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ABSTRACT OF THE DISSERTATION

An Online Collaborative Ecosystem for Educational Computer Graphics

by

Garett Douglas Ridge

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2018

Professor Demetri Terzopoulos, Chair

This thesis builds upon existing introductory courses in the field of Computer Graphics,

aiming to lower the excessive barrier of entry to graphics programming. We introduce tiny-

graphics.js, a new software library for implementing educational WebGL projects in the

classroom. To mitigate the difficulty of creating graphics-enabled websites and online games,

we furthermore introduce the Encyclopedia of Code—a world wide web framework that

encourages visitors to learn graphics, build educational graphical demos and articles, host

them online, and organize them by topic. We provide our own examples that include custom

educational games and tutorial articles, which are already being successfully employed to ease

our undergraduate graphics students into the course material. Some of our modules expose

students to new graphics techniques, while others are prototypes for new modes of online

learning, collaboration, and computing. These include our “Active Textbooks” (educational

3D demos or games embedded in literate-programming-like articles). We introduce “Smart

Articles,” which divide crowdsourced programming tasks into distributed processes that can

be tracked at separate URLs. Beyond education and graphics, our work advances the study

of human-computer interaction, user interfaces, and computer-supported cooperative work.

We present the results of a case study in using tiny-graphics.js and our online resources in a

real-world UCLA undergraduate course, along with our results when attempting to recreate

topic-based examples from an existing graphics textbook using our library.
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CHAPTER 1

Introduction

Some problems are best solved with visualizations. Finding a way to apply computer graphics

to any problem is a great way to make the underlying topics more intuitive and approachable.

So how does a student, a programmer, or even a mathematician learn to make use of computer

graphics for the first time? Is there a right way to learn this skill?

At universities, teachers in graphics courses must routinely find good answers to this

question in behalf of their students. Aside from lacking graphics experience, the students

are often pursuing various majors. Some begin graphics courses without even having the

programming and math background, and yet graphics can be a way for them to gain this

background. Furthermore, motivated outsiders who lack access to such a university course in

the first place might still prefer to learn graphics from a programmer’s or mathematician’s

perspective, in order to increase their understanding of both, rather than trying to glean

whatever they can from graphics tutorials. Online tutorials are often manuals for pre-

packaged commercial solutions anyway—tools that are geared towards outputting a finished

product as opposed to educating the end consumer in graphics fundamentals.

Unfortunately, for the task of creating a graphics program, most approaches today come

with a high learning curve. The reality is that the processes of computer graphics are quite

complicated in hardware and software, with many caveats, such as performance limitations.

These extra parts of the graphics learning curve do not particularly help the learner to

acquire the math and programming intuition that computer graphics can deliver.

In this thesis, we aspire to lower the bar for graphics learners, and make the job easier

for graphics instructors as well. We offer supplementary material for a university (or college-

level) Computer Graphics course, and a novel online framework for supporting and expanding
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that material.

In particular, we develop a new programming library, “tiny-graphics.js”, and a new web-

site, the “Encyclopedia of Code”. We use these to introduce new tools and paradigms for

education, especially in topics of Computer Graphics and Computer Science in general. The

outcome is a dramatic improvement upon the work of Edward Angel associated with his

Computer Graphics textbook (Angel and Shreiner, 2014a), including course material, code-

base, and online demos, which have been adopted into official introductory courses at the

ACM SIGGRAPH conference (Angel and Shreiner, 2016; Angel and Haines, 2017; Angel,

2017). We describe and discuss these improvements, and also provide side by side compar-

isons to specific web demos accompanying Angel’s textbook.

1.1 Contributions of the Thesis

In addition to the developed educational content and novel web-based framework for mak-

ing more, this thesis offers the following benefits to the graphics, education, and research

communities:

1. A new code library for computer graphics, purpose-built for education.

Our tiny-graphics.js framework offers significant qualitative and quantitative improve-

ments over previous libraries made for mainstream graphics courses.

2. Novel tools for educational and research collaboration.

We provide a new hosting service for code. By changing the code in the provided

interface, visitors to our website can build their own programs and articles, each of

which is given a permanent sub-address on the website. Unlike other currently available

online code remixing environments, ours allows programmers to interact with all other

users’ code submissions at once in one large open-source ecosystem.

Under our “Smart Article” system, programs running on our website can also receive

messages over the web. The messages can come from any source, including academic
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research software made in any language. This provides opportunities, with small mod-

ifications, to bring more academic software projects to the web in the form of remote

visualizations.

3. Tools that assist teachers.

The website currently supports Computer Graphics courses with several lesson-specific

interactive demos, replacing certain chalkboard-driven examples with more illustrative

interactive games. The custom-made educational code library underlying the website

easily supports new tutorials about math, programming, and graphics. Furthermore,

it enables teachers or other experts to make and host their own demo-heavy tutorials

covering an even broader range of topics.

4. Educational benefits for visitors.

Our online demo and tutorial repository caters to many audiences. It helps students

who want to make and share completed graphics course projects (Figure 1.1), re-

searchers who want to make and share graphical demos that introduce peers to research

topics, and hobbyists who want to make and share games and animations. It provides

one-click code hosting (even anonymously) for all programmers making graphics demos

and prototypes.

Visitors lacking coding skills can still enjoy our website’s educational and highly graph-

ical articles submitted by users from the aforementioned groups, broken down by cat-

egory and audience. Our current selection of articles introduce minor but useful new

techniques to the graphics field at large. Compared to Wikipedia, where articles are

mainly made of static text and images, the “Active Textbooks” on our service each in-

clude little programs that run inside the page and render an animation of the concept

in action. As such, each educational illustration potentially becomes an interactive

virtual toy.

5. Smart Articles for consumption by both humans and computers.

Our concept of “Smart Articles” is an innovative application of grid computing for

3



Figure 1.1: These animation projects were created by students using our tiny-graphics.js
library during offerings of the UCLA course CS 174A: Introduction to Computer Graphics.
They are hosted by Professor Terzopoulos on the course page (Terzopoulos, 2017). The
library has been an effective educational tool, both for easing the students into learning
graphics programming, and for allowing their programs to mathematically achieve visual
results like these, which was a motivating force in conceptualizing and implementing course
projects.
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research.1 When computer programs access Smart Articles from our server, they can

automatically inherit some capabilities on the article’s topic. Programs can do this by

delegating specialized work for the Smart Article to handle, which is then queued up for

the next online visitor to the article. Once a visitor loads that page, the pending work

is then executed as a function call on that visitor’s computer, prior to the execution

or display of any demos embedded on the requested page. The task is thus completed

using crowd-sourced computing power along with the specialized capabilities and API

of the particular Smart Article in question.

Our website supports lessons about Computer Science topics, which include compu-

tationally hard (NP complete) problems. Our web server is capable of distributing

the load of any computationally hard demos that are embedded in its articles. The

Smart Article paradigm can divide problems into smaller chunks (sub-problems) and

send them to each visitor’s machine as they view the article, thus applying volunteered

CPU time from these several sources to solve the larger problem. Two Smart Articles

that are each fully specialized for some graphics-related task can, in parallel, help each

other to solve a problem that is larger than their individual topics, by delegating to

one another; they do so in separate, easily tracked processes and browser windows.

1.2 Dissertation Outline

Anatomically speaking, this thesis is comprised of two interwoven sub-projects—a JavaScript

programming library, which is developed in Chapter 2, and an online encyclopedia website

full of examples and tutorials that use the library, which is developed in Chapter 3. The

backgrounds and motivations for each of these two components are provided in Sections 2.1

and Section 3.1, which precede the main descriptions of the sub-projects in Section 2.2 and

Section 3.2, respectively. These background discussions are broken down by sub-project to

explain the open problems from which each project arose.

1Unlike prior volunteer-based projects known for mass grid computing, such as Folding@Home (Larson
et al., 2009), our system can include arbitrary new research problems submitted by users.
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Chapter 4 presents the results of our research, including a case study at UCLA. It also

documents our success at using our library to produce web demos that are at least as effective

as those associated with Angel’s textbook (Angel and Shreiner, 2014a), including side by side

comparisons.

Chapter 5 provides a review of similar projects and the diverse academic research upon

which our multi-disciplinary project builds, referring to the details of our design from the ear-

lier chapters. We show that we offer a unique intersection of features that stands out among

related websites and similar documented projects. Different facets of our project relate to

collaborative software hosting (such as GitHub (Dabbish et al., 2012)), online encyclopedias

(such as Wikipedia (Selwyn and Gorard, 2016)), frameworks for making advanced WebGL

applications (such as three.js (Dirksen, 2013)), and industrial tools for graphical effects (such

as Maya and Unity (Govil-Pai, 2006; Labschütz et al., 2011) ). Several related projects may

be categorized as education in Computer Science and Mathematics, the development of

educational web demos and visualizations, and Digital Game Based Learning.

We conclude the thesis in Chapter 6 with a discussion of future plans and research

directions.
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CHAPTER 2

The tiny-graphics.js Software Library

2.1 Motivation and Background

Making graphics programs requires knowledge and a significant up-front cost even to begin

the initial setup. This much is clear from the sheer number of industrial tools that exist

for setting up graphics (Hughes et al., 2014; Celes and Corson-Rikert, 1997). These serve

not for providing any particular animation capabilities, but just to wrap and simplify basic

graphics functionality—the act of projecting 3D triangles onto a 2D plane of pixels.

A student starting to learn graphics, whether in a typical C++ based course or not,

must perform a surprising number of preliminary steps even to make the smallest graphics

program from scratch, especially if they use correct up-to-date techniques. Many beginners

are therefore tempted by tutorials on outdated approaches (Davidovi’c, 2014). They might

find instructions for the coding paradigms of prior decades, before modern shader-based

graphics cards changed everything. These “pre-shader” approaches were indeed easier to

initially approach from scratch—and hence remain very high on internet search rankings—

but they are no longer supported. For many years these commands have been removed from

the default languages of graphics cards on the market, and they have never been supported

on web browsers. Newcomers can avoid this trap only by committing themselves to a big

up-front investment: learning the difficult setup steps that are expected of them in newer

graphics programming systems.

In current approaches, these laborious initial setup steps are mandatory. A graphics

beginner must use them to complete detailed tasks such as the following: 1. Connecting

their program to the graphics card and populating the card’s memory buffers with vertex
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data, which describes points in shapes by their positions and other fields. 2. Managing

pointers into that data, matching them appropriately to pointers into variables within the

graphics card’s separately-managed running code (the “shaders”). 3. Commanding the main

program to build another distinct program of correctly-made shader code, to be used by the

graphics card for each drawing operation. The latter step is the worst of all; shader code

is its own new language and paradigm a student must understand. All of these steps are

required before anything at all can be drawn (Angel and Shreiner, 2014a).

All programs that draw 3D graphics must express the above steps using calls to the com-

puter’s graphics card (Angel and Shreiner, 2014a), which always exposes built-in functions

to the programmer for those very steps. Common interfaces for this are called DirectX and

OpenGL, the latter being more widely available and more prevalent in education (Angel and

Shreiner, 2014a). The phrase “OpenGL program” often implies the language C++ (Deepak,

2015) due to the nearly universal hold C++ had on graphics education until recently, but this

is a misnomer; other languages, including Python, Java, and JavaScript can make OpenGL

calls too. All choices cause the same triangle-drawing 3D effects to be executed on the display

window. Because of this connection, the act of 3D graphics programming in one language

can also be familiar in all the others.

We use WebGL, a form of OpenGL. WebGL is merely the name for JavaScript code that

includes OpenGL calls. JavaScript is the language of the web, being the only programming

language that works inside of websites in modern browsers. Aside from the change of lan-

guage to JavaScript, WebGL graphics programming is nearly exactly the same as its more

traditional C++ counterpart, using the same API calls in a nearly one-to-one correspon-

dence. For example, any C++ command such as:

glBindTexture( GL_TEXTURE_2D, id );

which does something in OpenGL, becomes a JavaScript command like:

gl.bindTexture( gl.TEXTURE_2D, id );

when using WebGL.

Beginners should become comfortable with all three programming styles, imperative,

object-oriented, and functional, to gain the best understanding of JavaScript in order to use
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our library. To avoid missing newer capabilities, all inquires about JavaScript using online

search engines should include the search term “es6”, the current version name.

2.1.1 Graphics Libraries in Education

The official courses about introductory graphics at the ACM SIGGRAPH conference for the

two most recent years (2016 and 2017) have been based on WebGL (Angel and Shreiner, 2016;

Angel and Haines, 2017). These were organized by Edward Angel, the author of the most

widely cited WebGL course textbook “Interactive Computer Graphics with WebGL” (Angel

and Shreiner, 2014a). Angel’s graphics textbooks have always included a small software

library to get students up and running with hands-on programming experience while learning

graphics.

Angel (2017) describes his rationale for moving from his helpful C++ based libraries

over to WebGL even after many years of having kept up with updates to OpenGL in C++.

There he laments those updates as having progressively increased the difficult learning curve

of graphics setup, citing issues of unsupported features in different student hardware and

difficulty in setting up uniform C++ compiling environments for all students. Compared

to C++, Angel concluded that WebGL has comparable performance to C++, plus the

advantages of a standardized environment on all platforms (including phones). WebGL

development is easier due to the combination of an interpreted code engine and surprisingly

excellent debuggers that are built into the menus of modern web browsers.

Our work finds a number of additional benefits associated with the JavaScript language

itself for graphics, due to the presence of functional programming and a powerful type system,

and its tendency toward smaller total source code. The need for JavaScript to be interpreted

live by other programs (browsers) creates performance limitations, but we do not find them

overly restrictive in view of the advantages. WebAssembly (Haas et al., 2017) provides an

opportunity to make calls from JavaScript to fast assembly code; it is supported by browser

JavaScript APIs. It is also possible to avoid the slower parts of the JavaScript language by

using only a subset of language features, either by hand-coding or by using cross compilers
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that automatically do so—examples include Emscripten (Zakai, 2011), which translates C++

OpenGL code to WebGL that is only negligibly slower than the native C++ code.

JavaScript has benefits in both the early stages of designing prototypes (due to its func-

tional and interpreted code) and in the late stages (due to options like WebAssembly), leaving

few reasons to write code that cannot run in a web browser anymore so long as the applica-

tion does not demand calls to graphics card features more cutting edge than what browsers

at any given time support.

2.2 Design and Benefits of the tiny-graphics.js Software Library

2.2.1 Description of tiny-graphics.js

In WebGL a lot of unrevealing “boilerplate” code is required just to get a single 3D triangle to

draw on a web canvas. It is not at all obvious, or even agreed upon (in online examples), how

one should organize that repetitive code into functions. The function organization should

be flexible enough later, when the programmer will need to dynamically switch out pieces

of their program frequently—whether those pieces are other vertex arrays (shapes), other

shader programs, textures (images), or entire scenes.

To offer that flexibility, we provide students with a single-file code library called tiny-

graphics.js, which is very small (753 lines). It sets up the elements of WebGL, such as

shaders and scenes. It also provides button and keyboard interfaces for enabling user input

to trigger the aforementioned swapping of the program’s components. The buttons could

be any that are embedded on the web page from which our library is loaded. Crucially for

graphics, our library also includes the machinery for matrix and vector algebra, which the

JavaScript language specification lacks (Simpson, 2015).

2.2.1.1 Going Dependency-Free

To better serve as an educational tutorial, our library imports no outside code. It is normally

used in programs of three short, human readable JavaScript files. By not importing outside
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libraries, we avoid giving an overspecialized skill set to students, making them demystify

extra layers of complex API, or risking the dependencies becoming obsolete.

It befits educational libraries to be self-contained and free of outside dependencies, since

tutorials are meant to have a limited scope. In another example of this, Angel wisely chose

to make his own WebGL helper library dependency-free. He explicitly renounced three.js,

a framework for organizing a 3D animation and adding capabilities such as scene graphs

(Angel, 2017), citing its abstractions as reasons why it does not fit into the scope of an

introductory engineering course concerned with architecture and implementation.

Angel also omits the large, extensible libraries such as jQuery, Angular, and React that

help with organizing JavaScript and websites, which to an engineering student would be

an unwanted intermediary as they learn the fundamental code objects of the browser and

page. Thousands of responses to common JavaScript questions online (Treude and Aniche,

2018) assume as a matter of course that jQuery will be imported into every JavaScript

program and its shorthand used throughout. For a beginner, these extra “frameworks” for

JavaScript simply clutter search results. If used, they add to the concepts in the learning

curve, increasing complication and the amount of code visible to the program. With pure

JavaScript a student benefits by learning fewer concepts from the language specification

until they can go no deeper; they need not demystify hidden code that leaves room for

misunderstandings when diagnosing errors.

JavaScript libraries are typically more than just a couple years old, made without the

conveniences of the 2015 “es6” upgrade to JavaScript, so their code is more verbose than

it could be. Using them might lock the programmer into the older style, or force them to

learn features with overly custom implementations that are now unnecessary since they are

universal in es6. Learning to do the same task the “es6 way”, meaning from scratch in pure

modern JavaScript, is thus a better long-term strategy anticipating es7’s arrival, compared

to becoming attached to libraries.

Lastly, our dependency-free pure JavaScript approach is a relief from an endemic prob-

lem in the current JavaScript community—the dependence on trivial packages that do the
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same thing a few lines of basic JavaScript could do. This phenomenon was researched and

quantified by Abdalkareem et al. (2017), who found wide acceptance of this practice. They

discovered that one sixth of all JavaScript programs imported by package managers are triv-

ial, and nearly half of those import their own dependencies. They explain how over-reliance

on trivial packages caused the famous “left-pad” incident that briefly brought down some of

the largest internet services like Facebook, Netflix, and AirBnB. This happened when a file

called “left-pad” was briefly unpublished, which contained only a dozen lines of JavaScript

that performed a trivial padding of spaces onto the left end of strings.

Trivial dependencies certainly pose a problem. Our library represents one effort to coun-

terbalance the widespread over-reliance on dependencies, getting back to the roots of coding

using the rich features already built into the JavaScript language itself.

2.2.2 Improvements Over Existing Graphics Tutorial Software

As a baseline of comparison, we will use the WebGL code from Angel’s most recent textbook

(Angel and Shreiner, 2014a). That is not to say that tiny-graphics.js is merely an incremental

improvement over Angel’s library; we argue that the scope of tiny-graphics.js is much larger

and that it stands on its own. Angel’s library is almost entirely geared towards matrix and

vector algebra, offering little help in organizing the WebGL program. Our library emphasizes

both, allowing users to better compartmentalize demos. Our demos stay small, yet they are

able to be more compelling and go deeper into the material than the rather bare-bones web

demos Angel provides in his textbook’s online resources, as we will show in our comparison

in Chapter 4. In Section 3.2 we will show how to use our library to more effectively support a

real-world, UCLA introductory computer graphics course by replacing specific lessons in the

syllabus. Our example could potentially improve all graphics courses around the world, not

just those that already use Angel’s textbook, so our library and Angel’s are not comparable

in scope.

We mainly compare against Angel’s library since the associated textbook and ACM

SIGGRAPH course are mainstream, and widely accepted within the SIGGRAPH community
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as the right way to start learning graphics. It is an especially apt comparison since we

were able to observe directly through UCLA’s own graphics course the improvements tiny-

graphics.js makes over Angel’s library. These improvements specifically are as follows:

1. Reduced Clutter for Clearer Examples

When students start coding in a graphics framework that is designed to be a tutorial

for them, they expect immediately to see concepts they have learned in their graphics

course lectures—math concepts such as matrix algebra, points, and projections are

the norm in UCLA’s introductory graphics course. Students imagine building their

first scene and expect to see that the three special matrices they have been taught

are for precisely that purpose—translation, scaling, and rotation. But students who

use Angel’s framework (or most WebGL tutorials) are often faced with finding these

familiar math concepts scattered between large sections of WebGL boilerplate clutter,

hidden among a lot of unfamiliar words not related to anything learned in lecture.

This clutter contains the previously mentioned laborious commands to the graphics

card and initial setup steps of shaders and buffers. This is highly predictable code that

could instead have been relegated into reusable subroutines set apart from the math

operations that are of interest to the student.

Students who code using our tiny-graphics.js framework will instead be relieved to

find that their scene’s definition is uncluttered by any boilerplate graphics code or any

maintenance calls, providing a dramatic gain over Angel’s online textbook demos. If a

beginner merely wishes to read one of our existing demos, they will need almost nothing

other than an awareness of what a transformation matrix is, and they will immediately

recognize conceptual words from their graphics course, including the three special

matrices. Armed with this understanding and the ability to read basic JavaScript,

viewing the source code of any scene quickly reveals how these special matrices are

generated by functions in the code to draw the shapes in the desired positions in the

3D world. That is because the most useful code for students to read, matrix operations

juxtaposed with one-line draw calls, stands by itself.

13



2. Superior Performance

We extract more out of JavaScript than Angel did by using more language features.

Angel restricted himself to language features that resemble those available in C++.

In addition to that limitation, his code also encounters some of JavaScript’s pitfalls—

ways to code that are deceptively expensive. Built-in browser profiling shows that his

program’s overall execution time is dominated by just one function, an expensive helper

routine that operates upon the arguments of every function call, which is designed

to compensate for how Angel uses those arguments. Modern es6 (2015) JavaScript

provides a single token in the language (the Rest or Spread operator) that accomplishes

the same thing without growing the call stack with another function call. Our library

uses this instead, and this is supported by all current browsers.

Additionally, the most performance-critical math functions in Angel’s code are hobbled

by programming too defensively against the possibility of receiving the wrong input

types or amounts, perhaps for fear that students will make mistakes in JavaScript’s

dynamic type system. As new programmers, however, students do not have the expec-

tation of type safety that comes from a career of C++ programming. Quoting Angel

himself, “To them, JavaScript at worst is ’just another language,’ and they learn it

quickly” (Angel, 2017), which is precisely why students would not be as blindsided by

unsafe typing as Angel’s own defensive coding presumes. This practice (even includ-

ing unreachable code paths) was perhaps adopted before Angel fully appreciated how

well the powerful in-browser debugger, which he praises in (Angel, 2017), compensates

for these risks. Some of the checks are also replaceable by, again, JavaScript’s newer

Spread and Rest syntax.

Angel (2017) describes the flexibility of JavaScript array types in allowing students to

write clearer code. He argues against using es6’s fixed-size TypedArrays. However,

TypedArrays are in fact capable of anything that his preferred regular arrays can

do, including the es6 iterator-based array functions, which are the most helpful of

all. Although TypedArrays cannot change their length, most math vectors should be

fixed-length, since the math itself does not require that their lengths change, and since
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many of them will just be temporaries generated within JavaScript expressions.

Our library uses TypedArrays. This change alone enabled our students to implement

their own ray tracers that execute with around five times the performance compared

to identical versions that do not use TypedArrays.

We provide a way to repeatably verify this result. Simply navigate your browser to our

demo at https://encyclopediaofcode.glitch.me/Ray Tracer Performance, use the

navigator to select the class Vec, open the editor, and change the superclass of class

Vec from Float32Array to Array. Select “Run With Changes,” and observe that the

difference in speed of completing the image is indeed about five times.

3. Simpler Code Due to Better Language Features

Angel’s code library contains several files, the largest being MV.js with 979 lines of

source code. This file contains all of Angel’s matrix and vector algebra definitions,

including a complex routine for computing the 4×4 matrix inverse. In tiny-graphics.js,

all of the same matrix and vector functionality is contained within just 129 lines of

code, with the remainder of our file being open for other tasks such as organizing the

user’s WebGL calls. This brevity is achieved by taking advantage of up-to-date es6

(2015) JavaScript features (such as array iterator functions, spread and rest syntax,

and arrow functions). Unlike Angel’s library, which was ported over from C++ and

retained the same style and paradigms, we take advantage of JavaScript’s functional

language capabilities to express substantially more with the same amount of code.

Despite a tremendous reduction in code complexity, our matrix and vector algebra

classes (Mat and Vec) are in fact more flexible and capable than Angel’s versions,

generalizing to M ×N matrices and any-size vectors instead of a few hard-coded sizes,

while maintaining special-case small vectors that optimize performance just as Angel

does, and while typing them as flat buffers whenever certain WebGL calls demand.

Functions meant specifically for the 4 × 4 matrices common in graphics are broken off

into their own Mat4 subclass, while other matrices can assume any size. The code for

the Vec, Mat, and Mat4 classes each fits within about the size of one screen that can be
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perused by the reader all at once without scrolling. Code should be written concisely

enough that it can be economically kept in one’s head (see http://paulgraham.com/

head.html); it is easiest to memorize and visualize code when it fits into view on-screen

in its entirety.

A newer es6 language feature, called template strings, provides another gain, allowing

us to clean up our HTML code. Any extra programs comprised of shader code are

instead embedded as simple strings within our JavaScript code. It is considered good

practice for HTML documents not to be contaminated with code (Yu et al., 2007);

among other benefits, this achieves a more secure separation of code and data (Doupé

et al., 2013).

We can organize all our shader language (GLSL) code into appropriate specialized

classes for each type of shader, rather than intrusively cluttering the HTML document

file with every shader’s code, as Angel unfortunately had to do (Angel, 2017). By

comparison, the HTML file provided with our library is nearly empty, containing only

a couple commands to place panels of our content anywhere. The remainder is left for

the student to fill in, and no fixed layout or lengthy content is required.

Lastly, we take increased advantage of the exceptions featured in JavaScript by using

them to display messages on the page rather than in the console as Angel does. We

wrap all user code routines in “try/catch” blocks. By catching exceptions, the mes-

sages we can display are more informative than the default failure mode of graphics

applications—the dreaded blank screen.

4. Fully Object-Oriented (Infix Notation for Math)

In the past, Angel’s libraries were object-oriented, with classes for vector and matrix

types. These defined helpful overloaded math operators, which allowed the use of

familiar algebraic syntax like “u + v” and “u - v” in long math expressions. Unfor-

tunately, in the switch to JavaScript, Angel adopted a style that is more common to

JavaScript tutorials. These tutorials (such as the Mozilla Web Docs (chrisdavidmills

and other contributors, 2018)) typically avoid discussing Object-Oriented constructs
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because of how JavaScript handles them in a conceptually difficult way for audiences

with a C++ background, who must first become familiar with JavaScript concepts

such as prototypes, closures, and execution contexts. Instead, they promote source

code where functions exist as a laundry list in global scope, without classes to keep

them organized.

Without classes or overloaded operators, Angel’s library painfully uses prefix notation

for all math operations, such as mult( a, b ) for two matrices or plus( a, b ) for

two vectors. Longer expressions made of these functions are no longer intuitively math-

like, and worse, result in progressively deeper nested parenthesis in long expressions,

since both operands in a pair are nested. Compare the following two code snippets

that multiply four matrices, using prefix and infix, respectively:

mult( M, mult( N, mult( O, mult( P ) ) ) )

M.times( N ).times( O ).times( P )

Notice in the first how the reader is forced mentally to keep track of deeper parenthesis

nesting levels and then parse four closing parenthesis at once.

We avoid prefix notation because we utilize classes in JavaScript. Only newer JavaScript

tutorials (Sengstacke, 2016; Mott, 2018) mention the “class” keyword brought by the

release of es6 in 2015, but it dramatically simplified the language’s syntax for object-

oriented code. While possible before, going object-oriented no longer requires an inti-

mate understanding of advanced language features such as prototypes. For our need

to express math operations, operator overloading itself has never been permitted in

JavaScript, but the ability to use object-oriented styles for vector and matrix types

provides a workaround; we can achieve infix notation using member functions. A vec-

tor object has class methods such as “plus” and “dot” that it can perform upon another

vector. The calling vector operand is not nested, and the operator goes between, which

creates far more readable math expressions that are easier to paraphrase in terms of

math sentences.

Being object-oriented also helps students who attempt to read and familiarize them-

selves with tiny-graphics.js. All the code is contained inside fourteen classes (seventeen
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if you count aliases), and there is no stray code outside of these. Each class can be

read sequentially by clicking the code navigator that each demo automatically gener-

ates and comes with. Students can be confident that they have read all the code that is

affecting their program and that there is nothing hidden that requires demystification

and/or that may cause problems later.

5. Text Rendering

The ability to render text onto the canvas and embed it in the 3D world onto objects has

been conspicuously absent in Angel’s library ever since the move to OpenGL 2.0, with

programmable shaders deprecating the built-in functions for rasterizing text. Drawing

text is non-trivial in WebGL because there are no built-in drawing functions at all,

aside from those for drawing shapes made of points, line segments, or triangles. The

additional examples we provide for our library in Section 3.2.3.17 bring text rendering

capability back for modern graphics cards.

6. Improved Shape Drawing Functionality

Any graphics program’s primary job is to be good at drawing shapes. Prior to the avail-

ability of modern graphics cards with fully custom shapes and programmable shading

algorithms, OpenGL applications normally used plugins, such as GLUT, with pre-

made routines for drawing some built in primitive shapes, such as cubes and cylinders.

GLUT has long disappeared in favor of the programmable graphics cards, but to this

day many tutorials have not adapted well to the absence of its shape drawing func-

tions. Angel’s entire WebGL textbook offers helper functions for drawing only a cube,

a (subdivision) sphere, and the Utah teapot. Although many hints are given (such as

a chapter on spline patches), the various remaining shapes are left as an exercise to the

reader. Additional code for a cone and cylinder were found in an adaptation made for

UCLA’s graphics class when the author began as a teaching assistant; this shows that

these simple primitives were easy enough to code from scratch and insert into buffers,

but any more unusual shape proved too complex for the paradigms found in a beginner

tutorial such as Angel’s code.

18



When configuring shapes, Angel’s library is once again held back by its demos’ adher-

ence to C++ styles even in JavaScript, ignoring the language’s capabilities in functional

programming. This includes JavaScript’s anonymous functions, which we exploit to

create a powerful new way to automatically build shapes as sets of coordinate points.

Our method allows extra functions to be passed into a new shape’s declaration, which

provide deeper descriptions of what to do during the shape generation process.

These anonymous functions are fully customizable code blocks, which are more flexible

than passing simple flags to direct the shape modelling process. Anonymous functions

exist for one-time usage, declared and defined in-line within expressions. Furthermore,

one of the new JavaScript capabilities since 2015 is the arrow function, which is the

same thing but more concise—arrow definitions provide access to the surrounding

object’s data fields, and the surrounding function’s local temporaries, without needing

to type out parameters. With these, very few characters need to be typed in order

to pause mid-expression and declare a useful function. Passing these tiny but highly

functional units as arguments into our main shape generator function greatly extends

its flexibility.

In Section 3.2.3.8 we discuss how this programming practice helped us to make a better

Shapes demo on top of tiny-graphics.js. With the help of arrow functions, our demo

allows arbitrary operations—matrix transforms or otherwise—to be applied during the

shape generation process to generate one point from another. The example we use is

a triangulated sheet, which the programmer may deform into a more general surface

patch. The sheet’s points are arranged in rows and columns, and a tessellation of

triangles connects these points by generating a certain predictable pattern of indices.

The class produces a deformed grid by executing user-defined steps to reach the next

row or column, defined by two anonymous-function callbacks supplied from outside.

Helper classes of only a couple pages of code allow our library to generate an infinite

variety of arbitrary surface patches, surfaces of revolution, and other shapes. This

allows not only for the traditional shapes such as spheres, domes, cones, polygons and

other surfaces of revolution to be formed, but also any sort of surface patch. In our
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(a) Phong shaded to show the composition. (b) Color coded to distinguish the axes.

Figure 2.1: The axis arrows compound shape, defined in only 17 lines of JavaScript. It re-
uses many simpler shapes (including cylinders and cones) that were already defined. Copies
of the vertex array data of those shapes are contiguously listed inside the axis’s own vertex
array. Since we provide helper functions that perform this copy, unique compound shapes
require little code to specify.

examples these include a sinusoidal egg crate surface, a spiral seashell, and much more

general surface patches such as the one shown in Figure 3.19.

Regarding shapes, tiny-graphics.js has more unique built-in features. Compared to

Angel’s library, we allow shapes to be managed in a more performance-friendly way,

by providing operators to combine them. Our library’s JavaScript class Shape neatly

provides the ability to compound multiple defined shapes into a single combined vertex

array. We thus eliminate much duplicated code students would normally need to

provide when trying to pack complex multi-part shapes into a single performance-

friendly buffer. A student can perform a single function call in any Shape definition to

insert other defined shapes into the current array, at custom affine transform offsets.

Positions and normal vectors are automatically adjusted by the affine transform during

insertion.

Figure 2.1 shows an example of a complex drawing of coordinate axes. It was built by

compounding several other simpler shapes.

We additionally provide a short routine that automatically converts any user-made

20



Figure 2.2: The middle shape, a torus with many triangles, has undergone the automatic
flat shading capability of our class Shape.

Shape class into a flat shaded version by computing new normal vectors and automati-

cally eliminating inter-triangle sharing of vertices so that data (such as texture images)

can abruptly vary over triangle edges. Figure 2.2 presents an example of the visual

change before and after this routine is called on a Shape that has a large vertex array.

2.2.3 Details of tiny-graphics.js

The file tiny-graphics.js contains JavaScript code organized into classes—just over a dozen

of them, each averaging about a page of source code. Their relationships are as follows.

Two classes Vec and Mat introduce vector and matrix algebra lacking in JavaScript. These

are standalone and could generally benefit all JavaScript programs. The next class Mat4

builds upon the matrix algebra functionality a little more by adding functions specialized

for the sorts of fixed-size 4 × 4 matrices common in computer graphics, mirroring Angel’s

examples. Together, Vec, Mat, and Mat4 serve to completely replace Angel’s core helper code

library for graphics math, with the improvements discussed in Items 2, 3, and 4 listed in the

previous section.

The next two classes in our file, Keyboard_Manager and Code_Manager, also stand on

their own and each may be greatly useful to JavaScript programs in general. Each replicates
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Figure 2.3: A code editor widget made of the Code Manager class. Clickable links are
automatically embedded wherever the names of other JavaScript classes appear. This allows
the visitor to navigate tiny-graphics.js as well as the remainder of any program that uses it.

the functionality of some popular code library available on the web.

The Keyboard_Manager class was loosely based on the “shortcut.js” library by Binny V

A (Abraham, 2012), strictly increasing its capabilities, but with far fewer code instructions

(by leveraging newer JavaScript features). Keyboard_Manager adds keyboard interactions

and shortcuts to any website, which is especially useful for interactive editors and games. It

solves the nontrivial problem of tracking combinations of keys the user holds down, including

modifier keys, function keys, arrows, and symbols. Designers of interactive applications often

need to bind increasingly unusual keys and key combinations to their program so that the

end user can distinguish between them (and the built-in browser shortcuts that work on

every page) without confusion.

The Code_Manager class replaces a small library called “js-tokens” by Lydell (2016),

which mostly defines a very complex regular expression Lydell built for parsing the JavaScript

language. We re-use his expression to give our class the ability to break a string of JavaScript

code down into tokens categorized according to whether they are comments, strings, numbers,

spaces, identifier names, or other allowed language constructs. Our class gives JavaScript

programs the ability to present JavaScript code effectively in interactive editors. We use it

inside editors shown in our demos to highlight the displayed code informatively with colors,

and to replace class names with links to the definition of that class. This allows the users

of our editor to navigate through and understand the very classes we are describing in this
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section, plus all other classes outside of tiny-graphics.js used by the demo they are viewing.

The next set of three classes contain nearly all the JavaScript program’s WebGL com-

mands. These are called Vertex_Buffer, Shader, and Texture. They provide a code inter-

face for communicating data over to the graphics card to prepare a WebGL program. Each

encapsulates the sorts of data its name suggests, which in a graphics program are defined as

follows:

• Every shape definition needs one vertex buffer. A vertex buffer is a block of data

divided into equal sized chunks, each mapping arbitrary data onto one point (of the

shape). This data is numeric, such as the point’s position along one of the axes, or

perhaps the point’s color intensity in one of the three color components.

• A shader is a computer program written for the GPU to execute every time it performs

a shape drawing operation. In WebGL, there are two possible operations (computing

a vertex or computing a fragment). The vertex operation decides where to draw points

in their final on-screen positions, and the fragment operation decides how to color them

in or paint the regions between them. Figure 2.4 summarizes shaders.

• A texture is field of color values, like an image file, to be consulted during a fragment

operation to project an image onto a 3D shape’s exterior.

A fourth class in our file, Shape, extends Vertex_Buffer’s functionality beyond just

holding data to add some geometry tools, since the data being defined is usually geometric

in nature (a single shape). In practice, normally Shape is used instead of Vertex_Buffer.

These three base types, Vertex_Buffer, Shader, and Texture, can boost a standard

JavaScript program significantly, although they are not completely standalone—

Vertex_Buffer and Shader are interdependent, and depend internally on another class in

our file called Graphics_Addresses made just for them. They also require the user to

subclass them in order to fill in desired behavior.

The pieces of code for these base types are modular enough that they can be understood

in isolation. Rather than merely hiding the WebGL calls students need to learn to make
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Figure 2.4: A summary of any graphics program’s flow as it forks into many programs (called
shaders) that run in the GPU when drawing each shape.

behind extra layers, these small classes in a thin layer show the correct grouping and ordering

of WebGL calls, factoring out the logic that stays the same every time. This logic was worked

out with experience, making sure that the exposed functions are appropriate for a variety of

use cases when building our own demos with it.

Two more classes, Scene_Component and Webgl_Manager, go hand in hand. One

Webgl_Manager is instantiated for each 2D HTML drawing canvas that appears on the page,

and one or more Scene_Components are assigned to it to define what to draw on the canvas.

Getting WebGL to start up initially means the Webgl_Manager must instantiate an

HTML5 Canvas object, open up a WebGL context on it, and organize everything related to

that 3D context. Webgl_Manager organizes the event loop of the 3D drawing and interaction

area, and it stores what scene(s) to draw, what shapes it is made of, and which textures

and shader programs need to referenced—in other words, it stores instances of the aforemen-

tioned Vertex_Buffer, Shader, and Texture classes. If their data has not yet been sent to

the GPU, it does so, including compiling shaders, and then collects the correct pointers to

24



them in the GPU matched to pointers in RAM.

Unlike how most “first WebGL program” tutorials are organized, this pair of classes shows

the proper way to organize a WebGL program that contains multiple independent canvases

and multiple possible shaders and textures that all co-exist interchangeably without stepping

on one another. Historically, this is generally not something beginning WebGL students

have managed to achieve in UCLA’s introductory computer graphics course prior to the

introduction of our library. This is because WebGL constructs such as shaders, textures,

and shapes can require dozens of lines of code to toggle on and off; there is no built-in way

in WebGL to concisely describe a scene that switches between many of these things.

Finally, tiny-graphics.js ends with the definition of our “Widget” classes, which will be

explained in Section 3.2. These determine the layout of the web page the visitor sees when

launching the JavaScript program. They can be used by the programmer to embed custom

interactive panel elements (widgets) into the page on which they are working that also holds

the WebGL animation. These panels include the canvases that show 3D scenes, text, and

buttons. The contents of these classes are not crucial to understanding WebGL and can

be ignored by a beginner. They are nonetheless beneficial to beginners who decide to use

the coding interface of our programming website, which showcases demos made using the

tiny-graphics.js library. The purpose, functionality, and specific page layout of this website

is the subject of Section 3.2.

2.2.4 Using tiny-graphics.js

To use tiny-graphics.js, a JavaScript program needs to provide, at minimum, a subclass of

Shape, a subclass of Shader, and a subclass of Scene_Component. That is all any program

must provide. Rather than implementing all three of these from scratch, a user will typically

start with three pre-made ones, and then customize one or more of them. Particularly, all

new demos involve making a custom Scene_Component subclass, even a simple one.

Here are the specific steps a student follows: They decide on a name for their

Scene_Component and register that name in their .html web page file so that their ob-
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ject gets automatically instantiated. In a blank file, they begin coding a new subclass

of Scene_Component, naming it that; they can re-use an example and make adjustments

later. Then, with no more than a couple lines of code each, they give their subclass a

constructor() method that lists the class variables, the camera matrix, and the shapes

that will be used. They give their class another method called display() into which the

student need only start typing familiar words such as “translation”, “rotation”, and “times”

to manipulate a matrix variable into place. The actual drawing is accomplished by one-line

calls to the draw() functions of each shape. No other boilerplate code is necessary to distract

students from this main thought process—one of “manipulate matrix, draw, repeat.”

2.2.4.1 Comparison to Using angel.js

Although Angel’s library is small and easy to understand, it is comparatively much easier

for students using tiny-graphics.js to see what sort of code to type in order to see immediate

drawing effects from any JavaScript file that imports tiny-graphics.js but is otherwise blank.

In Angel’s library it is harder to start adding code with predictable drawing effects, due to

distracting code not related to the concepts from their course lecture.

To begin with Angel’s code, a student must include all of Angel’s files plus their own

blank .js file, and then supply a “render” function that must call itself in an infinite loop using

the browser’s event queue. Because of the inflexibility of this design—a single function that

infinitely repeats itself—there is no analogy to the object-oriented tiny-graphics.js system,

where multiple scenes can be added, removed, and rendered with reliable timing.

Inside Angel’s render(), no matter what scene a student draws, a lot of repetitive boil-

erplate code will be necessary. Computing different matrix products as render() progresses

through each shape is the easy part, due to Angel’s helpful matrix library, MV.js. Un-

fortunately, however, between those lines of familiar math code, students must add much

more. Drawing each individual shape involves a complex selection of active and inactive

GPU buffers, sending messages to the GPU to turn those buffers on and off to select one of

their list of shapes (of which Angel only demonstrates a couple), managing pointers to GPU
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variables to move the matrix and shape’s color over, a lot of boilerplate code to turn on and

load a texture, calling a special file to initialize shaders that clutter the user’s HTML file

and, lastly, calling the low-level WebGL function drawElements (or drawArrays) to get a

cube or sphere or custom shape to appear.

This is to say nothing of the long setup commands students must add before calling their

render function to send their shapes, shaders, and textures over to the GPU in the first

place, which in Angel’s demos does not at all factor out the most reusable logic in the way

our Webgl_Manager class does.

In general, for all the reasons mentioned earlier in this chapter, the experience of using

our library is dramatically better for students compared to the inconvenience of relatively

unstructured WebGL calls that themselves do not teach them much of relevance. When

using tiny-graphics.js, the students observe how to design a flexible WebGL program that

requires the least amount of effort to add shapes, textures, shaders, and scenes. They see a

sampling of the most up-to-date JavaScript idioms used effectively in all the ways mentioned

thus far.
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CHAPTER 3

The Encyclopedia of Code

3.1 Motivation and Background

Characteristically, Introductory Computer Graphics is one of the most cross-disciplinary

courses in an undergraduate Computer Science curriculum. Ambitious university students

who do graphics course projects often wind up exploring math, physics, art, anatomy, and

far more, depending on what they are modeling, animating, and rendering. At UCLA we

observe students enrolling in CS 174A: Introduction to Computer Graphics from a similarly

wide range of majors, likely out of an interest for its interdisciplinary applications.

By having a wider subject scope, a course in Computer Graphics stands out to students

compared to those they previously completed in the same department. At UCLA for in-

stance, the first Computer Science course CS 31: Introduction to Computer Science, has a

clear beginning and end—it teaches a freshman how to code in C++ assuming zero back-

ground and, then, upon reaching the topics of object-oriented programming, algorithms,

and data structures, it is time for the course to end, and those topics are saved for the

subsequent course, CS 32. While graphics courses also have their usual progression through

self-contained subjects, they have a far more blurry endpoint due to the course topic’s inex-

tricable relation to the graphics industry.

The final week(s) of a typical introductory graphics course cover the diverse special effects

topics and applications explored by the industry. These industry techniques normally appear

in the computer graphics research literature, making each of them fair game as “extra credit”

topics students may add to a term project. Graphics courses end in a way that encourages

students to branch off into different areas of the graphics research field, such as computer
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animation, which is covered in depth in UCLA’s course CS 174C: Computer Animation.

These circumstances at UCLA are what gave rise to this project. The Encyclopedia

of Code began as a set of supplemental class materials about various graphics applications

and techniques. This extra material for CS 174A: Introduction to Computer Graphics took

the form of demos that ran within websites. Each separate web page of the supplemental

material demonstrated an “advanced topic” in Computer Graphics that a student could

integrate for extra credit.

Over time, our “advanced topics” demos covering common industry tricks (such as colli-

sion detection) were augmented by additional educational articles on graphics fundamentals

(such as matrix transformations), and the “encyclopedia” began to outgrow its original pur-

pose. Parts of the 174A course itself were automated into educational games that were

playable on the website, helping students visualize concepts from class, such as vector math,

frustums, change of bases, and the most difficult concept from the exams—matrix ordering

in long chains. This marked a transition of the resource into resembling the material of an

online course.

3.1.1 Online Courses

Angel’s recent online WebGL course, Interactive Computer Graphics with WebGL, presented

on Coursera (Angel, 2017), is an extension of the published curriculum from Angel that our

project sought to improve. As a Massive Open Online Course (MOOC), it showed signs

of high global demand for the material; 14,500 students signaled interest, 5,500 began the

course material, 2,500 remained through the first week, and 282 completed it.

WebGL is the technology that made a graphics course of this scale feasible, as teachers

evaluated participants’ finished WebGL applications using Courseras peer-grading method-

ology. Without WebGL and its ability to reliably run the same way in any browser, the

different operating systems and environment setups of the individuals grading would have

confounded the results. Online course platforms usually do try to deal with students hav-

ing different hardware and runtime environments; Udacity courses have a built in Python
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interpreter, and EdX courses have a built in MATLAB interpreter (Zubrycki and Granosik,

2017).

Bourdin (2016) evaluated Computer Graphics MOOCs in general by supplying their own

students. They found a number of pitfalls, including poor availability—a total of only three

MOOCs exist for Computer Graphics, found on the platforms Udacity, Coursera, and EdX.

Their study also found misleading estimates of workloads on course descriptions, and a lack of

formal unbiased evaluation of course outcome. Worst of all was an extremely low completion

rate, while noting that it “has been known for ages, since Socrates, that one motivation

for studying comes with the desire to please the teacher. When the teacher is not there,

this motivation fails.” They conclude that MOOCs inherently have serious problems, and

call upon teachers to build a MOOC “as a complement” to graphics courses instead of as a

complete replacement.

We believe The Encyclopedia of Code was designed just as they recommend, having based

it on supplemental material after all—demos from traditional University courses. Our design

also recaptures the Socratic desire of students to impress the teacher, since our visitors can

submit their finished work to be seen by others, or even try to impress the moderators into

listing the demo on the main page. We have a formal system in progress for escalating a

submitted demo through the ranks towards being publicly listed.

3.1.1.1 Online Encyclopedias

No discussion of the nature of online courses would be complete without bringing up the

role Wikipedia has on modern higher education. Since our work directly builds upon the

concept, being an alternative online encyclopedia, Wikipedia will be discussed in Chapter 5.

Benefits for Teachers Anecdotally, the creation of supplemental material has had pos-

itive effects on the quality of our teaching. Some benefits of putting supplemental lessons

online are obvious; it makes the teacher’s job easier (or automates it entirely), and makes

the material available to more people. But consider another benefit: It generally provides
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an opportunity to finalize the course content in optimally presentable, written form, with

better-worded explanations of even the minor topics. This has advantages; any experienced

instructor might otherwise go off their memory of past lessons, in “autopilot”. They might

recall a great many examples that worked well in the past and wish to rapidly show them

all—however minor or obscure—yet find when presenting them that they no longer succeed

without the same execution. Memory is fallible. Finalized content comes with guarantees.

By publishing and finalizing their material, teachers are able to use what should perhaps

be called “errorless teaching”. This is meant as an analogue to so-called “errorless learning”

techniques, such as when music students, for instance, slow down their practice enough to

preclude the possibility of errors. Here we mean that the curriculum’s pace of expansion,

rather than the student’s pace of action, should be sufficiently slow that there is zero risk

of instructor errors. Errors in curriculum or presentation could be things like awkward

transitions or demos that do not work the way the teacher was expecting. In our experience,

when these minor stumbling blocks are encountered they cause a shift in student confidence

with the material. It bleeds over into the next topic, obscures it too, and accumulates

catastrophically.

It is better to prevent errors in the first place by presenting only that which is already

perfect—a finalized, published online lesson being the ideal. Our work adds this to a graphics

teacher’s tool set for guiding both the teacher and student as the material is presented. The

benefits are only further compounded by our taking the opportunity to integrate interactive

games into our online course. These provide the student with specific yet dynamic visual-

izations, and can provide answers to their specific questions better than a static blackboard

drawing made in haste.

3.1.2 Literate Programming

Donald Knuth did crucial early work on rigorous analysis of programming, and has formalized

a large number of programming behaviors that remain relevant today. One of his valuable

contributions was the interpretation of code as literature for human consumption. He coined
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“Literate Programming” to mean the interleaving of a program’s full source code with a

textual article explaining the code’s intentions and design (Knuth, 1984). A crucial aspect

of literate programs is that the document can be compiled into a complete, runnable program.

Another crucial aspect is that the source code is stored in the document and is not necessarily

in its proper order—the reader sees it in the most instructive arrangement, and a compiler

re-orders it for consumption by a machine.

Our online project uses something like Literate Programming by making articles and

demos the same thing. Rather than our article being compiled into the demo program, the

program both writes the article and produces the 3D demo. We often use such programs

to build up our demos in parts, and interleave the article text that explains the building of

each part. In those cases we include the 3D drawing canvases that show each intermediate

result, as well as the code windows that show the source code so far. The tiny-graphics.js

interface provides all of these parts as embeddable page widgets for mixture in any order.

The following section describes how.

3.1.2.1 Active Textbooks

To contribute to the world of education in topics of math and Computer Science, we introduce

a novel form of online textbooks called “Active Textbooks”. These virtual textbooks include

illustrative and interactive demos. These appear in place of what would otherwise be static

diagrams in a normal textbook’s discussion of graphics or math concepts.

Our website contains examples of these Active Textbooks, whether they are visual demon-

strations about math concepts or tutorials about how to build a progression of increasingly

complex shape buffers, increasingly complex shading formulas, or more. Each interactive

illustration area appears in one of our 3D WebGL canvases. They all update according to

the visitor’s interactions with the web page so far, where the visitor can scroll from one to

the next in an exploration of the different concepts in the material being illustrated.

Along with text, our interactive areas are sometimes interspersed with code as well.

Whenever the topic is programming, our lessons include the code of the illustrative demo
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itself. The fact that the code building the article also builds the demos makes any Active

Textbooks about programming a very similar analogue to Literate Programming, while also

augmented by the use of 3D visuals. Code editors placed in between the demos allow the

visitor to interact with their code directly. These contain hyperlinks to navigate the code

better, demonstrating another feature from Literate Programming.

We provide a few examples in Section 3.2 as proofs of concept. These are not just Literate

Programming articles that happen to be about 3D computer graphics, but are reinvented by

graphics into an entirely new form of interactive visual textbook.

We will use the phrase “Active Textbooks” for online textbooks with this particular form

of extra automation. This phrase has some history. Google search reveals patents dating as

far back as 1985 for active electronic textbooks (Malvino and Malvino, 1989). There is a very

early precedent for animations in textbooks, including the 1993 CD-based textbook by Ross

(1995), which was delivered with educational animations for asymptotic notation, recursion,

simple data structures, sorting algorithms and their analysis, hashing, binary trees, red-

black trees, minimum spanning trees, single-source shortest paths, Fibonacci heaps, Huffman

encoding, dynamic programming, matrix multiplication, matrix inverse, convex hull, genetic

algorithms, neural networks, and a few others.

One company currently markets a product called active textbooks at

https://activetextbook.com, where they host a cloud service for textbook PDF files that

have been annotated with media or simple UI widgets. But their solution does not go nearly

as far as ours, which replaces the bulk of text and image content outright with WebGL games

that walk through the same concepts.

3.2 Design and Benefits of the Encyclopedia of Code

3.2.1 Organization of the Online Resources

Visitors to the Encyclopedia of Code website are greeted with a number of tutorials and

demo programs. With transparency and open-source code, we make it easier to understand
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Figure 3.1: Upon visiting any article’s URL, the visitor will see these features from top to
bottom by default.
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how the programs work. Once visitors are comfortable, they can write new programs directly

into the interface and instantly post them to be listed online in a standardized way. Their

contributed programs can be discovered by anyone and browsed within our larger educational

encyclopedia. Their submitted programs also become available for anyone to edit and remix.

All demos on the encyclopedia are built using small pieces of code built on top of our tiny-

graphics.js library. Unless otherwise mentioned, all demos (as well as their enclosing human-

readable web article) are expressed in code as single small subclasses inheriting from our

Scene_Component module defined in tiny-graphics.js. Most of our current scene definitions

are about a page of source code, but some are a few pages, such as the more content-heavy

“Active Textbook” articles that draw more than one demo.

The website’s code and our tiny-graphics.js are both designed to be cross-browser and

cross-platform. Special measures were taken to ensure that its 3D demos also show up

properly on iPhone and Android devices. This increases the inclusivity and accessibility of

our educational tutorials. It also opens up the possibility of collaborative coding using its

editor while on the go, so developers are not tied to their desk.

The helpful tiny-graphics.js file is shared by all pages on the encyclopedia and can be

seen when viewing the source code for a demo. Also seen there are two more files: One

called main-scene.js containing only a single class definition that isolates only the code about

the demo presently being viewed, and one last file called dependencies.js containing all the

remaining code required by the demo that is not universal enough to go into tiny-graphics.js.

Our server does live dependency injection to provide every article in the encyclopedia to

which someone navigates with a different custom copy of dependencies.js, containing only

the minimal code that the viewed demo needs. These three files are sufficient to make each

of the articles displayed on the website work.

Following a brief introduction, the current set of articles will be described. The current

articles are of high quality, albeit few in number, and so far all are written by the same

author. The project’s goal is to grow quickly with enough crowd-sourced content to justify

the word “encyclopedia” in its name.
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3.2.1.1 Appearance of the Website

The encyclopedia website is shown in Figure 3.1. The encyclopedia can be accessed through

its main page (currently located at https://encyclopediaofcode.glitch.me), which con-

tains a portal to the articles, or it can be accessed by direct links to individual articles.

3.2.1.2 Definition: “Scene Component” / “Article” / “Demo”

These terms are interchangeable. Because we use something akin to Knuth’s Literate Pro-

gramming, our articles and demo programs are one and the same. Our articles are each

named after the source code that writes them (always a single JavaScript class). This is why

all articles have underscores in their names—they are the actual names of the code class that

creates both the article and the demo. To be precise, all demos (and their enclosing articles)

are built by instances of Scene_Component from tiny-graphics.js, particularly subclasses of

Scene_Component.

3.2.1.3 Definition: “Widget”

Widgets are HTML panels containing some content from The Encyclopedia of Code, em-

beddable onto any website. Any of our JavaScript classes that generates one of these is a

widget class.

3.2.1.4 Definition: “Text Widget”

When an instance of Scene_Component is viewed through a text widget, the text for an

article is extracted from it and displayed. To use terminology from Literate Programming,

this “weaves” the Scene_Component.

3.2.1.5 Definition: “Canvas Widget”

When an instance of Scene_Component is viewed through a canvas widget, a different set

of its functions are called to interpret it as a 3D scene to build. To use terminology from
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Literate Programming, this “tangles” the Scene_Component. Canvas widgets provide the

scene with interactive panels of colorful buttons, made from standard web buttons, that

provide the visitor control over the 3D animation.

3.2.1.6 Definition: “Live String”

The aforementioned panels of controls in a Canvas_Widget also contain continuously-updating

text (live strings) in order to monitor the Scene_Components attached to the 3D canvas. The

page’s event loop will constantly update all HTML elements made this way.

3.2.1.7 Definition: “Code Widget”

Code widgets are HTML panels that provide a special navigator for exploring all the source

code available to the running program that the visitor is observing on our website. Our

unique code viewer expresses the dependencies between code classes as hyperlinks inserted

into the source code wherever one class mentions another.

The user may use the code widget panel to type edits into any currently selected JavaScript

class; when they save their edit by pressing the “Run with Changes” button, the program

replaces its existing class definition with whatever the user typed. The Canvas_Widget on

the page immediately resets and re-draws itself, incorporating the user’s modification into

the 3D scene.

Code widgets allow anyone to save and host new articles. By changing the code in the

provided code widget interface, visitors can build several of their own combined programs

and articles, each of which is given a permanent sub-address on our website. They can use

this to host their own animations. Once assigned a URL, their custom demo can be modified

or built upon whenever they like using an authentication system that we designed.

In this way crowd-sourced articles can accumulate on our server. When functioning as a

game engine, all code submitted to our platform collaboratively supports a single integrated

virtual world, due to our server’s shared code environment, single namespace, and code

injection. When functioning as an encyclopedia, submitted articles can expand the tutorial

37



section of our website for the reference of students at universities.

3.2.1.8 Features of All the Articles

Demos have the ability to be displayed simultaneously with others, overlapping in the

3D space, by stringing together their names in the URL. For example, consider two ar-

ticles hosted on our encyclopedia titled “Billiards” and “Star”, which respectively con-

tain demos that show how to code a 3D billiards game and how to code a miscellaneous

special effect (resembling an exploding star). They are located at the URLs http://

encyclopediaofcode.glitch.me/Billiards and http://encyclopediaofcode.glitch.me/

Star. To view both their scenes together in the same 3D canvas, where the exploding star

effect will actually be placed on top of the billiards table, the user can simply visit the

URL http://encyclopediaofcode.glitch.me/Billiards&Star, which will be automati-

cally parsed as a request for both scenes to appear simultaneously.

Recall that each of our web articles is named after the Scene_Component code class that

builds it. These JavaScript class names are what are really being appended together in the

URL. The server will automatically inject the combined set of source code dependencies of all

Scene_Components named together in the URL into the result the client (visitor) sees. The

first Scene_Component that is named assumes control of the page’s Text_Widget, but all of

them appear in the page’s Canvas_Widget together. In some cases, this merely results in the

drawing of two 3D scenes together. However, in the case of “Secondary Scene Components”,

one demo might exist solely as an importable tool that many other demos can use by stacking

functionality.

3.2.1.9 Definition: “Secondary Scene Components”

A category exists in our codebase of “scene components” that do not draw anything, but

instead provide the final scene with extra abilities. They can be imported either from another

scene’s source code or requested by the visitor when they append the name of that class onto

the end of another article’s URL, causing our server to stack both components into one scene.
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Each time one of these Secondary Scene Components is imported, they provide an extra tool

so that the user can, for instance:

• Change the scene’s appearance (such as by visualizing coordinate axes)

• Move objects or the camera (such as our Movement_Controls scene)

• Build or destroy a scene’s 3D objects with a modeling tool (the case of our

Scene_Graph_Tool)

• Read input (such as for user analytics, as in our Keyboard_Demo)

• Measure their scene by displaying measuring tools inside the same 3D space (example:

our Frustum_Tool from Section 3.2.2.4)

• Open files, extract data, or more.

The buttons of these extra tools, such as camera controls, must not clutter up the

web page’s elements haphazardly, since it already contains the buttons added by the main

Scene_Component being viewed. Our solution is to arrange buttons and alerts from individ-

ual scene components into separate panels organized per Scene_Component.

3.2.1.10 Definition: Smart Articles

The Smart Article concept works as follows: Certain articles on the encyclopedia compute

answers to some programming problem during the course of their demo’s execution, whenever

a visitor (call them Visitor A) loads their URL. Once the answer is calculated, the article

(call it the “sender” article) sends this final answer back to our server. Another article (call

it the “receiver”), when visited at its URL (by some Visitor B), can read back from our

server the answers that were computed by any sender article (such as during A’s visit). The

receiver uses that answer as a substitute for solving that same programming problem during

its execution, as if delegating the work to the sender article and saving Visitor B computation

time by offloading the work to Visitor A’s CPU, who may or may not still be browsing the
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Figure 3.2: A diagram of the flow of information when a Smart Article is read by another
article.

sender article. For this process to work, it merely requires any pair of people (or the same

person) on earth to navigate to both URLs.

The sender article is what we coin a “Smart Article”, an article with extra automation.

The name is appropriate because these articles are suitable in some respect for consumption

by a computer (the receiver article’s code) as readily as for consumption by the human

(Visitor A) who reads the textual and visual content of Article A when visiting.

Although simple, the concept has very powerful implications, allowing our executable

encyclopedia articles to solve bigger problems than their original scope, greater than the

sum of the group of articles involved, by delegating work. An example of grid computing,

the concept increases in power as more people visit the page, volunteering their CPU cy-

cles. Some potential applications might require both articles to be open concurrently for

continuous communication; others do not.

In our current examples online and under development, the relationship between “sender”

and “receiver” is often flexible. Two articles might alternate in their roles as “sender” and

“receiver”. Perhaps both read and write to a shared scratchpad on the server (a world state),

or three or more articles could communicate in this fashion. The “sender” and “receiver” also
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do not have to be different articles; they could be two distinct instances of the same article

open on different visitors’ computers where the combined resources of both visitors’ CPUs

contribute to the global result. That article likely focuses on a single programming problem,

but can now solve a problem that is twice as large. This is due to the final result being able

to draw finished calculations from both visitors’ concurrent executions of the article code.

Two working examples of Smart Articles (our Visual Billiards and

Ray Tracer demos) already exist on our website as proofs of concept designed to illustrate

the potential of the concept. We describe them below in our listing of encyclopedia articles.

3.2.2 Featured Noteworthy Articles

3.2.2.1 Bases Game

The Bases_Game article is a training tool for students to build intuition about matrix multi-

plication and change of bases. In this example of Digital Game Based Learning, students use

matrix operations to pursue a moving target and, while doing so, learn to get their matrix

order right when placing shapes. Each button they press in the game strings another matrix

term onto the left or right side of a product. As they do so, their current matrix basis and

the target basis are both visualized as a color-coded drawing of axis arrows, which smoothly

moves to the new place with each button press. Students are challenged to reach each target

using only one action or matrix operation each. The product matrix is shown numerically

and the resulting coordinate frame is drawn. Students can use the game to visually test

their hypotheses, or as an experimental testbed to plan out matrix operations in a graphics

program.

One major course topic for graphics students to understand is that there are significant

differences when they pre-multiply rather than post-multiply—i.e., when they introduce new

matrix terms on the side farthest away from where they are used to, farthest in the equation

from the 3D points upon which their product will be used, now affecting those points in

the most indirect way. It is notoriously difficult for students to master the implications of

left-to-right order in matrix formulas, but teaching that is where this game excels.
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Figure 3.3: The colorful buttons control the bases game. The game gives 3D feedback and
also shows the matrix product mathematically in two different ways.

From experience, this game’s material replaces one or two class meetings of an introduc-

tory graphics course. Particularly, in the UCLA graphics course CS 174A, matrix order was

the topic of the hardest long-form questions on both the midterm and final exams. Teach-

ing assistants gave students dozens of examples like those exam questions, especially during

review sections as the exams drew close. The examples that the lecturer delivered generated

questions that could not be answered effectively without cluttering up the chalkboard. These

hand-drawn examples could not measure up to the guaranteed correctness, interactivity, re-

peatability, and smoothly animated feedback the students get from the virtual educational

toy featured in the Bases_Game article.
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Our Computer Graphics students come from a variety of backgrounds including art and

film, and may not have a math background. Our game helps these students to grasp matrix

concepts visually. As they use the interface to manipulate matrices, the graphics update,

making the student immediately aware of the mathematical consequences of their actions.

The “levels” of the Bases Game are modeled after particular past exam questions where

certain “gotchas” of matrix order must be understood to answer correctly. Some of these

lessons are more intuitive when delivered visually. One such lesson involves noticing that

the lengths of axes of a local coordinate frame can change even without applying a new

scale transform. Instead, applying a new rotation transform can counter-intuitively be what

triggers such a re-scaling effect, provided there were prior scale matrices to the left in the

chain.

A number of extra user-interface features are built into Bases_Game to enhance learning,

such as the ability to use mouse clicks to rearrange or delete the terms of the existing

product, and the re-sizing and truncation of text to keep the summary of the whole product

in view at once. Other user-interface features actually introduce new topics, such an option

that allows the student to follow the reference frame of their current basis by “locking” the

camera to it while it moves. This allows them to explore the resulting inverted effects of their

buttons on the shapes drawn, and the rules of matrix inverses of products, which are crucial

to understanding the behavior of cameras in graphics. This feature allows the student to

visit another popular exam topic: How drawing a basis is conceptually inverted compared

to expressing points in a basis, requiring the opposite actions in the opposite order (just like

when inverting a matrix product).

For students who are brand new to the concept of why matrix order matters, a supple-

mental document is provided that goes over how to combine matrices in practice, and the

implications of writing code that builds matrix products starting from the left versus the

right. Another document breaks down the camera matrix and other special parts of the final

product used by graphics cards to get shapes to draw on-screen.
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Figure 3.4: The main illustration panel of the Dot Products article shows the angle of a
cannon’s vector while it spins around due to user interactions. The rest of the article uses
the dot product math operation to calculate this angle.

3.2.2.2 Dot Products

This example is our main proof-of-concept of an Active Textbook. The Dot_Products article

resembles a single page of a typical math textbook, where the focus is on using illustrations

to introduce dot products to a beginner. Dot products are used throughout 3D graphics to

compare angles of vectors and to compute matrix products.

Since this is an Active Textbook, what appear between the text sections are not mere

illustrations but interactive WebGL canvases. They show animated 3D scenes that por-

tray several mathematical rules about dot products. In a connected way, all these active

illustrations reflect the user’s interactions so far.

A visually appealing scene is drawn on the main canvas, showing a cannon that is aimed

by dragging the mouse. The angle of the cannon updates a vector plotted at the coordinate

origin, marked by a drawing of each axis. Releasing the mouse fires the cannon, triggering

an audio-visual experience as the cannonball strikes walls, bounces, falls, and rolls in the

box-shaped room. Angles are highlighted in the drawing based on the cannon’s vectors, and
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in other canvases on the document the dot product of these same vector values are used

to plot trigonometric functions, ultimately recovering the correct value of the cannon angle.

A different illustration on the page visualizes the numbers of vectors as they rearrange and

combine to calculate the dot product itself. The latter visualization is used in a companion

article Matrix_Multiplication which is linked as a followup to Dot_Products for visualiz-

ing the same concept on matrices. A matrix product comes from simply doing a row-column

dot product to compute each cell of the resulting matrix.

As the user adjusts the scene in one canvas, the other canvases update. The user will

recognize their own footprint as being in common across all illustrations, making it more

clear to them what control they have so they can better explore the scene. This article has

no emphasis on coding and no coding widgets are shown here. It is not as related to Knuth’s

Literate Programming as some of our other examples, as much as Knuth’s concept was the

inspiration for this interactive re-interpretation of a math textbook. The article could instead

serve someone in a high school level math class with no programming background just as well

as it could serve our own university students. This reflects the ambition of the Encyclopedia

of Code also to encompass the explaining of non-programming topics to a general audience.

3.2.2.3 Movement Demo

This is another Active Textbook example, demonstrating the Movement_Controls tool as

featured in Figure 3.5. This article introduces a “Secondary Scene Component”, a type

of demo that helps other demos by executing simultaneously and stacking additive func-

tionality. In this case, the added functionality is the ability to smoothly change the global

camera’s vantage point using keyboard and mouse controls. Besides the camera location,

Movement_Controls also provides code for smoothly changing the drawn location of objects

with user input—third person control as opposed to first person. As the visitor scrolls down

the Movement_Demo article, they are first taught about the workings of the first person con-

trols, and then a second canvas shows an “out of body” demo where the same controls work

in third person due to using the Movement_Controls class with a different settings flag (for
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inverted matrix operations).

Movement_Controls was created to fulfill student demand for flexible manual camera

controls in their 3D scenes. In the UCLA course CS 174A, most students historically created

their term project (a custom short film) while being unable to see their scene from multiple

vantage points in real time. Although they were required at least to hard-code a pre-made

“look at” camera matrix into their code, most stopped there—live interaction using key or

mouse controls was much harder and usually not done. Students who did try to implement

it each did so in different incompatible and verbose ways.

Prior to the existence of tiny-graphics.js, back when the course projects were still done

in C++, the instructors attempted to alleviate this by introducing a small camera matrix

library called “ArcBall” into the template code provided to students for the term project.

The ArcBall controls were mouse-only and were not capable of first person movement as

provided. They simply allowed the user to spin the scene around its origin on two intrinsic

axes via clicks and drags. Despite only adding that trivial functionality, the library filled

the student codebase with difficult quaternion math far beyond what was necessary for its

limited value added. It required importing six new files (of 653 lines of code, at 17.2KB)

plus several calls added to the student’s own file within their I/O callbacks.

Upon inheriting this code template from past UCLA instructors, we first replaced the

entire Arcball library with two lines of code, to little distinguishable effect on the application’s

controls. This quickly confirmed that Arcball was a poor solution for UCLA’s needs. The

two lines manipulated the camera matrix on two intrinsic axes based on mouse drag position,

pre-multiplying two new rotation matrices onto the camera’s stored inverse matrix.

Students primarily wanted to be able to explore their scenes in first person, getting close

to objects of interest from a desired angle. Code for first person controls (rotation and

translation of the camera) proved slightly more complex, necessitating Movement_Controls

as a distinct class.

Our final result for Movement_Controls first-person translation and rotation is accom-

plished with several button elements drawn on the page, which can either be held down
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Figure 3.5: The movement controls.

with the mouse or fired with keyboard shortcuts that are printed on the buttons along with

descriptive labels. See Figure 3.5. Multiple movement buttons can be held down simultane-

ously for fluid movement, and the buttons dynamically animate and change color to show

viewers which buttons the user is pressing in case the user has an audience or a demo is

being shown to a class.

In a small package (about a page of simple code), the class includes many more novel

features beside its base behavior of first person movement. The first-person camera rotates

towards where the mouse is hovering over the canvas. This steering behavior is toggled

by a button, locked by default to prevent accidental hovers. Other buttons apply smooth

translation motion in the six cardinal directions when held down, which stops upon heir

release. The camera speed (the magnitude of rotations and translations) is adjustable via

two more buttons for fine-tuned movement. Another button resets the camera matrix to the

identity.
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Third person movement is not only possible, but separated into two different concepts.

Clicking and dragging the canvas still “rotates the scene” for easily viewing it as a unit

although this is now done using first person paradigms, in the local coordinate frame relative

to the camera and irrespective of the scene. It uses a “guess” as to how far in front of the

camera the scene and center of rotation should be; the camera speed buttons adjust this

guess.

True movement in third person, the movement of an object instead of a camera with all

the same buttons for rotation and translation described so far, is now possible. As mentioned

at the beginning of this section, this has been conceptually separated off into a separate

camera class as in the “out of body” demo, with inverted matrix operations. To manage

many objects that may compete with the movement controls along with the camera, pointers

to different “graphics state” objects are held by each candidate and alternately referenced by

the Movement_Controls, switching off whenever more “take control” buttons are pressed by

the user. A skilled user can rearrange the entire scene’s objects as well as the vantage point

by simply switching between the objects that should have the movement controls’ attention.

This control scheme might be an unprecedented design across the literature, the web,

and the games industry considering its multiple behaviors, animated buttons, the switching

of control, and its peculiar nature as a Secondary Scene Component.

The Movement_Controls class in our code affects our users even while they are not

navigated to the article about it due to its inclusion in most other demos. It is automatically

imported by the code of scenes such as Tutorial_Animation.

3.2.2.4 Frustum Demo

Frustums are pyramids pointed at you with their nose cut off. They are used throughout

Computer Graphics to define view volumes, which are the somewhat box-shaped regions in

3D that represent the space visible onscreen. Generally speaking, if a point in 3D happens to

fall inside the current view volume, the graphics card will attempt to draw it; otherwise not.

All points in the volume get projected onto its nearest plane (the “image plane” or “near
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Figure 3.6: A diagram of a perspective frustum on the left, and Normalized Device Coordi-
nates (NDC) on the right. From (Ahn, 2009).

Figure 3.7: The Frustum Tool shown drawing a view volume, embedded in a demo where
the image is also shown that would be projected from that view volume onto the near plane.
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plane”) to generate the final planar on-screen drawing. The green line drawing in Figure 3.7

shows what a view frustum and projected image theoretically looks like.

Our students rarely find any reason to directly work with view volumes, or to change theirs

from the default in the program template we provide them. Nonetheless, their understanding

of view volumes is crucial toward gaining a simple mathematical grasp of the underpinning

of most graphics programs: the stages of the 3D graphics pipeline. The “pipeline” is a topic

that is brought up throughout Computer Graphics textbooks to explain the math done by

the graphics card (Angel and Shreiner, 2014a). The pipeline is an imaginary multi-stage

process, mapping a shape’s points from wherever they exist abstractly in 3D object space

onto the correct pixels shown in 2D screen space.

The Frustum_Demo article illustrates the concept of view volumes to graphics beginners,

using demos with the help of what we call Frustum_Tool objects. These objects draw a plot

of lines in the 3D scene, located at the exact edges of a given view volume shape. This is

defined by providing a camera matrix and projection matrix. If those match the ones that

are currently being used globally for drawing everything, then the plotted lines will be barely

out of view, as their projection (from 3D) lines up precisely with the rectangular boundary

of the 2D canvas. Otherwise, the user will see either a rectangular box or an angled frustum

(depending on whether an orthographic or perspective projection matrix was passed in to

initialize the tool), and the frustum shape will appear precisely in front of the location of

the provided camera matrix passed in to initialize the tool.

This tool can help programmers diagnose issues with graphics projections. As a Sec-

ondary Scene Component, Frustum_Tool stacks alongside other scenes and can help visu-

alize the view frustum being used globally by other scenes. This works because the default

behavior is for the global projection matrix to be passed in to initialize the tool, whereas

the camera matrix is different from the one globally used. As the global camera matrix is

moved around by the user as they fly around to explore, the drawn frustum stays in place

due to its own matrix’s location. The drawn frustum disassociates from the actively used

one and can be viewed out-of-body.
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The inner workings of the Frustum_Tool are extremely simple. The code begins with

the canonical view volume (a cube extending one unit in each direction) and then undoes

the projection transform via inverting the matrix. The code for this is just a few lines long,

applying the inversion procedure to the points of the cube. No further analysis of the matrix

is necessary, such as determining its type (orthographic or perspective).

Our inversion procedure uses a mathematical trick independently discovered here that

may be useful to other programmers and researchers dealing with projection matrices. Un-

derstanding this trick depends on familiarity with the perspective division operation. This

division operation is unique for being the one step in the graphics pipeline not expressed as

a matrix (because it is non-linear). Instead what it mathematically does given a coordinate

point with four components (x, y, z, and w) is to simply divide all four by w. The perspective

division broadly helps with a transition from 3D to 2D for screen display purposes, and it

also achieves effects such as vanishing points.

We discovered that any projection of points onto the near plane can be undone by ba-

sically re-projecting them again. Namely, apply the linear projection matrix first as always

(except use its matrix inverse instead), and then repeat the perspective division operation

exactly, dividing by the fourth coordinate. One might naturally expect something different,

like having to reverse the steps instead to undo them—to multiply by w first instead of

dividing by w last—but then there would be nothing to multiply by at first. Our canonical

cube’s fourth coordinates are all equal to one. Projections by their nature wipe out a co-

ordinate in a non-invertible way, but we somehow need to recover all coordinates from our

post-projection cube anyway.

Due to some coincidence of math, using our method not only successfully reverses the

division in a sign-correct way but also correctly recovers the Z coordinate from the post-

projection points. According to the author’s own automated testing this technique works

works on general 4x4 projection matrices irrespective of projection type (perspective or

orthographic) or parameters such as field of view and vie plane locations.

The Frustum_Demo article itself illustrates view volumes by rendering a scene containing
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small colorful balls (See Figure 3.7). These are randomly scattered in view or just out of

view. Exploring the scene dissociates the real frustum from the drawn one and the visitor

sees a line plot of the original view volume, and they will see how it encloses precisely the

set of balls that were initially in view and no others. Shadows of the balls that are out of

view are still drawn so the student can be aware that they exist barely out of range. This is

done via multiple rendering passes, some of which send a wider view volume (one that does

capture all the balls) to Frustum_Tool instances.

Since Frustum_Tool’s algorithm is agnostic to whether a perspective or orthographic

projection was used, this means our code process can draw either type and, via a button,

seamlessly switch from an orthographic matrix to perspective and back. The viewer is able

to instantly see the difference between the two view volume shapes.

Our Frustum_Demo is inspired by a demo created by the makers of the three.js engine,

located on the three.js examples website under “camera” (Cabello, 2013). Both our demo

and theirs illustrate for students the difference between an orthographic and perspective

projection by allowing them to toggle between the two. Both show a line plot of the frustum

alongside a scene drawn using that view volume. Compared to three.js’s demo, our viewers

are able to understand the differing view volumes’ implications better by moving the camera

to line up with them and noting which objects enter and leave the view.

3.2.2.5 Ray Tracer

Ray tracing is a challenging alternate method of drawing 3D scenes onto a computer screen

compared to the normal method of “rastering” geometry. In the normal approach, thousands

of triangles are projected one by one onto a canvas where they are in-painted, each one

independent of the other. Ray tracing, however, must consider all the geometry together

to figure out where rays of light will travel, bounce, and absorb color to decide each pixel’s

result. Ray tracing a frame of an animation involves a computationally intensive search

process through the entire set of objects in the scene to ensure the correct one is struck by

the light ray. This search process and the ensuing vector math must be repeated for every
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single pixel and every ray of light.

Notwithstanding simplified examples like ours, ray tracing is typically not possible in real

time. It is hence usually not seen in the games industry (where images must be computed

fast enough to be shown in immediate response to player input), though it is the algorithm

of choice in the film industry (where the images of a movie may be slowly computed offline

for playback later). Implementing a ray tracer is a common assignment in beginner graphics

courses, and is frequently the final assignment of UCLA’s CS 174A.

Ray_Tracer is presented as an Active Textbook for teaching students the algorithm of

ray tracing piece by piece using a buildup of partial demos. We finally implement a real

time ray tracer that manages to run in a website in a single JavaScript thread. It smoothly

animates camera movement through a scene of arbitrarily placed, stretched, and rotated

balls. It features shadows, reflections, and refractions.

Ray_Tracer contains a number of features that make it an excellent visualization of the

ray tracing algorithm compared to any prior (typically very simple) online demo. The same

scene is drawn with and without ray tracing simultaneously to show students the difference.

The ray traced version (see Figure 3.8) is executed from many vantage points in the scene,

and all resulting images from these vantage points are shown to the student, embedded in

appropriate places in 3D within the non-raytraced visualization of the scene.

In textbooks and lecture slides and on Wikipedia a common illustration found for explain-

ing ray tracing shows a ray striking an object, branching, and bouncing to the next object.

Since these are usually hand-drawn, the student cannot visualize the emergent flow of all

rays throughout their custom scene, or see the scale of just how many are used, nor see any

live response to movement of their scene or vantage point. In contrast, in our example the

colorful rays themselves are drawn embedded in the scene, showing which objects are struck

by them. Students can directly observe the consistency between the colors of the rays of

light and the objects they are striking (shown as non-raytraced geometry). Rays drawn can

include primary rays as well as secondary rays (reflections, refractions, and helper shadow

rays). While programming a ray tracer for their assignment, this feature can help students
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directly diagnose wrong paths taken by any single ray.

Our real-time ray tracer is built out of customizable parts. To generate the vantage

point(s) the rays are emitted from one or more frustums that are each configured in code using

a typical camera matrix and projection matrix. In our demo the frustums themselves are

drawn using our Frustum_Tool Secondary Scene Component. The final ray traced image may

be drawn directly onto the near plane (image plane) of the drawn frustum to show exactly

where points within that frustum have been projected to. One subclass of Frustum_Tool

adds this image-generating and drawing behavior, and in addition to this image embedded

in 3D (using a special texture), also inserts the image directly into the web document in a

way that can be saved to a file. This is not the only way to display the result of ray tracing;

another subclass of our Frustum_Tool uses the same stored projection and camera matrices

to place a different kind of visualization of a viewer, displaying the rays’ colors as colored

cones of a virtual eyeball. Either display method can show the rays bouncing through the

scene as well, piercing through either the image plane in correct places or through the cones.

The concept of a frustum located somewhere and being the origin of the rays remains, but

the decision of how to display the ray traced result is flexible.

Rays need not always be cast outward in only a traditional grid pattern to sample colors

in the scene. Instead, custom distribution patterns called Samplers are used. They map

the rays, arbitrary vectors in 3D (usually defined in spherical coordinates), to pixels. Pixels

are arbitrarily located on the the near plane of the view frustum, that is, the image plane

corresponding to the final image drawn onscreen. We provide a variety of samplers, both

stochastic and regular, including ones that get denser toward the center of view like the

human eye does.

Different types of frustum drawings and Samplers can be mixed and matched arbitrarily

to create a number of effects, such as a bio-mimetic drawing of a functional eye. Our

biologically inspired eye shown in Figure 3.8 has a lifelike pattern of hexagonal receptor

areas forming spiral towards a denser central fovea (the highest resolution region of the eye).

Our demonstration of foveated visual sensing was inspired by Terzopoulos and Rabie (1995),

wherein the researchers simulated the vision of artificial fish. They rendered the scene with
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Figure 3.8: The article shows a ray tracer employing multiple subtypes of Frustum Tool.
Besides to the standard flat image one, this also includes a simulated eyeball. These have a
dense sampling fovea, image projection onto the retina, and individual primary rays visual-
ized.
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Figure 3.9: The ray tracer shown up close (from its own view volume’s perspective). Scan
lines are progressing across the image from the left, showing the ray traced image result with
reflections, refractions, and shadows. Meanwhile, the right half of the image has not been
ray traced yet and still shows the traditional triangle-based geometry behind the image. The
difference in quality is evident.

several coaxial cameras that increase in resolution towards the center, just like in biology.

The fish then adjusted their swimming so that interesting stimuli became centered in these

maximally sampled vision regions.

Applications of this flexible sampler system exist in education about ray tracing concepts

as well as for research in simulations involving the eye and considerations of the behavior of

light entering the eye.

3.2.2.6 Visual Billiards

Visual_Billiards is our proof-of-concept example of a Smart Article, themed using a game

of tabletop billiards. Recall that a Smart Article, defined in Section 3.2.1.10, leaves an unfin-

ished computation task on our server for completion upon subsequent visits to our articles,

essentially delegating work to the future (and potentially to better-specialized articles).

To exhibit the Smart Article concept, Visual_Billiards runs its billiards-relevant code

and then communicates its finished calculations to our server for a companion article
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Figure 3.10: The Billiards demo. The white line is for aiming.

(Ray_Tracing_Tool) to use, which sends its own sort of calculations back. The back-and-

forth and delegation of work to outside code about a different topic (ray tracing) enables

new features in the demonstrated game—the drawing of rays onto the billiards table as a

helpful visual for players to improve their aim.

Billiards The Visual_Billiards builds upon a demo called Billiards (See Figure 3.10),

which is our main example of a game implemented using tiny-graphics.js, in addition to being

a showcase of our Simulation class and the concepts of timestepping and collision physics.

The game shows a minimalistic billiards table, balls, a cue stick, and a shadow of the cue

stick representing the stick trajectory. The player drags the mouse to aim the cue stick, and

clicks to “fire” it into the cue ball at a speed proportional to its distance from the shadow

stick. The balls respond physically (and with audio) by bouncing off the walls or partially

disappearing into the table’s pockets. A special camera system is used that constantly seeks

the position requested by a Movement_Controls instance, adjusting this in consideration of

the stick position and the top of the table so that the player’s mouse drags always aim the

stick towards the cue ball and maintain a reasonable camera angle where the bottom of the

table is never seen.

We added basic networking code to the Billiards game so that it can send and receive
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Figure 3.11: Visual Billiards, showing colored rays to guide the player. This is possible due
to the assistance of a concurrently open page navigated to the Ray Tracing Tool article.
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JavaScript data structures. This functionality appears in derived classes of Billiards so as

not to clutter up the main code. In nested, derived classes we add one feature at a time.

One such addition enables multiple players to participate in the pool game by taking turns.

Another enables a single player to save the game’s state and recall prior configurations of the

table. Sounds and lights are used indicate to a player when their turn starts. We continue

wrapping the main class in more networking code to progressively build up to the more

advanced functionality of Visual_Billiards, our Smart Article proof of concept.

Making the Article Smart To show that we have a Smart Article, we must now make

the billiards game and running ray tracing program benefit each other while running, as

though they were stopping to consult each others’ differing content—as though they each

were reading the other article to learn more. This means two articles will help each other

to solve specialized problems they cannot solve alone. Separately, the Billiards program

only “knows” the nuances of simulating and stepping physics as it applies to billiard balls

and resolving their collisions, but it can hardly do anything else. The unrelated Ray_Tracer

article reports the paths of light rays as they bounce in a scene with balls, forming an image,

and can hardly do anything else. By saving their world data to a common place in the

network, these two articles can interact. They will pair up to solve a bigger problem.

To do this, Visual_Billiards adds a twist to the game. When a player finishes their

turn, this triggers a signal to be sent to a different web demo called Ray_Tracing_Tool—

assumed to be running at the same time, so someone must have an open window of its

URL on a computer somewhere. Its running process does some ray tracing work. Then,

the ray traced result will be beamed back to all the instances of the Visual_Billiards

article that different players have open. Each communication follows the flow of information

we explained for Smart Articles with in Figure 3.2. Since the series of communications is

back-and-forth, Visual_Billiards and Ray_Tracing_Tool alternately assume both roles

in the diagram: “Sender” and “Receiver”.

The ray tracing is done in a way that answers some particular questions about the

state of the Billiards game. Namely, Ray_Tracing_Tool renders the scene from the cue
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ball’s point of view in 360 degrees, tracking light rays that bounce across the billiards table

and reflect upon reaching the table boundaries as though they were mirror covered walls.

Since these reflections are similar to prospective paths a ball would bounce off of cushions,

they represent prospective paths of the cue ball that could hit another ball. All of these

represented prospective paths are literally visible to the ray tracer, which sees them as

colors reflected in walls, colors matching the ball that would be hit. The client running

Ray_Tracing_Tool displays the rays onscreen.

More importantly, the ray information is helpfully sent back to each browser client run-

ning Visual_Billiards so the players can see the colorful rays too. Once Visual_Billiards

receives the rays back, it draws them directly on the table, emanating from the cue ball and

bouncing off the cushions. This can be seen in Figure 3.11. They are colored to show which

ball would be struck if the cue ball is launched at the cushion at that angle, so players can

better line up their shots.

The final ray information shows up for all players whose client pages had the

Visual_Billiards page loaded. The information is only available because of what

Ray_Tracing_Tool knew to do with ball positions and rays of light, that the Billiards article

itself did not know how to do. It is important to maintain perspective that each of these

articles is a self-contained, minimal program about its topic—the source code running the

Billiards article only has things in it that are pertinent to Billiards and physics, to easily

let a student or programmer fully understand the code’s small scope. Yet due to the small

amount of networking code included, each minimal program can do things that are not in

its own source code by collaborating with other articles over the network. It is as though

one of our articles designed this way is somehow being read and understood by a computer

instead of just a human.
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3.2.3 More Summaries of Current Articles

3.2.3.1 Main Page

Main_Page is a splash page showing new visitors a description of the website using similar

language as that found in Chapter 1. A selection of the best demos taken from other articles

are drawn in the 3D HTML canvas, with a simple “previous” and “next” button interface for

cycling through them. The page invites new visitors to click through links to the following

articles as a beginning tutorial.

The tutorial’s progression has branches depending on the needs of the visitor (if they

need math review, they are directed to the Dot_Products article first, for instance). Or, if

the visitor wishes they can proceed through all the articles in a numbered ordering where

each builds upon knowledge from the prior ones.

3.2.3.2 Environment Setup

This article prepares the student for downloading our demos for local editing and debugging,

allowing them to work on their assignments or personal projects in a more serious environ-

ment than what our in-page code widgets can provide. The instructions provided show the

various features of the Google Chrome browser for assisting programmers.

In general, we find that UCLA’s required Computer Science courses do not sufficiently

prepare new programmers to use debugging environments to monitor program state, nor

where to find all the other tools available to them that can help empirically diagnose is-

sues with their code. This leads to countless hours being wasted throughout the students’

graphics course (and potentially thereafter) with each new misunderstanding of their own

programs. This article is an attempt to alleviate that by walking students through the un-

usually thorough debugging features of Chrome, and the ability to set up an environment in

Chrome that maps its file browser and editor to their local filesystem so that they can turn

in their finished assignment as a traditional bundle of files.
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Figure 3.12: The top of the Minimal WebGL Program article, with the explanation section
widget’s text already expanded.

3.2.3.3 Minimal Webgl Program

Minimal_WebGL_Program shows the literal smallest program that can be made using tiny-

graphics.js. Its purpose is to help users familiarize themselves with the library’s parts and

basic usage thereof. It implements a trivial shader, shape, and scene. The scene draws a

single colorful triangle onscreen. Many classes within tiny-graphics.js are unused by this

simplistic demo. A total of around 65 lines of code are added to tiny-graphics.js to make

this smallest possible working usage of it.

3.2.3.4 Transforms Sandbox

Transforms_Sandbox is meant to give users a first taste of graphics programming by en-

couraging the changing of the matrices used to draw an extremely simple scene of two boxes

and one ball. Setup code is hidden away in a superclass, and anyone who modifies this class

only sees code directly related to the matrix transforms without any other clutter. Using the

provided code interface the user can immediately see their changes update in the drawing.
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Figure 3.13: The Transforms Sandbox demo for newcomers to graphics programming to
modify and experiment with.

3.2.3.5 Bases Game Level 2

This game in Figure 3.14 is a follow up to the Bases_Game described in Section 3.2.2.1. This

additional “level” of the game teaches how to animate movement. The primary difference

compared to level one is that the targets the player pursues and tries to match are now

moving—that is, translating and rotating according to simple linear or sinusoidal functions

of time. The buttons that the player uses to chain more matrices onto the product are also

new (shown in Figure 3.15), and now apply several new matrix values that are functions of

time; these allow the user to exactly match the movements shown. The progression of goals

in this level is the same order of transformations that a programmer would use to cause two

box volumes to perform a hinge movement, hooked up precisely at their corner edges. If

the player were to stop at some of the intermediate goal coordinate bases and draw boxes

there, they would accomplish this effect. To illustrate this, transparent boxes are shown in

addition to the target coordinate axes that must be reached on the way to the box bases.

A player who can hinge two moving boxes together in exactly this way has demonstrated

competency at using matrix order to place shapes.
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Figure 3.14: The second level of the bases game, with targets (axis arrows) whose transforms
oscillate as functions of time. Their placements correspond exactly to the matrix bases that
a programmer would iteratively make in order to draw the two hinged cubes shown, which
revolve around the Y axis.

Figure 3.15: The modified controls of the second Bases Game level, using functions of time.

3.2.3.6 Phong Shading Demo

This is a demonstration of Phong lighting. One component each of the final calculation (such

as normals, ambient, diffuse, and specular) from the Phong Refection Model are drawn. It is

an Active Textbook page, so these appear in separate illustrations using multiple canvases,

between textual explanations of the calculations that are being done. Each illustration is

accompanied by the code that made it, which progressively gets longer and more complex

as the article adds pieces of the full Phong algorithm. This goes on until the complete

Phong_Shader class is built, containing all lighting components. The full code is then shown
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along with the visual result of Phong lighting. The final code builds the article itself, making

this an example of Knuth’s Literate Programming concept.

The final canvas shows Fake_Bump_Map, a slightly modified version of class Phong_Shader

that demonstrates a form of bump mapping, to demonstrate that particular widely-used

concept in graphics to students. The effect is exemplified in Figure 3.18a. We made a

simplified form that does not use an actual bump map; the texture image itself is used

to perturb surface normals. Nonetheless the effect is convincing, visually appealing, and

requires barely any extra code, so Fake_Bump_Map is used in place of Phong_Shader in many

of the other demos we are describing.

Definition: Materials Using lighting in other WebGL frameworks like three.js involves

learning about and managing very complex objects called “Materials”, but our analogue for

this is comparatively simple. In our system, materials are just plain JavaScript objects—

namely, tables of a few Phong parameters with values

More generally, a Material is a JavaScript table collecting all the stored numeric values

that are bound for the shader program in the GPU. A material is associated with a par-

ticular 3D object drawn in the scene. Other shader-bound values might also exist that are

associated with the whole scene rather than any particular shape; a separate but analogous

data structure from Material called a Graphics_State is used in our program to pass those

scene-wide values onto the shader as well. Whereas a Graphics_State stores values like the

camera and projection matrices, lights, and time measurements, a Material stores values

like the reflectively, color, or texture image of a particular object.

Every possible Shader in our system provides their own definitions of this table, returned

by calling a function called “material”. If Phong_Shader is the shader subclass that is

used, then the particular parameters stored will include a base color, ambient brightness,

diffusivity, specularity, shininess, and an optional Texture object. Otherwise, in cases where

a different custom type of Shader is used, the parameter names and values stored could be

anything desired. A compact notation is provided for properties of material objects to be

individually overridden to derive new materials.
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(a) Zoomed out. (b) Close up of the two shapes demon-
strating flat versus smooth Phong shad-
ing.

Figure 3.16: The Tutorial Animation demo

3.2.3.7 Tutorial Animation

Tutorial_Animation is the superclass of Transforms_Sandbox and therefore shows the

previously-hidden setup code of simple scenes. This includes the declaration of shapes and

materials (wrappers of lighting parameters, as discussed above) and the setup of the camera

and projection matrices.

Tutorial_Animation depends on a few other classes that in short code snippets define

how to draw basic minimal shapes (trivial ones that a beginner might make, such as a

triangle or square). Via our server’s dependency injection, the source code of this article

automatically includes those shapes, and so does the code navigator that visitors use. The

user may use the navigator to reveal the shapes’ definitions in source code, clicking through

to read them one at a time in order of increasing difficulty. This demo therefore serves as

a good first introduction to reading our tiny-graphics.js library and building shapes from

vertex arrays. It also demonstrates storing lights and materials (see previous section) and

shader programs, matrix transformations, and how to tell the difference between when a

shape is flat shaded or smooth shaded.

66

https://encyclopediaofcode.glitch.me/tutorial-animation


Figure 3.17: The surfaces demo.

3.2.3.8 Surfaces Demo

Surfaces_Demo is a demonstration of how to make a diverse set of shapes using the least

amount of code. It contains examples of shapes (custom vertex arrays) including cylinders,

cones, spirals, and more that all derive from a common technique. As already introduced

in Section 2.2.2, its programming takes advantage of JavaScript language constructs (“ar-

row functions” which are callbacks defined inline) to great effect, creating a novel shape

generator not yet seen in other graphics engines. Arbitrary operations—matrix transforms

or otherwise—are allowed during a traversal process between the points of the shape being

generated.

Very small pieces of code are responsible for generating each distinct shape in our demo.

This brevity was made possible by the help of two classes: Grid_Patch and

Surface_Of_Revolution (a special case of Grid_Patch). Grid_Patch works by generating

a tessellation of triangles arranged in rows and columns, connecting the points by generating

a certain predictable pattern of indices. Grid_Patch produces a deformed grid by doing

user-defined steps to reach the next row or column, defined by two callbacks supplied from

outside. Depending on the shape designer’s goal the callbacks’ operations could either be
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(a) Figure 2.2 came from Surfaces Demo. Here it is in a final render with a
bump map and texture.

Figure 3.18: Close-up shots from surfaces demo.

functions of the previous point, pure math functions of the row or column index, or functions

that sample provided arrays of points and interpolate curves in between them.

This demo draws spheres, domes, cones, polygons, other surfaces of revolution, and other

arbitrary surface patches such what is shown in Figure 3.19: A shape made by blending one

curve into another while also transforming it incrementally through space.

All shapes in Surfaces_Demo are generated as a single vertex array each, sometimes by

using class Shape’s compounding feature; this practice speeds up performance considerably.

One shape, shown and described in Figure 2.1, is a set of three axes arrows drawn by

compounding together many primitive shapes such as cylinders. It appears in a variety of

other demos (such as the Bases_Game to demonstrate the location of local coordinate frames.

Our students often make use of our axis shape when building a scene to stop their
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Figure 3.19: Two curve arrays (a square and a many-pointed star) are blended together
here into a surface patch. Rather than using the typical linear blending method of surface
patches, instead incremental transforms are used to smoothly rotate and translate from one
curve’s orientation to the next. This is only possible due to allowance of arbitrary operations
between points (such as array sampling and incremental movement) by our Grid Patch code.

flow and draw their local coordinate system whenever desired. This explicitly causes their

intermediate steps on the way to their final basis to be drawn, greatly helping them with

diagnosing transform problems. Our Bases_Game_Level_2 article, as described above, also

presents this same thought process as an educational game. Axis shapes are used to animate

motion using transforms, including shapes that hinge off of one another in precise ways. Our

visualization for students is similar to drawings of Denavit-Hartenberg (DH) parameters that

are used in engineering (Denavit, 1955), an intuitive way of modeling the end effector of a

linkage in terms of the rotations and translations leading up to it.
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3.2.3.9 Star

The demo Star shows a simple special effect and suggests how to make similar effects.

In this technique simple primitives are drawn in mass numbers at slightly different matrix

transform offsets depending on the indices of programming loops. A versatile and beautiful

kaleidoscope effect is the result.

3.2.3.10 Many Lights Demo

This is another simple special effect suggestion, this time explaining how to get around a

limitation in shader programs such as our Phong_Shader class. Shader programs have a

somewhat rigid structure since they execute in parallel and the hardware only has a limited

number of data pipelines per thread. This means that the amount of light sources that

contribute to the Phong reflection model’s lighting calculations must be fixed in size as well.

Phong_Shader only allows two light sources due to this small number of hardware data

pipelines, and also due to the need to save computation time in the fragment shader, which

has to run many thousands of times per frame.

Many_Lights_Demo shows how to make the illusion that there are many lights (despite

the shader only being aware of two) by overwriting the lights between shape draw calls. This

makes each given light configuration only affect certain shapes, such that only two lights are

influencing any given shape at a time. For this to look right, it helps for shapes to be aware

of which lights are nearby versus which are too far away or too small for their effects to

matter, so the best pair can be chosen. In our demo scene, the camera moves past a grid of

buildings in a city skyline scene. One light exists per row and one per column, and a box

simply looks up the lights it is sharing a row or column with.

3.2.3.11 Simulation

Our helper class Simulation shows a good way to do incremental movements, which are

crucial for making objects look like they are moving on their own instead of following a
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Figure 3.20: The Star demo.
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Figure 3.21: The Many Lights Demo.

pre-determined path. Animated objects look more real when they have inertia and obey

physical laws, instead of being driven by simple sinusoids or periodic functions. Simulation

is the underlying tool used to make the demos shown in Figures 3.22 and 3.23.

For each moving body, we store a model matrix somewhere persistent and give it a

velocity to track over time, which is split up into linear and angular components. The latter

is modeled as an angle-axis pair so that we can scale the angular speed how we want it. The

forward Euler method is used by Simulation to advance the linear and angular velocities

of each shape for each timestep (each unit of simulation time). The techniques described

so far are the simplest possible way for a beginner to start showing moving rigid bodies.

What makes Simulation stand out is instead the industry-based lessons it teaches on how

to handle time.

This Simulation superclass helps other demos that feature physics simulation by care-

fully managing their stepping of simulation time. It totally decouples the whole simulation’s

movement of bodies from the frame rate, advancing the effects of physics in fixed time in-

crements following the suggestions in the blog post “Fix Your Timestep” by Fiedler (2004).
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Buttons allow the viewer to speed up and slow down time to create the illusion to the sim-

ulator that the display frame rate is running fast or slow, independent of the simulation

time step size. The simulation’s answers will be unaffected. Our code squeezes in as many

simulation steps as possible per second of the program’s execution time until we’re caught

up for the next frame. It takes extra measures to avoid what Fielder calls the “spiral of

death” by setting a hard limit on the amount of time we will spend computing during any

timestep if display lags. Here we also store an interpolation factor for how close our frame

fell in between the two latest simulation time steps so that we can accordingly interpolate

the drawn positions of bodies by blending the two latest states and displaying the result.

A readout shows how many total simulation steps have been calculated. By slowing down

the simulation time enough, the reader can verify that less than one timestep is occurring per

second even though the slowed-down movement remains fluid and continuous, demonstrating

that interpolation is being used in between simulation steps to come up with intermediate

states of the drawn result without having to run the potentially expensive simulation code

more times than necessary.

3.2.3.12 Inertia Demo

This is a minimal demo built on top of class Simulation to show its principles of incremental

motion at work, including the buttons it provides for manipulating time. The demo shows

colorful bodies of various shapes, that each respond to physical forces. It applies random

initial velocities and simply lets momentum carry the bodies until they fall and bounce. The

velocities are not subject to any forces but have a downward acceleration. Collisions of the

geometric volume of one shape into another have no effect. Velocities are constrained to not

take any objects under the ground plane.

3.2.3.13 Collision Demo

Collision_Demo detects when some flying objects collide with one another, coloring them

red and stopping them in place when they do. To keep things moving, the objects are
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Figure 3.22: The Inertia Demo.

Figure 3.23: A number of moving rigid objects, sticking together when intersections are
detected in the Collision Demo. Objects stuck together form a structure or pile (red), while
fast-moving free floating objects (white) have not yet collided.
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(a) Before change of bases (b) After change of bases

Figure 3.24: Our trivial collision method. We perform a change of bases into a more conve-
nient space where one of the objects conforms to the non-transformed unit sphere as much
as possible. In that space, points too far from the origin can be disqualified as colliding.

occasionally assigned random velocities, and a force pulls them towards the center leading to

orbital motion. Special volumes that are used for testing collisions are drawn in translucent

purple alongside each shape’s true drawing.

Detecting intersections between pairs of volumes under arbitrary linear transformations

can be difficult, but it is made easier by being in the right coordinate space. Our collision

algorithm for beginners treats every shape like a ellipsoid roughly conforming to the drawn

shape including its rotation, due to having the same transformation matrix applied.

Our particular collision method uses only a few lines of code and is shown in Figure 3.23.

In essence it combines a change of bases with a vector norm used on several points sampled

from a sphere. The simplicity of our volume intersection test allows the student to focus on

the structure of a collision algorithm and considerations such as how many possible inter-

section pairs are tested, and how to reduce that search space and computational complexity

class. The algorithm has problems, though. Making every collision body a stretched sphere

is a hack and does not handle the nuances of the actual shape being drawn, such as a cube’s

corners that stick out. Looping through a list of discrete sphere points to see if the volumes

intersect is even more of a hack (there are perfectly good analytic expressions that can test if

two ellipsoids intersect without discretizing them into points, although they involve solving

a high order polynomial). On the other hand, for most non-convex shapes a real collision

method cannot be exact either, and is usually going to have to loop through a list of discrete
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Figure 3.25: A falling string in the Springs Demo.

tetrahedrons defining the shape anyway.

3.2.3.14 Springs Demo

This demo illustrates more applications of physics simulation, Hooke’s law of springs from

physics, and the concept of numerical instability. It shows nodes of a falling 1D string. It

steps a simulation of Hooke’s law in fixed time increments using the forward-Euler method.

Using similar mechanics as Simulation, the user can press buttons to create the illusion

to the simulator that the display framerate is running fast or slow, independent of the

simulation time step size. No matter the amount of slowdown, the simulation’s answers will

be unaffected and the slow count of timesteps computed so far will show that the smoothness

of animation does not depend on new potentially expensive timestep calculations.

Parts of this demo are left for the visitors to fill in as an exercise, such as adding in a small

non-zero rest-length and a series damper to each spring segment or altering which nodes are

constrained in place. Another suggested exercise is to reduce the fixed timestep length in
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Figure 3.26: Two teapots imported from text files by the Mesh Loader Demo. One is shown
with bump mapping and one without, to further help educate viewers about the difference.
They have differing light response while they move in the animation.

the code from .002 to .0002 seconds, causing more discrete physics steps to be computed.

The student can observe that the framerate slows down but the simulation’s answers are

not noticeably different. Lastly, the student is encouraged to see how many nodes they can

add to the string before the forward-Euler method breaks down and numerical error of their

added damping term catastrophically accumulates, exploding the position values to infinity.

3.2.3.15 Mesh Loader

Students often want to import pre-made shapes into their animation project rather than

making all shapes in their scene from scratch. These shapes from outside modeling software

or from downloaded files containing famous models of widely recognized characters. Our

Mesh_Loader class and demo article provides a simple way to do that, using a copy of the

online library “webgl-obj-loader.js” (frenchtoast747, 2015) that is massaged into our code

library. Particularly, our modified copy uses a more generalized interface for reading strings

from files so we can re-use it in other code.
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3.2.3.16 Keyboard Demo

As described in more detail back in Section 2.2.3, our Keyboard_Manager class in tiny-

graphics.js duplicates all features of the “shortcut.js” library by Binny V A (Abraham, 2012).

The utility adds keyboard interactions and shortcuts to any website, which is especially useful

for interactive editors and games. Ours tracks combinations of keys the user has held down

and binds them to arbitrary behavior. As a single standalone class it can be immediately

beneficial for all other JavaScript programmers, so we present Keyboard_Demo as a splash

page for it.

The Keyboard_Demo is a Secondary Scene Component that uses several Keyboard_Manager

objects to show off their capabilities. Keys can be captured from the entire document or

from child HTML panels, with separate Keyboard_Managers for each that fire their mapped

callbacks if their paired document element is the target of the key press (because the user

has clicked it into focus). The regions are shown to not interfere with typing into text input

boxes. A readout reports the set of keys that are considered pressed down in each region.

One example Keyboard_Manager bound to the document cancels key events from triggering

the default browser keyboard shortcuts, while another Keyboard_Manager passively mon-

itors the events without cancelling; instead, it logs them for building a record of a user’s

experience. As a Secondary Scene Component this logging behavior can be stacked alongside

any other of our demos when this class is requested.

3.2.3.17 Text Demo

As discussed in Section 2.2.2, there is no trivial way provided by WebGL to render text in

the 3D coordinate space using the built-in interface. This is because all drawing routines of

WebGL assume shapes will be made of points, lines, or triangles. The designers of WebGL

probably observed that text can simply be provided by the surrounding web document, or

if a heads-up display is desired, even displayed on top of the canvas using offsets. This still

leaves open a common student question during free-form animation projects: How to show

text statically on 3D objects. We therefore seek to give programmers back the text rendering
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Figure 3.27: The Text Demo.

functionality that all OpenGL editions once had.

In a sub-type of class Shape called Text_String, we design a traditional planar shape

that can show text on a transparent background. Text_String uses texture mapping and

carefully aligned pieces of an image of the ASCII character set to do this. Our article

Text_Demo explains how to use this class and displays several text strings on the sides of a

gray cube, including multi-line strings.

3.2.3.18 Scene Graph Tool

Scene graphs are a major topic of Computer Graphics, with an entire chapter devoted to

them in Angel’s textbook (Angel and Shreiner, 2014a). They help students to not only

organize and re-use parts of their scene, but to also conserve the amount of calculations

their program has to do.

A scene graph is a tree data structure that represents the spatial layout of a scene and

logical relationships between its parts. The nodes of a scene graph tree include the drawn
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Figure 3.28: The Scene Graph Tool. Used here to model the above shapes by cutting and
pasting branches of the graph, or repeating parent-child relationships and transformations
in a pattern. These highly organized shapes were generally made in a blindly improvised
fashion with few expectations about the outcome, by tapping the UI buttons for a minute
or so.
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Figure 3.29: The Scene Graph Tool (Continued). Used here to model the above shapes
by cutting and pasting branches of the graph, or repeating parent-child relationships and
transformations in a pattern. These highly organized shapes were generally made in a blindly
improvised fashion with few expectations about the outcome, by tapping the UI buttons for
a minute or so.
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Figure 3.30: The Scene Graph Tool (Continued). Used here to model the above shapes
by cutting and pasting branches of the graph, or repeating parent-child relationships and
transformations in a pattern. These highly organized shapes were generally made in a blindly
improvised fashion with few expectations about the outcome, by tapping the UI buttons for
a minute or so.
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Figure 3.31: The effect of changing the scale matrix of the root node of the Scene Graph Tool
is shown here. Observe how this also grows the gaps between individual cubes (whether they
are touching or not), yet avoids any undesired shearing behavior since the rotation matrices
down the tree are kept from being affected.

Figure 3.32: An example of our Scene Graph Tool being used as a Secondary Scene Com-
ponent. This image of a shape modeled using a scene graph is actually ray traced. The
primary demo running is the ray tracer, while the Scene Graph Tool stacks alongside it and
contributes its usual user interface tools for growing shapes out of nothing. The primitives
composing the shape arrive inside of the same array that the rays are tested against. Rays
that struck nothing show a sinusoidal color pattern.
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shapes and other entities (such as camera locations) with relations to a scene’s particular

parts. A node knows its own location or position in space. This location is a transformation

matrix stored as an offset relative to its parent node—local to the parent node’s coordinate

frame. The relative properties of nodes accumulate down the tree; any matrix operation

performed higher up in the tree dynamically propagates its effect downward through the

branching “child” relationships to all the leaf nodes below. This happens by affecting the

final matrix product as multiplications accumulate while the tree is traversed.

Among scene graph implementations, ours is noteworthy for pairing the scene graph with

a user interface that emphasizes immediate feedback. It allows live editing of the graph’s

nodes. It especially encourages re-use of nodes and entire branches, allowing the automated

repetition of nodes with the touch of a button. Adding nodes to grow the branches of the

graph implies that the transforms get repeated in a pattern as well, sending the nodes down

a path that might curve and spiral as the repetition goes on. The tool can create highly

symmetric shapes by procedurally re-attaching a scene graph’s entire branches to other parts

of a tree, or duplicating them around the tree. See Figures 3.28, 3.29, and 3.30 for examples

of interesting shapes made this way. Our novel tool builds upon industrial modeling tools,

as discussed further in Section 5.6.

Button or key controls let the user either grow the scene graph or modify the current

node’s current transformation matrix freely, allowing the user to choose any axis and then

rotate, translate, or scale the local coordinate frame. The current graph node’s shape im-

mediately redraws, along with any child nodes’ shapes farther down the branch. Changes

to the scale matrix of a node cause all gap sizes between shapes throughout the branch to

immediately change, providing striking visual feedback and unexpectedly interesting new

shapes.

Our Scene_Graph_Tool stores a traditional scene graph with some caveats. Rotation ma-

trices are automatically unaffected by scales higher up in the hierarchy to prevent unwanted

shear effects, but translations are handled separately and do get the scale effects so that

gaps between shapes correctly get bigger as the scale of a graph branch increases. Secondly,

unlike the Angel textbook’s suggestion of implementing a scene graph using a pointer-based
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Figure 3.33: The Half Edge Demo. This shows our labeling conventions that illustrate the
orientation of each interior half-edge (red) and border half-edge (green), to ease manual
checks of the mesh neighborhoods.

binary tree, we instead use a simpler data structure made of dynamic arrays nested within

one another, resulting in a much shorter program.

Scene_Graph_Tool’s accompanying article for students reinforces concepts about ma-

trix ordering. It explains why a scene graph must build its matrix product using post-

multiplication in order to correctly place child objects local to the coordinate system of their

parent. Post-multiplication is the natural choice when modeling shapes, since most objects

exhibit a parent-child hierarchy of sub-parts (such as a tree with a root and branches, or

a human with a torso and limbs). It would be difficult to build hierarchical structures us-

ing pre-multiplication instead, because the intermediate products on the way to the child

objects would be meaningless for drawing purposes. With post-multiplication, however, the

intermediate products equal the parent matrices and can be used to draw the parents on the

way to computing the final child product, requiring only one matrix multiplication operation

instead of many to compute each object’s final matrix while the tree is traversed.

3.2.3.19 Half Edge Demo

In traditional polygon based graphics, triangles are usually processed separately from one

another on their way to being drawn. The triangles are stored as triples of integers (indexing
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into positions in the vertex lists), and each triplet entry is separately unaware of the others.

No other information is stored that would be helpful for queries such as what triangles are

neighbors to each other in the larger shape. A mesh data structure attempts to alleviate that

deficiency by adding additional data to the description of the mesh of triangles so that its

neighborhoods or borders can be traversed using constant-time operations. These structures

can be generalized from 2D triangles to 3D tetrahedrons. Mesh data structures can speed

up a graphics program dramatically. They can provide immediate constant-time answers to

ray-volume or volume-volume intersection queries by simply walking the neighborhood of

each volume, in place of linear or logarithmic time search algorithms. We discuss our plans

to explore this in Chapter 6.

Half_Edge_Data_Structure is an implementation of the array-based mesh data struc-

ture described in Tyler Alumbaugh’s thesis (Alumbaugh and Jiao, 2005). This array-based

method represents the whole pointer-free mesh as a few flat integer arrays for easy serializa-

tion to multiple processors.

Our flat integer arrays are stored compactly with JavaScript’s newer raw array types such

as Int32Array. Our version of the data structure includes a feature shared with the El Topo

mesh library (Brochu and Bridson, 2009) wherein vertices are allowed to be non-manifold,

for example during intermediate construction of a single triangular face, or when faces are

added or removed in non-contiguous order.

Half_Edge_Demo shows an animation of Half_Edge_Data_Structure at work as it pro-

gressively integrates new faces into an initially empty triangle mesh. Each face and vertex

are identified using in-world labels with the help of our Text_String class described in Sec-

tion 3.2.3.17. A special arrow notation shows the ordering of half-edges of each face implicit

in the data structure, and also the relationships of boundary edges to their opposing inte-

rior half-edges. A modern JavaScript language feature called generators allows the complex

mesh-construction functions to be stopped in between operations and drawn at the inter-

mediate stages, or paused if a problem is encountered for easy diagnosis at the moment the

mesh’s indices are detected to no longer encode the correct connections.
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CHAPTER 4

Results

We explore the value of our contribution to date in a university setting. Later we will

also address its potential value given our plans to scale it up into a true encyclopedia by

crowd-sourcing both new articles and the CPU time needed to run Smart Articles.

Our more practical measurement of today’s benefits begins with a side-by-side compari-

son of Angel’s supplementary web demos held up to our own improved results when building

similar demos using our framework. We show that armed with our tiny library, we success-

fully built demos that are more advantageous to show in a university course.

We will then show the results of a case study at UCLA involving student usage of our

tiny-graphics.js library and the online resources and tutorials on the Encyclopedia of Code.

4.1 Comparison to Angel’s Online Examples

Angel’s textbook is supplemented by a large number of online demos broken down by chapter

(Angel and Shreiner, 2014a). In his textbook he occasionally references these demos to

illustrate a particular bit of knowledge, directing students to visit the demo’s URL. Although

there are some extra topics covered (especially relating to 2D image construction), his online

demos largely have the same topic coverage as many of our own online demos covered so far

from the Encyclopedia of Code, and share the same goals.

Here, we will show a one-to-one correspondence between several of our demos and Angel’s,

and make the case for ours being an improvement both in terms of what they illustrate and in

terms of the usability and simplicity of their code. The latter is especially important because

we observe students typically begin coding their projects on top of an already working demo
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(a) Angel’s “gasket1” demo (Angel
and Shreiner, 2014c) (Chapter 2)
(Angel and Shreiner, 2014a).

(b) Most similar to: Our Minimal WebGL Demo
article.

Figure 4.1: Angel’s “gasket1” demo.

rather than wholly from scratch in empty files.

Besides the individual comparisons, keep in mind that Angel’s demos all have the inherent

limitation of existing on a separate medium from the textbook. Students must interrupt their

reading and switch to a computer to use them, and therefore they will be tempted to view

just one or the other. Our website seeks to get around this structural restriction. Our

“Active Textbook” articles insert our demos right alongside the text and illustrations they

are designed to explain, providing more value and convenience to students.

Because we used tiny-graphics.js, our results include improved educational demos that

are more useful code-wise for students to build upon compared to using only Angel’s bare

bones library. Our interactive page also encourages live code editing and sharing, which

gives another advantage over Angel’s demos even if their educational value was equal.

Our comparison excludes demos on Angel’s website that currently appear to be non-

working.

4.1.1 Angel’s “gasket1” Demo

The first full program that Angel’s textbook offers to students draws a Sierpenski Gasket

fractal, using a canvas, a WebGL context, and simple JavaScript loops. He spends much of
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(a) Angel’s “cube” (trackball) demo (Angel
and Shreiner, 2014m) (Chapter 4) (Angel
and Shreiner, 2014a).

(b) Most similar to: Our Tutorial Animation ar-
ticle.

Figure 4.2: Angel’s “cube” (trackball) demo.

Chapter 2 of his textbook incrementally presenting this demo, explaining each line so that,

by the end, the student fully understands one complete minimal WebGL demo. Itself an

admirable goal, the incrementalism results in a program structure that does not separate

common code from the uncommon into flexible, reusable components. Due to his book

predating modern JavaScript, it also includes ill-advised steps like embedding shaders in the

HTML file.

In contrast, our Minimal_WebGL_Demo uses a subset of tiny-graphics.js to do the same

job, which as detailed in Section 2.2 organizes the boilerplate code of WebGL anticipating

later reuse. This means that programmers starting from our demo may dynamically switch

between vertex arrays (shapes), shader programs, textures (images), and entire scenes within

each canvas. Our minimal shader is also more useful and draws triangles instead of points

as in the gasket; Angel’s usage of a gasket fractal does not add much to the tutorial besides

a primer to JavaScript, which we cover elsewhere on our website.
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4.1.2 Angel’s “cube” (Trackball) Demo

This simplistic cube with flat coloring and no lighting happens to be Angel’s first example

program where a matrix is used for drawing. As such, before tiny-graphics.js existed most

of our students started with this to base their term project on rather than manually going

through the steps of his Chapter 2. Here Angel provides them with working code for passing

their matrix through to the graphics card to calculate final point positions. Angel’s sub-

example called “trackball” additionally provides mouse control over the camera matrix in

the same spirit as our Movement_Controls tool.

Our Tutorial_Animation demo gives students a much more flexible foundation to build

their project off of, since we observed a trend of that happening with the equivalent An-

gel demo. Compared to Angel’s cube demo Tutorial_Animation comes with more demon-

strated shapes, Phong shading, our helpful Movement_Controls secondary scene component,

and more. Its reduced version, Transforms_Sandbox (from Section 3.2.3.4), does all that

as well while maintaining a very small total footprint of code that students need to worry

about. The section where students add code to build matrices and place shapes is segregated

away from all other code, which they can either ignore or learn at their own pace, after they

already have understood the basic flow of a graphics program and how to work with matrices.

The shapes displayed in Tutorial_Animation are arranged in code in the same order

and presented as a progression of how to model increasingly complex shapes, interwoven

with detailed code comments explaining the craft of 3D modelling to students. The shapes

display onscreen in the same order. Shape modelling is the primary gateway to graphics

programming offered by Tutorial_Animation, serving the same role as Angel’s demo. Al-

though Angel’s demos explain shape modelling before matrices, we prefer to introduce our

Transforms_Sandbox demo prior to this one, with the idea that matrix order concepts can

be an even gentler initial gateway to graphics programming.
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(a) Angel’s “perspective1” demo (Angel and
Shreiner, 2014f) (Chapter 5) (Angel and
Shreiner, 2014a).

(b) Most similar to: Our Frustum Demo article.

Figure 4.3: Angel’s “perspective1” demo.

4.1.3 Angel’s “perspective1” Demo

Angel’s “perspective1” demo is another flat colored cube. This demo lets students see per-

spective foreshortening for the first time, wherein the cube’s parallel edges do not appear

parallel due to converging towards vanishing points. Besides showing this, there are no other

clues provided as to what view volumes are. The cube jarringly vanishes before the student’s

eyes when it passes through the near or far plane using Angel’s controls, but since they can-

not see the volume directly, students who are trying to visualize a frustum for the first time

here may have trouble.

Our Frustum_Demo quite succinctly shows students both the perspective effect and the

view volume that caused it, in a superimposed drawing. Further demos using the

Frustum_Tool, namely Ray_Tracer (from Section 3.2.2.5), illustrate in simple terms that the

contents of the view volume are projected onto the volume’s near plane, forming a 2D image.

The code behind it illustrates the process of deconstructing any projection matrix using the

canonical view volume. These concepts can either take a whole chapter of a textbook to

explain, or can be done in just one interactive moving picture if given to the student to play

with.
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(a) Angel’s “shadedSphere” demos (Angel
and Shreiner, 2014i)(Angel and Shreiner,
2014j)(Angel and Shreiner, 2014k) (Chap-
ter 6) (Angel and Shreiner, 2014a).

(b) Most similar to: Our Phong Shading Demo
article.

Figure 4.4: Angel’s “shadedSphere” demos.

4.1.4 Angel’s “shadedSphere” Demos

In three separate demos, Angel illustrates the differences between the flat, Gouraud, and

smooth techniques of shading under the Phong reflection model. We alternatively direct

students to our Surfaces_Demo, which demonstrates these three concepts in one central

place. Compared to Angel’s code, our Phong_Shader class’s lighting calculations are de-

coupled from our shader code; this means it can be used in either the vertex shader or the

fragment shader, producing smooth or Gouraud shading, respectively. Students can see the

difference with a touch of a button and observe why it works in the code. Our Shape class’s

ability to automatically produce flat shaded versions of complex student-designed shapes

both illustrates the concept of flat shading and takes the tedium out of designing a shape’s

triangulation to be flat shaded.

4.1.5 Angel’s “hat” Demo

Angel moves to the topic of surface modeling with his hat demo, which shows students how

to draw their first complex continuous shape. It is an arbitrary 2D height map function.

Although those are convenient, most shapes a graphics programmer would like to draw are

not mathematical functions or simple height maps. Even shapes that qualify as piece-wise

functions might not have formulas that are known analytically. Angel’s code can be adapted

into new shapes by plugging in new functions of x and z (outputting y), but it is otherwise
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(a) Angel’s “hat” demo (Angel and
Shreiner, 2014d) (Chapter 5) (Angel
and Shreiner, 2014a).

(b) Most similar to: Our Surfaces Demo article.

Figure 4.5: Angel’s “hat” demo.

too specialized and would have to be reworked for making the 2D surface patches Angel

describes in the final chapter of his textbook (Angel and Shreiner, 2014a).

Angel’s code for this demo devotes fully 70 lines to nothing but defining the hat shape

itself. A vertex array is constructed that has only one data field, position. The 70 lines of

code do not separate any logic off that could be easily re-used for other similar shapes that

also only have a position field.

Our Surfaces_Demo is a far better introduction to drawing smooth shapes, and unlike

the above it is even suitable for drawing the arbitrary surface patches that Angel devotes

an entire chapter to. With the help of our approximately 50-line Grid_Patch class (from

Section 3.2.3.8), students can quickly set up a variety of other custom shapes that need not

be mathematical functions. For details on how “quickly” students can accomplish this, refer

to Table 4.1.

4.1.6 Angel’s “particleSystem” Demo

Angel shows particles responding to gravitational acceleration, Lennard-Jones attraction

and repulsion forces, and velocity constraints to prevent passing through walls (Angel and

Shreiner, 2014a). Our Inertia_Demo does the same things save for the Lennard-Jones forces,
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Name # Lines Name # Lines Name # Lines

Cylindrical Tube: 2 Open Cone Tip: 2 Torus: 9
Grid-based Sphere: 8 Regular 2D Polygon: 4 Closed Cone: 5

Closed Capped Cylinder: 6 Axis Arrows: 17 Five unusual surface patches: 22

Table 4.1: The amounts of lines of code required to create the various shapes in our Sur-
faces Demo article. Each shape’s code makes calls to our Grid Patch class to generate
surface patches. Students can see these highly optimized examples and learn to make their
own shapes, with more functionality and less complexity than with Angel’s closest example.

(a) Angel’s “particleSystem”
demo (Angel and Shreiner, 2014e)
(Chapter 10) (Angel and Shreiner,
2014a).

(b) Most similar to: Our Inertia Demo article.

Figure 4.6: Angel’s “particleSystem” demo.

but with one more important difference: Angel’s objects are not stored as matrices. They

have no rotation or scales of their own, and as such, angular momentum is impossible to

track. While rotational motions are difficult to track correctly, our demo assigns random

angular velocities and still looks far more convincing to the untrained eye than if the same

complex models were drawn with unchanging rotation as they fly around. As such, this

allows our demo to illustrate physical forces with more complex objects than Angel. This

benefit applies to students who re-purpose Inertia_Demo as well. Of the two, only our

demo allows students to integrate physics effects into their own animations without being

constrained to simple non-rotating dot shapes.
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(a) Angel’s “teapot5” demo (Angel and
Shreiner, 2014l) (Chapter 11) (Angel
and Shreiner, 2014a).

(b) Most similar to: Our Mesh Loader article.

Figure 4.7: Angel’s “teapot5” demo.

4.1.7 Angel’s “teapot5” Demo

Angel demonstrates a teapot model not to show students how to import arbitrary objects

such as the famous Utah teapot, but as an example in a chapter about surface patch generated

shapes. The teapot’s point data is hard-coded into the JavaScript code he provides, with no

generalized means to import any other models. As discussed in Section 3.2.3.15, there is a

student demand for placing pre-made shapes from the internet into their animation projects.

Our Mesh_Loader class and demo article provides a simple utility class that can do that,

allowing them to not only draw the same Utah teapot as Angel in this demo, but any other

model from an .obj file as well.

4.1.8 Angel’s “reflectionMap2” Demo

Angel’s reflection map demo and our Ray_Tracer are similar in that they both require code

that maps a rendered image into texture space for display on the surface a shape embedded

in 3D. In Angel’s case, the image is a simple reflection map, a re-rendering of the scene

from a different perspective than the camera using traditional triangulated geometry. In

our case, we use a much more intensive ray tracing process that allows us to draw a more
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(a) Angel’s “reflectionMap2” demo
(Angel and Shreiner, 2014g) (Chap-
ter 7) (Angel and Shreiner, 2014a).

(b) Most similar to: Our Ray Tracer article.

Figure 4.8: Angel’s “reflectionMap2” demo.

compelling effect that can include deeper levels of reflection, refraction, and shadows cast by

other objects.

4.1.9 Angel’s “figure” and “robotArm” Demos

Scene graphs were introduced in Section 3.2.3.18. Angel’s “figure” and “robotArm” scene

graph demos show the basics of one-level and two-level hierarchical objects, respectively.

Due to the low quality of these demos it is not even initially apparent that the objects

are 3D. The fact that the solid-colored shapes are not flat but are in fact cubes is only

visible after a specific sequence of control inputs that achieve rotations. This must be done

manually on multiple axes applied relative to the parent node in the scene graph. Angel’s

scene graph goes at most two branches deep and cannot be dynamically edited.

This demo does not make a very convincing case to students that they need scene graphs

as opposed to just manually maintaining a current transformation matrix in easier ways.

Normally a student could achieve their matrix hierarchy by simply entering and exiting

scopes of JavaScript functions and passing the current matrix. Here each deeper call would

serve to travel down the graph branches their scene is conceptually divided into. Even when
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(a) Angel’s “figure” demo(Angel and
Shreiner, 2014b).

(b) Angel’s “robotArm” demo(Angel and Shreiner,
2014h).

Figure 4.9: Top: Angel’s two “scene graph” demos (Chapter 9) (Angel and Shreiner, 2014a).
Bottom: Our Scene Graph Demo article.
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students must store their matrix history, this only requires manipulating a stack array, not

a whole scene graph.

Our Scene_Graph demo solves all these problems and many more by allowing arbitrary

and fast graph edits through a novel user interface. The visually compelling shapes that

result are more rewarding and informative. The Scene_Graph demo is one of many tools

we provide for building intuition about both matrix order and how to store and manage the

many matrices of a scene.

In conclusion, our demos are each similar to Angel’s but go farther to help students. We

now move on to our observations when using tiny-graphics.js in a real class.

4.2 Case Study: A Graphics Course Before and After

tiny-graphics.js

We observed the UCLA Computer Science class 174A “Introduction to Graphics” before and

after introducing tiny-graphics.js and its demos. We recorded differences in the outcome by

comparing the success of the term project assignment, based upon quality of the animations

that were turned in. Directly comparing the projects is difficult because the criteria that

constrained the projects were subjective; most of the grade for the animations came from

scores for creativity, complexity, and quality as deemed by the teaching assistants.

There is no easy measurement of the success of the class project assignment, that’s

comparable from one particular offering of the course to another. Averages of grades assigned

would not be a good measurement; grades were subjective judgments of quality. In the

first place they were often provided by the author themselves rather than some source free

from bias. Instead we ask the reader to compare for themselves screenshots of the top

student submissions before and after (Figures 4.10 and 1.1), hosted on the course page with

permission from the students.

What is shown above in Figure 4.10 are the top ten projects from 2007 as selected by the

teaching assistants at the time, representing only the best, so they are of higher quality than
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Figure 4.10: These animation projects were the top 10 selected from a 2007 offering of the
UCLA course 174A: Introduction to Computer Graphics. At bottom is the classmate-elected
winner. These are hosted by Professor Terzopoulos on the course page (Terzopoulos, 2017).
Compare these to Figure 1.1.
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an average sample would be. The 2007 batch was chosen simply based on what is available

with permission. They should be representative of prior projects because the assignment,

code template, and lectures remained largely unchanged for the decade prior to the creation

of tiny-graphics.js.

Our newer students’ work was shown near the beginning of this paper in Figure 1.1;

compare it to the older ones above. Note the differences in average shape complexity, as well

as the small number of shapes onscreen at once in older projects. Computers at the time could

handle many more shapes, so this was more a matter of the difficulty of placing shapes and

working with matrices in the given math library from Angel (Angel and Shreiner, 2014a).

That process is what changed. Our library also demonstrated more examples of custom

shapes. In 2007, the built-in shapes we offered for free use in projects had been limited to

the few simple primitives (sphere, cylinder, cube, cone) included in the C++ library “glut”

that we packaged with the project code.

Very few custom shapes are seen in the 2007 batch compared to those in Figure 1.1. On

average, projects went from using fewer than one to much more than one complex custom

polygon, and their complexity rose as well from nearly trivial shapes (of a dozen triangles or

so) to more elaborate ones. The difference comes from the overhaul our provided code base

gave to its treatment of shapes, and an increased capacity to use automation when building

them.

Due to subjectivity in our project rubric, it is useful to compare how projects went

beyond the rubric. In the stated requirements one custom shape was required, but how

many students made non-trivial ones? How many included a variety of closed volumes with

many triangles versus a single planar shape with a few triangles? Likewise, interactivity was

not required in the projects, but what proportion of projects added it anyway, whether via

keyboard, mouse, or HTML controls? These differences can be readily measured.

One such metric comes from the early 2015 run of our course. This was just prior to

the creation of any parts of tiny-graphics.js or their usage. Just 2 out of 68 students in the

2015 batch decided to add interactivity to their term projects by designing their code to
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handle input from the user. In contrast, the latest library version appeared in late 2017;

out of our newer batch of students, 18 out of 54 (fully one third) of them independently

decided to introduce interactivity to their project. To explain this eagerness we attribute

the better integration between our library and HTML; the improved ease provided by each

new version tiny-graphics.js when it comes to making interactive key-triggered buttons in

the web interface and connecting those to the 3D scene. The presence of interactive controls

also was likely helpful for students in the development process of their projects, allowing

them to control which parts or moments of their scene they are looking at dynamically for

ease of fault diagnosis.

One more metric that is available comes from the class’s supplemental online forum

(hosted by Piazza, a popular choice for university courses). This forum’s statistics can

indirectly help quantify how fast the development is of this educational code base. Changes

to the library code are driven primarily by demand, especially whenever sources of confusion

are identified during interactions with students on Piazza. The high rate of these questions

and answer posts is revealing.

We will consider the 47 day period from October 3rd to November 19, 2018. At the

beginning of this period, the latest version of the library was released to a new batch of

UCLA students. A peak of 164 unique users per day was measured on the class Piazza

during this time period. A total of 346 total message threads and 1592 total comments were

made over 47 days. These typically consist of specific questions of implementation about our

assignments and the open-ended term project. 422 of these comments were the author’s and

included long-form answers addressing the points of confusion. 342 of the message threads

have been marked as viewed by the author.

Every point of confusion that is identified on Piazza leaves a record. These records are

always harvested prior to the next offering of the course, resulting in a wave of code fixes.

We have done this for at least seven iterations of the course so far. The library is rewritten

as a new draft as each new course begins, while consulting these logs of conversations and

any notes we took about them. The more records there are, the more the library evolves to

smooth over rough edges and reduce all potential stumbling blocks the code itself might add
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to the education experience. Our average of 33.9 online comments per day when homework

is assigned is enough to provide significant and constant feedback to us. This statistic makes

our educational library and project very sensitive to the needs of its student stakeholders.

4.2.1 Study Limitations

To date there have been no formal, quantitative user studies on the benefits of tiny-graphics.js

or our website. For that to be possible would probably require that a University course be

built centered on the library, for the purpose of gathering such information. Historically, the

tiny-graphics.js library and all references to the Encyclopedia of Code have been provided

by a teaching assistant, who only has so much authority to organize such an effort.

Another option is to conduct student interviews about features to measure usability.

Similarly, we could include metrics into the website itself to track the usage of its features

and how long people spend on coding. Our Keyboard_Demo Secondary Scene Component

was built with this application in mind. It can log metrics of a whole open website window’s

keyboard usage. Analytics on our website could also be used to compare slightly alternate

forms of the same article or user interface to measure differences in correct usage, or version

popularity.

An analytics based approach might include setting up some formal coding environment

for a study group to compare how long people spend on other online resources such as

Google. The user study by Brandt et al. (2009) had these considerations and could serve as

a good model for us. They tasked participants with designing a web chat room application

and then monitored their foraging through online help resources while programming. They

distinguished whether students were using the web to learn brand new concepts, versus

refreshing their memory of specific details. Our study could make similar distinctions upon

users of our website who remix existing programs that we host.
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CHAPTER 5

Comparison to Related Work

We have described two projects: the tiny-graphics.js framework and the Encyclopedia of

Code. They add learning resources to the current toolkit of educators, programmers, and

researchers. Our project builds upon a backdrop of prior work. To show what is new that

we have added to these existing efforts, we now compare our projects to the most related

projects in the literature and industry.

We present a convenient chart in Table 5.1 that compares which features are present

across all popular related projects, and then ours. This chart highlights the platforms that

overlap our features the most. It also shows which of the features we offer are most unique,

versus ones that appear more commonly in existing platforms. We found our most unique

contributions to be the following:

• Our Smart Articles (from Section 3.2.1.10) seem to be unique. Recall that Smart Ar-

ticles use “work delegation” by way of leaving data for remote processes that can run

separate, heterogeneous programs. Recall that they use “grid computing”, a distribu-

tion of concurrent processes across volunteers’ machines. These are the two concepts

we have broken down Smart Articles into as separate rows in our Table 5.1. Smart

Articles intersect these features in a way none of the compared projects do.

• Our Active Textbooks (from Section 3.1.2.1), which also combine two rows of our Ta-

ble 5.1 in a way no other listed projects do. In this case, the two rows are specific

emphasis on 3D animation, and using something very close to Knuth’s “Literate Pro-

gramming” to deliver articles and programs that have that emphasis. These are again

combined in a way no other listed projects do.
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Runs in Web Browsers               

Offers Educational Articles to Non-Users        

Industry and Academic Graphics Methods             

Draws in an Audience with Games           

Dependency-Free  – – – G#  G# G# G# G#  G#

Open Source / Documentation     –   G#  –    G# –

Small Source Code (1000 lines or less)     

Only A Single Code File to Read    

Enhance JavaScript and WebGL APIs    

Neatly Embeddable Into Other Sites       

Live Coding Environment            

Collaborative Work / Remixing         

Hosting Service        

Crowdsourcing a Single Shared Codebase   

Grid Computing∗
  

Delegation to Heterogeneous Programs∗   

3D Emphasis         

Literate Programming Articles   

Has Academic Publication       

Supported by an Online Community             

∗Our “Smart Articles”. Legend: provided ( ); not provided ( ); partial/unknown (G#); not applicable (–).

Table 5.1: Our feature comparison to similar projects around the web.

• Being dependency-free, which is more ideal for education as discussed in Section 2.1.

Our project has lowered the bar of entry for programming on the web, as it bypasses

learning how to use frameworks, libraries, package managers, and organizing the as-

sociated files (since tiny-graphics.js fits in a single file). We instead deliver enough

functionality to the coder in very small JavaScript classes using automatic server-side

injection. In the end, the coder sees as little complication as possible: The contents of

a few code classes.

Ours seems to be the only web-based editor with convenient links automatically embedded

in each source code class that can be clicked through to all other code classes. Advanced

traditional code editors like Microsoft’s IDE do have this feature, but it is hidden behind a

menu or key shortcut.
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The Case for Teaching Computer Graphics with WebGL: A 25-Year Perspective (Angel, 2017)
Two Studies of Opportunistic Programming: Interleaving Web Foraging, Learning, and Writing Code (Brandt et al., 2009)
Literate Programming (Knuth, 1984)
Teaching Robotics with Cloud Tools (Zubrycki and Granosik, 2017)
MOOCs in Computer Graphics (Bourdin, 2016)
Why Do Developers Use Trivial Packages? An Empirical Case Study on npm (Abdalkareem et al., 2017)
A new way of teaching programming skills to K-12 students: Code.org (Kalelioğlu, 2015)
Programming by a Sample: Rapidly Creating Web Applications with d.mix (Hartmann et al., 2007)
Students’ use of Wikipedia as an academic resource—Patterns of use and perceptions of usefulness (Selwyn and Gorard, 2016)

Table 5.2: The main academic works our comparison will rely upon are found in these
citations.

Lastly, not all of the projects we surveyed can host code. None besides Wikipedia use

our practice of sharing a single namespace for all their crowd-sourced submissions. We do

so with the goal of creating a giant single code ecosystem that can be easily verified to cover

every topic (covering every name) just like an encyclopedia.

The projects we will review fall under the topics of: 1. Online encyclopedias and course

materials 2. Digital Game Based Learning (DGBL) 3. Educational web demos and visual-

izations 4. The current ecosystem of similar graphics demo hosting and remixing websites

5. Collaborative work and software development 6. Frameworks building on WebGL, and

7. Industrial tools for graphical effects.

5.1 Wikipedia

Wikipedia may be today’s largest and most recognizable reference. As of now it is the sixth

most used website in the world. It commands figures of 4.6 million English articles, 287 other

languages, over 18 billion page views and 500 million unique visitors each month (Selwyn and

Gorard, 2016). Wikipedia is mentioned in literature across most disciplines, with descriptions

of online collaborative encyclopedias often mentioning Wikipedia alone, taking it for granted

as the only noteworthy one (Staub and Hodel, 2016). Wikipedia’s direct predecessors were

Encarta (an offline hyperlink-based encyclopedia distributed on disks) and Nupedia, both

now defunct due to Wikipedia’s popularity (Contributors, 2018). The same goes for Google’s

more recent failed competitor attempt called Knol (Anderson, 2009).

Many researchers acknowledge the impact of Wikipedia upon education (Selwyn and
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Gorard, 2016) and on the literature itself, such as in the area of natural language processing

(Daxenberger and Gurevych, 2013).

The Encyclopedia of Code is meant to exist alongside Wikipedia, putting a different spin

on the idea of an collaborative encyclopedia with a different impact in mind. Wikipedia

already does a fine job of cataloging the world’s knowledge in an easy to use form. It

does its job well of educating the next generation. But it has an audience of humans, and

only humans. The articles do not educate the computer that loads them, or change their

execution or state in any way at all that varies by article topic. It does not provide an

interactive demonstration of the topic for a human viewer, or use code about the topic to

augment a running computer program’s capabilities.

As a reading resource Wikipedia is more of a database than a program. Its articles cannot

perform topic-related actions because each article does not have any code or instructions for

the visiting computer to run pertinent to its article topic. Despite the vast and complete

knowledge it holds as an encyclopedia—seemingly sufficient for recreating modern civilization

from scratch—Wikipedia is unable to reflect upon what it knows in each article via a running

program, or perform different actions based on the article’s contents. It cannot ask questions

or delegate those questions to other articles. If it could do that well, collectively the whole

program would be as smart as all of humanity’s knowledge combined.

The primary difference between this project and Wikipedia is that Wikipedia is not

alive in a certain sense. Our project asks what it would be like if Wikipedia articles could

communicate with each other, while running simulation programs about their topics from

within each visitor’s computer. Our Smart Articles defined in Section 3.2.1.10 do just that.

Inter-connected Smart Articles drop off messages for one another, which queue up work

requested of specific articles. The work is farmed out to execute on the computer of the next

visitor to the article, and can make use of that particular article’s programmatic capabilities.

When articles are visited concurrently the communication is real time.

In Section 3.2.2.6 we showed one of our articles, with a demo specialized only in geometry

collision and physics, delegating work in real time to another article with a demo specialized
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only in ray tracing to accomplish something it otherwise would not know how to do, as if its

program had read the article like a human would. Specifically, it took advantage of a small

amount of extra code supplied in a wrapper class to help it read and act on data left for it

on our web server.

Our project also asks, what if this concept was taken to its logical extreme? Could

Smart Articles about high-level and low-level programming concepts (graphical or other-

wise) be made to communicate, and start delegating questions to one another? One example

of this might be a high level article (about programming language types, or how to struc-

ture libraries, or more) that is designed to cooperate with Smart Articles about basic data

structures, adding automation to some effort to implement each basic data structure in each

language. How far can the automation and delegation go when making these?

This ambition could also be applied to high-level concepts besides programming, like

physics, while still producing a program. Smart Articles about different physics timestepping

methods could be made to communicate with articles about different physical materials

or objects, allowing any combination thereof to be viewed in a simulation. Could Smart

Articles communicate about topics as far reaching as Wikipedia articles cover, such as on

modeling social phenomena, or on algorithms based on reasoning that come from the study of

philosophy and logic? If so, programmers could even manually delegate lofty questions about

these out from their code. Eventually any topic covered on Wikipedia could conceivably fall

under the scope of what topics a Smart Article can tell another program about, for it to act

upon.

Many research projects boil down to the novel combination of two or more things in ways

that have never been tried, like mixing a little of one test tube with a little of another and

finding out which pairings work. The most recent example of this that we have seen (out

of many) comes from machine learning research. Ha and Schmidhuber (2018) combines one

program that brainstorms virtual worlds with another that brainstorms solutions to virtual

combat in 3D worlds. The two unrelated processes help each other out in a co-evolutionary

way when put together; the whole is greater than the sum of its parts. Likewise, for our

project to allow smart encyclopedia articles about projects to talk to one another—by being
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in the same source code ecosystem—it formalizes this process and lets web visitors easily

come up with new pairings and run the resulting programs.

5.2 Education in Computer Science and Math

One movement found in the literature that overlaps our goals is the search for exceptional

Computer Graphics assignments (Duchowski et al., 2017). A 2017 SIGGRAPH panel issued a

call for submissions in order to build a collection of such assignments, seeking to arrange them

by where in the curriculum of a graphics course they would appear. This structure would

resemble the current selection of graphics articles initially created for The Encyclopedia of

Code, which correspond in a similar fashion to certain chapters in a standard graphics course

textbook.

Refer back to Section 3.1.1 for a discussion of prior online graphics courses and their

impact.

5.2.1 Literate Programming

Our sample encyclopedia articles offer something like Literate Programming, where we in-

terleave a program’s full source code with text explaining the code’s intentions and design.

Refer back to Section 3.1.2 for our application. Others have also attempted to use WebGL

for Literate Programming. Chang et al. (2017) did so (with a focus on audio, not graphics)

and used a dedicated language for Literate Programming as well as library-free (vanilla)

JavaScript. Further online applications related to Literate Programming will be introduced

in a moment in our discussion of p5.js.

5.2.2 Project Jupyter

Jupyter Notebooks, named after three of the programming languages they support (Julia,

Python, and R), are a means of publishing a computational method which can be readily

read and replicated using a web browser (Perez and Granger, 2015). They include code,
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prose and results, very similarly to our Active Textbooks model. These Notebooks contain

embedded panels called “cells” within the HTML document that can show code editors or

graphical displays.

One especially promising feature of Notebooks is the ability to display lines of code out

of order in the editor, an integral characteristic of Literate Programming as it accommodates

human readers. Our “Code Widgets” panels could benefit from having similar functionality,

or at least the ability for each panel to show a selected range of line numbers. Another

interesting feature of Notebooks is that one type of cell can be interacted with as a command

line, or can include arbitrary JavaScript for full control over the surrounding page.

While very analogous to our Active Textbooks, what we propose goes farther in a few

ways. Firstly, Jupyter Notebooks are hosted by individuals (such as on GitHub) and col-

lected manually as links. There is no central repository that allows users to generate new

hosted Notebooks themselves easily for purposes of remixing, or experimentation. Secondly,

Notebooks are often graphical in nature but this is usually 2D, by plotting charts and graphs.

They do not generally use 3D or involve the graphics pipeline or GPU in any way, nor create

3D HTML canvas contexts (WebGL). These are thus not suitable for teaching 3D graphics

or helping others develop low-level graphics programs, engines, or games.

Finally, and most importantly, their features that resemble an Active Textbook (live,

interactive code editors) do not seem to be available to casual visitors. None of the Jupyter

Notebooks checked were capable of live editing in the Chrome web browser without additional

preparation; all were read-only code panels and the graphical plots were static as well. It

seems that the Notebook “cells” can only be experimented with by power users who have

pre-installed a particular Python package, whereas our Active Textbooks can benefit all web

visitors, including non-programmers, instantly without installing anything.

5.2.3 Educational Web Demos and Visualizations

There are very early projects that attempted the ambitions of this work. One early ex-

ploration was by Brown and Najork (1996). Brown published animations of how various
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programming algorithms work, in much the same spirit of the Encyclopedia of Code. Their

“electronic textbook” consists of a set of web pages (analogous to our active textbooks).

Many of the same ideas are found, such as control panels and multiple simultaneous views

of the running program as it presents an algorithm to the user.

Brown’s work predates Windows 95 and even the emergence of support for JavaScript

in websites. Without the ability to have their page run any sort of code, Brown envi-

sioned “active objects”, regions of the page that are drawn by programs dynamically loaded

through the Web—but static once rendered to the client, along with any other media files

they initially loaded onto the page. Little did they know that years later JavaScript would

revolutionize web pages into dynamically interactive documents, much less with WebGL and

modern shader-assisted graphics. Their project existed in a backdrop of the Windows 3.1

era (although they used the UNIX-like X Windows OS); in a lot of ways our project is a

more modern take on it now that better technology is available.

More recently, others have made educational web tools that visualize data using WebGL.

Rego and Koes (2014) used WebGL to visualize large molecules and their data. It includes

a sharing system and a code library for developers. Sherif (2015) sought to make it easier

to view huge distributed data sets about brain imaging. Their work saves the viewer from

having to install any software or transfer all the data onto one machine. This allows scientists

to build guided hypotheses “after analyzing the mass of available data”. The web interface

allows them to publish and share data with one another.

Heer and Bostock designed a software library for online visualizations and present a se-

ries of informative demos about how to use them, in much the same spirit as our project.

Visualizations include Voronoi Diagrams, Chord Diagrams, Node-Link Trees, Sunbursts, Ge-

ographic data, and Circle packing graphs. These make use of Bostock’s popular D3.js library

for the interactive visualization of math and data. On the academic side they experimen-

tally assess the design of their visualizations using Mechanical Turk, a form of crowd-sourced

survey (Rosenberg, 2015).
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5.3 Collaborative Software Hosting and the Body of Open Source

Software

This project benefits the open source community by providing an alternative collaboration

platform. The open source movement spreads the notion of collaboration by creating code

that is packaged with permissive licenses. The related free software movement rejects the

idea of proprietary software altogether and maintains the vision that all software is a part

of freedom of speech (Warger, 2009).

Open source software is often collected in repositories and automatically harvested as

needed by software package managers. These have search-able indexed databases of en-

tire libraries, preserving the entire file structure and various versions of each. The leading

JavaScript package manager is npm (Wittern et al., 2016). Package managers can read meta-

data about library dependencies and help programs to load the correct code from disparate

sources. The end program has effectively delegated to outside code on the web.

The package manager “reads” metadata of heterogeneous programs and uses the right

specialized one at the right time. In a way our Smart Articles exist in the same spirit as

these. Smart Articles are also readable by computers for delegation of specialized tasks.

They manage not just code files but heterogeneous running processes over the web, thereby

employing grid computing (distribution of work over distant machines). Smart Articles are

even more computer-friendly than the packages managed by the likes of npm as they can

not just use metadata to give problems new capabilities but also share the load of other

programs when needed.

The Free and Open Source movements have an effect of collectivizing code for the good

of society; it “demonstrates how labour can self-organize production, and, as is shown by

the free operating system GNU/Linux, even compete with some of the worlds largest firms”

(Söderberg, 2015).
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5.3.1 GitHub

GitHub is the largest host of source code in the world (Gousios et al., 2014). Based on

the Unix program git, it manages versions of user-submitted software and other documents.

It is the most popular repository of open source code next to its competitors SourceForge,

Google Code, Bitbucket and Gitlab (Finley, 2011). Like the Encyclopedia of Code, GitHub

is capable of running certain programs submitted to it directly by visiting certain URLs.

The organization of our own code repository under the encyclopedia model makes it a

very different place from GitHub. Our encyclopedia only allows one article per topic. This

means the redundancy found on GitHub, multiple code projects accomplishing the same task

in different ways, is not present. As a tradeoff, this instead gives us a single body of code

with an unusually full namespace, with the aim of full coverage of topics and a complete set

of tools for the programmer. Users would easily be able to tell if a topic is already covered

or if a tool is already available by simply typing in its name and checking for a matching

class in our codebase.

Not only does our codebase lack any duplicates, but it automatically presents itself to the

programmer in a minimal form—a process not built into GitHub. Dependency injection from

our server is used to present visitors with only small parts of our giant combined codebase

at once. They see the parts that the article they are viewing immediately needs, and no

others. The source code stays minimal and readable, and wasteful amounts of data are not

transmitted. Users of the Encyclopedia of Code can code as though they could call upon a

massive, fully featured library of all the demos ever made, or if they want, as though they had

imported tiny-graphics.js alone if that is all their code uses. By having this advantage over

GitHub it fulfills a different niche, encouraging the design of one giant all-purpose codebase

that explores every educational topic.

Lastly, GitHub programs also have no “Smart Article” analogue; they have no built-in

way to leave jobs for one another to execute, when they are run the next time (or in real

time if run concurrently). GitHub as a platform does not have a back-end like ours that

naturally promotes Grid Computing, the crowdsourced volunteering of CPU time.
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5.4 Similar Efforts Around the Web

This section explores projects around the web that are relevant to this work. These all

use collaborative coding done as small “re-mixable” widgets and demos rather than large

projects.

We do not directly build upon any of these websites, in the sense that our tiny-graphics.js

wholly improved upon Angel’s codebase (see Section 2.2.2) and other current tiny WebGL

libraries. Rather the Encyclopedia of Code is meant to serve alongside these other tools as

they each teach programming using their own strengths.

5.4.1 d.mix

The d.mix project (Hartmann et al., 2007) was an academic attempt to “democratize” appli-

cation development via collaborative coding. Like our project, it was an earlier exploration

of what happens when web visitors of any skill level can host pages and remix each others’

pages into novel creations.

The idea of d.mix was to allow novice programmers not familiar with particular web

programming APIs to nonetheless build pages that use them to show live content from

major sites around the web. The researchers experimentally tested a system where users

build “mashups” by scrolling through and choosing from a selection of interactive elements,

obtainable from search results on popular websites as of 2007 (YouTube, Google Maps,

Yahoo Search, Flickr, Amazon and the Java Developers Almanac). Users of d.mix could

select associated code that generates the particular elements or operations the programmer

wants to combine into their own website. The results could be shared and remixed by others.

Unlike our web tool, d.mix must be installed to be used.

5.4.2 Glitch

Glitch (Software, 2000) is a code remixing website with very similar educational goals to this

project. The makers of Glitch designed it as a resource for web programming, and envision
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their users learning through thousands of crowd-sourced educational tutorials. These are

tiny user-submitted web applications divided up by topic that each teach visitors how to

accomplish some web development functionality (sometimes directly providing the tool for

it).

Glitch is made by the distinguished creators of stackoverflow.com, a crowd-sourced answer

website that itself has changed the practice of programming worldwide. It is a reference

source for most possible programming questions, and the top result on Google for most of

them. While stackoverflow crowdsourced its conversations and programming answers, Glitch

instead crowdsources deeper tutorials and demos.

First and foremost, Glitch is a free host of websites, of which our Encyclopedia of Code

is one. To understand Glitch, first consider pastebin.com, a popular online host of text

snippets, known for immediately giving visitors their own permanent URL for any text they

have pasted in to its interface. Glitch is similar to that, although visitors to Glitch do not

enter just any text. They enter the JavaScript code for a web server front and back end.

Whatever they entered is saved at a permanent URL, and then the code executes forever on

both Glitch’s machine (the back end) and the website’s visitors’ machines (the front end).

A working website results, and the back end allows the website to have memory, so that

website content can reflect prior visits. Projects running on Glitch back end sleep and wake

up when requested to keep the service moving fast enough.

Any website made with Glitch can alternatively be viewed with an advanced source code

editor that is provided. Other Glitch users can see it and, with the touch of a single button,

remix the page in minor or major ways, basing their own website on it.

Our project is more than a smaller Glitch hosted on Glitch; we distinguish it from its

host in a few ways. Our tutorials are (currently) more focused in scope, on Computer

Graphics education, and use extra technology (WebGL calls) to do so. This means we can

show 3D animations and explore graphics, unlike most Glitch pages. Our description during

the comparison to GitHub of how our encyclopedia organization enables code projects to be

more tightly integrated applies here to Glitch too. Besides a code editing interface like Glitch
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provides, we also provide a separate code *reading* interface complete with hyperlinks for

navigating related classes in a large codebase.

5.4.3 p5.js

The p5.js website (McCarthy, 2013) consists of tiny self-contained programs with similar

structure to the Encyclopedia of Code. Many sample demos that use the p5.js JavaScript

library are shown. Each graphically illuminates a particular educational topic. To name

a few, there are mathematics examples, L-Systems, flock simulation, interaction, and the

practical use of sound, out of many dozens of others. These are interactive animations like

ours with live code editors beneath them. Anyone using the library can embed editable code

widgets into their web pages using the animation capabilities of p5.js. Visitors get live visual

results right above where they edit in these small code panels.

Multiple researchers have mentioned the potential that exists in p5.js’s interface for Lit-

erate Programming, using the small code editors and visual results pane it adds to websites;

Zubrycki and Granosik (2017), in similar spirit to this project, use p5.js for Literate Pro-

gramming and call it as such. They embed p5.js’s runnable, editable animation code widgets

on their website in between their written materials for robotics students. One such demo

is for numerical inverse kinematics. Code and an animation of the mechanical linkages is

displayed right in between the involved steps of math formulas.

In each p5.js-based post written by Zubrycki and Granosik (2017), they embed multiple

versions of their program, mirroring our Active Textbooks concept, where we suggest illus-

trating programming concepts that build upon each other by showing many 3D canvases

containing incremental intermediate programs.

Zubrycki and Granosik (2017) experimentally found that cloud tools such as p5.js create

a better experience for students compared to similar robotics lessons they encounter with

MATLAB, another common tool in engineering classes. As a proprietary system, students

only have temporary access to MATLAB while in school.

Compared to our website, the p5.js page lacks a way for visitors to host their remixed
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code or show others, or any automatic interface to submit new educational articles to their

example list. Above all, most demos offered for p5.js are only in two dimensions; the 3D

capabilities of their library are not emphasized over the 2D graphics “contexts” that HTML

canvases can display.

5.4.4 Dwitter

At https://dwitter.com (Selvik, 2016), visitors type into a code editor and show off their

best graphics demo in 140 characters of plain JavaScript. This is yet another website that

allows quickly contributing crowd-sourced tiny JavaScript applications that are graphics

related. Here again the emphasis is on 2D HTML graphics contexts rather than 3D, and

upon code golf (the art of designing short code) rather than on education.

This process of remixing toy programs on Dwitter can itself be educational, however.

Performing a small edit and then re-running a demo can be useful even for gaining a first

impression of how the submission’s program works. Users unfamiliar with a piece of code,

or even coding at all, can still try performing arbitrary changes to the math inside the code.

They can then learn by observation, noting changes to the graphical output. This especially

works on Dwitter due to the enforced 140-character code length of all demos. Even if this

educational purpose is by accident, Dwitter shares it and other structural similarities with

our website.

5.4.5 ShaderToy

At a 2016 ACM SIGGRAPH conference talk delivered by Edward Angel, we heard of https:

//shadertoy.com being described as the current greatest website on the internet. This

should be understandable to anyone who visits and observes the thousands of impressive

crowd-sourced visual effects found under their “browse” page. ShaderToy is one of the only

other websites out there to actually host WebGL for visitors and display it for others, like

we do in this project. The creators of ShaderToy have organized courses about it for the

SIGGRAPH conference (Jeremias and Quilez, 2014).
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ShaderToy is an online code sharing and hosting platform for WebGL. There is emphasis

on shaders, specifically the fragment shader. Their users’ submissions explore the wide

aesthetic range of possible fragment effects that graphics cards are capable of. The vertex

geometry submitted to the card is always a single quadrilateral, and then ray tracing is

used by the fragment shader to draw the real scene. Audio output of graphics cards is also

explored.

ShaderToy’s focus on custom shaders allows the demos to produce breathtaking original

visual effects, and there are thousands of them available to browse and instantly activate.

ShaderToy provides a single static JavaScript program for all projects, and the users write

a fragment shader for it; recall that this is its own independent program separate from the

JavaScript. This fact affords opportunities to extract shaders from shadertoy.com and insert

them into piecemeal into any other WebGL program. One of our own students successfully

did so. They created a script that embeds shaders hosted on https://shadertoy.com into

their game made using our tiny-graphics.js framework. They used them to color in or texture

their polygons with unique effects such as fire and water. In this way, our web demos and

animations can co-exist with the ShaderToy website. They are more specialized than us in

the niche domain of fragment shaders, and they maintain a good repository of shaders that

we can import from.

ShaderToy has a unique website navigator that takes advantage of WebGL. They embed

several WebGL canvases together on the page to browse submitted programs. In their navi-

gator the programs run one at a time when you hover the mouse over them, but otherwise are

all pre-loaded onto the same page and can thus run instantly upon user interaction. Clicking

allows the submission’s code to be inspected. The user is then greeted by a built-in code

editor with syntax highlighting, that is much like the interface on our website. Their editor

pages are capable of both running visitor’s programs and saving them for permanent hosting.

ShaderToy already has an existing community by providing forums, comment sections, and

likes.

ShaderToy provides a single static JavaScript program that does not give users control

over their own web page layout (including interactivity) or their own CPU-side program like
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our tiny-graphics.js does. The ShaderToy website does not put forward official educational

articles on graphics topics, much less collect tutorials of a general encyclopedic nature.

Unlike in our Encyclopedia of Code, ShaderToy’s visitors can generally only interact with

one submission’s capabilities at a time, and must combine them by using the remix feature

on them individually.

5.5 Frameworks Building on WebGL

Our project offers a solution for using WebGL, especially for graphics education. In Sec-

tion 2.2 we compared our solution in detail to another WebGL framework that is purpose-

built for graphics education, that of Angel provided with his Computer Graphics textbook

(Angel and Shreiner, 2014a) and SIGGRAPH course (Angel and Shreiner, 2016; Angel and

Haines, 2017; Angel, 2017). Ours is far from the only WebGL utility library out there. A

popular game engine, PlayCanvas, is based on WebGL and is discussed at the end of this

chapter. But foremost among WebGL utilities is the “three.js” library.

5.5.1 three.js

Three.js (Cabello, 2018) is another frequently used option for teaching today’s graphics

courses. One example of an online course that uses Three.js on Udacity is (Haines, 2014).

The three.js framework has more “favorites” on GitHub than any other WebGL project by

nearly two orders of magnitude (Cabello, 2018); it is an extremely popular base to build

WebGL programs on top of.

One of Angel’s design goals for his course was to avoid layers of separation between stu-

dents and any details about implementation and architecture. Hence, he ruled out three.js,

which has hundreds of source files and an interface adding its own learning curve to ba-

sic graphics concepts. As Angel described in (Angel, 2017), three.js fills a different niche

than what is desired for an engineering course where students are mainly concerned with

architecture and low level operations.
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Whether it belongs in the classroom or not, three.js is impressive to behold. Its makers’

website features a long list of links to beautiful web demos to showcase their useful WebGL

utilities. While this is more flashy than the bare bones framework and demos provided by

Angel, it does not surpass what the Encyclopedia of Code could eventually do with the sum

of hundreds of articles. Unlike three.js, each of our demos depends on only a few files and is

packaged as a minimal executable. Ours are thus easier to fully demystify and to master.

5.5.2 BabylonJS

The other big name in WebGL frameworks is BabylonJS (BabylonJS, 2013), an adaptation of

Microsoft’s Silverlight 3D system. The babylon.js library, like three.js, wraps WebGL. Also

like three.js, the website for it provides a number of working examples organized by topic. In

Babylon’s case the examples (BabylonJS, 2014) each have supporting documentation that

is far more learner friendly than three.js; BabylonJS intersperses demos with educational

tutorials that include photos of the demo for each step. They include code editor widgets with

syntax highlighting like ours. Out of their many tutorial lessons there is a heavy emphasis

on ones about game and physics topics like collisions rather than just basic animation and

general graphics card capabilities.

Many of the same things already said of the p5.js examples page (McCarthy, 2013) apply

to BabylonJS except this time the emphasis is on 3D and the same WebGL technologies we

use are present. Many parallels to our own project can be drawn, so it is worth pointing

out the clear differences that put our project into a different niche. BabylonJS already

dominates its own niche, with a large community of developers maintaining it, and having

powerful backing from Microsoft from day one.

One major difference is that BabylonJS is not a collaborative platform; it does not

host user-submitted demos or provide an interface for them to be sampled or remixed.

BabylonJS creations are typically self-hosted and posted on the html5gamedevs.com forum

(html5gamedevs, 2013). Our platform provides its own instant hosting. Code submissions go

in our repository where they can work together in various ways. We envision our encyclopedia
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codebase as one giant project instead of many independent projects. Progressively more

phenomena could be modelled by our system in this way to create one comprehensive virtual

world, distinguishing it from a community like Babylon’s where each member makes their

own game-engine powered app.

One individual contributor made a billiards game project showcased on BabylonJS’s

main examples page that plays the same way as our Visual_Billiards demo, right down

to similar controls and colorful ray visualizations of which balls are in the cue ball’s bounce

trajectory. Ours has the advantage of being open source and available to learners. It is

also unclear how large the source code is—their obfuscated code is around 100,000 lines.

Something of that scale could never neatly fit in with a couple of text pages in an educational

tutorial. Their purpose in making this billiards game was different from ours, which was to

educate and prove the grid computing and delegation capabilities of the Smart Article.

Rather than only one running program we have multiple on several browsers helping each

other out.

BabylonJS generally cannot implement our concept of Smart Articles. In these, educa-

tional demos hosted on the same place delegate work to one another. They serve to teach

each other, not just the students who are reading the demo page, how to perform an algo-

rithm or do some simulation task. Our project’s hosting also affords it the opportunity for

grid computing, using the visitor’s computing resources to make the demos go faster; this

falls outside of Babylon’s scope.

Babylon’s excellent tutorials do not fall under our definition of Active Textbooks, since

they contain static photos instead of embedded demos / code editor widgets. We have that

advantage over Babylon, although they easily could have achieved Active Textbook arti-

cles; it is possible to embed Babylon’s demos and editors in any website using the CodePen

(CodePen, 2012) JavaScript sharing website, which comes with a package manager compat-

ible with BabylonJS. In a similar vein, three.js is on there, as well as explicitly built in to a

different popular JavaScript sharing website, JSFiddle (JSFiddle, 2010).

Our project’s organization is different from BabylonJS. This is influenced by the way

120



the Encyclopedia of Code began and its intended audience of ambitious students trying to

put their project over the top with advanced topics for extra credit. As a general-audience

encyclopedia, our list of allowed topics for articles potentially has a much wider range than

Babylon’s list of examples. Lastly, our library does all this in a single file. Even for libraries

of the same small size as ours, ours saves students the step of file management. The file is

human readable and very compact at the same time, to keep the focus on higher level code

organization, and make it possible to visualize whole code structures at once.

5.5.2.1 Academic Ties

Our project’s academic ties provide the main distinction from Babylon, considering Baby-

lon’s otherwise very similar web demo arrangement and their extensive graphics tutorials.

We, however, have direct comparability to an existing textbook, due to our association

with Angel’s library. Our project is an important bridge between community projects like

BabylonJS and University projects like the Angel book.

We may have demonstrated an improvement compared to an academic library, but that

is actually not hard to do; engines like BabylonJS exist that already easily outdo Angel’s

WebGL framework. Code used for teaching is never necessarily at the cutting edge. Due

to institutional momentum SIGGRAPH courses like Angel’s on WebGL (Angel and Haines,

2017) should only be expected to contain techniques attributed to renowned academics,

not tools from just anyone who has made a breakthrough. Our project likewise may never

be famous enough to appear in textbooks, but at least it mirrors the structure of current

textbooks in a way that can better serve academic courses in graphics.

Libraries like Angel’s and ours are also structurally easier to integrate with a university

course. Specifically, they are small enough to fit in the pages of a textbook in full to show how

to organize WebGL code. A BabylonJS or three.js based book that explains graphics topics

in traditional textbook chapters would only have enough space left to superficially cover its

external API. There would not be time to cover the underlying WebGL implementation of

the framework, because these frameworks are huge. Comparatively, tiny projects like ours

121



and Angel’s can readily have their workings fully laid bare in the small space of a tutorial, so

the student feels like they are learning about WebGL and graphics in general, not Babylon

specifically, and therefore are not wasting their time by learning a single framework out of

many.

5.5.3 More Modular than Other Frameworks

The modularity of our website allows it to teach more with less clutter compared to most

alternatives. Our core module, the tiny-graphics.js file, is orders of magnitude smaller

than three.js or BabylonJS (even fewer lines than Angel’s library), addressing Angel’s con-

cerns about how three.js’s massive interface might abstract away architecture details from

students—in our library, implementation and WebGL calls are always just one thin layer

away.

Without relying on external code, our small single-file implementation nonetheless presents

several of the same features present in three.js: Data loaders, math utilities, cameras, input

management, texture images, and a framework for organizing geometry, shader, and material

code.

In a small, thin layer our library manages to include all these features. It leaves out other

things that three.js or BabylonJS can do, but we do not have to leave them out entirely. This

is where our web resource’s modular organization as an encyclopedia can shine. Any pieces

we leave out of the core tiny-graphics.js can still be added back on later as self-contained

demo articles covering one topic and nothing else. These can go well beyond that of setting

up WebGL. Our code’s organization into independent tutorials can gain back the major

features we are missing from three.js such as sorting and frustum culling.

Any other common graphics capability found in three.js, such as its scene graph tools,

can be hosted on our website isolated away from other code at a particular URL. Scene

graphs can be included optionally from our web server by simply visiting the article called

Scene_Graph_Tool (from Section 3.2.3.18), or by a user mentioning the class

Scene_Graph_Tool in source code. When that topic’s particular source code is not needed,
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it is not imported and is not cluttering up the source code the visitor sees, or the main

codebase, because all articles contain minimal programs for showing the given demo with-

out anything else distracting from the education. The same goes for code about collision

detection, rendering text, special shapes, and ray tracing. None of the source code for these

concepts is included unless the user is visiting an article about them; it is invisible whenever

it is not needed.

5.5.4 Other Tiny Graphics Libraries Around the Web

Some JavaScript libraries exist for making 3D graphics on the web easier to work with,

and try to do nothing more than wrap WebGL commands in helper functions or classes,

just as our tiny-graphics.js utility does. Even some of these alternative wrappers also have

“tiny” in the name, such as TWGL (Tiny WebGL) (greggman, 2015), adapted from the

same author’s TDL library. According to its author, the TWGL library’s “sole purpose”

is to make using the WebGL API less verbose: “TWGL is NOT trying to help with the

complexity of managing shaders and writing GLSL. Nor is it a 3D library like three.js.”

TWGL successfully organizes WebGL commands and simplifies the WebGL API, but

stops there. Our library of course goes further, providing integration with all the complex

examples on exhibit at the Encyclopedia of Code website. TWGL has a more limited scope

than our utility, despite the same or bigger size in code; this is due to their more thorough

coverage of WebGL’s API and specification to ensure a complete wrapper.

In summary, the main issue with Tiny WebGL (TWGL) for the purposes of a graphics

course is that it is not tiny enough. TWGL is for users who do not want to touch WebGL

directly or make any of its API calls themselves. But the comprehensiveness of TWGL in

wrapping every single possible usage of the WebGL API does not make for easy reading.

Nor does its source code serve an educational purpose like our tiny-graphics.js, detailing

what a student minimally needs to do to get WebGL running in a well-organized way. In

our framework, only two JavaScript classes (Vertex_Buffer and Shader) do nearly all of

the heavy lifting of calling WebGL, and are each about a page long, which is much more
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digestible for a beginner. Our library’s usage of only the details from the WebGL spec that

it needs is more optimal for accompanying a course or textbook; our single file organization

means it can feasibly be printed out in full.

5.5.4.1 Relation to the Encyclopedia Of Code

TWGL is not without educational ambitions. It is associated with a website at

https://webgl2fundamentals.org by the same author, hosting a series of tutorials and

WebGL advice articles. The GitHub development page for their website (greggman, 2018)

details plans that bear a striking resemblance to our project. Their article topics wishlist

overlaps our own list of articles that are either complete or currently under construction for

the Encyclopedia of Code. Topics include scene graphs, skinning, frustum culling, grid or oc-

tree culling, integration with https://shadertoy.com submissions as mentioned previously,

text rendering, and spot lighting.

5.6 Industrial Tools for Graphical Effects

Computer Graphics research supports multi-billion dollar industries such as film, websites,

gaming, engineering, scientific computing, and data visualization. For the film industry,

best-selling software tools that have emerged for graphics include Maya, Houdini, and 3ds

Max (Govil-Pai, 2006; Labschütz et al., 2011). As with three.js, working with pre-built tools

is usually a trade-off of flexibility for convenience. The user gains a way to re-use the visually

appealing effects the software’s designers happened to include based on customer demand.

But for this the user often sacrifices flexibility to pave new ground or take a radically different

approach than the software makers envisioned. While this drawback applies to high-level 3D

modelling tools in general, software suites like Maya are actually mature enough to avoid

it somewhat. Maya can integrate desired new methods from the research literature directly

via plugins whenever the built-in features are not enough.

Our project, while adjacent to this industry, does not fill the same niche since its fea-

ture set (the sum total of its current educational demo articles) is so small. But our
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Scene_Graph_Tool subsection in particular is relevant, since it provides a visualization of

how scene graphs work, which are at the heart of modeling software. Our website can there-

fore at least build upon industrial tools educationally, by serving as a valuable training tool

for those wishing to learn how they work.

Our Scene_Graph_Tool, described in Section 3.2.3.18, performs and visualizes edits to a

scene graph. It constructs elaborate 3D shapes showing a high degree of symmetry. With a

single keystroke our tool can create self-similar designs, by creating child graph nodes that

continue the transform pattern of their close ancestors. The same graph operation requires

a sequence of several UI window interactions to do on Maya or on experimental tools that

seem to support it such as in Jacobs et al. (2017). Giving the user the option to see their

self-similar designs emerge at interactive speeds does not seem to have been done before.

5.7 Digital Game-Based Learning

The Encyclopedia of Code includes educational games. Our Bases_Game, detailed in Sec-

tion 3.2.2.1, is an interactive page and 3D demo that teaches a general audience concepts

from matrix algebra, especially order of multiplication.

Perhaps the biggest effort toward Digital Game Based Learning (DGBL) today is Code.org

(Kalelioğlu, 2015), a nonprofit that is dedicated to expanding access to Computer Science.

Their Hour of Code campaign (Wilson, 2014) uses Computer Science games in the classroom

to engage tens of millions of the world’s K-12 students, and has also successfully lobbied for

changes to policies and curricula.

The Code.org and Hour of Code websites showcase a search engine where hundreds of

their educational programming games are visible in one place. Each is displayed with their

recommended grade level and topic coverage. They include contributions from partners such

as Disney, Microsoft, and MIT, and feature popular kids games like Crossy Road, Lego, and

Minecraft. Their website is important to our project because it is so similar as a collection of

appealing interactive educational programming demos, as the Encyclopedia of Code aspires

to be.
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Their collection includes a handful of games that are even built from the same technology

we use, WebGL. Disney’s Moana-themed game (Disney, 2015) uses WebGL contexts to draw

its animations, to teach basic coding with the goal of character navigation in a 3D world.

The Encyclopedia of Code aspires to become another recognized host and list of edu-

cational games. But how worthwhile is this? Some studies have questioned the efficacy of

game based learning. All et al. (2014) observed that engaging in these educational games is

mostly the result of external coercion. They found “a lack of sound empirical evidence on

the effectiveness” of DBGL, and noted papers with incomplete information on their study

design, impeding replication of results or any opportunity to disprove them.

Still, individual positive results can be found across the literature. Many other projects

in the literature describe themselves under the category of Digital Game-Based Learning

(DGBL). Yannier (2016) created EarthShake, a mixed reality game for helping children

learn physics. Using a Kinect, children can observe stacks of objects colliding in physics

simulations. This is paired with real-world demonstrations of the same. Their experiments

revealed a five-fold improvement in learning and enjoyment due to the real-world component.

Hearns (2014) created a literacy game for college students in the virtual world of Second

Life. Their measurements of the platform showed it even successfully got students to enjoy

the dull selected academic topic, sentence construction.

In the author’s experience, programming-related games appeared in their early education

with HyperStudio (O’Keefe, 1989), a software suite that could design special interactive

animations or games. These multimedia creations went through state changes triggered by

user interactions, acting as though the viewer was following a network of hyperlinks. The

young programmer was technically building their first Finite State Machine. Experiences

like this promote an interest in programming concepts by creating art with computers at an

early age. Such digital games and modelling tools are a valuable way to motivate children

of any generation towards the Computer Science field.

126



5.7.1 WebGL and Game Engines

Disney’s Moana game above is also noteworthy for using PlayCanvas, a WebGL-based game

engine also used by Leapfrog and other major players in digital education (PlayCanvas, 2014).

PlayCanvas shows what our WebGL-based Encyclopedia of Code could evolve into if we

successfully integrate more support for games in our codebase and host more crowd-sourced

games. In keeping with our website’s purpose we would additionally organize all submissions

that are games by educational topic, if any. PlayCanvas also shows us the current extremes

of what WebGL can do to support games. A collaboration between PlayCanvas and Mozilla

resulted in a particularly stunning tech demo called “After the Flood” (PlayCanvas and

Mozilla, 2017) that presents the cutting edge features of WebGL 2.0 (Gilbert and Albeza,

2017).

Other game and modeling engines may not involve programming in WebGL, but nonethe-

less can export the finished code to WebGL and still be run inside of web pages. Unreal

and Unity both can export to WebGL (Hu et al., 2017) using Emscripten, a cross compiler

that translates C++ programs into a subset of JavaScript that is faster than normal and

comparable in speed to the original native code. Emscripten produces code that leaves out

JavaScript language features that would trigger expensive automatic memory management.

This usage of it by Unity and Unreal is another way that the games industry is currently

reaching out towards WebGL.

In summary, WebGL offers substantial potential for educational games by bringing 3D

graphics to the web, and there are as many opportunities to engage students with these as

there are topics in the Computer Science curriculum.

By hosting a collaborative, crowdsourced coding environment, the Encyclopedia of Code

can hopefully encourage the creation of more digital games, as well as encourage students

to make games of their own. Our project provides an easy way for them to remix existing

games we host, even for minor exploratory edits the student might want to try.
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CHAPTER 6

Conclusion

6.1 Summary

Chapters 2 and 3 of this dissertation presented the two major components into which

our work is naturally organized—an education-friendly WebGL code library called tiny-

graphics.js, and a collaborative online repository of 3D graphics demos and articles called

the Encyclopedia of Code. In the course of exploring these two components, we developed

several other contributions that were listed in Chapter 1.

In Chapter 4, we presented results using our tiny-graphics.js library, by using it to rethink

and reinvent Angel’s supplementary textbook demos, comparing our most similar counter-

parts side by side. We also described a real-world case study and our observations here at

UCLA, where our library has been employed in the graphics courses multiple times, with

very favorable outcomes compared to prior student projects created in the absence of our

library.

In Chapter 5, we speculated about the future of this project and compared its trajectory

to Wikipedia’s. We also provided a table comparing our website’s intersection of features to

other projects around the web, and a more detailed exploration of each.

The Encyclopedia of Code remains an ongoing effort. We aim to improve its features,

to foster a community, add tutorials and documentation, encourage others to program in

WebGL, and crowd-source JavaScript code from other programmers in order to generate

new educational articles and games.
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6.2 Future Work

Our current priorities for future work are as follows:

• The expansion of the Active Textbook articles, to drive home the academic potential

of replacing illustrations with interactive WebGL demos.

• The addition of new Smart Articles that show their power when it comes to distributed

applications (grid computing) such as solving NP-complete tasks, or ray tracing a scene

faster as more users log on, thereby contributing more processing power.

• For better graphics and physics capabilities, the development of a complex mesh data

structure library using our array-based half-edge meshes from Section 3.2.3.19. In

this effort, we plan to support the following features by pursuing as yet only partially

explored avenues:

– Automatic generation of our meshes from points using classic Delaunay triangu-

lation.

– Moving to 3D with the Half-Face Data Structure (Alumbaugh and Jiao, 2005) for

storing volumetric meshes as tetrahedrons.

– The Deformable Simplicial Complex (DSC) technique (Misztal, 2010) for tracking

surfaces as boundaries embedded within a larger tetrahedralized domain.

– Ray tracers and collision detection algorithms that work inside of DSC meshes to

avoid all costly search queries through the scene.

– Simulations of rigid bodies, elasticity, fluid flow, and other physical phenomena

that work within a DSC domain (and re-mesh parts of it adaptively) to manage

virtual worlds.

We believe these enhanced virtual worlds would vastly improve the animation capabilities

of our framework. They may also provide more useful platforms for exploring the questions

of what our Smart Articles concept is capable of—their multi-processing capabilities allow
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them to delegate and offload specialized work to outside CPUs, which would be very helpful

for hosting massive online virtual worlds. These avenues could lead to a variety of subjects

for further study.

We maintain a long list of planned improvements to our library and online tool in an

internal issue tracker. We also have nearly 70 articles on deck to be made (starting from

descriptions), or already made but currently under further construction.

We call on all our readers to explore our website, familiarize themselves with the JavaScript

code classes using the navigator, and experiment with using the editing interface to make

small code changes and save them to generate permanent URLs to share with others. We

encourage all users to contribute any code classes of their own that are interdependent with

the existing classes in our library and database, and to submit them anonymously or under

their name for proper attribution. You can help create a growing repository of useful code

along with beautiful, educational graphics demos.
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