not just 3D form and 

appearance, but also the basic physics of the animal and its environment. Though rudi- 

mentary compared to real animals, the minds of artificial fishes are nonetheless able to 

learn some basic motor functions and carry out perceptually guided motor tasks within a 

repertoire of piscine relevant behaviors, including collision avoidance, foraging, preying, 

3.1 

The rn 

schooling, and mating. 

Motor System 

otor system (see Fig. 3.1) comprises the fish biomechanical model, including muscle 

actuators and a set of motor controllers (MCs). Fig. 3.2 illustrates the mechanical body 
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Figure 3.1: The body of an artificial fish comprises a muscle-actuated biornechanical 
model, perceptual sensors, and a brain svith rnotor, perception, behavior, and learning 
centers. To the lower left is an artificial fish graphical display model. 

model which produces realistic piscine locomotion using only 23 l'umped masses and 91 

uniaxial viscoelastic elements, 12 of which are actively contractile muscle elements. These 

mechanical components are interconnected so as to maintain the structural integrity of 

the body as it flexes due t o  the muscle actions. 

Artificial fishes locomote like real fishes, by autonornously contracting their muscles 

in a coordinated fashion. As the body flexes it displaces virtual fluid which induces local 

reaction forces normal t o  the body. These hydrodynamic forces generate thrust that 

propels the fish forward. The model mechanics are governed by Lagrange equations of 

motion driven by the hydrodynamic forces. The system of coupled second-order ordinary 

differential equations is continually integrated through time by a numerical simulator.' 

'The artificial fish model achieves a good compromise between realism and computationd efficiency. 
To give an example simulation rate, the implernentation can simulate a scenario with 10 fishes, 15 food 
particles, and 5 static obstacles a t  about 4 frames/sec (with wireframe rendering) on  a Silicon Graphics 
RU00 1ndigo"xtreme workstation. More complex scenarios with large schools of fish, dparnic  plants, 
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Fig. 3.2 shows an equation of motion used to model the spring mechanics of the artificial 

fish. For each fish, 69 of these equations (23 nodes x3 degrees of freedom) are integrated 

a t  each time instant to produce locomotion. 

Biomeçhanical Model 
23 lumped masses. 91 vrscoelasbc eiernents. 12 muscles 

n 

Musdes: & = 2' ( t )  

Differential Equations of Motion 

where r,=x,  -x,; $ = r y / ~ ~ v ~ ~ ~  ey =!kg 

* .  .,- - .  
a rest length 
, stiffness c Y 

Y 
..,.. damping . y Y 

Figure 3.2: Equations of motion that govern the biomechanical fish model. 

The rnodel is sufficiently rich to enable the design of motor controllers by gleaning 

information from the fish biomechanics literat ure. The motor cont rollers coordinate mus- 

cle actions to carry out specific motor functions, such as swimming forward (swim-MC), 

turning left (left-tum-MC), and turning right (right-turn-MC). They translate natural 

control parameters such as the fonvard speed o r  angle of the turn into detailed muscle 

actions that execute the function. The artificiat fish is neutrally buoyant in the virtual 

water and has a pair of pectoral fins which enable it to navigate freely in its 3D world by 

pitching, rolling, and yawing its body. Additional motor controllers coordinate the fin 

actions. 

and full color texture mapped GL rendering at  video resolution can take 5 seconds or  more per hame. 



Figure 3.3: Artificial fishes perceive objects within a limited field of view if objects are 
close enough and not occluded by other opaque objects (only the fish towards the left is 
visible to the animat at  the center). 

3.2 Perception System 

Artificial fishes gain awareness of their world through sensory perception. -4s Fig. 3.3 

suggests, it is necessary to mode1 not only the abilities but also the limitations of ani- 

mal perception systems in order to achieve natural sensorimotor behaviors. Hence, the 

artificial fish has a limited field of view extending frontally and laterally to an effective 

radius consistent with visibility in the translucent water (Fig. 3.3 ). An object may be 

detected only if some visible portion of it (Le., not occluded behind some other opaque 

object) enters the fish's field of view (Fig. 3.3 ). The perception center of the artificial 

fish's brain (see Fig. 3.1) includes a perceptual attention mechanism which allows the an- 

imat to attend to the world in a task-specific way, hence filtering out sensory information 

superfluous to its imrnediate behavioral needs. For example, the artificial fish attends to 

sensory information about nearby food sources when foraging. The animats in our previ- 

ous ALife simulations (described in [~erzopoulos et al., 1994, Tu and Terzopoulos, 1994a, 

Tu and Terzopoulos, 1994bl) employ a perceptual oracle scheme according to which the 



artificial fish may satisfi its perceptual needs via direct interrogation of the 3D world 

model. In particular, subject to  the appropriate perceptual limitations, the animat7s 

on-board sensors query the geometric and photometric information that is available to  

the graphics rendering engine, as well as object identity and dynamic state information 

wit hin the physics-based virtual world. 

We ernphasize that our goal in this thesis is to replace the perceptual oracle with an 

artificial fish active vision system t hat elicits visual information from retinal images, as 

will be described in chapter 4. 

3.3 Behavior System 

The behavior center of the artificial fish7s brain mediates between its perception system 

and its motor system (Fig. 3.1). A set of innate characteristics determines the (static) 

genetic legacy, which dictates whether the fish is male or female, predator or prey, etc. A 

(dynamic) mental state comprises variables representing hunger, fear, and libido, whose 

values depend on sensory inputs. The fish's cognitive faculty resides in the action se- 

lection component of its behavior center. At each simulation time step, action selection 

entails combining the innate characteristics, the mental state, and the incoming stream 

of sensory information to generate sensible, survival sustaining goals for the fish, such as 

to avoid an obstacle, to avoid predators, to hunt and feed on prey, or to court a potential 

mate. The action selector ensures that goals have some persistence by exploiting a single- 

item memory. The behavior memory reduces dithering, thereby improving the robustness 

of prolonged behaviors such as foraging, schooling, and rnating. The action selector also 

controls the perceptual attention mechanism. At every simulation time step, the action 

seIector activates behavior routines that attend to sensory information and compute the 

appropriate motor control parameters to carry the fish a step closer to fulfilling its im- 

mediate goals. The behavioral repertoire of the artificial fish includes primitive, reflexive 

behavior routines, such as obstacle avoidance, as well as more sophisticated motivational 

behavior routines such as schooling and mating whose activation is dependent on the 
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mental state. 

3.4 Modeling Form and Appearance 

Figure 3.4: (a) Digitized color image of a fish photo. (b) 3D NURBS surface fish body. ( c )  
Color texture mapped 3D fish model. Initial (d) and final (e) snake-mesh on an image 
of a different fish. 

Act ive vision research currently employs mobile robots situated in nat ural real world 

environments. For active vision research to be appropriately applied to the animat vision 

framework, the artificial animal and its world must capture the form and appearance of 

real animals and their physical environment wit h considerable visual fidelity. To t his 

end, photographs of real fishes, such as the one shown in Fig. 3.4(a), are converted 

into 3D spline (NURBS) surface body models (Fig. 3.4(b)). The digitized photographs 

are analyzed semi-automatically using deformable models [ ~ e r z o ~ o u l o s  et al., 19881, in 

particular, a "snake-mesh" tool which is demonstrated in Fig. 3.4(d-e) on a different 

fish image. The snake mesh slides freely over the image and can be manipulated using 

the mouse. The border snakes adhere to intensity edges demarcating the fish from the 

background, and the remaining snakes relax elastically to cover the imaged fish body with 
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a smooth, nonuniform coordinate system (Fig. 3.4(e)). The coordinate system serves to 

rnap the appropriate image texture onto the spline surface to produce the final texture 

mapped fish body mode1 (Fig. 3.4(c)). 



Chapter 4 

The Animat Vision System 

In this chapter we present the animat vision system that Ive have developed for the 

artificial fish, which makes exclusive use of color retinal images. 

4.1 Eyes and Retinal Imaging 

The artificial fish has binocular vision. The movements of each eye are controlled through 

two gaze angles ( O ,  4) which specify the horizontal and vertical rotation of the eyeball, 

respectively. The angles are measured with respect to the head coordinate frame, such 

that the eye is looking straight ahead when 0 = 4 = 0". 

Each eye is implemented as four coxxiai virtual cameras to approximate the spatially 

nonuniform, foveal/peripheral imaging capabilities typical of biological eyes. The level 

1 = O camera has the widest field of view (about 120") and the horizontal and vertical 

fields of view for the level 1 camera are related by 

where d, and d, are the horizontal and vertical image dimensions and ff is the focal 

length of the wide field of view camera (1 = O).l 

Fig. 4.l(a) shows an example of the 64 x 64 images that are rendered by the four 

coaxial cameras (using the OpenGL library and SGI graphics pipeline) of the left and 

right eye. Since the field of view decreases with increasing 1, image 1 is a zoomed version 

'If f: is unknown, but the 2 = O field of view is known, then f: is first computed using (4.1) with 
1 = O and this value is used to speci@ the field of view at the other levels. 

30 



Left eye Right eye 

Figure 4.1: Binocular retinal imaging. (a) 4 cornponent images; 1 = 0,1,2, are peripheral 
images; 1 = 3 is Foveal image. (b) Composited retinal images (borders of cornposited 
component images are s h o w  in white). 

of the central part  of image 1 - 1. We refer to  the image at level Z = 3 as the fovea and the  

others as  peripheral images. We magni@ the level 1 image by a factor of 23-L and overlay 

in sequence the four images coincident on their centers starting with the 1 = O image 

at the bottom (to form an (incomplete) pyramid), thus compositing a 512 x 512 retinal 

image with a 64 x 64 fovea at the center of a periphery with radially decreasing resolution 

(and increasing smoothing) in 3 steps. Fig. 4.1(b) shows the binocular retinal images 

composited from the coaxial images a t  the top of the 

structure in the figure, we have placed a white border 

image. 

figure. To reveal the retinal image 

around each magnified component 
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Figure 4.2: Gaze control for the animat vision system. 
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The advantages of the multiresolution retina are significant. Vision algorithnis which 

process the four 64 x 64 component images could be 16 times more efficient than those 

that would have to  process a uniform 512 x 313 retinal image. 

Furthe r Visual 
Anaiysis 

4.2 Active Vision System Overview 

Stabilization Fweation 
Module Module 

Fig. 4.2 illustrates a block diagram of one ocular channel of the binocular animat vision 

system. The system consists of two main modules-a foveation module and stabzlztation 

module. Together t hey implement a gaze control capabili ty that  enables the artificial 

fish to stabilize the visual world as it Iocomotes, as well as to detect a visual target in its 

field of view, foveate the target, and visually navigate towards the target. If the target 

is in motion, the artificial fish can track it visually and swim in pursuit. 



4.3 Foveation using Color Ob ject Detection 

The mind of the fish stores a set of color models of objects that are of interest to it. For 

instance, if the fish is a predator, it would possess models of prey fish. The models are 

stored as a list of 64 x 64 color images in the fish's memory. 

We have adopted into the active vision system the color histogram methods of Swain 

[ ~ w a i n  and Ballard, 1991). The fish employs modified versions of these methods to detect 

and localize any target that may be imaged in the low resolution periphery of its retinas. 

Since each model object has a unique color histogram, a target with a similar color 

histogram can be detected in the periphery by histogram intersection and localized by 

histogram backprojection. 

4.3.1 Modified Color Histogram Intersection Method 

Swain [ ~ w a i n  and Ballard, 19911 developed a technique called color indexing that effi- 

ciently identifies objects in a database in the presence of occlusion and over changes in 

viewpoint. He demonstrated that object color distributions without geometric informa- 

tion can provide a powerful cue for recognition. 

The effectiveness of the algorithm degrades badly if the area of the object in the 

model image differs substantially from the area of the target object appearing in the 

image. Swain suggests scaling the initial model histogram by &hf/d2 where dhf is the 

known range of the mode1 initially and d is the computed range of the target object a t  

the time of backprojection. We will show later that estimating range is straightforward 

with the eyes verged on a target. Unfortunately, this scaling technique did not work well 

for the artificial fish, apparent ly- because of noisy dept h measurements and the perspective 

nonlinearity associated with the wide field of view cameras. 

we developed a more robust intersection measure that is invariant to scale changes. 

This new method iteratively scales d o m  an initially large model color histogram to the 

approximate size of the target object appearing in the image. 

Following Swain's notation in [~wain  and Ballard, 19911, his original histogram inter- 



section measure is 

where 1 is the image color histogram (Ij  is the number of image pixels classified into 

histogram bin j )  , M is the model color histogram, and n is the number of histogram 

bins used. This measure is effective only if the model histogram is properly scaled. To 

overcome this limitation, note that the match value H gives the percentage of pixels from 

the model that have corresponding pkels of the same color in the image (hence, H = 0.9 

means that there is 90% chance the model appeared in the image; however, the value of 

H can drop significantly; e.g. H = 0.1 if there is a scale difference between target and 

model). This suggests that Ive can use H itself to scale the model histogram M .  Our 

experiments revealed that this is not always effective, but that it can be improved by 

scaling the histogram iteratively; i-e., recomputing H after every scaling of M until the 

value of H increases above a set threshold, Say 0.9. This technique may be expressed as 

- min ( I j  , Al-) 
M f f L  = l&H' = &fi ; k =  1, ..., n, '& k1j 

where i is the iteration number. Equation 4.3 is iterated until the value of Hi either 

exceeds the threshold, indicating the presence of the model in the image, or remains 

constant below threshold (or decreases), indicating that the rnodel matches nothing in 

the image. The equation converges after a few iterations (usually 2 to 4 if the target size 

is not too much smaller than the model). 

The iterative technique mây degenerate in cases when the model is not present in the 

image, while a similar color combination is. The problem is that the model histogram 

gets scaled to the size of the false target to yield a large intersection match value, hence 

a false alarm. 

To overcome this problem, we employ a new intersection measure after scaling the 

model histograrn using (4.3). Our measure makes use of a weighted histogram intersec- 

tion method inspired by the local histogram method proposed by Ennesser and Medioni 



[~nnesser and Medioni, 19931. Our measure is 

where the weighting histogram W is given by Wj = ïVfj/2'F'j- Here P is the color 

histogram of the peripheral image (at level 1 = O). As is noted by Ennesser and Medioni, 

the meighted intersection technique increases the selectivity of the method by placing 

more importance on colors that are specific to the model. In Our experirnents, HN 

provided very good separation between intersection match values for false targets (H&- < 

0.2) and true targets ( H N  > 0.8). 

An alternative met hod, which also gives good results is to incorporate the weighting 

histogram inside the iteration of equation (4.3) as follows: 

The scaled Ad is then used iteratively to compute the intersection match value HN as 

before. 

4.3.2 Localization using Color Histogram Backpro jection 

Once the model histogram has been properly scaled as described above, Swain7s backpro- 

jection algorithm works well in localizing the pixel position of the center of the detected 

target in the foveal image. 

Histogram backprojection gives large weights to pixel locations in the image whose 

color histogram closely resembles the color histogram of the model. It thus answers 

the question: Where are the colors in the image that belong to the target object being 

observed? The answer is given such that colors appearing in other objects besides the 

target are deemphasized so that the search may be focused on finding the actual target. 

In histogram backprojection the ratio histogram Rj is defined as 



It is this histogram R that is backprojected onto the image. The image values are replaced 

by the values of R that they index. This can be represented as 

where G ,  is the image color value a t  pixel location (x, y), and map(c) is a histogram 

function that maps a three dimensional color value c to a three dimensional histogram 

bin. The backprojected image is then convolved with a circular disk of area equal to the 

expected area of the target in the image as 

where Dr is the disk of radius r.  The peak in the convolved image gives the expected 

(z, y) location of the target in the image. A thorough description of this algorithm is 

available in [sivain and Ballard, 19911. 

The color space that we used in the animat vision system7s color recognition algo- 

rithms was the HSV (Hue, Saturation, Intensity) color space. It was chosen empirically 

to ailow the intensity axis V to be more coarsely sampled than the H and S axes. The 

intensity axis V is more sensitive to lighting variations from shadows and distance from 

light source than the H, S ases, so blurring V more improves the robustness of the system 

to lighting changes in the acquired scene. In Our experiments, The H and S axes were 

divided into 32 sections, while the V axis was divided into only 16 sections for a total of 

16384 bins. 

4.3.3 Saccadic Eye Movements 

When a target is detected in the visual periphery, the eyes will saccade to the angular 

offset of the target to bring it within the fovea. With the object in the high resolution 

fovea, a more accurate foveation is obtained by a second pass of histogram backprojection. 

A second saccade typically centers the object accurately in both left and right foveas, 

t hus achieving vergence. 



When the fish is executing a rapid turn, however, the target could partially exit the 

fovea (1 = 3). Part of it will appear in the next coarser image (1 = 2). Three saccades 

are then typically used to regain a foveal £k on the target. The first saccade detects the 

portion of the target still in the fovea and makes a n  initial attempt to foveate the target, 

on the second saccade the target is brought closer to the center of the fovea, and finally 

the third saccade accurately centers the target in both foveas to  verge the eyes. 

If the turn is too rapid such that the target leaves the fovea entirely, the histogram 

intersection method will fail to detect the target in the fovea. The algorithm autornati- 

cally reapplies the intersection of the mode1 with the image at a lower level with a tvider 

field of view. Thus, the algorithm will continuously move down the pyramid trying to 

detect the target. When it is eventually detected and locaiized, it is foveated at multiple 

saccades of the eyes to center it inside the high resolution fovea at  1 = 3. 

Saccadic eye movements are performed by incrementing the gaze angles (0, $) with 

differential angles (A& A+) in order to rotate the eyes to the required gaze direction. 

When the pkel location of the target computed from the left or right images at level 1 is 

(x,; y,), the correction gaze angles for the eye are given by 

If the target object cornes too near the eyes and fills the entire fovea, the algorithm 

detects this condition and foveates the target at  the next coarser level (e-g., 1 = 2), where 

the field of view is broader and the target has a more reasonable size for detection and 

localization. Note that (4.9) cornputes the correction angles at  level 1, but the same 

corrected (8 ,4)  are used to render al1 the other levels. 

4.4 Visual Field Stabilization using Optical Flow 

It is necessary to stabilize the visual field of the artificial fish because its body undulates 

as it swims. The optokinetic reflex in animals stabilizes vision by measuring image 

motion and producing compensatory eye movements. Once a target is verged in both 



foveas, the stabilization process assumes the task of keeping the target foveated as  the 

fish locomotes. 

Stabilization is achieved by computing the displacement (u, u)  between the current 

and previous foveal images and updating the gaze angles to (O  + AB, q5 + Aq5)- The 

displacement is computed as a translational offset in the retinotopic coordinate system 

by a least squares minimization of the optical flow constraint equation between image 

frames at times t and t - 1 [Burt et al., 1989, Irani et al., 19941. Given a sequence of 

time-varying images, points imaged on the retina appear to move because of the relative 

motion between the eye and objects in the scene [Gibson, 19791. The instantaneous 

velocity vector field of this apparent motion is usually called optical flow [Ballard and 

Brown, 19821. The optical flow constraint equation is given by [ ~ o r n ,  19861 

where (1,, IV, It)T is the spatiotemporat intensity gradient given as (g , g7 g)T. Values 

of (u, v) satisfying this constraint equation lie on a straight line in velocity space. The 

image intensity is cornputed as 

where R, G, and B denote the color component channels. The error function 

is rninimized by simultaneously solving the two equations d E / d u  = O and aE/& = O 

for the image displacement (u, v). 

The correction angles (AB, A+) for a displacement of (eu, u )  between the images at 

level 1 are computed using (4.9) by replacing (x,, y,) with (u, a ) .  If the displacement 

computed from the foveal images (at level 2 = 3) is too srnall (indicating the target is 

close enough to fill the fovea) , the algorithm stabilizes a t  the next lower level where the 

target does not fill the entire image area. 



The flow constraint displacement estimation method is accurate only for small dis- 

placements between fiames. Consequently, when the displacement of the target between 

fiarnes is large enough that the method is likely to produce bad estirnates, the fix is 

regained by invoking the foveation module to re-detect and re-foveate the target as de- 

scribed earlier. 

Each eye is controlled independently during foveation and stabilization of a target. 

Hence, the two eyes must be correlated to keep them verged accurately on the target 

and not drifting in different directions. The correlation is performed by computing the 

displacement (u ,u)  between the left and right foveal images (at 1 = 3), and correcting 

the gaze angles of the right eye to ( B R  + ABR7 & + A$R) using (4.9)- 

Once the eyes are verged on a target, it is straightforward for the active vision system 

to estimate the range to the target from the gaze angles. Referring to Fig. 4.3, the range 

where b is the baseline between the two eyes, and Op = $(OR + BL) is the leftlright turn 

angle. When the eyes are verged o n  a target the vergence angle is Bv = (OL - BR) and 

its magnitude increases as the observer cornes closer to the target [ ~ r o w n  et al., 19921. 

Fixation Point 

geometry. 



4.5 Vision-Guided Navigation 

The artificial fish c m  employ the direction of gaze of its eyes to navigate effectively in 

its world. In particular, it is natural to use the gaze angles as the eyes are fkated on a 

target t o  navigate towards the target. The 9 angles are used to compute the leftlright 

turn angle O p  shown in Fig. 4.3, and the q5 angles are similarly used to compute an  

up/down turn angle q5p = $(& + q5L). The fish's turn motor controllers axe invoked to 

execute a leftlright turn-left-turn-MC for negative Op and right-turn-MC for positive 

Op (see Section 3)-with IOPI as parameter when lOPl > 30°. An upldown turn command 

is issued to the fish's pectoral fins if ldpl > 5", with a positive 4 p  interpreted as up and 

negative as down. 

Pursuit of Nonrigid Targets in Motion 

The problem of pursuing a moving target that has been fixated in the foveas of the ar- 

tificial fish's eyes is simplified by the gaze control mechanism described above. The fish 

can robustly foveate a moving target and chase it by using the turn angles (Op, &) com- 

puted from the gaze angles that are continuously updated by the foveation/stabilization 

algorithms. 

We have carried out numerous experiments in which the moving target is a reddish 

fish whose color histogram mode1 is stored in the memory of a predator fish equipped 

with the active vision system. Fig. 4.4 shows plots of the gaze angles and the turn angles 

obtained over the course of 100 frames in a typical experirnent as the predator fixates on 

and actively pursues a prey target. Fig. 4.5 shows a sequence of image frames acquired 

by the observer Bsh during its navigation (only the left retinal images are shown). Frame 

O shows the target visible in the low resolution periphery of the fish's eyes (middle right). 

Frame 1 shows the view after the target has been detected and the eyes have saccaded to 

foveate the target (note that the size decrease of the target after foveation is a perspective 

effect). The subsequent frames show the target remaining fixated in the fovea despite the 



side-to-side motion of the Bsh's body as it swirns towards the target. Fixation is achieved 

by stabilizing the eyes with compensating optobcinetic signals. The signals are indicated 

in Fig. 4.4 by the undulatory responses of the 19 angles. 

Gaze Angles 

frarnes 

Figure 4.4: Gaze angles (saccade signals) vs time (frames) of the observer fish while 
pursuing the reddish target fish. 

Fig. 4.4 shows that the vergence angle tends to increase in magnitude as the fish 

moves closer to the target (around frarne 100). In cornparison to the 0 angles, the 4 

angles show little variation, because the fish does not undulate vertically very much as 

it swims fonvard. It is apparent from the graphs that the gaze directions of the two 

eyes are nicely correlated; that is, (BR, 6 ~ )  follows (OL, f i L ) ,  with Br. - BR indicating the 

reciprocal of range to the target. 

Notice that in frames 87-117 of Fig. 4.5, a yellow fish rvhose size is similar to the target 



Figure 4.5: Retinal image sequence from the  leR eye of the  active vision fish as i t  detects 
and foveates on a reddish fish target and swims in pursuit of the target. T h e  target 
appears in the  periphery (middle right) in frame O and is foveated in frame 1. The target 
remains fixated in the center of t h e  fovea as the fish uses the  gaze direction to swirn 
towards it (frames 7-117). The target fish turns and swims arvay with the observer fish 
in visually guided pursuit (frames 135-13.2). 



fish passes behind the target. In this experiment the fish with active vision was instructed 

to treat al1 non-reddish objects as totally uninteresting and not worth foveating. Because 

of the color difference, the yellow object does not distract the fish's gaze from its reddish 

target. This demonstrates the robustness of the color-based fixation algorithm. 

4.7 Summary 

This chapter described the implementation of a prototype animat vision system within 

lifelike artificial fishes inhabiting a physics-based, virtual marine world. The fishes em- 

ulate the appearance, motion, and behavior of natural fishes in their physical habitats. 

In a relatively short period of time we were able to implement successfuily within the 

framework of the artificial fish animat a set of active vision algorithms for foveation and 

vergence of interesting targets, for retinal image stabilization, and for pursuit of moving 

targets t hrough visually-guided navigation. Note, however, t hat the automated analysis 

of the class of retinal images that confront our vision algorithms is by no means easy. 

The next two chapters extend the animat vision system thus enhancing the animat's 

functionality in its virtual environment. In Chapter 5, motion and color cues are inte- 

grated to increase the robustness of the animat's perceptual functions. Chapter 6 adds 

dynamic obstacle recognition and avoidance capabilities by exploiting stereo and color 

cues naturally available from the photorealistic images acquired by the animat 's binocu- 

lar eyes. These chapters will also present an example of how vision algorithrns may be 

evaluated within the proposed anirnat vision framework. 



Chapter 5 

Motion and Color Analysis for 
Animat Perception 

The high-acuity fovea in many biological eyes covers only a small fraction of a visual field 

whose resolution decreases monotonically towards the periphery. Spatially nonuniform 

retinal imaging provides opportunities for increased computational efficiency t hrough 

economization of photoreceptors and focus of attention, but it forces the visual system to 

solve problems that do not generally arise with a uniform fieId of viem. A key problem is 

determining where to redirect the fovea when a target of interest appears in the periphery. 

In this chapter we present a solution to this problem through the exploitation of motion 

and color information. 

Motion and color play an important role in animal perception. Birds and insects 

exploit optical flow for obstacle avoidance and to control their ego-motion [Gibson, 1979, 

Horridge, 19931. Some species of fish are able to recognize the color signatures of other 

fish and use this information in certain piscene behaviors [ ~ d l e r ,  19751. The human 

visual system is highly sensitive to motion and color. We tend to focus our attention on 

moving colorful objects. Motionless objects whose colors blend in to the background are 

not as easily detectable, and several camouflage strategies in the animal kingdom rely on 

this fact [Cedras and Shah, 19951. 

Following the animat vision paradigm, the motion and color based gaze control algo- 

rithms that we present in this chapter are implemented and evaluated within the animat 

vision framework. Our new gaze control algorithms significantly enhance the prototype 
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animat vision system implemented in Chapter 4 and they support more robust vision- 

guided navigation abilities in the artificial fish. 

5.1 Integrating Motion and Color for Attention 

Selective attention is an important mechanism for dealing with the combinatorial aspects 

of search in vision [~sotsos  et  al.. 19951. Deciding where to redirect the fovea can in- 

volve a complex search process [~so t sos  et  al., 1995, Ye and Tsotsos, 1995, Rimey and 

Brown, 1994, Maver and Bajcsy, 19901. In this section Ive propose an efficient solution 

which integrates motion and color to increase the robustness of our animat7s perceptual 

functions. 

Motion and color have been considered extensively in the literature in a variety of 

passive vision systems [ ~ ~ u ç o n  and Ballard, 1989, Dubuisson and Jain, 1994b, Wang and 

Adelson, 1993, Weber and Malik, 1993, Campani et al., 1995, Cedras and Shah, 19951, but 

rarely have they been integrated for use in dynamic perception systems. The conjunction 

of color and motion cues has recently been exploited to produce more exact segmentations 

and for the extraction of object contours fiom natural scenes [~ubuisson and Jain, 1993, 

Dubuisson and Jain, 1994aI. Color and motion features of video images have been used 

for color video image classification and understanding un on^ and Sakauchi, 19921. 

Integrating motion and color for object recognition can improve the robustness of 

moving colored object recognition. Motion may be considered a bottom-up alerting cue, 

while color can be used as a top-down cue for model-based recognition [swain et al., 19921. 

Therefore, integrating motion and color can increase the robustness of the recognition 

problem by bridging the gap between bottom-up and top-down processes, thus, improving 

the selective attention of dynamic perceptual systems such as the animat vision system 

that we have developed. 



5.1.1 Where to Look Next 

Redirecting gaze when a target of interest appears in the periphery can be a complex 

problem. One solution would be to section the peripheral image into smaller patches or 

focal probes [ ~ u r t  et al., 19891 and search al1 the probes. The strategy will work well for 

sufficiently small images, but for dynamic vision systems that must process natural or 

photorealis tic images the approach is not effective. 

We choose a simple method based on motion cues to help narrow down the search for 

a suitable gaze direction [Campani et al., 19951. We create a saliency image by initially 

computing a reduced optical flow field between two stabilized peripheral image frames 

(an advantage of the multiresolution retina is the small 64 x 64 peripheral image). Then 

an affine motion model is fitted to the optical flow using a robust regression method 

that will be described rnornentarily. The affine motion parameters are fitted to the 

dominant background motion. A saliency map is determined by computing an error 

measure between the affine motion parameters and the estimated optical flow as follows: 

where (u, v) is the computed optical flow and 

a + bx + cy, 

d + e x +  f y  

is the affine flow a t  retinal image position (x, y) which is used to describe the motion of 

a planar surface relative to the camera. The saliency image S is then convolved with 

a circular disk of area equal to the expected area of the model object of interest as it 

appears in the peripheral image.' 

The blurring of the saliency image emphasizes the model object in the image. The 

maximum in S is taken as the location of the image probe. The image patches that serve 

'Reasonably small areas suffice, since objects in the 64 x 64 peripheral image are typically small 
at peripheral resolution. Methods for estimating appropriate areas for the object, such as Jagersand's 
information theoretic approach [Jagersand, 19951, may be applicable. 
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Figure 5.1: Four 
squares, SaIiency 

284 283 286 Saliency Image 

consecutive peripheral images with image probes outlined by white 
image (right), with bright areas indicating large motions. 

as focal probes in consecutive peripheral frames form the image sequence that is processed 

by the motion segmentation module described later. Fig. 5.1 shows four consecutive 

peripheral images with the image probes outlined by white boxes. The blurred saliency 

image is shown at  the end of the sequence in Fig. 5.1. The maximum (brightness) 

corresponds to a fast moving blue fish in the middle right portion of the peripheral image 

(inside the white borders). 

5.1.2 Robust Optical Flow 

A key component of the selective attention algorithm is the use of optical flow. Op- 

tical flow can provide important information about the spatial arrangement of objects 

viewed and the rate of change of this arrangement [ ~ o r n ,  19861. Various techniques for 

determining optical flow from a sequence of two or more franies have been proposed 

in the literature [ ~ o r n  and Schunck, 1981, Anandan, 1989, Lucas and Kanade, 1981, 

Horn and Jr., 1988, Bergen et al., 1992, Fleet and Jepson, 1990, Black and Anandan, 1993, 

Jepson and Black, 1993, Spetsakis, 19941. Optical Bow, once reliably estirnated can be 

very useful in various cornputer vision applications. Discontinuities in the optical flou. 

can be used in segmenting images into moving objects [ ~ d i v ,  1985, Burt et al., 1989, 

Peleg and Rom, 1990, Trani and Peleg, 19921. Xavigation using optical flow and esti- 

mation of time-to-collision maps have been discussed in [ ~ a g e n  and Heyerdahl, 1992, 

Canipani et al., 19951 and [xleyer and Bouthemy, 19921. 
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Figure 5.2: Incremental estimation of robust optical flow (ROF) over time. 

1 

For Our specific application, however, we require efficiency, robustness tu  outliers, 

9 

and an optical flow estimate at all times. Recent work by Black and Anandan [ ~ l a c k  

and h a n d a n ,  1990, Black and Anandan, 19931 satisfies our requirements. They propose 

increment al minimization approaches using robust statistics for the estimation of op tical 

flow which are geared towards dynamic environments. -4s is noted by Black, the goal 

is incrementally to integrate motion information from new images with previous optical 

flow estimates to obtain more accurate information about the motion in the scene over 

time. A detailed description of this method can be found in [ ~ l a c k ,  19921. Here we 

describe our adaptation of the algorithm to the animat vision system. 

t 

Ideally optical flow is computed continuously2 as the animat navigates in its world, 

but to reduce computational cost and to  allow for new scene features to appear when 

no interesting objects have attracted the attention of the animat, we choose to update 

the current estimate of the optical flow every four frames. The algorithm is however still 

"continuous" because it cornputes the current estimate of the optical flow at time t using 

image frames at t - 3, t - 2, t - 1, and t in a short-time batch process. Fig. 5.2 shows 

- UPDATE 

this more clearly. This arrangement requires storage of the previous three frames for use 

- UPDATE 

by the estimation module. 

The flow at t + 1 i s  initialized with a predicted flow computed by fonvard warp of 

the optical 0ow estimate at  t by itself and then the optical flow at t + 4 is estimated 

ROF 

'By continuously, we mean that there is an estimate of the optical flow a t  every time instant. 
3The optical flow estimate is being used to warp itself, thus predicting what the motion will be in 

t 

ROF(t-4) ROF(t) 
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by spatiotemporal regression over the four fiames. 

We compute our optical flow estimate by incrementally minimizing the cost function 

where ED is a data conservation constraint, Es is a spatial coherence constraint, and ET 

is a temporal continuity constraint. 

The data conservation constraint is derived frorn the observation that surfaces gener- 

ally persist in time and, therefore, the intensity structure of a srnall region in one image 

remains constant over tirne, although its position may change [ ~ o r n ,  19861. We formulate 

our data conservation constraint based on this assumption of intensity constancy within 

a small region, in terms of the optical flow constraint equation for a given pkel location 

as 

ED(ZL,U) = p(uIZ + vIy + I t , u ~ ) .  (5-4) 

The spatial coherence constraint embodies the assumption that surfaces have spatial 

extent and, hence, neighboring pixels in an image are likely to belong to the same surface. 

Since the motion of neighboring points on a smooth rigid body changes gradually, a 

smoothness constraint can be enforced on the motion of neighboring points in the image 

plane [ ~ o r n  and Schunck, 19811 and Es can be given as 

w u ,  4 = C [p(u - 4 7 %  4, 0.9) + p(v - v(m7 4, 4 1 ,  
m,nE N 

(5.5) 

where N is the local neighborhood to the current pixel position (typically taken to be 

the Cconnected neighbors) . 

We formulate our temporal continuity constraint ET by imposing some coherence 

between the current fiow estimate and its previous and nex- estimate: 

where u = (u, v) is the current optical flow estimate at  time t ,  u s w  is the previous 

estimate at t - 1 obtained by setting it to the most recent estimate, and u ~ w  is a 

the future. 



prediction of what the optical flow will be a t  t+ 1 and is computed by fonvard warp of the 

curent estimate by itself! The X parameters in (5.3) control the relative importance of 

the terms, and the p(x, a) functions in the above equations are taken to  be the Lorentzian 

robust estimator: 

where c is a parameter in the robust estimator formulation that controls the outlier 

rejection point. Reducing a will cause the estimator to reject more measurements as 

outliers and visa versa. The influence function, $(x, O ) ,  is the first derivative of p(x, c) 

with respect to x: 

This function characterizes the bias that a particular measurement has on the solution 

[ ~ a m ~ e l ,  1974, Black and Anandan, 19931. The choice of a particular robust estimator 

depends on the the optimization scheme used to minimize the cost function. The scheme 

we use requires that the estimator be twice differentiable. The second partial derivative 

An upper bound on this second partial derivative is obtained when x = O in equa- 

tion (5.9). 

This robust formulation of Our cost function E causes it to  be non-convex. A lo- 

cal minimum can, hoivever, be O b t  ained using a gradient-based optimization technique. 

We choose the successive over-relaxation minimization technique because of its rapid 

convergence and well defined theory. 

The iterative equations for minimizing E for a single pixel location are 

'Note that u s w  can also be estimated by backward warping of u by itself. 
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where 1 < p < 2 is an overrelaxation parameter that controls convergence, and is used 

to overcorrect the estimate at  the next iteration step i + 1, thus anticipating future 

 correction^.^ 

The terms Tu, T, are upper bounds on the second partial derivatives of E, and can 

be given as 

The partial derivatives in (5.10) are 

The above minimization will generally converge to a local minimum. A global mini- 

mum may be found by constructing an initially convex approximation to the cost function 

by choosing initial values of the a parameters to be sufficiently large (equal to the maxi- 

mum expected outlier in the argument of p ( x ) ) ,  effectively b h m n g  the cost function E. 

The minimum is then tracked using the graduated non-convexity (GNC) continuation 

method as described by Blake and Zisserman [ ~ l a k e  and Zisserman; 19871 by decreasing 

the values of the a parameters from one iteration to the next, which serves to gradually 

return the cost function to its non-convex shape, thereby introducing discontinuities in 

the data, spatial, and temporal terms. These discontinuities are, however, dealt with by 

the robust formulation and are rejected as outliers, thus producing more accurate optical 

a2 E SSuccessive over-relaxation is Nel.ton-Raphson's rninimization technique when p = 1 and Tz = p. 
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Figure 5.3: The robust optical flow vectors estimated for the four image probe sequence. 
Large vectors indicate Iarge motion of the fish object. 

Bow estimates. The values of the X parameters are determined empirically (typically 

To deal with large motions in the image sequence, we perform the minimization using 

a coarse-to-fine flow-through strategy. A Gaussian pyramid [ ~ u r t  and Adelson, 19831 is 

constructed for each image in the sequence, and minimization starts at the coarsest level 

and flows through to the finest resolution level. Our flow-through technique is based on 

the assumption that displacements which are less than 1 pixel are estimated accurately a t  

each individual Ievel and thus need not be updated from a coarser level's estimate, while 

estimates that are greater than 1 pixel are most probably more accurately computed at  

the coarser level, and are updated by projecting the estimate from the coarser Ievel. 

This incremental minimization approach foregoes a large number of relaxation iter- 

ations over a 2 frame sequence in favor of a small number of relaxation iterations over 

a longer sequence. This satisfies our need for speed and any-time access and causes the 

flow estimate to be improved and refined gradually as more retinal images are acquired. 

Fig. 5.3 shows the optical flow estirnated for the sequence of four image probes of Fig. 5.1. 

The figure clearly shows the complex motion of the target fish. It is a non-trivial task to 

segment such motions. 

It must he stressed that for a reliable optical flow estimate to be obtained the retinal 

image stream must have been rotationally stabilized a priori against the animat's undula- 

tion. To facilitate this, a number of objects in the virtual world of the animat (which c m  
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include other fish) are labeled by the animat vision system as reference objects and their 

color models are stored in the animat's mind. Once it recognizes a reference fish, the 

animat h a t e s  it a t  all times as explained in Section 4.4, thus stabilizing its perception 

of the world. This allows it  to perform many visual tasks accurately; for example, it can 

now explore its surroundings by saccading to locations of detected objects of interest in 

its periphery, examining them, and then return its gaze to the previous reference point. 

This is equivalent to having an object-centered frame of reference  a alla rd and Brown, 

19921 which is appropriate for d p a m i c  vision systems such as the animat vision system. 

5.1.3 Motion Segmentation and Color Recognition 

For the animat to recognize objects moving in its periphery it must first detect their 

presence by means of a saliency map as described earlier in Section 5.1.1. Once the an- 

imat detects something that might be worth looking at, the animat must then segment 

its region of support out from the whole peripheral image and match this segmentation 

with mental models of important objects. Fig. 3.4 shows the steps involved in an incre- 

mental segmentation of the detected object over the duration of the four probe images 

as explained above. The accuracy of our segmentation is affected by the accuracy of the 

initial optical flow estimates. The robust formulation of our optical flow method ensures 

t hat the initial optical flow estimates are suit able for incremental motion segmentation. 

The second-order projective parametric model that describes the motion of a planar 

surface with respect to the camera can be given as [ ~ d i v ,  1985, Horn, 19861 

In a relatively small image region, the variations in the optical Bow vectors are also rela- 

tively small due to the intensity and spatial coherence constraints irnposed, and the contri- 

butions from the second-order terms in equation (5.13) are usually negligible. Therefore, 

one may safely ignore these terms and use an affine six-parameter (a, b, c, d, e, f )  motion 

model which is sufiîcient to  completely speci& the florv vector at every point within this 
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Figure 5.4: Incrernental motion segmentation and object recognition using multi- 
resolut ion robust optical flow (ROF) estimation, affine paramet ric motion segmentation 
and color object recognition. 

region. This approximation is justified since the second-order coefficients (g, h )  become 

sensitive to image noise and cannot be estimated accurately in small regions typical of 

our multi-level 63 x 64 peripherat images. 

Segmentation of the optical flow at each time instant is performed by fitting an affine 

paranietric motion model to the robust optical flow (ROF) estimated so far at the current 

tinie instant. This is done by incrementally minimizing the cost function given as 

where (a, b, c, d ,  e ,  j) are the affine motion paranieters. Ex and E, are formulated using 
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robust estimation to account for outhers 

where R is the current region of support of the segmented object (initially equal to 

the full frame image size). The quantities u, and u, are the horizontal and vertical 

components of the affine flow vectors according to equation (5.2). The ROF estimated at 

the current instant is (u, v),  and p(x, o) is taken to be the Lorentzian robust estimator. 

We use successive over relaxation and GNC to minimize this cost function, as described 

in Section 5.1.2, by using a small number of iterations over a sequence of four image 

probes and updating the segmentation at every time instant. The iterative equations for 

minimizing E, are 

and similarly for Ey. The Ti terms are given as 

The partial derivatives in (5.16) are 
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and similarly for partial derivatives of E,. 

The estimated afEne motion parameters at  the current time instant are then used 

to update the segmentation by calculating an error norm S between the affine flow 

estimate (ua, va) and the ROF estimate as in (5.1). This norm is then thresholded by an 

appropriate threshold r,,, taken to be the minimum outlier in the affine fit. Values of 

S < rmin are considered to belong to the object being segmented, while values of S > T,~, 

are discarded as outliers. The updated segmentation serves as the region of support R 

for the next frame's &ne minimization step. 

If more thaa one rnoving object is present in the probe sequence, the current seg- 

mentation is subtracted from the image, and another affine motion mode1 is fitted to the 

remaining pixels thus segrnenting other moving objects. To clean up the segmentation 

(in case some pixels where misclassified as outliers) a 9 x 9 rnedian fiiter is passed over 

the segmentation mask to fil1 in missing pixels and remove misclassified outliers. Fig. 5.5 

shows the segmented background (showing two objects as outliers) and the segmentation 

of the outlier pixels into the object of interest (a blue fish). 

-4t the end of the motion segmentation stage, the segmented objects are matched to 

color models using the color histogram intersection method of Section 4.3. If a match 

occurs, the current estimate of the ROF is set to zero, thus accounting for the dynamic 

changes in the system, othemise the ROF is used to initialize the optical flow a t  the next 

time step as shown in Fig. 5.2. 

If the mode1 object matches the peripheral segmented region, the anirnat localizes 

the recognized object using color histogram backprojection and foveates it to obtain a 

high-resolution view. It then engages in appropriate behavioral responses. 

5.1.4 Behavioral Response to a Recognized Target 

The behavioral center of the brain of the artificial animal assumes control after an object 

is recognized and fixated. If the object is classified as food, the behavioral response 

would be to pursue the target in the fovea with maximum speed until the animat is close 



enough to open its mouth and eat the food. If the object is classified as a predator and 

the animat is a prey fish, then the behavioral response would be to turn in a direction 

opposite to that of the predator and swim at maximum speed. Alternatively, an object 

in the scene may serve as a visual frame of reference. When the animat recognizes a 

reference object (which may be another fish) in its visual periphery, it will fxate  on it 

and track it in smooth pursuit a t  an intermediate speed. Thus, the fixation point acts 

as the origin of an object-centered reference frame allowing the animat to stabilize its 

visual world and explore its surroundings. 

Fig. 5.6 shows a sequence of retinal images taken from the anirnat's left eye. The eyes 

are initially fixated on a red reference fish and thus the images are stabilized. In frame 

283 to 286 a blue fish snims close by the anirnat's right side. The animat recognizes this 

as a reference fish and thus saccades the eyes to foveate the fish. It tracks the fish around, 

thereby esploring its environment. By foveating different reference objects, the animat 

can explore different parts of its world. The lines emanating from the animat's eyes 

show the line of sight and give an example of how the ground truth data available from 

the graphics pipeline can be useful in evaluating the accuracy of the vision algorithms 

such as the estimated depth to the target. The white portion of the Iines represent our 

algorithm's estimation of the depth to the fixated target. The yellow portion to the target 

gives the error in this estimation. This would have been very difficult with physical active 

vision implementations due to the lack of ground truth da ta  that is available on the fly 

Fig. 5.7 shows a plot of the (OL, B R )  gaze angles and the turn angle between frames 

200 and 400. It is clear from the figure that the animat was first fixated on the red fish 

mhich was to the left of the animat (negative gaze angles). At frame 286 and subsequent 

frames, the anirnat is foveated on the blue fish which is to  its right (positive gaze angles). 

5.2 Summary 

This chapter presented gaze control algorit hms for active perception in mobile autonornous 

agents with direct able, foveated vision sensors. The active perception systems of the 
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Segmented Background Segmented Object 

Figure 5.5: Results of incremental motion segmentation module. 

animats continuously analyze photorealistic retinal image streams to glean information 

useful for controlling their eyes and body. The vision system computes optical flow and 

segments moving targets in the low-resolution visual periphery. It then matches seg- 

mented targets against mental models of colored objects of interest. The eyes saccade to 

increase acuity by foveating objects. The resulting sensorimotor control loop can support 

complex behaviors, such as predation. 
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Figure 5.6: Retinal ima.ge sequence from the predator's left eye (1st and 3rd rows) and 
overhead view (2nd and 4th rows) of the predator as it pursues a red reference fish 
(frames 283-285). A blue reference fish appears in the predator's right periphery and 
is recognized, fixated and tracked (frames 286-300). The white lines indicate the gaze 
direct ion. 
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Figure 5.7: Gaze angles as the animat changes reference points at frame 286 from left 
(negat ive angles) t O right (positive angles). 



Chapter 6 

Stereo and Color Analysis for 
Dynamic Obstacle Avoidance 

Biological creatures move through the world with little apparent effort. For exarnple, a 

person can safely navigate a hallway while reading a book that occupies her foveal vision 

while avoiding potential threats identified through peripheral vision. In fact, a great 

deal of mobility can be supported by low resolution peripheral vision? freeing the small, 

high resolution visual area to attend to important matters during navigation [Coombs 

and Roberts, 19921. -4s mentioned earlier, spatially nonuniform retinal imaging provides 

opportunities for increased computational efficiency through economization of photore- 

ceptors and focus of attention, but it forces the visual system to sohe problems tha t  do 

not generally arise with a uniform field of view. A key problem is determining how to 

avoid danger when obstacles are detected in the low resolution periphery- while focusing 

attention on an object of interest fbuated in the high resolution fovea. In this chapter we 

present a solution to this problem through the combined exploitation of color information 

and depth information from stereo disparity. 

Our new navigation algorithms further enhance the prototype animat vision system 

implemented in Chapter 4. They support in the artificial fishes more robust vision-guided 

navigation, including obstacle recognition and avoidance. In the next section we present 

Our work on integrating stereo disparity and color analysis for animat navigation and 

perception. 
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6.1 Disparity and Color for Obstacle Avoidance 

Color and stereo algorithrns have been discussed extensively in the literature in a variety 

of passive vision systems, but rarely have they been integrated for use in dynamic obstacle 

avoidance systems. Color and stereo cues have recently been integrated together with 

motion cues to  implement a real-time passive stereo system that can detect and identify 

moving objects for application to surveillance and human-computer interaction [ ~ r a k a w a  

and Etoh, 19951. Dispanty and color cues have also been combined to improve the focus 

of attention and recognition capabilities of an active vision syst.em [Grimson et al., 19941. 

Recent work involving autonomous mobile robot systerns have used single image cues 

for obstacle detection and avoidance such as stereo disparity [Cho and Cho, 19941, optical 

flow [campani et al., 19951, visual looming [~oarder  and Raviv, 19941, peripheral optical 

flow [Coombs and Roberts, 19921, divergence of image flow and time-to-contact [ ~ o o m h s  

et al., 19951, and appearance based models of color and shape [Salgian and Ballard, 19981. 

Shigang et. al. [shigang et al-, 19951 have recently proposed a method for autonomous 

robot navigation along routes described by landmarks. These landmarks are selected 

from a set of objects with distinct features segmented out from a continuous scan of the 

environment based on range and color information. Color cues have also been used to 

increase the precision of stereo matching [~guy-en and Cohen, 19921. 

The following sections describe our dynamic obstacle recognition and avoidance algo- 

rithms. Exploiting stereo and color cues, the algorithms enable the anirnat to navigate 

through its virtual environment h a t i n g  and tracking a reference target in the fovea while 

avoiding obstacles t hat appear in its low resolution visual periphery. 

6.1.1 Stereo Analysis 

Stereo analysis is a process of extracting depth information from a pair of left and right 

camera images viewing objects from slightly different view points by identiSing corre- 

sponding points in the left and right images. The horizontal difference between the two 

matched points is known as the disparity. Depth can be directly recovered from a pri- 
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ori knowledge of the binocular camera geometry [chen and Bovik, 19951. The task of 

determining the correspondence between points in the two views is known as the cone- 

spondence problem and is considered difficult. In general it is a two dimensional search 

through the entire image space [~enkin and Tsotsos, 19941. Knowledge of the camera 

geometry can be used to limit the search to be one dimensional along the epipolar line, 

which is the intersection of the left and right image planes with the epipolar plane (the 

plane through a point in the scene and the nodal points of the two cameras) [ ~ o r n ,  19861. 

Classical approaches to stereo analysis try to deal wit h the correspondence prob- 

lem with two basic algorithms; area-based [ ~ u c a s  and Kanade, 1981, Horn, 19861 and 

feature-based approaches [ ~ a r r  and Poggio, 1979, Horn, 19861. Both types of stereo 

algorithms have computational problems. For example, in feature-based s tereo algo- 

rithms the intensity data is first converted to a set of features assumed to be a more 

stable image property than raw intensities. The matching stage operates only on these 

extracted image features, consequently, producing sparse disparity maps. In order to 

obtain dense disparity maps, one is forced to interpolate these missing values. Further- 

more, false matches are basic to al1 feature-based stereo algorithms. These problems 

can be reduced by introducing additional constraints derived from reasonable assump 

tions about the physical properties of object surfaces and by increasing the number 

of features considered in the matching process. In area-based stereo algorithms inten- 

sity values within small image patches of the left and right views are compared and 

the correlation between these patches is attempted to be rnaximized. To assure sta- 

ble performance, area-based stereo algorithms need suitably chosen correlation mea- 

sures and a sufficiently large patch size which is a computationally expensive process. 

Other rnethods extract local Fourier phases of left and right images and the phase dif- 

ference at each location is used to estimate disparity [sanger, 1988, Langley et al., 1990, 

Fleet et al., 19911. 

Several approaches take into consideration available biological and neurophysiological 

data about the human visual systern [ ~ a r r  and Poggio, 1979, Sanger, 1988, Jones and 
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Malik, 19921. There is biological evidence that the pattern of light projected on the 

human retina is sampled and spatially filtered. Very early in the cortical visual processing, 

receptive fields become oriented and are well approximated by linear spatial filters, with 

impulse response functions that are similar to partial derivatives of a Gaussian function 

[young, 19861- 

6.1.2 Disparity Estimation for Animat Vision 

Our animat vision approach for estimating stereo disparity draws ideas frorn the early 

visual processing in the primate cortex. We implement the receptive fields as steerable 

spatial filters that process the input images. The steerable filter responses at  an image 

location form a feature vector that is used for solving the correspondence problem. The 

outputs of a steerable filter convolved wïth an image at multiple orientations provides 

very rich information about a local neighborhood around each pisel. Thus matching 

image patches from the left and right images of a stereo pair becomes simpler and the 

probability of a correct match increases as the length of the feature vector increases. 

Oriented filters are important for many computer vision and image processing tasks, 

such as texture analysis, image enhancement, and motion analysis. One approach to 

finding the response of a filter at  many orientations is to apply many versions of the 

same filter each differing from one another by a small rotation in angle. -4 more efficient 

approach is to apply a few filters corresponding to a few angles and interpolate between 

the responses. With the correct filter set and the correct interpolation rule, it is possible 

to determine the response of a filter of arbitrary orientation wit hout explicitly applying 

that filter. 

"Steerable filter" is a term used to describe a class of spatial filters in mhich a filter 

of arbitrary orientation is synthesized as a linear combination of a set of basis filters. 

Steerable filters, first developed by Freeman and Adelson [~reernan and Adelson, 19911, 

have been recently used for estimation of scene motion [ ~ u a n ~  and Chen: 19951 and for 

object recognition  allard rd and WLxson, 19931 and stereopsis  o on es and Malik, 19921. 
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As an example, consider the two-dimensional circularly symmetric Gaussian function 

The first x derivative of this Gaussian is 

and the same function rotated 90" is 

Thus, the derivative in an arbitrary direction 0 can be synthesized b -  taking a linear 

combination of the basis filters Gy0 and GTo' as follows: 

G! = cos (O)  GY' + si@) G;OO. (6-4) 

The cos($) and sin(6) terms are the corresponding interpolation functions for those basis 

filters. Since convolution is a linear operation, it is possible to synthesize an image filtered 

a t  an arbitrary orientation by taking linear combinations of the images filtered with GY' 
and Gyo0: 

Gr * I ( z ,  y) = cos(0)~:' * I ( z ,  y) + sin(0)~;O' * I ( x ,  y). (6.5) 

This gives an illustration of steerability, which is a very useful property, since the response 

of a steerable filter at an arbitrary orientation can be obtained from a srna11 number of 

precomputed basis responses using the corresponding interpolation functions. Simoncelli 

and Freeman have recently introduced a multi-scale, multi-orientation steerable filter 

image decomposition framework called the Steerable Pyramid [Simoncelli and Freeman, 

19953 which we use as a front-end for our stereo algorithm. It h a .  the advantage of 

producing feature descriptions that are bot h translation- and rotation-invariant. 

Our disparity estimation algorithm starts by decomposing the left and right images 

into steerable pyramid representations. The input images are initially low-pass filtered 

using a low-pass filter (Lo)  with a radially syrnmetric frequency response. Each successive 



level of the pyramid is constmcted from the previous level's low-pass band by subsampling 

it then convolving it with a bank of oriented basis filters (Bi) and a low-pass filter ( L I )  

(refer to figure 6.1). Other orientations a t  each level are synthesized by taking linear 

combinations of the basis filtered images. The number of basis filters that are needed 

for steering the filter is n + 1 for an nth-order £ilter. We use third-order filters, thus 

requiring four bais  filters oriented at O", 45", go0, and 135. [Freeman and Adelson, 19911. 

Fig. 6.2(a) shows these four spatial ba i s  filters (Bi) which form a steerable basis set; 

any orientation of this filter can be wrïtten as a linear combination of the basis filters. 

Fig. 6.2(b) shows the two low-pass filters used to construct the p-yramid. Typically, LO(w) 

is chosen to be Ll(w/2)  in the frequency domain so that the initial low-pass shape is the 

same as that used within the recursion due to subsampling [~imoncelli and Freeman, 

19951- Fig. 6.3 shows an example of a three-level steerable pyramid of an image acquired 

by the anirnat's right eye for two orientations. 

kq-+q+ 
etc. 

Figure 6.1: System diagam for the first level of the steerable pyramid. Boxes represent 
filtering and subsampling operations: Lo and LI are low-pas filters, and Bi are oriented 
basis filters. Circles in the rniddle represent the basis filter responses. Successive levels of 
the pyramid are computed by applying the Bi and LI filtering and subsampling operations 
recursively (represented by "etc." at the bottom). 

Feature vectors fR(x, y, 1)  and fL(x, y, 1) are then constructed from the right and left 

pyramid responses for each pixel at  each level of the pyramid by combining the responses 



Figure 6.2: (a) Four basis filters oriented a t  O", 45", 90°, and 135". (b) Left: LI low-pas 
filter, Right : Lo Low-pass filter. 

of the rnulti-orientation steerable filters a t  each pixel into a vector that provides a very 

rïch description of the intensities a t  that pixel in the image. To further enrich the 

description of each pixel, we make use of the (R, G, B) color signals from our color 

images by including them in the feature vector. This simple addition improves our 

matching process considerably by restricting the matching process to areas of similar 

color composition, which can be considered as a sort of color-feature constraint. 

An initial disparity map is estimated a t  each individual level by matching left and 

right feature vectors by minimizing the mean square error (MSE) between left and right 

feature vectors. The MSE measure is computed over al1 the elements in the vector as 

follows: 
1 

where S is the feature vector size. The MSE measure E, is computed for a limited range 

of horizontal and vertical disparities d,(l) E D&) and dy (1) E Dy (1) Mthin a window of 

size Dz(l) x Dy(I) (typically, D,(O) = 20, and D,(O) = 10). The (dx(l) , d&)) value that 

minimizes the MSE within this window is taken as the best initial disparity estimate 

at pixel (x, y, 1) a t  pyramid level 1. A boundary condition of zero disparity at  image 

borders is applied. Also a zero disparity condition is applied to locations where no match 

is possible such as across constant intensity areas. The disparity range used lies within 

[-?,y]- The disparity range differs from level to level and is given as, 



Figure 6.3: An image acquired by the animat's right eye (a), and a three-level Steerable 
Pyrarnid of the image in (a.) shown for two orientations O0 (b) and 90" ( c ) .  
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Note that there is no need to equally weigh the dimension of the (R, G, B) color 

signals to correspond to the rest of the feature vector element dimension (i.e. the di- 

mensions of the steerable filter responses) since in equation (6.6), the MSE compares 

corresponding elements of the same dimension together. Thus, for example, the element 

that corresponds to red in the right feature vector P,Ed is compared to the red element in 

the left feature vector cd. Similarly, the steerable filter elements from the right vector 

are compared to corresponding elements from the left. Therefore, the dimensions of the 

corresponding elements of the feature vector must be the same for proper matching. 

A coarse-to-fine-flow-through strategy is then taken based on the assumption that for 

level 1 disparity estimates Id(1) 1 > 1 YI are more accurately estimated at  the coarser level 

1 + 1. Thus at  coarse levels, large disparities are estimated presumably more accurately, 

and these flow through to the finer levels, while small disparities that are estimated from 

the finer levels are assumed accurate since they cannot be estimated at coarser levels due 

to the loss of high frequency structure from the original coarse-level images. 

Each disparity estimate (d,(l) ,  d y ( l ) )  at each level is median filtered at an appropriate 

scale (Mndow size used increases from coarse levels to fine levels - mainiy 3x3 and 5x8 for 

128x128 images) before Row-through is performed. The full frame level is then, median 

filtered to give the final disparity estimate. The median filtering step is required to 

correct for out lier disparity estimates that deviate from the correct expected estimate (a 

form of smoothness constraint on the estimates). 

The stereo matching algorithm can be made more efficient by exploiting the epipolar 

geometry of the eyes of the artificial animal. The eye virtual cameras described in Sec- 

tion 4.1 have identical focal lengths f,. The eyes mounted in the animat's head may be 

aligned horizontally to within a scan line. To simpli@ the matching process we try to 

reduce the vertical disparity search range Dy a s  much as possible by restricting epipolar 

lines to one row. This is done by tying the vertical gaze angles together when acquiring 

stereo images; Le., setting q ! ~ ~  = The vertical disparity search range Dy is neverthe- 

less larger than one pixel due to non-uniform perspective distortions associated with the 



large field of view virtual cameras. 

Fig. 6.4 shows disparity maps estimated by the algorithm for real images, a random- 

dot stereogram, and retinal images acquired by our animat. 

6.1.3 Color Obstacle Recognition and Localization 

Next we develop a strategy to distinguish between dangerous obstacles and benign objects 

in the environment by combining the disparity cues estimated using the above algorit hm 

with color cues available naturally from the acquired photorealistic images. 

The animat continuously computes a disparity rnap from its stereo retinal input as it 

navigates through the virtual world. The estimated disparity map is used as a bottom- 

up cue to alert the animat of potential danger from objects that corne too close. The 

disparity rnap is first segmented into potential obstacles. Then each ~e~gmented object 

is examined and matched against color mental models of designated dangerous obstacle 

objects. A match indicates that a candidate object is really an obstacle and is to be 

avoided, othenvise the object is considered harmless. Harrnless objects include food 

particles and sea weeds. 

The disparity map d(x, y) is segmented via thresholding. The appropriate disparity 

threshold is taken to be proportional to the disparity a t  the fkation point, which is the 

reference target that the animat is tracking foveally. This is given as, dt = $(O, O)  ; i-e., 

if the disparity of the localized object is at  least p times the estimated disparity of the 

reference target then this object is considered too close (typicall~ p = 1.0). Values of 

d(x, Y) > dt are considered to belong to potential obstacles, while values of d(x, y) < dt 

are set to  the minimum disparity estimate. This segmentation step focuses the attention 

of the animat on potential obstacles while disregarding the rest of the peripheral view, 

thus sirnplifj4ng the system as well as improving its robustness to false alarms. 

The corresponding segmented pixels in the right eye image give the actual segmen- 

tation of the color objects. The color histogram of this segmentation is intersected with 

the color histograrn of the mental models of stored obstacles, using the color methods 
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(4 
Figure 6.4: (a) Right and Left images acquired by the animat's eye and the estiniated dis- 
parity niap, (b) Çtereo sparse random-dot-stereogram with 3% black dots and estimated 
disparity, (c) Pepsi sequence, left: frame 3, center: frame 0, right: estimated disparity. 



descnbed in section 4.3. -4 match indicates that this segment contains an obstacle; no 

match indicates a false alarm and the animat continues in its curent path. 

To accurately localize a detected obstacle the exact region of support of this obstacle 

must be properly segmented out from the original segmentation obtained above. To tackle 

this non-trivial problem, we make use of Swain's color histogram backproject ion met hods 

[sivain and Ballard, 19911. Briefly, histogram backprojection gives large weights to pkel 

locations in the image whose color histogram closely resembles the color histogram of 

the model. This suggests, that ive can use the backprojection itself to get an accurate 

segmentation of the detected obstacle; pixel weights in the backprojection that are greater 

than an appropriate threshold are considered to belong to the obstacle. The threshold is 

determined empirically and for our case rve used a value of 0.5 to separate the obstacle 

from outliers. Once the color region of support of the obstacle has been determined, the 

corresponding region in the disparity map gives the est imated disparities of the obstacle 

over the region. The updated disparity map is convolved with a circular disc of area 

equal to the area of the segmented obstacle's region of support. This will blur out any 

misclassified pkels in the segmentation while emphasizing the obstacle and facilitating its 

localization. The pixel location (x,, y,) of the peak in the blurred disparity rnap localizes 

the obstacle. Fig. 6.5 shows images of the various segmentation steps. 

6.1.4 Obstacle Avoidance Strategy 

The point of localization (x,, y,) obtained from the peak in the blurred disparity map is 

used to cornpute the 

The angular Iocation 

The turn angles given 

steering angles the animat must use to steer clear of the obstacle. 

with respect to the right eye is given as 

to the animat's motor controlier are) thus, proportional to (-0, -4 ) ;  

i.e., in the opposite direction, to avoid collision while still fkating on a reference target 



Figure 6.5: (a) Disparity rnap of fig. 6.C(a), (b) Thresholded disparity map, (c) Cor- 
responding color segmentation of potential obstacles, (d) Backprojection rnap, (e) The 
exact region of support of the segrnented obstacle, (f)  The localization of' the obstacle by 
blurring the  corresponding segmentation of the disparity map. 
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Obstacles 

Animat 
Figure 6.6: Relationship between close objects and large steering angles. 

to stabilize the visual world. 

The merit of using (-8, -6) for steering the animat is twofold: 1) simplicity of com- 

puting a steering vector and, 2) the fact that ( O ,  4) is large for close objects, as is depicted 

in Fig. 6.6. Therefore, the turn maneuver will be large to  avoid the obstacle quickly. The 

farther away the obstacle, the smaller the turn angles, hence steering d l  not be excessive. 

Figure 6.7 shows frames from a top view of a sequence showing the anirnat navigating 

in its environment. The animat is fixating and tracking a target red fish while avoiding 

obstacles taking the form of other fish obstructing its path. The figure shows three 

instances where the animat encounters an obstacle (frames 50, 156 and 180). These 

are followed by frames showing how the animat has successfully avoided the obstacle by 

steering its body in the opposite direction as explained above. 

6.2 Summary 

This chapter presented a vision system for highly mobile autonomous agents that is 

capable of dynamic obstacle avoidance. Through active perception, each agent controls its 

eyes and body by continuously analyzing phot orealistic binocular retinal image streams. 

The vision system computes stereo disparity and segments looming targets in the low- 

resolution visual periphery while controlling eye movements to track an object fixated 



Figure 6.7: An overhead view of the  animat as it pursues a red reference fish while 
detecting and avoiding other fish obstacles. The white lines emanating froni the eyes of 
the observer indicate the gaze direction. 
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in the high-resolution fovea. It matches segmented targets against mental models of 

colored objects of interest in order to decide whether the segmented objects are harmless 

or represent dangerous obstacles. The latter are localized, enabling the artificial animal 

to exercise the sensorimotor control necessary to avoid collision. 



Chapter 7 

Animat Vision in Virtual Humans 

The preceeding chapters have demonstrated that animat vision offers an alternative re- 

search strategy for developing biologically inspired active vision systerns in realistic ar- 

tificial animals implemented entirely in software on readily available 3D graphics rvork- 

stations. 

In this chapter, we demonstrate that the animat vision paradigm is flexible enough to 

be implanted into animats other than artificial fish. We suitably modify our prototype 

animat vision systern and transplant it into two human animats; a human soldier model 

called DI-Guy developed by Boston Dynamics, Inc., (BDI) and the "first-person rvarrior" 

in the well-known interactive computer garne DOOM developed by id Software, Inc. The 

following sections describe the implementation of animat vision systems in the DI-Guy 

soldier and DOOM environments. We present experimentai results with these animat 

vision systems and demonstrate the appropriateness of such virtual environrnents as a 

framework for doing active vision research. 

7.1 Human Animats 

Recent advancements in physics-based human simulation have prompted us to incorpo- 

rate the animat vision system into a human model. We have chosen the commercially 

available DI-Guy API developed by BDI, because it can depict the appearance and mimic 

the actions of humans with reasonable fidelity and computational cost. The ability of the 

DI-Guy animat to synthesize human actions, such as walking and running, forces the an- 



imat vision system to contend with dynamics sirnilar to those of real human bodies. Such 

dynamics are absent when wheel-driven hardware lab robots are used as platforms for 

active vision research. Hopefully our animat vision approach e l 1  foster the development 

of active vision systems that better approximate t hose responsible for human vision. 

7.1.1 The DI-Guy Animat 

DI-Guy is a software library for integrating life-like human characters into real-time sim- 

ulated environments [ ~ o e c h l i n ~  et al., 19981. Each character moves realist ically. and 

responds to simple motor commands, locomoting about the environment as directed. 

DI-Guy anirnates each character automatically so an animator is not needed. Even when 

switching from one activity to another, a DI-Guy malies seamless transitions and moves 

naturally like a real person. DI-Guy has a well documented API that allows users to 

specify characters, select uniforms and equipment, and control actions. The software 

comes with fully textured models at multiple levels of detail for efficient rendering (see 

figure 7.1-b), a motion library, and a high-performance real-time motion engine based on 

motion capture technology. The original DI-Guy character is a soldier portraying dis- 

mounted infantry for military simulations (Fig. 7.1-a). I t  synthesizes authentic rnilitary 

behavior based on the motions of trained soldiers. The system has fully textured mul- 

tiresolution models, several uniforms (Battle Dress, Desert Camouflage, Land Warrior 

II, etc.), weapons (M16, -4K47, M203) and a variety of ai~uiliary equipment (gas mask, 

backpack, canteen, bayonet , etc.). 

The DI-Guy software includes a variety of other characters in addition to soldiers: 

Flight deck crew (FDC-Guy), Ianding signal officers, and airplane captains (Fig. 7.1-c). 

Civilian male and female pedestrians (PED-Guy) who stand, stroll, stride and strut, and 

sit around having a conversation (e.g., Fig. 7.1-d). Chem/Bio characters (CB-Guy) who 

Wear gas masks, and display the effects of fatigue and toxic exposure (Fig. 7.1-e,f), and 

several athletes such as gymnasts, joggers, baseball and football players (Fig. 7.1-g,h). 



Figure 7.1: (a) Two DI-Guy soldiers in BDI; military uniform. (b) DI-Guy models corne 
in multiple levels of detail, ranging from 3500 polygons down to 38. (c) Landing signal 
officer. (d) .A pedestrian DCGuy character. (e) CB-Guy with gas mask equipment. ( f )  
Two soldiers wearing gas niasks. (g) DI-Guy athlete doing a back fiip. (h) The Superbowl 
using real-time DI-Guy athletes. (Images courtesy of BDI.) 



DI-Guy offers a simple programming interface [BDI, 19981. Basic calls in the DI-Guy 

API are: 

0 diguy-ini t  i a l i z e  0 : Initializes the environment and preloads geometry and mo- 

tion data. 

diguy-create O: Creates a DI-Guy character with default type, location and ac- 

t ivi ty- 

diguy-set -ac t  i o n 0  : Set desired action. 

diguy-setdesired-speed () : Specify speed and heading. 

diguy-set-path0:  Specify path for character to follow. 

diguy-destroy O : Remove character frorn scene. 

0 diguy-set-gaze () : Set the (O,.,, Ph.,) gaze angles for turning character's head. 

diguy-set -0r ienta t  ion () : Set steering angle 0,,.., with respect to fonvard direc- 

tion to steer character left and right. 

DI-Guy actions indude: stand, walk, jog, go prone, walk backwards, kneel, walk 

crouched, crawl, a i m ,  f ire weapon, and die.  The DI-Guy coordinate system is right- 

handed, with the positive Y-axis pointing forward and the positive 2-axis pointing u p  

ward. A character standing at the origin with zero orientation faces in the positive Y 

direction, Mth  the positive X-axis t o  its right, and the positive 2-axis starting on the 

ground between the feet and extending up through the head. 

7.2 Animat Vision in DI-Guy 

To incorporate the animat vision system into the DI-Guy soldier, the position of the 

eyes must be located on the graphics mode1 of the character's head. An -4PI call, 



diguy-getf ull-base-position0, that returns the exact ( x  ) location in meters 

from the origin of a point on the character's pelvis was provided by the library. This 

point is the root of the character's graphics hierarchy. The APT also returns the exact 

orientation angle, 8,,..,; in degrees counter-clockwise from the positive Y direction. 

Given tha t  a character at a scale of 1.0 is about 1.83 meters in height [BDI, 19981, 

and knowing the offsets from the root point to different joint positions, we are able to 

work our way up the kinernatic chah  of the body to calculate the location of a point in 

the head centered between the two eyes. Choosing an appropriate baseline to separate 

the two virtual eyes, ive are able to localize the left and right eyes of the character in 

arbitrary pose. This can be visualized from figure 7.2. 

Eyes 

Pelvis 

Figure 7.2: Measurements used to compute the location of the eyes for a DI-Guy character 
at a scale of 1.0. 

7.2.1 Eyes and Ret inal Imaging 

Like the artificial fish, the DT-Guy virtual character has binocular vision. The movements 

of each eye are controlled t hrough two gaze angles (O.,., 4.,.) which specify the horizontal 

and vertical rotation of the eyeball, respectively, independent of the movenient of the 



head. The angles are measured with respect to  the head coordinate frame, which is itself 

relative to  the body coordinate frame. Therefore, the eye is looking straight ahead when 

Oe,. = = O" with respect to  the head forward direction. Also the head is gazing 

forward when O,,,, = 4,,, = O* with respect to the forward direction of the body. 

The retinal field of each eye has three levels of decreasing resolution. This approxi- 

mates the spatially nonuniform, foveal/peripheral imaging capabilities typical of human 

eyes. The level 1 = O camera hasi the widest field of view (about 80") and the horizontal 

and vertical fields of view for the level I camera are related by 

where d, and d, are the horizontal and vertical image dimensions and f: is the focal 

length of the wide field of view camera (1 = O). Initially ft is unknown, but the Z = O 

field of view is known, then f: is first cornputed using 

dz fC = Io  ' 
2 tan($) 

and this value is used to determine the field of view a t  the other levels. 

Fig. 7.3(a) shows an example of the multiscale retinal pyramid with highest resolution 

and smallest field of view a t  the fovea 1 = 2, and lowest resolution with largest field of 

view a t  the peripheral image Z = O. Fig. 7.3(b) shows the binocular retinal images 

with a black border around each magnified component image to reveal the retinal image 

structure in the figure. 

7.2.2 Fbveation and Vergence 

The DI-Guy animat ernploys the same color histogram methods of Chapter 4. A mode1 

image used to recognize targets is shown in Fig. 7.4. When a target is detected in 

the visual periphery using color histogram intersection, it is Iocalized using the color 

histogram backprojection method. The eyes will then saccade to the angular offset of the 

target7s location to bring it within the fovea. The left and right eyes are then converged 

by computing the stereo disparities (u, u )  between the left and right foveal images a t  the 



Right eye 

-- 

Left eye 

Figure 7.3: Binocular retinal imaging. (a) 3 component images; 1 = 0 , l  are peripheral 
images; 1 = 2 is foveal image. (b) Binocular retinal images (borders of component images 
are shown in black). 

current level, using the optical flow method described in Section 4.4, and correcting the 

gaze angles of the left eye to bring it into registration with the right eye. 

Detection and localization continues from franie to frame at  the current foveal level 

as long as the area of the target in this level is below a specific threshold area. When the 

DEGuy animat cornes too close to the target it is tracking and the target area increases 

accordingly, the gaze control algorithm will work a t  the next lower level were the field 

of view is larger and thus the target area is smaller and contained inside the level's 

frame. Also, the speed of the animat is reduced when it approaches too close to the 



target in order to avoid collision. When the target moves farther away from the ariiriiat 

as indicated by a smaller target area in the current level's image frame, the animat will 

increase its speed and the foveation and vergence will take place a t  the next higher level 

where the calculations are more accurate. 

It is straightforward to  estirnate the area of the target accurately once it has been 

detected. This is done using Our implementation of the  histogram intersection method, 

which sizes dorvn an initially larger model histograrn to  the approximate size of the 

target histogram as explained in Section 4.3. The area of the target is thus obtained 

by summing up the number of pixels in the sized down mode1 histogram bins. This 

is another advantage of our robust implementation of the color histogram intersection 

method. 

Figure 7.4: The model image of the target detected by the DI-Guy aniniat. 

7.2.3 Vision-Guided Navigation 

The DI-Guy animat has different degrees of freedom than the artificial fish animat. The  

soldier's body can be steered relative to  the positive Ip direction using the orientation 

angle O,,,,. The soldier can also move its head relative to its body using the head gaze 

angles (O,., , O,,). It can also move its eyes relative to  the head using the eye gaze angles 

( O ,  # This added freedom necessitates a modification to the original gaze control 

algorithm in order to coordinate the eye-head-body niotion. Initially, al1 angles are set 

to  zero indicating a forward orientat.ion with the head and eyes gazing lorward. -4s the 



animat fixates and tracks a target, the eye gaze angles are used to rotate the head such 

that if (O,,., 4,) > T,., then (Ohe,, b,.,) = (Oep7 4.J. Thus, the head is turned to align 

with the gaze direction of the eyes. This continues until O,., > T,,,., at  which point O,,,, 

is set to equal O,.,, thus steering the animat in the gaze direction. This simple control 

method allows the animat effectively to navigate the virtual environment in a natural 

way while visually tracking targets. 

Figure 7.5 shows a sequence of image frames of a DI-Guy soldier animat pursuing a 

differently dressed soldier. The sequence is s h o m  from frame 57 to frame 97, sampling 

every 10 frames. The inter-frame time step was approsimately 0.13 seconds. The left 

column in the figure shows a top and side viesv of the observer in the grey uniform fkating 

on the soldier in the desert camouflage uniform, and successfuIly tracking it from frame 

to frame. The green lines ernanating from the soldier animat's eyes indicate the lines of 

sight from the left and right eyes intersecting a t  the fixation point on the target soldier, 

thus clearly showing the vergence of the eyes on the target. There are seven other soldiers 

in land warrior camouflage uniforms training in the background. They are ignored by 

the observer animat even though they appear in its peripheral vision. For this sequence, 

we have set rhed = 15O, and r,,,,, = 30". 

The right column in the figure shows the corresponding stereo images acquired by 

the observer during navigation. It shows the target nicely fkated in the center of the 

left and right foveas as the animat tracks the target throughout the sequence. Fixation 

is achieved by foveating the eyes with compensating saccade signals. 

7.3 Doom Vision 

Another virtual environment with which we experimented in Our animat vision research 

rvas the DOOM environment. DOOM is a first-person game from id Software, Inc., 

which puts the player in the perspective of a battle-hardened marine fighting for sunival 

against unyielding demons. DOOM is a visually simpler three dimensional graphics 

environment cornpared to DI-Guy. Enemy agents are rendered as two dimensional sprites. 



Figure 7.5: Left column: Top and side view of the soldier anirnat tracking another soldier. 
Right column: Right and leFt multi-scale retinal images from the animat's stereo vision 
eyes. 



Furthermore, there is no graphics mode1 of the observer animat, other than its arms and 

weapons, since the perspective is always from the first person. The DOOM animat also 

has fewer degrees of fieedom. 

7.3.1 The DOOM Graphics Engine 

The DOOM graphics engine renders a 3D interior scene. This virtual world is made up 

of connected sectors that have a floor and ceiling height. The sectors are formed by wali 

lines, animated and transparent textures, 2D sprites, and one lightlevel per sector with 

distance cueing. There are 4 locomotional degrees of freedom: 

0 MOVE FOR\VL4RD, 

0 MOVE BACKTVARD, 

TURN RIGHT, 

TURN LEFT. 

Obviously the DOOM animat has fewer degrees of freedom than DI-Guy, thus forcing 

certain constraints on the animat vision system. Since the user is afforded a first-person 

perspective rendition of the environment, the task of implementing virtual eyes is trivial. 

Although a single eye is already implemented, there is no independent control over the 

motion of the observer's head relative to the body. Hence, the only way to gaze at a 

target is to steer the observer animat in the direction of the target. 

7.3.2 Animat Vision using DOOM 

The animat vision that we have implemented into DOOM is a simplified version of the 

full prototype implemented in the fish and the DI-Guy animats. The animat vision 

system starts by detecting simple movements in the environment using a simple motion 

detection technique based on the difference between two consecutive frames. This suffices 

to segment out objects in motion, thus, focusing the attention of the D 0 0 M  animat on 

interesting targets. The segrnented target can be a potential enemy. Hence, the doom 



animat compares it Mth color mental models of known targets using the modified color 

histogram intersection rnethods. If t here is a match, color histogram backprojection is 

employed to estimate the location of the target. The doom animat then turns in the 

direction of the target and fires its weapon. Fig. 7.6 shows a sequence of image frames 

of the DOOM animat moving in its environment, employing vision algorithms to detect 

and recognize an enemy, then localize it and turn to fire at  it. 

If, however, the segmented target does not match with any of the mental models, it is 

considered harmless and the doom animat disregards it. Fig. 7.7-(a) shows an example 

of a segmented target at frarne 166 frorn one of the animat's stereo e-. Note that most 

of the background is removed escept for some of the walls. Figure 7.7-(b) is a color 

mode1 image of a potential target known by the doom animat. Fig. 7.7-(c) shows the 

result of blurring the histogram backprojected image of the segmented target in (a). The 

location of the maximum intensity value in this image localizes the target. The rest of the 

sequence in Fig. 7.6 from frame 168 to the end, which shows the doom animat turning 

in pursuit of the localized target and eventually shooting it down, is a direct result of 

visual processing. 

7.4 Summary 

In this chapter, the animat vision systern which was implemented for the artificial fish 

world in Chapters 4, 5, and 6, was adapted and integrated into two different virtual 

environments, the DI-Guy virtual human and the DOOM first-person interactive combat 

game. In the former, the full animat vision prototype system was implemented in the 

DI-Guy soldier which served as a virtual robotic agent with binocular mutiresolution reti- 

nas, visual field stabilization, color object recognition and localizat ion, target foveation, 

vergence of left and right eyes, and saccadic eye movements to fixate and track interest- 

ing targets. The DOOM environment had fewer degrees of freedom, thus forcing some 

constraints on the animat vision system. Nevertheless, this implementation was useful 

enough to allow the doom warrior to move around in its environment detecting poten- 



Figure 7.6: Stereo retinâl image sequence froni the doom animat's stereo vision eues. 



Figure 7.7: (a) Segmented enemy target at frame 166. (b) The mode1 image of the target 
detected by the doom animat. (c) The target localized from the  blurred histogram 
backprojection of t h e  image in (a). 

tial targets using motion segmentation, recognizing the detected targets and localizing 

them using the sarne color histogram intersection and backprojection methods developed 

for the fish world, and finally shooting down its enemies without the intervention of an 

external player. 



Chapter 8 

Conclusion and Future Direct ions 

This thesis has presented work that spans the fields of computer vision, artificial Iife. and 

computer graphics. Our research was motivated in part by the realization that many 

active vision researchers ivould rather not have their progress impeded by the limitations 

and complications of currently available hardware. Animat vision offers a viable: purely 

software alternative to the prevailing hardware vision mindset. Our approach is uniquely 

defined by the convergence of advanced physics-based artificial life modeling of oatural 

animals, efficient photorealistic rendering of 3D virtual worlds on standard computer 

graphics workstations, and active computer vision algorit hms. 

To demonstrate the animat vision approach, we have employed a physics-based virtual 

world inhabited by lifelike artifical animals. Artificial animals are virtual zoological robots 

( "zoobots" ) t hat offer active vision researchers greater mobility and maneuverability, 

lower cost, and higher reliability/repeatability than can be expected from present-day 

physical robots. The visual fidelity of the virtual world is sufficient for the automated 

visual analysis of the retinal image streams acquired by the artificial animal to be a 

significant challenge. Moreover, physics-based virtual robots are governed in their virtual 

world by the same principles that physical robots are subject to in the physical world, 

hence they share the attraction of situated physical robots for the purposes of active 

vision research. 

On the one hand, skeptics rnay regard it as a large leap of faith that the animat 

vision paradigm could be useful to  real world computer vision and robotics. They may 
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argue, for example, that a great deal of control theory would likely need to be applied to 

real world mechanical systems and that, for example, segmentation of real-world images 

is a notorious stumbling block, if not a brick TM&. Optimists, on the other hand, may 

counter that we are already employing "real-world computer vision algorithms" in our 

animat vision system, in the sense that our algorithms are modified (typically improved) 

versions of vision algorithms reported in the vision literature with demonstrated utility in 

analyzing real-world scenes (as shown in [swain and Ballard, 1991, Black and Anandan, 

19931 and in our o m  results with naturai images reported in chapter 6). Of course, 

we conjecture t hat active vision algorit hms which work robustly wit hin anirnat vision 

sjrstems like ours should also work in a real-world context. Proving this conjecture, 

however, mil1 require further work that is beyond the scope of this thesis. 

The main contributions of this thesis are: 

1. The anirnat vision approach: A new paradigm which prescribes the use of artificial 

animals for active vision research. It is implemented in software with realistic 

artificial animals which have the ability to locomote, perceive, and understand the 

virtual worlds in which they are situated. We show t hat a software implementation 

has significant advantages over hardware implementations. 

2. A prototype active vision system was successfully implemented within the frame- 

work of a virtual marine world inhabited by artificial fish animats that emulate 

the appearance, motion, and behavior of natural fishes in their physical habitats. 

The animat vision system consists of a set of active vision algorithms for foveation 

and vergence of interesting targets, for retinal image stabilization and color ob ject 

recognition, and for pursuit of moving targets through visually-guided navigation. 

3. We further demonstrated the potential applications of the animat vision approach 

in the DI-Guy and DOOM environments. The sarne animat vision prototype was 

implemented for the DI-Guy animat, and, a simplified version of the algorithm waç 

implemented for the warrior animat in DOOM. 
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4. We adapted and integrated a suite of active vision algorithms into the working 

prototype animat vision system. We integrated motion and color-based gaze control 

algorithms to enhance the prototype and to support more robust vision-guided 

navigation and selective attention abilities in the animat. We further enhanced the 

animat7s navigation and perception abilities by combining stereo and color-based 

motor control algorithms which extended the animat's functionality by supporting 

obstacle recognition and avoidance. 

5. We made improvements to the color histogram intersection met hods originally in- 

troduced by Swain [swain and Ballard, 19911. We developed a more robust in- 

tersection measure that is invariant to scale changes. We adapted it to foveated 

systems with high resolution foveas and loiver resohtion peripheries to make use of 

the information present in the peripheral image and absent from the foveal image. 

6. We developed an incremental motion segmentation technique that makes use of 

the robust optical flow estimate at eaçh time instant to refine an initial segmen- 

tation over time as the animat navigates and acquires more retinal image frames. 

Also, motion and color were integrated to increase the robustness of the animat's 

recognition senses. 

7. FVe developed stereo disparity algorithms based on steerable filters that make use of 

the color signals available naturally from the photorealistic images acquired by the 

animat to improve the matching process and to obtain more accurate disparity es- 

timates. We demonstrated that this method was very effective and when combined 

with color cues, gave the animat the abilities required to avoid obstacles. 

The fact that the animat vision system was successfully integrated into three different 

virtual environments-the fish world, the DI-Guy environment, and the DOOM world- 

demonstrates the versatility of the paradigm. We believe that i t  is a general vision 

research framework applicable to virtual robotic systems of v a ~ n g  degrees of complexity 

The work presented in this thesis should also be relevant in whole or in part to physical 



robotics (e.g., autonomous undemater vehicles). In conclusion, it appears that artificial 

animals in their virtual worlds can serve as a proving ground for theories that claim 

sensorimot or abilities in animal or robotic situated agents. 

8.1 Future Work 

-4n obvious direction for animat vision research would include augmenting the complex- 

ity of the virtual worlds (the current DI-Guy environment is especially simplistic) and 

the development of a more extensive arsenal of active vision algorithms to support the 

complete behavioral repertoire of the animats. The animat vision approach alloms us to 

do this in stages without compromising the complete functionality of the artificial animal 

as demonstrated by the vision algorithm euhancements described in Chapters 5 and 6. 

Another challenge is to implement effective animat vision systems within animats 

situated in physics-based virtual environments where more realistic environmental con- 

ditions are simulated. For example, the active vision system would have to be enhanced 

with robust vision algorithms that can deal with varying illumination conditions, such 

as variable cloudiness for outdoor environments, varying distance of the target from the 

light source in indoor environments, controlling the animat's vision parameters to adapt 

to day and night vision, and dealing with objects that have simiIar color signatures, to 

name a few. Vision algorithms of greater sophistication would have to be implemented 

to deal with these problems. For example, a more robust target recognition algorithm 

would be needed. Our modified color histograrn methods can be used in conjuction with 

a color constancy algorithm such as that of Barnard et al. [ ~ a r n a r d  et al., 19961 to 

minimize the effects of varying lighting conditions. Also, our color ob ject recognition 

algorithms may be irnproved by combining the color cues with other robust cues such as 

steerable filter features which have been used successfully in object recognition   allar rd 
and Wixson, 19931. 

To deal with the problem of distinguishing objects with similar color signatures that 

are normally confused by histogram intersection, we can modi@ Our algorithm to ignore 
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colors that are comrnon to the objects of interest and only concentrate on those salient 

colors that are unique to the objects [~wain, 1990]. This method will, however. fail for 

the degenerate case when the objects of interest are al1 exact copies of each other with 

no salient colors. In this case our object recognition algorithms will initially pick one of 

the objects at random. Once foveated, the algorithm will have no difficulty in keeping a 

fix on this specific object as long as it is the onIy object 6 t h  salient colors in the fovea. 

The confusion will return, however, when another copy of the foveated object appears in 

the fovea. This problem is not unique to cornputer vision since even humans will have 

difficulty distinguishing between identical twins wearing the exact same clothes. 

Exploiting additional visual cues, such as shape, is an interesting topic for future 

investigation. Targets of interest in our experimental virtual environments include other 

moving virtual fish and humans. These objects are clearly nonrigid deformable bodies 

which makes the task of recognizing their continuousIy changing shapes a fairly complex 

one. For example, the virtual human soldier target is an articulated object which is com- 

posed of nonrigid parts constrained together at  joints. This type of body can produce a 

complex variety of shapes, because of the articulate skeleton and tissue deformations due 

to muscie actions and gravitational effects. One possible approach to tackle this problem 

is to use dynamic primitives that are derived from physics-based object models similar 

to those used to construct the target objects the animat vision system deals with. A 

paradigm for tracking nonrigid 3D objects using deformable models has recently been 

introduced by Terzopoulos and Metaxas [~erzopoulos and Metaxas, 19921. They use dy- 

namic modeling primitives (such as 3D deformable cylinderical objects) that can deform 

as they move freely in space. Simulated physical constraints based on Lagrangian dynam- 

ics are applied between these primitives which make them responsive to applied forces 

derived from the visual data, thus, giving them the ability to construct dynamic models 

of articulated objects with deformable parts. This makes them an obvious candidate for 

future enhancements to our animat vision system's target recognition capabilities. 

A final topic for future work would be to adapt the animat vision system to physical 
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robotics (e.g., autonomous vehicles) . Regardless of their limitations, mobile robots have 

been used as an experimental platform for artificial intelligence research for more than 

four decadeç, and will remain the link between research and applications in the physical 

tvorld. 
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