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Abstract of the Dissertation
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Swimming and Underwater Movement

by

Weiguang Si

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Demetri Terzopoulos, Chair

We present a multiphysics framework for the realistic animation of human swim-

ming that features a comprehensive biomechanical model of the human body

immersed in simulated fluid. Our human model includes all of the relevant

articular bones and muscles, including 103 bones (comprising 163 articular degrees

of freedom) plus a total of 823 muscle actuators embedded in a finite element

model of the the soft tissues of the body that produces realistic deformations. A

main focus of this thesis is the control of this complex biomechanical model. To

coordinate the numerous muscle actuators in order to produce natural swimming

movements, we develop a biomimetically motivated motor control system based on

Central Pattern Generators (CPG), which learns to produce activation signals that

drive the Hill-type muscle actuators. In addition, we introduce an optimization-

based control method that enables our human model to achieve non-locomotion,

task-oriented movements, such as changing the orientation of the body in the

water.
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CHAPTER 1

Introduction

The simulation of human motion is of great interest in computer graphics, robotics,

biomechanics, control theory, and other disciplines. Among the many approaches

proposed to synthesize human movement, efforts that involve modeling the de-

tailed anatomical structure and biomechanical characteristics of the human body,

in conjunction with the design of motion controllers ideally capable of adapting to

the body’s environment, have progressed steadily. Despite the progress, it remains

a grand challenge to achieve anatomically detailed simulation of human motion

with impeccable realism.

To synthesize realistic, anatomically detailed human animations in a physics-

based manner, we must construct a comprehensive human model with synthetic

hard (bone) and soft (flesh) tissues properly coupled and simulated, and we must

also design sophisticated motor controllers for this biomechanical model that can

produce natural human motions. In our work, we are especially interested in

aquatic environments for several reasons. On the one hand, the dynamically

rich physical interaction of the human body with water provides a fertile proving

ground that confronts a biomechanical human simulation/control system with

fascinating and difficult motor control problems. On the other hand, the aquatic

environment is somewhat forgiving in that it provides a stabilizing effect, which

leads to nonetheless interesting control scenarios that serve as good starting points

for designing more sophisticated human motor controllers suitable for terrestrial

environments. There are many elegant human motions possible in the aquatic
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Figure 1.1: Realistic simulation and control of human swimming. The au-

tonomously controlled biomechanical model simulates swimming in crawl (left)

and butterfly (right) strokes.

environment that deserve study from the perspective of simulation and control,

such as swimming for locomotion, artistic synchronized swimming, water polo,

diving, etc.

1.1 Multiphysics Simulation Framework

In this thesis, we develop a sophisticated multiphysics simulation framework for

human swimming within which we successfully develop several musculoskeletal

controllers for realistically synthesizing various human motions in water (Fig-

ure 1.1). Our simulation framework for realistic human swimming comprises

three mutually coupled specialized component simulators—an articulated multi-

body simulator for the muscle-actuated skeleton, a (Lagrangian) deformable solid

simulator for the flesh, and a (Eulerian) fluid simulator for the water.

Our biomechanical human model (Figure 1.2) includes all of the relevant

articular bones and muscles, including 103 rigid bones plus a total of 823 Hill-type

muscles modeled as piecewise line segment (PLS) contractile actuators, and we

take advantage of the anatomically appropriate muscle actuator redundancy to

2



Figure 1.2: Left: A closeup view of the biomechanical human model rendered with

transparent skin to reveal the muscle geometries. Right: The biomechanical model

immersed in simulated water.

achieve robust motor control. A muscle-actuated articulated skeleton simulation

synthesizes detailed biomimetic motions of the rigid bones in conjunction with

a deformable soft tissue simulation that synthesizes muscle-driven dynamic de-

formations of the flesh using lattice-based discretization of quasi-incompressible

elasticity augmented with active contractile muscle terms. To simulate the water

environment in which the biomechanically simulated body floats, we employ an

Eulerian (Navier-Stokes) fluid simulation on a MAC grid and use a particle level

set method to track the surface of the water.

We simulate the coupling between the bone and flesh as well as the coupling

between the flesh and water in an interleaved manner. This approach has sev-

eral advantages over a tight two-way coupling. Tightly coupling the articulated

rigid bodies, deformable solid, and surrounding fluid would be challenging and

computationally expensive. Interleaved coupling makes our simulation framework

much more flexible and it allows for the reuse and improvement of the individual

simulation components.

3



Figure 1.3: Control of body orientation in the water

1.2 Controlling the Biomechanical Human Model

In addition to the multiphysics framework for simulating realistic human swim-

ming with a comprehensive biomechanical model, our work makes a number of

additional contributions. We are primarily concerned with the control aspects of

the biomechanical human model within our multiphysics simulation framework. In

particular, we develop two different types of motor controllers—a locomotion con-

troller that produces realistic swimming (Fig. 1.1) and a task-oriented controller

for natural orientation control of the swimmer’s body (Fig. 1.3). The two types of

controllers represent different successful approaches to controlling the numerous

muscle actuators in order to synthesize, respectively, repetitive and non-repetitive

natural body motions in the simulated fluid environment.

CPG Locomotion Control: For locomotion control, we develop a biomimetic

motor control system based on Central Pattern Generators (CPGs), which pro-

duces activation signals that drive the many Hill-type muscle actuators. CPGs are

neural networks that are capable of generating coordinated patterns of rhythmic

activity without input from higher motor control centers in the brain. They

offer advantages that are desirable in addressing biomechanical control problems.
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First, CPG models typically have just a few control parameters that modulate

the locomotion pattern. Thus, a properly implemented CPG model reduces

the dimensionality of the low-level motor control problem such that higher-level

controllers need only generate task-oriented control signals. This is one of the

most interesting features of biological CPGs. Second, CPG models typically

produce smooth modulations of the controlled trajectories, even when the control

parameters are changed abruptly. Third, CPGs produce stable rhythmic patterns,

which enable the system to rapidly return to its normal rhythmic behavior after

transient perturbations of the state variables. We create a CPG muscle controller

that produces appropriate muscle contraction forces in the virtual swimmer’s

body, which induce the human model to perform various swimming motions.

The CPG networks are divided into 10 groups to control different parts of the

body. Each CPG group comprises a number of CPG units, one unit per muscle.

Each CPG unit, which is associated with a single muscle, is modeled as a nonlinear

dynamical oscillator that can guarantee basic stability and convergence properties

of the learned control signal. Our CPG controller can generate muscle contraction

signals to produce various swimming motions by simply varying a few parameters,

and it is robust against external perturbations.

Multiobjective Task-Oriented Control: The CPG-based approach is inap-

propriate for motor control scenarios in which the required muscle contraction

signals are aperiodic. Thus, for non-locomotive, task-oriented control, we develop

a novel multiobjective control strategy that enables the biomechanical human

model to achieve the task naturally. Our method tackles the task-oriented control

problem in joint space using a multiobjective optimization approach, and then it

computes the muscle control signals needed to generate the desired joint torques.

The objective function takes into account three factors—task accomplishment,

motion naturalness, and self-collision avoidance. A new feature of this control

5



Figure 1.4: Overview of our biomimetic human swimming simulation and control

framework.

method is that the physics-based task objective, which is formulated using physical

laws within a multibody dynamics framework with self collision avoidance handled

as soft constraints, is augmented by a statistical component, a Gaussian Process

Dynamical Model (GPDM) that enhances the naturalness of the motion. We apply

our approach to create an orientation controller that enables the biomechanical

human model to control its orientation naturally in the water.

1.3 Overview

Figure 1.4 illustrates the overall biomimetic structure of our human swimming

simulation and control framework. Our autonomous virtual human comprises the

biomechanical body model with its skeletal, active muscular, and passive soft-

tissue components, and a brain model with a perception center that encompasses

proprioception as well as the sensing of visual targets in the environment. The

6



motor center of the brain has a low-level CPG locomotion controller (emulating

biological CPG networks in the spinal cord) and one that produces higher-level

motor signals such as swimming style, speed, turn direction/sharpness, etc., taking

the perceptual information into account. Given these motor signals as inputs, the

CPG networks automatically synthesize the desired muscle length signals online,

from which a proportional/derivative (PD) control mechanism produces the as-

sociated activation levels that innervate the muscles whose contractions actuate

the biomechanical body. Our multiphysics simulation framework simulates the

biomechanical human model along with the aquatic environment in which it is

situated, as well as their physical interaction.

The remainder of this thesis is organized as follows: Chapter 2 reviews relevant

prior research in the graphics, robotics, and biomechanics literature. Chapter 3

presents our multiphysics simulation framework, detailing all the simulation com-

ponents and how they are coupled in our system. The primary focal points

of this thesis are our CPG-based locomotion control and task-oriented control

through multiobjective optimization, which work within our simulation frame-

work to produce natural swimming and aquatic motions; Chapter 4 develops

our locomotion controller and Chapter 5 develops our task-oriented controller.

Chapter 6 reports our experiment results, which reveal that our complex yet

appropriately controlled human model demonstrates coordinated swimming tasks

and orientation control tasks. Chapter 7 discusses the benefits and limitations

of specific technical choices that we have made in our framework and reports on

an additional set of experiments aimed at assessing the importance of various of

its simulation/control components relative to alternative approaches. Chapter 8

presents conclusions and proposes avenues for future work.
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CHAPTER 2

Related Work

Our work builds upon relevant technical advances in computer graphics, robotics,

and biomechanics to model the biomechanical characteristics of human body and

emulate its motor control mechanisms, as well as to simulate the continuum

mechanics of the relevant solids and fluids.

2.1 Biomechanical Human Modeling

In graphics, researchers have traditionally used joint torques to drive articulated

skeletal animation (Hodgins et al., 1995; Faloutsos et al., 2001), in contrast to

facial animation where muscle actuators have been used for two decades to syn-

thesize expressions (Waters, 1987; Lee et al., 1995). As a means of improving

realism, skeletal muscle driven motion generation is receiving growing attention

and researchers have been developing increasingly sophisticated biomechanical

models of individual body segments actuated by muscles—e.g., the arm (Albrecht

et al., 2003; Tsang et al., 2005; Sueda et al., 2008), leg (Komura et al., 2000;

Dong et al., 2002; Wang et al., 2012), neck (Lee and Terzopoulos, 2006), and

trunk (Zordan et al., 2006)—and also of the entire body (Nakamura et al., 2005).

However, the simulation of deformable flesh to produce a detailed anatomical

animation of soft tissue is missing in these previous efforts. The closest precedent

to the biomechanical human model that we have developed is the upper-body

musculoskeletal model reported in (Lee et al., 2009), which employed a one-way

coupling between flesh and bones. Ours is a full-body comprehensive human

8



model with two-way flesh-bone coupling.

2.2 Underwater Motion Simulation

Early work on simulating the underwater motions of aquatic creatures adopted

rather simple solid and fluid models: Tu and Terzopoulos (1994) simulated fishes

using a simple biomechanical model, a mass-spring-damper system to model piscine

bodies immersed in a simplified fluid model. Yang et al. (2004) used an articulated

body representation and a simplified fluid model. As the simulation techniques

for solids and fluids advance, researchers have used increasingly sophisticated fluid

models and solid-fluid coupling techniques for simulating underwater creatures.

Kwatra et al. (2010) and Tan et al. (2011) used a simplified articulated body

representation and two-way coupling between the body and a fluid simulation to

model creatures locomoting in fluids. Lentine et al. (2011) employed articulated

skeletons with a deformable skin layer and two-way coupling to a fluid simulator

to model figures moving in fluids. We too employ an articulated (human) skeleton,

but also include non-rigid simulated flesh, and use two-way coupling between the

deformable skin and water to synthesize natural human aquatic motion.

2.3 Underwater Motion Control

Motion control in underwater creatures was pioneered by Tu and Terzopoulos

(1994). Grzeszczuk and Terzopoulos (1995) achieved optimal parameters for

underwater gait behavior in rather simple creatures through spatial-temporal op-

timization methods. Tan et al. (2011) proposed a Covariance Matrix Adaptation

based optimization to create realistic swimming behavior for a given articulated

creature body. However, achieving sophisticated human swimming styles through

spatial-temporal optimization is a huge challenge as one must define a tailored

9



objective function for each style. Other methods have therefore been developed

to create gait motions for more complex systems such as humans. Yang et al.

(2004) developed a layered strategy for human swimming control in which each

control layer is procedurally modeled and empirically tuned to create physics-

based swimming motion in real time. Kwatra et al. (2010) developed a swimming

controller that computes the necessary joint torques to follow captured human

motions that mimic swimming.

We develop a CPG-based locomotion controller that, after learning a few CPG

parameters, automatically generates muscle contraction signals that enable the

human model to perform swimming motions. Our controller is robust against

external perturbations and is furthermore able to achieve more complex tasks, such

as changing speed, turning, swimming style transition, etc. CPGs are neural cir-

cuits found in both invertebrate and vertebrate animals that can produce rhythmic

patterns of neural activity without receiving rhythmic inputs. Research in biology

and robotics has shown that animal locomotion is in large part based on CPGs

(MacKay-Lyons, 2002; Ijspeert, 2008). CPG models have already been successfully

applied to robotic control. Ijspeert et al. (2007) built an amphibious salamander

robot controlled by CPG models and developed in (Righetti and Ijspeert, 2006) a

programmable CPG for the online generation of periodic signals to control bipedal

locomotion in a simulated robot. Taga (1995) constructed a human locomotion

controller based on CPGs and Hase et al. (2003) optimized this controller for 3D

musculoskeletal models without activation dynamics. The aforementioned efforts

employ CPGs to generate desired joint angle signals, whereas we use CPGs to

generate the desired muscle lengths. Muscle length control has several advantages

over joint angle control in our case, among them easy computation of the activation

levels needed to drive the contractile muscle actuators using a simple feedback

scheme, which makes it very suitable to control our biomechanical human model.

For non-locomotive tasks, global spacetime optimization will be almost impos-

10



sible in our case; as we explain in Chapter 5, local optimization is more practical.

Lentine et al. (2011) treated motion control as an optimization problem where

rather simple creatures move by locally seeking solutions to objective functions.

Their controllers are tightly interactive to the surrounding fluid and show inter-

esting creature movement by minimizing or maximizing drag and lift. Our task-

oriented controller is also based on local optimization in time. Our multiobjective

strategy achieves natural underwater motions by augmenting the physics-based

task objective with a data-driven naturalness objective.

Physics-based simulation can generate physically plausible human motions,

but physical laws alone are insufficient to generate natural human motions, since

such motions can be physically correct yet appear unnatural. One way to address

this problem is to apply optimization strategies. Witkin and Kass (1988) postu-

lated that a physically-simulated character should minimize its effort to synthesize

a movement subject to certain constraints (see also (Grzeszczuk and Terzopoulos,

1995)). Numerous performance criteria for human motion modeling, e.g. minimal

energy, minimal torque variation, minimal jerk, etc., have been introduced by

computer animation researchers. However, to apply these performance criteria,

we generally must perform non-convex global optimization over a time interval,

which is very expensive for our case, as we discuss in Chapter 5.

Statistical approaches provide another way to get natural motion. Gaussian

Processes (GPs) and their variants (e.g., GPLVM (Lawrence, 2004), GPDM) have

recently attracted interest in computer animation for creating natural kinematic

motion, including inverse kinematics (Grochow et al., 2004), motion interpolation

(Mukai and Kuriyama, 2005), motion editing (Ikemoto et al., 2009), and motion

synthesis (Ye and Liu, 2010; Wei et al., 2011; Levine et al., 2012). While GP-

based methods are able to create natural kinematic human motions, they cannot

be directly used in physics-based controllers because, as with other data-driven

methods, the resulting motions may be physically infeasible. Wei et al. (2011)
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proposed an approach to generate physically realistic animations that react to

perturbations by learning a nonlinear probabilistic force field function from pre-

recorded motion data using GP and combining it with physical constraints in a

probabilistic framework. Their approach is effective when the external forces are

close to those in the prerecorded motions, but it is unclear whether GP-based

methods can reliably model the external forces needed to generate motions that

are physically highly dependent on a dynamic fluid environment. Therefore, our

approach relies mainly on a physics-based control term to achieve the goal while

enhancing the naturalness of the motion using a GPDM, thereby achieving a

balance between physical realism and data-driven naturalness.
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CHAPTER 3

Simulation and Coupling

In this chapter, we present our multiphysics simulation framework and detail how

each of its component simulators serves to animate swimming and underwater

motions using a sophisticated biomechanical human model.

3.1 Overview

Our multiphysics simulation framework for realistic human swimming comprises

three mutually coupled specialized component simulators—an articulated multi-

body simulator for the muscle-actuated skeleton, a (Lagrangian) deformable body

simulator for the flesh and muscles, and a (Eulerian) fluid simulator for the water.

Figure 3.1 illustrates the different simulation components of our multiphysics

simulation framework. Figure 3.2 illustrates the different simulation layers of

our biomechanical human model.

3.2 Biomechanical Human Simulation Components

We have developed a comprehensive biomechanical human model with 103 rigid

bones (comprising 163 articular degrees of freedom) (Figure 3.2(a)), including

the vertebrae and ribs, which is actuated by 823 muscles modeled as piecewise

uniaxial Hill-type contractile actuators (Figure 3.2(b)). The skeleton is simulated

as an articulated, multibody dynamical system. The 3D muscle and passive

flesh simulation is accomplished by deforming a lattice-based discretization of
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(a) Articulated multibody muscle-

actuated skeleton simulation

(b) Lagrangian deformable soft-

tissue simulation

(c) Eulerian fluid simulation

(e) Comprehensive biomechanical swimming simulation

Figure 3.1: Simulation components
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(a) Skeleton (103 bones, 163 DOFs) (b) PLS muscles (823 Hill-type actuators)

(c) Deforming flesh and muscles (d) Embedded skin surface

Figure 3.2: Biomechanical human modeling layers
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quasi-incompressible elastic material augmented with active muscle terms (Fig-

ure 3.2(c)). The inertial properties of the skeleton are approximated from the

dense volumetric physical parameters of the soft-tissue elements—each bone’s

inertial tensor is augmented by the inertial parameters of its associated soft

tissues. The natural dynamics of the simulated human are induced by muscle

forces generated by the contractile actuators.

The low-level motor control inputs of our biomechanical human model com-

prise the activation levels of each muscle actuator in the simulated body. The

activated muscles generate forces that drive the skeletal simulation. Given the

contractile muscle forces, plus the external forces from the flesh simulation, we

simulate the skeleton using the Articulated Body Method (Featherstone, 1987)

to compute the forward dynamics in conjunction with a backward Euler time-

integration scheme as in (Lee et al., 2009). For the purpose of simulating the

dynamic deformation of the flesh and muscles, we employ a lattice-based dis-

cretization of quasi-incompressible elasticity augmented with active muscle terms.

This approach avoids the need for multiple meshes conforming to individual

muscles and its regular structure offers significant opportunities for performance

optimizations.

3.2.1 Muscle-Actuated Skeleton Simulation

The force generating characteristic of the piecewise uniaxial contractile muscle is

governed by a linearized Hill-type model (Lee et al., 2009). Assuming that the

length of the tendon is constant, we model a muscle force as the sum of forces

from a contractile element (CE), which represents the active muscle force that is

controlled by the motor neurons, and a parallel element (PE), which accounts for

the passive elasticity of the muscle (Fung, 1993).

The passive elasticity PE force is modeled as a unidirectional exponential
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spring:

fP = max (0, ks (exp(kce)− 1) + kdė) , (3.1)

where ks, kc, and kd are elastic and damping coefficients, e = (l − l0)/l0 is the

strain of the muscle, with l and l0 its length and slack length, respectively, and

ė = l̇/l0 is the strain rate.

The CE represents the active muscle force controlled by the motor neurons as

fC = aFl(l)Fv(l̇), (3.2)

where 0 ≤ a ≤ 1 is the activation level of the muscle. Force fC depends on

the length and velocity of a muscle. The force-length relation is modeled as

Fl(l) = max(0, kmax(l − lm)), where kmax is the maximum stiffness of a fully

activated muscle and lm is the minimum length at which the muscle can produce

force. The force-velocity relation is modeled as Fv(l̇) = max(0, 1 + min(l̇, 0)/vm),

where vm(≥ 0) is the maximum contraction velocity under no load. The control

input to the skeleton simulation is the activation level a of each muscle. Chapters 4

and 5 present how our motor controllers determine these muscle activation levels.

Given the muscle forces and other external forces (e.g., gravity.), we perform

the simulation of the skeleton using the Articulated Body Method (Featherstone,

1987) for solving the forward dynamics and the backward Euler time-integration

scheme.

3.2.2 Soft-Tissue Simulation

The elastic flesh and musculature serves as an intermediary between the fluid

environment and the articulated skeleton. The shape and deformation of the

flesh volume is determined by the dynamics of the articulated skeleton and the

hydrodynamic forces acting on the flesh. Naturally, the exact tissue behavior is

also dependent on the geometric layout and material properties of the heteroge-

neous array of tissue components that constitute the flesh. Some of these material
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traits are encoded as static distributions of scalar (e.g., elastic moduli) or vector

(e.g., muscle fiber orientation) quantities; other material properties, such as the

muscle activations, are time-varying signals that are provided as input to the flesh

simulation along with the skeletal dynamics.

We capture the physical behavior of the human swimmer’s soft tissue and

musculature via numerical simulation of a discrete volumetric model. In designing

this discrete representation, we commit to certain simplifying assumptions and

modeling approximations to strike a reasonable balance between computational

complexity, geometric resolution, biomechanical accuracy and robustness of sim-

ulation. First, we do not separately model the skin as a distinct simulation

component; for the purposes of fluid-flesh interaction, the contact surface is sim-

ply the boundary of the flesh volume and not a separate two-dimensional skin

layer. The entirety of the space between the skin and bones is modeled as an

elastic continuum; no air-filled cavities or fluid volumes are explicitly simulated

as such, although we are free to modulate the elastic properties (e.g., stiffness or

compressibility) of such areas to reflect their macroscopic behavior. In addition,

the entire flesh volume is assumed to deform as a connected continuum; that is,

we do not allow slip or separation in the interior of the flesh volume. Note that

connective tissue typically limits the extent of such motions, but there are parts

of anatomy where true sliding or separation is possible in the real human body.

For the purpose of simulating the dynamic deformation of flesh and muscle,

we employ a lattice-based discretization of quasi-incompressible elasticity aug-

mented with active (contractile) muscle terms. The lattice-based representation

(in essence, a lattice deformer) captures the shape of the deforming flesh volume.

This discrete model is simply created by superimposing a cubic lattice (we use a

lattice size of 10 mm) on a three-dimensional model of the human body, and we

discard all cells that do not intersect the flesh volume (i.e., cells that are outside

the body, or wholly within solid bones). Of course, the lattice representation thus
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created does not accurately capture the geometry of the flesh volume, but provides

only a “cubed” approximation. Despite this, we construct the discrete governing

equations so as to compensate for this geometric discrepancy. We discretize the

equations of elasticity following the methodology of (Patterson et al., 2012), which

captures the fact that lattice elements on the boundary of the flesh volume are

only fractionally covered by elastic material. The jagged boundary of the lattice-

derived simulation volume also differs from the actual skin surface where fluid

forces are to be applied; we compensate for that by embedding a high-resolution

skin surface mesh within the cubic lattice (Figure 3.2(d)) and distributing the

forces acting on the skin surface into the volumetric lattice by scaling with the

appropriate embedding weights as discussed in (Zhu et al., 2010). Finally, since the

contact surface between the flesh and bones is not resolved in the lattice-derived

mesh, we use stiff zero-rest-length springs to elastically attach points sampled on

bone surfaces to embedded locations in the flesh simulation lattice, as detailed by

(Lee et al., 2009; McAdams et al., 2011).

3.2.2.1 Flesh Constitutive Model

The deformable collection of flesh, skin, and muscle are modeled as a hyperelastic

solid. The elastic energy associated with it is partitioned as follows:

Etotal = Eiso + Emuscle + Evol + Eatt. (3.3)

In this expression, Eiso =
∫

Ω
Ψiso(F)dX is a strain energy of an isotropic “foun-

dation” material which corresponds to passive flesh (predominantly fatty tissue),

where F = ∂φ/∂X denotes the deformation gradient of the 3D deformation

function φ : Ω→ R3, which maps material coordinates X to world-space deformed

locations x = φ(X). For the subset Ωm of the body, which is covered by muscle,

an additional anisotropic energy term Emuscle =
∫

Ωm
Ψmuscle(F)dX is added, to

account for the directional passive/active response of fibrous muscle tissue. The
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energy term Evol enforces volume preservation in the flesh. Finally, the energy

term Eatt is associated with the elastic attachment constraints that couple the

flesh and bone.

The isotropic component of the strain energy density is formulated as a Mooney-

Rivlin material

Ψiso(F) = µ10(‖F‖2
F − 3) +

µ01

2
(‖F‖4

F − ‖FTF‖2
F − 6) (3.4)

with parameter values µ10 = 20 KPa, µ01 = 60 KPa. Note that we use a simple,

non-deviatoric formulation of Mooney-Rivlin hyperelasticity. Our formulation

supports strong incompressibility; thus, factoring out the hydrostatic stress com-

ponent is not essential (F will be forced to have unit determinant by means of

the strong incompressibility penalty). The anisotropic component of the strain

energy is expressed as:

Ψmuscle =
∑
k

Ψ(k)
m (F; wk; ak) [X covered by muscle k], (3.5)

where wk and ak are the fiber direction and activation level of the k-th muscle,

respectively. The energy density term associated with the k-th muscle is a function

Ψ
(k)
m (λk, ak) of the along-fiber stretch ratio λk = ‖Fwk‖2 and the respective

activation value ak. Quantity Ψ
(k)
m is defined indirectly through its derivative with

respect to λk; in fact, ∂Ψ
(k)
m /∂λk = T (λk, ak) is the directional tension function

resulting from the sum of the passive elasticity and force-length terms used in

the muscle-actuated skeleton simulation. The strain rate and force-velocity terms

have been omitted for simplicity, a decision further motivated by the fact that we

use a non-validated generic Rayleigh damping model for the isotropic flesh, which

would dilute the accuracy of an elaborate force-velocity formulation.

3.2.2.2 Incompressibility

We enforce volume preservation in the elastic material via a penalty term Evol =∫
Ω

Ψvol(J)dX, where Ψvol(J) = κ log2(J)/2, with J = det F, is the volume
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change ratio, and the bulk modulus κ is set to 20 MPa. In order to improve

the numerical conditioning of this quasi-incompressible material, we transition to

a mixed displacement/pressure energy formulation:

Ê(x, p) = Eatt +

∫
Ω

[
Ψiso(F) + Ψmuscle(F) + αp log(J)− α2p2

2κ

]
dX. (3.6)

As is known from the theory of mixed discretizations, the spatial gradients f =

−∂E/∂x and f̂ = −∂Ê/∂x of the two energy formulas (corresponding to elastic

forces) are equal when the mixed energy Ê is stationary with respect to a variation

in the pressure field. Thus, we construct a time-integration scheme by computing

forces according to f̂(x, p) = −∂Ê(x, p)/∂x, and append the stationarity condi-

tion ∂Ê/∂p = 0 to the time integration equations. The result obtained is the

same as the pure-displacement formulation, but the discrete equations remain

well conditioned regardless of the degree of incompressibility. The price we pay

for this favorable conditioning is that the discrete time integration equations

become symmetric indefinite, thus a Krylov solver such as MINRES, SYMMLQ,

or symmetric QMR must be used in place of Conjugate Gradients.

3.2.2.3 Skeletal Attachments

Since the surfaces of attachment between flesh and bone do not coincide with

nodes of the simulation lattice, we enforce such attachments via soft, spring-based

constraints. The attachment energy Eatt is formulated as:

Eatt(x) =
∑
i

ki
2
‖Wix− ti‖2

2, (3.7)

where ti is the target location (on the moving skeleton) of a flesh attachment, Wi

is a trilinear interpolation operator that computes the interpolated location of an

interior flesh point from the vector of nodal positions x, and ki is the stiffness

parameter of the i-th attachment. Attachment points are discretely sampled as a

preprocess on the bone surfaces. Attachment points are sampled uniformly, with
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a target density that yields an average of 3 to 6 attachment points per cell of

the simulation lattice. The stiffness parameters are adapted such that a constant

stiffness per bone surface area is achieved.

3.2.2.4 Discretization Given Musculature and Skeletal Structure

We use standard trilinear hexahedral elements on a cubic lattice for the discretiza-

tion of the deformation map φ, while the pressure field is only approximated as

cell-wise constant. The geometries of the skin, muscles and bones are embedded

in the simulated hexahedra. We use the geometry of the muscles to modulate

the material properties assigned to each simulation element. We compute the

nonlinear energy integrals by defining a 4-point quadrature rule on an individual

lattice cell basis, which is designed to be accurate in the integration of polynomials

of degree up to 2, yielding a (locally) second-order accurate approximation to the

energy.

To achieve second-order accuracy on arbitrarily integration domains, we use a

numerical quadrature scheme that integrates exactly all monomials XpY qZr with

0 ≤ p + q + r ≤ 2; i.e., we provide the following quadrature (Patterson et al.,

2012):

∫
Ωk


1 X Y Z

X X2 XY XZ

Y XY Y 2 Y Z

Z XZ Y Z Z2

 dX. (3.8)

Here X = (X, Y, Z) is the material point in the undeformed configuration and

Ωk = Ω ∩ Ck is the elastic sub-domain within each lattice cell Ck.

In our implementation, we use Monte-Carlo integration to compute the rel-

evant moments of fractional cells Ck. A number of randomly generated points

are uniformly distributed in each simulation hexahedron, indicated as colored
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Figure 3.3: Embedding the muscles into the volumetric mesh.

dots in Figure 3.3. We use 1.6 × 106 points for each simulated hexahedron of

size 20mm × 20mm × 20mm. We check whether each of these sample points

is located inside any muscle volume, in which case the direction of the muscle

fiber at the given location is associated with the sample point. These sample

points are depicted as red and yellow vector fields in Figure 3.3, corresponding

to two distinct muscles intersecting a simulation hexahedron. Points not inside

any muscle volume are considered as locations of passive flesh or fatty tissue,

displayed as blue dots in Figure 3.3. Using these sample points, we compute the

quadrature (3.8) for the fraction of the simulation hexahedron covered by each

muscle. We also compute the quadrature for boundary cells that are partially

covered by muscles or passive flesh. To obtain a representative fiber direction wk

in (3.5), we average the fiber directions of the sample points inside the k-th muscle

and normalize the result to unit length.
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3.3 Water Simulation

The surrounding water in which our biomechanical human model floats is simu-

lated according to the Navier-Stokes equations using an Eulerian fluid solver on

a MAC grid, and the water surface is tracked using the particle level-set method,

which is in accordance with (Enright et al., 2002) and (Foster and Fedkiw, 2001).

Our simulation framework implements the necessary dynamic force couplings

between the skeleton and flesh, as well as between the deformable skin surface

of the virtual human and the surrounding water, in an interleaved manner.

The fluid simulation system we use is part of PhysBAM,1 which is an object

oriented C++ library capable of solving a variety of problems in computational

fluid dynamics, computational mechanics, computer graphics and computer vi-

sion. The approach to model the water surface is called the “particle level set

method” (Enright et al., 2002), which is a hybrid surface tracking method that uses

massless marker particles combined with a dynamic implicit surface. This hybrid

surface model has advantages of both particle evolution and level set evolution. To

elaborate, level set evolution suffers from volume loss near detailed features while

particle evolution suffers from visual artifacts in the surface when the number of

particles is small. Conversely, the level set is always smooth, and particles retain

detail regardless of flow complexity. They tend to have complementary strength

and weakness, a combined approach gives superior results under a wider variety

of situations.

3.3.1 Outline of the Fluid Simulation Method

The Navier-Stokes equations for describing the motion of a liquid consist of two

parts. The first enforces incompressibility by dictating that mass should always

1See http://physbam.stanford.edu
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be conserved; i.e.,

∇ · u = 0, (3.9)

where u is the liquid velocity field, and

∇ = (∂/∂x, ∂/∂y, ∂/∂z) (3.10)

is the gradient operator. The second equation couples the velocity and pressure

fields and relates them through the conservation of momentum; i.e.,

ut = ν∇ · (∇u)− (u · ∇) u− 1

ρ
∇p+ g. (3.11)

This equation models the changes in the velocity field over time due to the effects

of viscosity ν, convection, density ρ, pressure p, and gravity g. By solving and

over time, we can simulate the behavior of a volume of liquid. The basic algorithm

(Foster and Fedkiw, 2001) is as follows:

1. Model the static environment as a voxel grid.

2. Model the liquid volume using a combination of particles and an implicit

surface.

3. Update the velocity field by solving (3.11) using finite differences combined

with a semi-Lagrangian method.

4. Apply velocity constraints due to moving objects.

5. Enforce incompressibility by solving a linear system built from (3.9).

6. Update the position of the liquid volume (particles and implicit surface)

using the new velocity field.

Enright et al. (2002) improved this algorithm by introducing a new “thickend”

front-tracking technique to accurately represent the water surface and a new
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velocity extrapolation method to move the surface in a smooth, water-like manner.

The focus is to maintain the liquid surface itself. Particles are placed on both sides

of the surface and used to maintain an accurate representation of the surface itself

regardless of what may be on one side or the other. The particles are intended to

correct errors in the surface representation by the implicit function.

3.4 Flesh-Water Coupling

The traditional method for coupling fluids and solids is for the solid to prescribe

velocity boundary conditions on the fluid and for the fluid to provide force bound-

ary conditions on the solid (Benson, 1992). Accordingly, we also use the velocity of

the human body model skin surface to enforce the Neumann boundary condition

along the surface by making the normal component of the fluid velocity equal to

the normal component of the skin’s velocity. To calculate the force of the fluid

on the body, we would ideally integrate over the surface of the skin the pressure

computed by the fluid solver.

For incompressible flow, however, the pressure (which serves as a penalty

term in the Navier-Stokes computation) is both stiff and noisy, hence more or

less unreliable, as discussed in (Fedkiw, 2002). While the velocity field is a

primary state variable and is limited in its temporal variation due to momentum

conservation, the pressure field is a byproduct of the projection of velocities into

a divergence-free field, and may exhibit notably higher temporal variance than

the fluid velocities. As a consequence, instead of demanding a higher degree of

accuracy in the pressure computation from our underlying fluid simulation engine,

we opt for a computation of fluid-to-solid forces based on fluid velocities, which are

generally more accurate and temporally coherent. We use the relative velocity of

the human skin with respect to the fluid to compute the hydrodynamic force and

we construct a new level-set representation of the water to compute the buoyancy
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force. These forces due to the water acting on the body are computed at each

triangle of the skin surface and applied to the skin as external forces.

To compute the hydrodynamic force on each triangle of the skin surface, we

employ a hydrodynamic force model similar to those found in (Tu and Terzopoulos,

1994; Yang et al., 2004; Lentine et al., 2011):

f = min [0,−ρA (n · v)] (n · v) n, (3.12)

where ρ is the density of the water, A is the area of the triangle, n is its normal,

and v is its velocity relative to the water. To enforce the boundary conditions in

the fluid solver, we must make the normal component of the fluid velocity equal to

the normal component of the solid’s velocity, so we cannot use the fluid velocity on

the boundary cell to compute the relative velocity as its normal component will be

approximately zero. Instead, we accumulate velocities of the fluid in neighboring

cells around the boundary cell in which the skin triangle lies and employ the mean

local fluid velocity to compute the relative velocity v.

The total buoyancy force acting on the floating body equals the weight of

water displaced by the body. For underwater motion with the body wholly

immersed, the buoyancy approximately cancels out the gravity force, since the

average density of the human body approximately equals the density of water.

However, this is not the case for swimming where the human body is often only

partially immersed. It is then very important to compute buoyancy correctly

in order to simulate realistic dynamic trunk motions, especially for the butterfly

swimming stroke. We can represent the buoyancy as B = −ρgV , where g is the

gravitational acceleration, and V is the volume of water displaced by the body.

We may rewrite this as

B = ρg

∫
S

h(n · ĵ)dA, (3.13)

where S is the immersed surface of the body model, n is the normal of the area

element, ĵ is the upward unit vector, and h denotes the distance from the water
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Figure 3.4: Illustration of pseudo water surface construction

surface to the area element. Thus, the force on each triangle is ρhAnyg, where ny

is the y component of the normal.

The main problem is how to compute h. A simple way is using h = y0 − yA,

assuming that the water surface is at a constant height y0, where yA is the y

coordinate of the triangle center. Unfortunately, this will cause problems in the

simulation, since the error can become very large when there are significant waves

on the surface of the water. Even worse, the error will propagate back and forth

in the interleaved two-way coupling causing an oscillation in the motion of the

floating body model. We tackle this problem by constructing a pseudo water

surface (PWS) at each time step, from which we derive h. The portion of the

human body that is below this PWS is treated as the submerged part. Figure 3.4

illustrates how we construct the PWS. The yellow closed curve represents the

surface of the human body and the blue solid curve represents the water surface

obtained from the fluid solver. Everything below this curve is regarded as being

as underwater. We determine the cells of the CFD computational grid that are

inside or near the human body surface within some distance, and then we solve a

minimal surface problem in this part (colored in green)—we set Dirichlet boundary

conditions on the human skin surface, assigning a negative Dirichlet value for skin
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(a) Rendering with original water surface (b) Rendering with pseudo water surface

Figure 3.5: Comparison of rendering results using the original water surface (a)

and the pseudo water surface (b).

regions that are immersed, and a positive value for areas of skin that are not in

contact with water. We perform a harmonic interpolation between these values

to reconstruct a zero isocontour of the level-set function that will extend inside

the swimmer’s body. Then we apply the fast marching method to obtain a level-

set representation. Once this PWS has been reconstructed, we approximate the

immersion depth by projecting the closest-surface-point vector (−φ∇φ, derived

from the reconstructed level-set) along the vertical direction.

Another benefit of the PWS is that we can use it for the purposes of render-

ing. Figure 3.5 compares the rendering result obtained using the original water

surface and that obtained using the pseudo water surface. Generally the fluid and

solid surfaces are not tightly coupled because of the limit in the fluid simulation

resolution, so there is a noticeable gap between the water and the human body,

as is evident in Figure 3.5(a). However, since the pseudo water surface eliminates

the part that is submerged, we can exploit it for rendering, so long as the solid is

opaque. The much improved rendering result shown in Figure 3.5(b) is obtained

using the pseudo water surface. Even when the solid is transparent, we can still use
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Figure 3.6: Embedding the skeleton into the volumetric mesh

the difference of the fluid volume and the solid as the new fluid volume, obtaining

for example the rendering result shown in Figure 3.1.

3.5 Flesh-Bone Coupling

The deformable flesh tissue is coupled to the rigid articulated skeleton via a

network of spring constraints, as has been previously demonstrated in (Lee et al.,

2009) and (McAdams et al., 2011). From the viewpoint of the volumetric flesh

simulation, such spring attachments serve as soft kinematic constraints. A set

of particles is uniformly sampled from the surface of each bone. These particles

(displayed as cyan dots in Figure 3.6 are rigidly constrained to the respective

bone. We then duplicate each of these particles with the locations they have in the

undeformed configuration of the body. These duplicated particles (illustrated with

slight displacements as brown dots in Figure 3.6) are barycentrically embedded

into the simulation hexahedron with which they overlap. Each particle attached

to a bone is connected with its duplicate embedded counterpart using a zero rest-

length spring. This embedded treatment of skeletal attachments decouples the
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resolution of the simulation mesh from the resolution of the skeletal geometry and

allows us to define the attachment regions as arbitrary point-sampled surfaces.

In our framework, we further leverage this network of soft constraints to

transfer to the bones external forces that are applied to the skin surface, in a

manner that respects the deformable flesh medium that separates the point of

application of such forces (the skin forces) from the location of the bones. After

computing the distribution of external forces on the skin, originating from any

sources including fluid forces or collisions, we solve for the quasi-static equilibrium

shape of the deformable flesh. Once the steady state configuration has been

computed, the tension of the attachment springs is used to calculate how the skin-

applied forces have been distributed to the bone-flesh interface. From balance of

force properties, we have strong guarantees that the aggregate force applied by

the attachment springs to the bones (at equilibrium), independent of the material

parameters of the soft tissue or the stiffness of the attachment springs; of course,

different material parameters may have an effect on how broadly a surface force

gets spread out from the point of application. This quasi-static process makes the

force translation from the flesh to the bones occur instantaneously. Although this

eliminates a potential lag, the external forces on the skin or flesh are well spread

to the bones in a natural way.

Appendix B discusses an for improving the flesh-bone coupling by employing

the Jacobian matrix of the external translated force with respect to the generalized

coordinates of the skeleton.

3.6 Summary

We have introduced a multiphysics simulation and control framework whose over-

all architecture is shown in Figure 1.4. The inputs to our biomechanical human

model are the muscle activation levels, which drive both the Hill-type PLS muscles

31



that actuate the skeleton and the flesh simulation. The skeleton, flesh, and

water are two-way coupled in an interleaved manner. To synthesize realistic

human motion within this framework, we still need to design motor controllers

that generate proper muscle activation levels to produce swimming and other

aquatic motions. Our biomechanical human model also provides proprioceptive

feedback, such as muscle lengths, joint angles, joint velocities, body orientation,

etc., to the motor controllers. Within our simulation framework, we will proceed

to develop two different types of motor controllers—locomotion controllers that

produce realistic swimming and task-oriented controllers for natural underwater

orientation control of the swimmer’s body. Chapters 4 and Chapter 5 will present

the details of these two types of controllers, respectively.
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CHAPTER 4

CPG Locomotion Control

The control of biomechanically simulated human swimming is a challenging prob-

lem. Swimming motions have several distinctive styles, such as the butterfly and

the crawl, each of which requires the coordinated rhythmic movement of multiple

body segments.

Biological CPGs are neural networks capable of generating stable patterns

of rhythmic activity without any input from higher motor control centers in

the brain. In addressing biomechanical locomotion control problems such as

swimming, CPG models offer important advantages, including the ability to eas-

ily modulate the rhythmic patterns. We employ CPGs to specify the desired

temporally-varying length of each muscle in the swimmer’s body and then apply

a feedback control loop to generate the necessary muscle activation levels. This

results in an easy-to-use locomotion controller that can enable various tasks, such

as changing speed, turning, and transitioning between swimming strokes.

The following section details the implementation of CPG control in our biome-

chanical human model for the purpose of swimming simulation. Figure 4.1 shows

the overall structure of our CPG locomotion control framework. The temporally-

varying muscle length signals as well as their first-order and second-order deriva-

tives serve as training data, and the necessary parameters for our CPG system

are learned using Incremental Locally Weighted Regression (ILWR) (Schaal and

Atkeson, 1997). The learning process, which is framed in the figure by the dashed

rectangle, need only be done once, offline, and in advance. After learning, our
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Figure 4.1: CPG locomotion control framework

CPG system can automatically generate the desired muscle length signals online,

and a proportional/derivative (PD) control mechanism serves to generate the

muscle activation levels. The swimmer can achieve high-level motion control by

modulating the locomotion pattern via the few parameters of the CPG model.

4.1 Generating the Desired Muscle Lengths

We use (Virtual-swim, 2007) as a reference to specify key poses for our skeleton

model. As CPG learning needs to use both the first and second order derivatives of

the signals (see (4.5)), we want our muscle length data to be doubly differentiable.

We first use cubic B-splines to fit the joint angle data in the least squares sense.

After obtaining the kinematic skeleton motion, we use the distance over time be-

tween the two attachment points of each muscle as the desired time-varying length

of that muscle. We fit B-splines to the desired muscle length trajectories, from

whose coefficients we can easily compute the first and second order derivatives

according to the B-spline differentiation formula (de Boor, 1978). Appendix C

provides the computational details of these derivatives.

As is illustrated in Figure 4.2, we divide the muscles into 10 groups—left trunk,

right trunk, medial trunk, left head, right head, medial head, left arm, right arm,

left leg, right leg—with the muscles in each group sharing the same frequency and

initial phase.1 This division affords us flexible control over the limbs as well as

1Note that the muscle groups for the central trunk and the central head are less visible
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Figure 4.2: Muscle group division for CPG modeling. Each group is shown in a

different color.

the trunk and head; e.g., turning is made possible by simply decreasing muscle

length signals on one side and increasing muscle length signals on the other side.

We will present more details about turning in Section 6.2.

4.2 CPG Learning

As is suggested in (Gams et al., 2009), we use a group of nonlinear differential

equations to model each CPG unit. This model encapsulates several desirable

properties, such as the reproduction of the trajectories, their modulation, and

dealing with perturbations in a single set of differential equations. We explain

this using a 1 DOF signal.

The following dynamics specify the attractor landscape of a trajectory y to-

because these two groups include muscles that are situated deeper in the body.
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wards the anchor point g:

ż = Ω

(
αz (βz (g − y)− z) +

ΣN
i=1Ψiwir

ΣN
i=1Ψi

)
(4.1)

ẏ = Ωz (4.2)

Ψi = exp (h (cos (Φ− ci)− 1)) (4.3)

Here, y(t) is the generated signal, z(t) is an intermediate variable that describes

the first order derivative of y, and Φ is the phase of the signal. Ω is the fundamental

frequency (lowest non-zero frequency) of the input signals. Since swimming is a

periodic motion, we can specify Ω as 2π
T

, where T is the period of one swimming

cycle. The positive constants αz and βz are set to αz = 8 and βz = 2 for all

our simulations. The signal trajectory oscillates round g, an anchor point for the

oscillatory trajectory. The number of Gaussian-like periodic kernel functions Ψi

is N and h determines the width of the kernel function. We set N = 25 and

h = 2.5N for all our simulations, and ci are equally spaced between 0 and 2π in

N steps. The amplitude control parameter is r, which we set to 1.0.

In a single set of differential equations, the above model encapsulates several

desirable properties, such as approximating the desired trajectories, offering the

ability to modulate them, and maintaining robustness against perturbations.

We use ILWR to learn the weights wi in (4.1). Locally weighted regression

corresponds to finding, for each kernel function Ψi, the weight vector wi that

minimizes the quadratic error criterion

Ji =
P∑
t=1

Ψi(t)
(
ftarg(t)− wir(t)

)2
, (4.4)

where the index t denotes the discrete time step,

ftarg =
1

Ω2
ÿtrain − αz

(
βz (g − ytrain)− 1

Ω
ẏtrain

)
(4.5)
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The formulation of the above equations can be found in (Gams et al., 2009). As the

input into the learning algorithm, ytrain, ẏtrain and ÿtrain are the muscle length

signal, and its first and second derivatives, respectively. Incremental regression

to determine the parameters wi is accomplished with the use of recursive least

squares with a forgetting factor of λ. Given the target data ftarg(t) and r(t),

weight wi is updated by

wi(t+ 1) = wi(t) + ΨiPi(t+ 1)r(t)er(t), (4.6)

where P is the inverse covariance matrix (Ljung and Söderström, 1983), which is

updated as

Pi(t+ 1) =
1

λ

(
Pi(t)−

Pi(t)
2r(t)2

λ
Ψi

+ Pi(t)r(t)
2

)
, (4.7)

and

er(t) = ftarg(t)− wi(t)r(t). (4.8)

The recursion is started with wi = 0 and Pi = 1. Batch and incremental

learning regressions provide identical weights wi for the same training sets when

the forgetting factor λ is set to 1.0. Differences appear when the forgetting factor

is less than 1.0, in which case the incremental regression gives more weight to

recent data. In our experiments, we set λ = 0.95.

A desirable property of the CPG control model is that it allows easy mod-

ulation of the signals. Changing the parameter g modulates the baseline of the

rhythmic movement. This will smoothly shift the oscillation without modifying

the signal shape. Modifying Ω and r changes of the frequency and the amplitude

of the oscillations, respectively. Since our differential equations are of second

order, even an abrupt change of the parameters yield smooth variations of the

trajectory y. Although the length trajectories of different muscles may share the

same frequency, the amplitudes and baseline may vary significantly. To guarantee
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Figure 4.3: Input data and CPG generated data for the left Coracobrachialis

muscle.

the quality of learning, we scale and shift each muscle length trajectory to bracket

the signal between -0.5 and 0.5. For convenience, we also scale the period of the

input signals to 1 second. And then use r, g, and Ω to modulate the learned

signals. In the learning process, we simply set r = 1, g = 0, and Ω = 2π.

After learning the parameters, the desired muscle length can be generated by

numerically integrating (4.1), and (4.2). We employ the 4th-order Runge-Kutta

method to perform the numerical integration. Φ is updated as Φ = Φ + Ωdt,

where dt is the time step. Figure 4.3 compares the input muscle length data and

the CPG generated muscle length data for the left C oracobrachialis muscle for

different swimming strokes. We can see that the CPG learns the input signal

quite well. The initial output signals of the CPGs are set as 200 mm, and they

rapidly match the input data.
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4.3 Muscle Control

Given the CPG-generated, time-varying length for each muscle, we use a first-

order PD control mechanism to compute the muscle activation level

a(t) = Ks(l(t)− ld(t)) +Kd(l̇(t)− l̇d(t)), (4.9)

where l(t) is the muscle length, ld(t) is the desired muscle length, and Ks and Kd

are elastic and damping coefficients, respectively. In our experiments, we simply

set Ks = 5
l0

and Kd = 0.005
l0

, where l0 is the natural length of the muscle, and l̇d

can easily be obtained as Ωz according to (4.2). As muscle activation levels range

between 0 and 1, we clamp the computed a(t) to the [0, 1] range. The activation

levels generated drive the Hill-type muscle to exert forces on the skeleton, and

they also serve as inputs to the flesh simulation.

4.4 High-Level Motion Control

Our CPG-based motion controller is easy to use. After having learned several

different types of swimming modes, it can easily switch and smoothly transition

among these modes (by simply switching the parameters wi, r, and g of the

CPG units), perform each swimming mode at any desired frequency, phase, and

amplitude (by adjusting Ω, Φ, and r, respectively), as well as achieve and maintain

some desired pose (by setting r = 0 and not updating Φ), even for different muscle

groups separately; for instance, one arm can maintain a desired pose while the

remaining body parts carry out a rhythmic locomotion pattern. Regarding the

transitioning between swimming modes, note that the CPG parameters can be

switched abruptly since, per (4.1) and (4.2), this will cause abrupt changes only

in the second derivative of the desired muscle length signal ż. Because Ω directly

influences ẏ, so long as Ω is continuous, the desired muscle length signals will be

C1-smooth. This nice property yields natural motion transitions.
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CHAPTER 5

Multiobjective Task-Oriented Control

For non-locomotive swimming motor tasks, the desired muscle contraction signals

are not periodic, so we cannot use CPG-based control. Computing the desired

muscle control signals from the control objective directly will be very challenging

due to the large number of muscles in our biomechanical model, as well as each

muscle’s nonlinear behavior. Since the muscle control signals can be computed

using the control approach in (Thelen et al., 2003; Lee et al., 2009) to generate

the desired joint torques, we first consider our control problem in joint space and

then solve it in muscle space.

However, there remain challenges to solving control problems associated with

task-oriented underwater motions even in joint space. First, how should we

formulate a control problem? Researchers (e.g., (Grzeszczuk and Terzopoulos,

1995; Tan et al., 2011)) have pursued spatiotemporal global optimization in order

to generate natural swimming motions for simple creatures. This apparently

fails to be a viable option for us. First, our human skeleton model has many

more controller degrees of freedom. Second, the goal of task-oriented control

might also be high-dimensional; e.g, achieving some desired body orientation or

position, instead of swimming straight or following a defined path. Third, for

non-locomotion tasks, vigorous limb motions can make the water environment

very dynamic, thereby making it almost impossible to do sampling. Instead of

attempting global optimization in time, we formulate task-oriented control as a

temporally localized multiobjective optimization problem, which can be performed
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much faster than global optimization, with the expectation that it will yield

plausible albeit suboptimal motions when the cost function is not highly nonlinear.

To achieve the task naturally, we need to take into account three factors—

task accomplishment, motion naturalness, and self collision avoidance—and the

objective function of our multiobjective optimization

E = Etask + wnatEnat + wcldEcld, (5.1)

is a weighted combination of the sub-objective function Etask for task accomplish-

ment, the sub-objective function Enat for making motion natural, and the sub-

objective function Ecld for self-collision avoidance, and where wnat and wcld are

associated weights. Self collision avoidance is easily handled as soft constraints.

Our formulation must take fluid dynamics into account in order to handle the

dynamics of the water environment, and we must define Enat properly. To tackle

the first challenge, we perform some simplifications that linearize the relationship

between the external hydrodynamic forces and the joint velocities. As for motion

naturalness, since there is no precise definition of natural human motion, we turn

to statistical approaches, more specifically, we train a Gaussian Process Dynamical

Model (GPDM) from human motion capture data and use it to define an objective

function that encourages natural motion. To do task-oriented torque control, we

perform this multiobjective optimization on a per-frame basis in joint space. For

muscle control, we use the approach in (Lee et al., 2009) to compute muscle

activation levels that generate the desired torques.

Figure 5.1 shows the overall structure of our multiobjective task-oriented

control framework. To obtain the desired joint velocities, we solve an optimization

problem that includes a sub-objective associated with the particular task, a motion

naturalness sub-objective obtained using learned GPDMs, and a self-collision

avoidance sub-objective. After that, we perform inverse dynamics to compute

the necessary torques needed to generate the desired joint velocities, then we
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Figure 5.1: Multiobjective task-oriented control framework

solve for the muscle activation levels using the computed muscle control approach

in (Lee et al., 2009). The GPDM learning (framed by the dashed rectangle in the

figure) need be done just once.

To describe our formulation of task-oriented control problems in detail, let

us consider controlling the orientation of the human body in water as a specific

example. The task accomplishment can be formulated as achieving the desired

objectives under the constraints imposed by physics. In Section 5.1 we describe

the governing equation which ensures the physical validity of the motion and show

the simplification process of the net hydrodynamic forces, and we formulate the

objectives that are directly related to the task accomplishment in Section 5.2.

5.1 Governing Equations

The relationships between external forces and the change of net spatial momenta

are as follows:

Jmomq̇ =

τ
f

∆t+

k

l

 , (5.2)

where q̇ is the vector of generalized velocities, Jmom is the centroidal momentum

matrix (Orin and Goswami, 2008) that linearly maps generalized velocities to

momentum, τ is the net external torque, f is the net external force, ∆t is the
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time step, l is linear momentum, k is the centroidal angular momentum, which

is the aggregate angular momentum of the human body projected at its center of

mass (CoM).

For a human body inside water, f comprises gravity, buoyancy, and the net hy-

drodynamic force. Since gravity and buoyancy approximately cancel one another,

f is mainly the net hydrodynamic force. As seen in (3.12), for each small area of

the human body, the hydrodynamic force approximately scales as the square of the

relative velocity of that area with respect to the fluid. We divide the human body

into m parts and assume that we can use a quadratic relationship to approximate

the net hydrodynamic force for each part. In more detail, for part i, we simply use

the face centers of the skin geometry triangles for that part as sampling points,

and use fi, v̄si and v̄fi to denote the net hydrodynamic force, mean velocity of

the skin, and mean velocity of the fluid computed from those sampling points,

respectively. We also assume that the following quadratic relationship suffices to

represent the net hydrodynamic force:

fi = ci||v̄si − v̄fi ||2, (5.3)

where ci is the coefficient vector. We can compute ci for each part given fi, v̄si , and

v̄fi . For the purposes of control, we wish to represent the net hydrodynamic force

fi and the corresponding net torque τ i as functions of the generalized velocities.

We do so by finding a point ri on part i that satisfies v(ri) = v̄si and ri × fi = τ i

in the least-squares sense, where v(ri) is the velocity at a point ri. For simplicity,

we use vbi , interpreted as the velocity of a mean point for the ith body part, to

denote v(ri). Then we have

fi = ci||vbi − v̄fi ||2. (5.4)

To formulate (5.2) as a quadratic programming problem, we further simplify this

as a linear equation using a Taylor expansion around v̄si on the right hand side of
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(5.4):

||vbi − v̄fi ||2 ≈ ||v̄si − v̄fi ||2 + 2
(
v̄si − v̄fi

)T (
Jveli q̇− v̄fi

)
= di + eTi q̇, (5.5)

where Jveli is the Jacobian matrix that linearly maps q̇ to vbi , and

di = ||v̄si − v̄fi ||2 − 2
(
v̄si − v̄fi

)T
v̄fi , (5.6)

eTi = 2Jveli

T
(
v̄si − v̄fi

)
. (5.7)

Substituting (5.5) into (5.4) yieldsτ
f

 =

∑ τ i∑
fi

 =
∑ri × ci

ci

(di + eTi q̇
)

(5.8)

We substitute this into (5.2) to obtain a linear equation for q̇:

Aq̇ = b, (5.9)

where

A = Jmom −
∑ri × ci

ci

 eTi ∆t (5.10)

and

b =
∑ri × ci

ci

 di∆t+

k

l

 . (5.11)

The governing equation (5.2) should be used as a constraint in our control problem.

We use a quadratic objective function to treat it as a soft constraint Egov =

||Aq̇− b||2.

Next, we will formulate the objectives that are directly related to task accom-

plishment.
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5.2 Task-Related Objectives

In order to make the human body rotate efficiently, we want the torque along

the desired rotation axis to be as large as possible, so we use a linear objective

function

Erot = −ωTτ (5.12)

to achieve this, where ω is the desired rotation axis. This Erot is very important

in order to generate efficient rotational motion. When the human body reaches

some pose limit, it is possible that the body may rotate in the reverse direction,

this linear term is very effective in mitigating this undesired effect. In general,

humans tend to twist their trunk to guide the rotation of their body, so we use

Jtrkvelq̇ = vtrkdes (5.13)

as a soft constraint to achieve the trunk twisting effect; i.e.,

Etrk = ||Jtrkvelq̇− vtrkdes||2. (5.14)

For the orientation control problem, vtrkdes is the desired trunk angular velocity and

Jtrkvel is the Jacobian matrix that linearly maps q̇ to the trunk angular velocity.

We use the orientation and velocity of the first thoracic vertebra to represent the

trunk orientation and velocity. The desired angular velocity is computed using a

feedback rule:

atrkdes = kp log
(
R−1
desR

)
− kdvtrk (5.15)

vtrkdes = vtrk + atrkdes∆t, (5.16)

where Rdes,R ∈ SO(3) are the desired trunk orientation and the current trunk

orientation respectively, kp and kd are proportional and derivative feedback gains,

respectively, and vtrk is the current angular velocity of the trunk.
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In summary, the orientation control objective function for task accomplishment

can be formulated as a weighted combination of the sub-objective functions; i.e.,

Eorient = Egov + wtrkEtrk + wrotErot

= ||Aq̇− b||2 + wtrk||Jtrkvelq̇− vtrkdes||2

− wrotωT
∑

ri × ci
(
di + eTi q̇

)
(5.17)

This is a quadratic function of q̇. Note that ri, ci, di, and ei are updated per

frame. We set wtrk = 1 and wrot = 1000 for all the results presented in this thesis.

5.3 Naturalness

Although we can achieve orientation control by minimizing Eorient, the resulting

motion might be very unnatural (see Chapter 6). The motion unnaturalness may

originate from multiple sources, but there are two common cases among them.

First, the human body may run into some unnatural pose, even though the joint

limits are satisfied. Second, the motion may not be fluid even though the pose

itself is natural; e.g., the human body is stuck in some pose for a while. We could

easily run into these cases if we simply optimize Eorient alone without a term

that encourages natural poses in Eorient and it is also very likely to get stuck in

some solution temporarily because of the temporal locality of our optimization

scheme. In order to handle these cases, we use the GPDM, which encodes both

pose naturalness and temporal dynamics information of the motion, to provide a

preferred solution q̇nat and define an objective function

Enat = ||q̇− q̇nat||2. (5.18)
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To obtain q̇nat, we first solve for a latent point xnat that defines the natural pose

(or velocity) by minimizing

Enat (xt+1) = Ex
orient + wpriorEprior

+ wsmoothEsmooth + wconfidEconfid

= Eorient (q̇ (µY (xt+1)))− wprior ln p
(
X(∗)|Γ

)
+ wsmooth||µY (xt+1)− µY (xt)||2

+ wconfidσ
2
Y (xt+1). (5.19)

This objective function is defined similarly to (Levine et al., 2012), which uses

the GP to map the joint space to latent space and defines the motion quality

term using a latent space motion prior, smoothness, as well as the prediction

variance of the reconstruction GP. In detail, µY (x) is the mean of the GP for

pose reconstruction as a function of the latent space position x, Γ is the learned

GPDM model parameters. X(∗) is the latent trajectory. In our application, we

use three adjacent latent points as X(∗); i.e., X(∗) = [xt−1,xt,xt+1]T . σ2
Y (x) is

the prediction variance. In this equation, Ex
orient = Eorient (q̇ (µY (xt+1))) prefers

solutions that are consistent with the orientation control objective, and Eprior =

− ln p
(
X(∗)|Γ

)
encourages output motion to be close to the training data. Another

big advantage of this Eprior is that it makes the motion fluid, preventing the

human body from becoming stuck in some pose due to local optimality or a joint

limit. Esmooth = ||µY (xt+1) − µY (xt)||2 measures the smoothness of the motion

in feature space, Econfid = σ2
Y (xt+1) measures the confidence of the reconstructed

pose from the latent position and prefers natural poses that are closer to the

training data. Although Eprior partially overlaps with Esmooth and Econfid in terms

of functionality, we found that having Esmooth and Econfid explicitly in the objective

function results in easier and more intuitive control of different sub-objectives.

The exact definition of µY (x), p
(
X(∗)|Γ

)
, and σ2

Y (x) can be found in (Wang et al.,

2008). Due to a nice property of the GP, we can efficiently compute ∂Enat/∂xt+1
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analytically. With this partial derivative, we can efficiently solve a nonlinear

optimization problem; i.e.,

xnat = arg min
xt+1

Enat (xt+1) (5.20)

to obtain a latent point xnat that defines the natural pose (or velocity). Exper-

iments show that we can generally find a decent suboptimal solution. Then we

can compute q̇nat from µY (xnat). In our application, we use joint angles (pose)

as the feature vector y for the GPDM and compute q̇ (µY (xt+1)) in (5.19) as well

as q̇nat using the numerical pose difference. We can initialize x0 by minimizing

||q0 − µY (x)||.

After we impose Enat, it is possible that this sub-objective will conflict with

Eorient, which may result in reverse rotation; however, the existence of the linear

term Erot will largely mitigate this effect. In practice, we always achieve the

desired orientation after several trials.

In our application, to make the latent space more powerful and flexible in

representing motion space from limited training data, we train four GPDM models

for the respective limbs independently with a connectivity prior as suggested in

(Levine et al., 2012). We fill in Ex
orient with latent points that are defined within

these GPDM models and leave unmodified the joints (e.g., joints that correspond

to the trunk bones) that are not specified by any latent space. We define the

other sub-objectives to be the summation of the limb GPDM sub-objectives; i.e.,

Eprior =
∑4

j=1E
j
prior, Esmooth =

∑4
j=1E

j
smooth and Econfid =

∑4
j=1 E

j
confid. Note

that even with all of these, minimizing Enat by itself does not result in motion that

achieves the desired orientation, although we have the orientation sub-objective

term in (5.19). In fact, the solved motion is quite inefficient in orientation control

due to the limited training data and the inadequate capacity of the GPDM to

handle large, heterogeneous datasets. However, it serves very well to make the

resulting motion natural. For the experimental results we present in this thesis,
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we set wprior = 5 · 10−7, wsmooth = 0.5, and wconfid = 5.

5.4 Collision Constraints

Self-collision avoidance is handled via soft constraints as in (Ho et al., 2010).

Collision constraints can be applied through the following equation:

Cq̇ = vcdes. (5.21)

Row i of this equation is

nTi
(
JC1
i − JC2

i

)
q̇ = vdesi , (5.22)

where ni is the unit vector computed from the ith closest point pair on the colliding

bodies, JC1
i and JC2

i are the Jacobian matrices that map the generalized velocities

to the velocities of the closest point pair, and vdesi is the desired relative velocity

of the point pair in the ni direction. We use the exponential of the penetration

depth to compute vdesi . To detect self-collision, we bound each body segment by

a capsule. We also treat the collision constraints as soft constraints; i.e.,

Ecld = ||Cq̇− vcdes||2. (5.23)

5.5 Solution

We substitute (5.17), (5.19), and (5.23) into (5.1) with Etask = Eorient, and solve

the quadratic programming problem

q̇des = arg min
q̇
E (q̇) . (5.24)

After solving for q̇des, we perform inverse dynamics to compute the necessary

torques to achieve q̇des, and then solve for muscle activation levels using the muscle

control approach in (Lee et al., 2009). For all our experimental results, we set
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wnat = 1 and wcld = 10−4. We use the time step of the training data sampling to

update the latent space optimization solution in (5.20) while using a smaller time

step to update the joint space optimization solution in (5.24).

All the Jacobian matrices can be computed efficiently in an analytical way

within our multibody system framework. Although our formulation is local in

time, it generates decent motion that achieves the desired orientation naturally.

All of the optimization problems are solved using sequential quadratic program-

ming (Gill et al., 2002). The partial derivatives needed for optimization are given

in Appendix D. When doing optimizations in joint space, the joint limits are

used to set the boundary constraints in order to ensure that the joint limits are

respected.

Note that if we use linear velocity in defining (5.13) and modify the linear term

in (5.12) to be a force projected in the desired direction, the controller can serve

as a translation controller to achieve the desired position. This formulation and

the idea of employing a GPDM for physics-based control can also be generalized

to a wider range of task-oriented control problems.
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CHAPTER 6

Experiments and Results

In this chapter, we present experimental results obtained within our simula-

tion and control framework, including synthesizing various swimming strokes and

body-orienting maneuvers in water.1

On a 2.8GHz Intel i7 CPU with 4GB of RAM, the running times of our swim-

ming simulator with a 192 fps frame rate range from 3 to 10 minutes per frame,

depending on how many steps the adaptive time-stepping fluid and deformable

solid simulators execute per frame. The overhead for stepping the controller is

negligible compared to the cost of the physics-based simulation.

For all the experiments presented, the water density is set to 1000 kg/m3 and

the Young’s modulus of the human flesh to 5×105 N/m2, following (Agache et al.,

1980). The average density of our human model is 980 kg/m3.

6.1 Swimming Strokes

We trained our CPG control system on two different swimming strokes—crawl

and butterfly—illustrated in Figures 6.1 and 6.2.

1Our results are demonstrated in an an accompanying video.
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Figure 6.1: Crawl swimming sequence
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Figure 6.2: Butterfly swimming sequence
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6.2 Swimming Motion Modulation

In addition to generating coordinated swimming motion, our CPG controller can

also achieve more complex tasks by modulating a few high-level parameters. The

swimming speed can be modulated by scaling the fundamental frequency Ω of

each muscle group by the same amount. In order to generate a natural transition,

we can change the frequency gradually to the desired frequency. Figure 6.3 shows

an animation sequence (frames separated by 1 sec) of a simulation in which we

increase the speed of the butterfly stroke by doubling the fundamental frequency.

Swimming stroke transitions are accomplished by switching the parameters

(wi, r, and g) of the CPG units from one motion to a different motion. Figure 6.4

illustrates an animation sequence that demonstrates the transition from butterfly

to crawl swimming.

To produce a left turn, the g of left neck and left trunk muscles are decreased,

the g of the right neck and right trunk muscles are increased, and the r for all

the neck and trunk muscles is decreased. Right turns are produced by doing the

opposite. Figure 6.5 illustrates an animation sequence of the swimmer following a

moving target, the white ball, with turning functionality in the butterfly swimming

stroke. To execute sharp turns, our virtual swimmer can keep one arm straight

by switching the CPG parameters of that arm muscle group to a static pose

(r = 0). Figure 6.6 shows an animation sequence of the virtual swimmer making

a 90-degree right turn.2 Figure 6.7 shows the trajectory of the body from the top

view.

2This is similar to the turn demonstrated by a (real) swimmer just after 1:22 in the YouTube
video at the following url: https://www.youtube.com/watch?v=YLT7YEwUCwI.
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Figure 6.3: Increasing the swimming speed
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Figure 6.4: Transition from butterfly to crawl
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Figure 6.5: Turning to follow a moving target white ball using the butterfly

swimming stroke
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Figure 6.6: Executing a 90-degree right turn using the crawl swimming stroke
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Figure 6.7: Turning sequence
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Figure 6.8: Contraction and bulging of the Gastrocnemius muscle (from the

butterfly swimming simulation)

6.3 Anatomically Detailed Simulation

With all the elements involved in our multiphysics simulation framework for

human swimming, we can also demonstrate the detailed anatomical animation

of the human body by rendering the skin translucently. Figure 6.8 shows two

close-up views (frames separated by 0.594 sec in time) from a simulation, in order

to illustrate the contraction and bulging of the Gastrocnemius muscle.

6.4 Orientation Control

We have applied the orientation controller that we developed in Chapter 5 to

achieve two tasks—turn to a supine orientation (Figure 6.9) and a prone ori-

entation (Figure 6.10). To demonstrate the importance of the GPDM-based

naturalness objective function, we turn off this objective in the task of turning

to a supine orientation by setting wnat = 0 in (5.1). Our simulation shows that

the right arm is stuck for quite some time in the task accomplishment process

and the motion is much less natural compared to the result with the naturalness

objective turned on. Figure 6.11 compares the animation sequences of these two
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Figure 6.9: Frames from a simulation sequence for the task of turning to a supine

orientation

simulations.
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Figure 6.10: Frames from a simulation sequence for the task of turning to a prone

orientation

62



Figure 6.11: (left) GPDM-based naturalness objective off (note that the right arm

remains stuck). (right) GPDM-based naturalness objective on.
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CHAPTER 7

Discussion

Our interleaved approach to coupling fluid, flesh, and skeletal components pro-

vides us flexibility and versatility in constructing our simulation and control

framework from different algorithmic building blocks and simulation algorithms.

However, interleaved coupling reflects a conscious compromise in traits such as

stability, accuracy, and performance potential. A more tightly-coupled system

with deformable, fluid, and rigid components would, in theory, enable implicit

time-integration techniques that would achieve stable simulation while tolerating

larger time steps. In contrast, we take the most time-step-restrictive of the phases

involved (generally the fluid) and use it to dictate the time-step for the entire

interleaved simulation cycle. As controllers and modular simulation components

mature, a tightly-coupled multiphysics-control system would certainly be appro-

priate.

Although the interleaved coupling of skeleton, flesh, and fluid provide flexibility

and ease in constructing the simulation framework, they also compromise stability,

accuracy, and performance. We sacrifice accuracy for stability in our fluid-skin

coupling by using the reliable velocity field rather than the unreliable pressure

field to compute hydrodynamic forces on the body. To employ pressure, we

would need a better fluid solver and/or a better coupling method. For the flesh-

skeleton coupling, we sacrifice performance for stability and accuracy. In order to

produce stable flesh-skeleton simulation under large environmental perturbation

(e.g., ground collision), we would have to take very small time steps. This could
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be aided by computing a Jacobian matrix, which represents the flesh force change

acting on the bones with respect to the skeleton pose change, and use it in an

implicit integration of the multibody dynamics system.

Our combined use of PLS muscle forces and forces stemming from the volu-

metric flesh simulation has an interesting consequence. The mechanical response

of the skeleton to a specific pose includes force components arising from both the

PLS model and the volumetric simulation. For example, reactive forces act on

the bones as the body pose causes stretching or compression of the flesh. Such a

response serves a similar purpose as the passive component of PLS muscles. In

addition, since our flesh simulation incorporates active musculature, the contrac-

tion of such volumetric muscles will transmit forces to their attached bones. In

an ideal setting, the volumetric simulation would capture the entirety of forces

due to flesh elasticity and muscle contraction alike. However, obtaining accurate

muscle forces exclusively from the volumetric simulation requires a great degree

of modeling accuracy, including detailed geometric and material descriptions for

tendons and connective tissues. This is a significantly higher standard of modeling

detail and accuracy than would be necessary for recreating natural looking flesh

deformations, where the accuracy of deep muscle forces is not a crucial factor. On

the other hand, while the PLS approximation does not provide information on

volumetric deformation, it is capable of reproducing stable and biomechanically

faithful muscle forces and torques. Our approach has been to include both

sources of force, and use each to compensate for inaccuracies in the other. For

example, in the absence of tendon models in the volumetric flesh simulation,

the effect of muscle contraction on bones is greatly diluted, and spread out over

a broader area than the actual point of attachment; this is compensated by

relying on the PLS model to contribute the bulk of the articulatory forces. On

the other hand, the transfer of forces acting on the skin to the bones via the

elastic flesh relies almost exclusively on the volumetric simulation. Ultimately, we
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treat the combined PLS/volumetric simulation system as a combined anatomical

approximation whose parameters are adapted to produce realistic simulation.

We will next report on an additional set of experiments aimed at assessing the

importance of various simulation/control components of our framework relative

to alternative approaches.

7.1 CPG Control vs. Splines

On a fundamental level, we advocate CPG-based locomotion control, since the

CPG is a principled low-level motor control mechanism from a biological per-

spective. However, spline-based animation methods have traditionally been more

familiar to graphics practitioners. In fact, as discussed in Section 4.1, we initially

use cubic B-splines to approximate the CPG training data. As a simple alternative

to the CPG dynamical model, our continuous spline approximations may be

repeated in time to produce periodic muscle signals to drive our virtual swimmer.

The accompanying video includes a comparison of our CPG-controlled swimming

against spline-controlled swimming. Although the results look qualitatively sim-

ilar for any particular swimming stroke in steady state, the spline technique

is noticeably choppier than the CPG technique due to discontinuities in the

derivatives of the periodic spline functions across cycles, whereas the muscle

control signals generated by our CPGs are always C1 smooth. Moreover, to

switch from one swimming stroke to another, the spline-based controller would

have to transition carefully between numerous periodic spline functions, one per

muscle. By contrast, our CPG muscle controllers can effect smooth transitions

and control swimming speed by simply switching and/or modifying the values of

a few parameters.
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7.2 Muscle Control vs. Joint Torques

On a fundamental level, we advocate muscle-based control as contractile muscles

are the principled skeletal actuation mechanism from a biological perspective.

However, joint-torque animation control methods have traditionally been more

familiar to graphics practitioners. Since skeletal muscle forces, through (bone)

moment arms, eventually produce torques at rotational joints in the skeleton (but

see (Lee and Terzopoulos, 2008)), we can in principle achieve similar animation re-

sults through equivalent joint-torque-driven simulation. The accompanying video

includes a comparison of our muscle-actuated simulation against both inverse-

dynamic (ID) and PD joint-torque actuated simulation. In the case of swimming,

we obtained plausible results using joint-torque actuation, but it was necessary to

set high gains for the PD joint-torque controllers accompanied with an order-of-

magnitude smaller numerical time-step compared to the muscle-based approach.

Moreover, a further advantage of the latter is that modifying the parameters of

contractile muscles situated in anatomically accurate positions is the natural way

to create nuanced biological motion patterns, including pathological ones (Wang

et al., 2012), as well as of naturally effecting realistic flesh deformations (Lee et al.,

2009).

7.3 Flesh Simulation vs. Procedural Skinning

On a fundamental level, we advocate volumetric soft-tissue simulation as this is the

principled fleshing approach from a biological perspective. However, procedural

skinning techniques have traditionally been more familiar to graphics practition-

ers. The accompanying video includes a comparison of our deformable flesh sim-

ulation against a state-of-the-art dual-quaternion skinning method (Kavan et al.,

2008) with bounded biharmonic weights (Jacobson et al., 2011). The volumetric

flesh simulation and procedural skinning result in similar swimming performances.
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Experiment Average Swimming Speed (m/s)

CPG muscle control 0.973

Spline muscle control 0.956

ID joint control 0.954

PD joint control 0.889

Simple skinning 0.916

Simple fluid model 0.614

Table 7.1: Average speed of the virtual swimmer in various experimental scenarios.

From some but not all viewpoints, the skin deformation appears plausible as

the body articulates, but it cannot adequately synthesize anatomically detailed

deformations, such as the muscle bulging effects demonstrated in Figure 6.8.

7.4 Fluid Simulation vs. Velocity Fields

On a fundamental level, we advocate a detailed physical simulation of the swim-

mer’s environment, particularly Navier-Stokes simulation of water. However,

procedural velocity field techniques have traditionally been easier for graphics

practitioners to use (c.f. (Tu and Terzopoulos, 1994)). The accompanying video

includes a comparison of the use of our water simulation approach against the use

of a static, zero-velocity water field, employing the same flesh-water force coupling

method for both. With the same amount of muscle effort, the virtual swimmer

swims significantly faster in the simulated fluid environment compared to the

zero-velocity field. Moreover, fluid simulation provides realistic wave, splash, and

other effects that are entirely absent with the latter.
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Figure 7.1: Comparison of swimming performance in various experimental sce-

narios.

7.5 A Comparison of Swimming Performances

Figure 7.1 presents a quantitative comparison of the performance of our virtual

swimmer in the experimental scenarios described in the previous sections of this

appendix, by plotting the distance traveled by the swimmer’s pelvis over time. The

table in Figure 7.1 indicates the associated average swimming speeds. In the figure

and table, CPG muscle control refers to our experimental setting developed in the

main text of this paper—i.e. using CPG locomotion control to synthesize muscle-

length signals for the muscle-driven biomechanical body simulation with simulated

flesh situated in simulated water. Under this same simulation scenario, spline

muscle control refers to the use of B-splines to synthesize the muscle-length signals

(Section 7.1), ID joint control refers to inverse-dynamics controlled joint-torque

driven simulation (Section 7.2), and PD joint control refers to PD-controlled joint-

torque driven simulation (Section 7.2). Simple skinning refers to using the dual

quaternion skinning approach (Section 7.3). Simple fluid model refers to using a

zero-velocity field (Section 7.4).
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The figure and table reveal that the virtual swimmer swims most efficiently in

our original experimental scenario. The swimmer can achieve similar swimming

performances in the other experimental settings, except when the simulated fluid

model is replaced by a zero-velocity field, which result in significantly lower

efficiency.
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CHAPTER 8

Conclusion

8.1 Contributions of the Thesis

In summary, the primary contributions of the human animation research reported

in this dissertation are as follows:

• We have introduced a multiphysics simulation and control framework

within whose scope is the realistic animation of a sophisticated autonomous

human model that is capable of controlled swimming and underwater orien-

tation control.

• We have developed a comprehensive biomechanical model of the hu-

man body, which includes 103 rigid bones (comprising 163 articular degrees

of freedom) simulated as an articulated, multibody dynamical system that

is driven by 823 muscles modeled as piecewise uniaxial Hill-type contractile

actuators, plus a muscle and passive flesh simulation via an efficient volumet-

ric finite element model of quasi-incompressible elastic material augmented

with active (contractile) muscle terms, as well as the appropriate two-way

coupling between the articulated skeleton and deformable flesh.

• With regard to the control of the biomechanical human model to syn-

thesize complex, coordinated movements in water, we developed a Central

Pattern Generator (CPG) based controller that generates muscle activation

signals to induce appropriately coordinated muscle contractions. We also
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developed a multiobjective optimization based control method that enables

our biomechanical human model to accomplish nonperiodic, task-oriented

motions in water while encouraging motion naturalness and avoiding self-

collisions.

8.2 Future Work

Contemplating how people learn to swim, we are inspired to further investi-

gate this topic in our future work. Humans learn to swim by first learning the

movement of the limbs, perhaps by mimicking swimming demonstrations. This

corresponds to the supervised learning process of our CPG system. After attaining

command of the kinematic pattern of a swimming stroke, one can improve one’s

swimming skill through practice. This can be treated as an optimization process.

As seen in the video, currently the motions of our swimmer are not very efficient,

but we can try to optimize the learned parameters of our CPG system in order

to improve efficiency. Generally speaking, CPG models offer a good substrate

for automated learning and optimization algorithms. Studying how the swimmer

responds to perturbations will be another interesting research direction. We can

potentially simulate how a human should perform swimming in a torrential flow.

In the aquatic environment, we do not deal with balance, and losing bal-

ance does not cause serious problems for underwater motion control in a calm

water environment, since buoyancy approximately cancels gravity and humans

can efficiently control their limbs to generate proper drag forces, thus making

their motions controllable. Under large perturbations, however, we are forced to

confront balance in order to produce controllable motion. Balance is also a very

troublesome issue when controlling terrestrial motion. It will not suffice to simply

apply our CPG controller to walking and running motions as we would need to

develop a more sophisticated feedback scheme to handle the balance problem.
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This will be another interesting avenue for future work. Real world motion may

be a superimposition of locomotion and voluntary movements; e.g., waving hands

while walking. Combining our CPG controller with other controllers, such as the

neuromuscular controller developed in (Lee and Terzopoulos, 2006), may be a

viable approach to dealing with a broader variety of motor tasks.

For our orientation controller, the motion efficiency and naturalness are still

not up to the standards of real human motion. Motion efficiency can be improved

by formulating a better objective function for changing orientation, as well as

a better approximation of the net hydrodynamic force effect. GP approaches

have shown promise in synthesising natural kinematic human motion, and another

possible direction for future work is finding a better way to couple the task control

with the GP to improve the motion naturalness while not losing motion efficiency.

Energy efficiency, which is an important principle for human motion, is not

considered in our proposed controllers. Since we cannot afford global spatiotem-

poral optimization for our complex system, it is very challenging to apply the

energy efficiency principle to the system directly. A possible solution is to obtain

an energy-efficient controller from a simplified system and then refine it for use in

the actual simulation framework, another possible avenue for future work.
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APPENDIX A

Rendering

We use the open-source POV-Ray software to render our simulation results. The

geometries of the skin, muscles, and skeleton are embedded into the hexahedra

of the embedding volume. This embedding framework preserves high resolution

geometry for rendering. The water is treated as an isosurface object. The particle

level set method provides a level set representation for the surface of the water,

however, this level set representation cannot generate rich splashing effects unless

the fluid is simulated at very high resolution. To make our fluid simulation

affordable and the rendering result visually appealing, we make use of a byproduct

of the fluid simulation, the removed negative particles, to render splashes.

We reconstruct a smooth surface representation from the removed negative

particles using the approach in (Yu and Turk, 2010), which formulates the implicit

surface representation as a sum of anisotropic smoothing kernels. The direction

of anisotropy at a particle is determined by performing Principal Components

Analysis (PCA) over the neighboring particles. Since these anisotropic smoothing

kernels capture the local particle distributions more accurately, this method has

advantages in representing smooth surfaces, thin streams, and sharp fluid features.

It is also fast and easy to implement.

The surface is defined as an isosurface of a scalar field

φ (x) =
∑
j

mj

ρj
W (x− xj,Gj), (A.1)

where x is a location in space, mj is the particle mass, and W is an anisotropic
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smoothing kernel of the form

W (r,G) = σ‖G‖P (‖Gr‖) . (A.2)

Here, r is a radial vector, G is a linear transformation that rotates and stretches

r, σ is a scaling factor, which we set to − 315
65π

, and P is a symmetric decaying

spline with finite support, which we simply define P as

P (x) =


(1− x)3 if 0 ≤ x ≤ 1

0 otherwise.

(A.3)

The density ρi in (A.1) is interpolated by a sum of the weighted contributions of

nearby particle masses mj:

ρi =
∑
j

mjW (xj − xi,Gj). (A.4)

The key idea of this method is to associate an anisotropic matrix Gj with

each particle j so that Gj more accurately represents the neighborhood density

distribution. In order to determine G, we apply the weighted version of PCA

(WPCA) that is proposed in (Koren and Carmel, 2003) to the neighborhood

particle positions. Specifically, WPCA begins by computing a weighted mean of

data points:

xwi =
∑
j

wijxj/
∑
j

wij. (A.5)

Next, it constructs a weighted covariance matrix C with a zero empirical mean:

Ci =
∑
j

wij (xj − xwi ) (xj − xwi )T/
∑
j

wij. (A.6)

The function wij is an isotropic weighting function with respect to particle i and

j with support ri:

wij =


1− (‖xi − xj‖/ri)3 if ‖xi − xj‖ < ri,

0 otherwise.

(A.7)

75



With the finite support of wij, the computation is confined to the neighborhood

particles within the radius ri. To determine efficiently the particles that are within

some radius of each particle, we build a balanced k-d tree for all the particles ahead

of the other computations.

Then we perform an eigendecomposition on C:

C = RΣRT , (A.8)

where R is a rotation matrix with principal axes as column vectors, and Σ is a

diagonal matrix with eigenvalues σ1 ≥ · · · ≥ σd:

Σ = diag (σ1, · · · , σd) . (A.9)

In order to deal with singular matrices and prevent extreme deformations, we

check if σ1 ≥ krσd with a suitable positive constant kr > 1. This condition is true

when the largest variance in one principal axis is much bigger than the variance

in another axis. In this case, we modify C so that the ratio between any two

eigenvalues is within kr. When the number of particles in the neighborhood is too

small, we reset W to a spherical shape by setting G = knI in order to avoid poor

particle deformations for nearly isolated particles. We also multiply C by scaling

factor ks such that ‖ksC‖ ≈ 1 for the associated particle inside the fluid volume.

Σ̃ =


ksdiag (σ1, σ̃2, · · · , σ̃d) if N > Nε,

knI otherwise,

(A.10)

where σ̃k = max (σk, σ1/kr). In our application, we use kr = 4, ks = 1400,

kn = 0.2, and Nε = 25.

Gi =
1

hi
RΣ̃−1RT . (A.11)

We use hi = 0.04 and ri = 2hi.
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APPENDIX B

Improved Flesh-Bone Coupling

The key idea in improving flesh-bone coupling is to provide the Jacobian matrix

of the attachment spring forces fc with respect to the joint coordinates q; i.e.,

∂fc
∂q

, so that we can take it into account in applying the implicit integration when

performing the multibody dynamics simulation for the skeleton.

We define the quasistatic positions of nodes and attachments as follows:

x =

xu

xc

 , (B.1)

where xu are the quasistatic positions of the nodes and xc are the quasistatic

positions of the attachment points. Figure B.1 provides a 2D interpretation,

where xu are indicated as blue dots and xc as black dots.

Since the attachment points are obtained by sampling the bone surface, xc are

entirely determined by the skeleton configuration, and we have

xc = xc(q), (B.2)

where q are the joint coordinates. It is easy to compute the ∂xc

∂q
.

After the deformable flesh is computed for a quasi-static equilibrium configu-

ration, the net elastic forces acting on the nodes are 0; i.e.,

fu (xu,xc) = 0 (B.3)

The partial derivatives of fu with respect to q is also null:

∂

∂q
fu (xu,xc) = 0 (B.4)
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Figure B.1: A 2D interpretation of the nodes and attachment points. The nodes

xu are denoted as blue dots. The attachment points xc are denoted as black dots.

Applying the chain rule to (B.4), we have

∂fu
∂xu

∂xu
∂q

+
∂fu
∂xc

∂xc
∂q

= 0. (B.5)

Since the flesh is coupled to the bone through zero natural-length springs, xc

contributes a linear part to fu, and we have

∂fu
∂xc

= K, (B.6)

where K is the stiffness matrix. Since the elastic force can be expressed as the

negative gradient of the potential energy E, we have

fu = − ∂E
∂xu

. (B.7)

Computing the partial derivatives with respect to xu on both sides gives us

− ∂fu
∂xu

=
∂2E

∂x2
u

. (B.8)

We can solve for ∂xu

∂q
according to (B.5).

78



Since the spring forces on the attachment points are fc = fc (xu,xc), we have

∂fc
∂q

=
∂fc
∂xu

∂xu
∂q

+
∂fc
∂xc

∂xc
∂q

. (B.9)

Since both xu and xc contribute linearly to fc, we can easily compute ∂fc
∂xu

and ∂fc
∂xc

,

while ∂xc

∂q
and ∂xu

∂q
are already computed above, and we can compute ∂fc

∂q
according

to (B.9).
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APPENDIX C

Derivatives of B-splines

Given m real valued knots ti, with t0 ≤ t1 ≤ · · · ≤ tm−1, a B-spline of degree n is

a parametric curve

C : [tn, tm−n−1]→ R (C.1)

composed of a linear combination of basis B-splines Ni,n of degree n:

C(t) =
m−n−2∑
i=0

PiNi,n(t). (C.2)

The points Pi ∈ R are control points. The m− n− 1 basis B-splines of degree n

can be defined using the following recursion formula:

Nj,0(t) =


1, if tj ≤ t < tj+1, j = 0, ...,m− 2.

0, otherwise,

(C.3)

Nj,n(t) =
t− tj

tj+n − tj
Nj,n−1(t) +

tj+n+1 − t
tj+n+1 − tj+1

Nj+1,n−1(t), j = 0, ...,m− n− 2.

(C.4)

The first and second order derivatives of the basis B-splines can be computed

as follows:

d

dt
Ni,n(t) =

n

ti+n − ti
Ni,n−1(t)− n

ti+n−1 − tn+1

Ni+1,n−1(t); (C.5)
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d2

dt2
Ni,n(t) =

n

ti+n − ti
d

dt
Ni,n−1(t)− n

ti+n+1 − ti+1

d

dt
Ni+1,n−1(t)

=
n

ti+n − ti

(
n− 1

ti+n−1 − ti
Ni,n−2(t)− n− 1

ti+n − ti+1

Ni+1,n−2(t)

)
− n

ti+n+1 − ti+1

(
n− 1

ti+n − ti+1

Ni+1,n−2(t)− n− 1

ti+n+1 − ti+2

Ni+2,n−2(t)

)
= n(n− 1)

(
Ni,n−2(t)

(ti+n − ti)(ti++n−1 − ti)
−
(

1

(ti+n − ti)(ti+n − ti+1)

+
1

(ti+n+1 − ti+1)(ti+n − ti+1)

)
Ni+1,n−2(t) +

Ni+2,n−2(t)

(ti+n+1 − ti+1)(ti+n+1 − ti+2)

)
(C.6)

So for the B-spline C(t), we can compute its first and second order derivatives

as follows:

dC(t)

dt
=

m∑
i=0

Pi
d

dt
Ni,n(t)

=
m∑
i=0

Pi

(
n

ti+n − ti
Ni,n−1(t)− n

ti+n+1 − ti+1

Ni+1,n−1(t)

)
= P0

n

tn − t0
N0,n−1(t) +

∑
i=1

m(Pi − Pi−1)
n

tn+i − ti
Ni,n−1(t)

− Pm
n

tm+n+1 − tm+1

Nm+1,n−1(t) (C.7)

d2C(t)

dt2
=

m∑
i=0

Pi
d2

dt2
Ni,n(t)

= n(n− 1)

(
N0,n−2(t)

P0

(tn − t0)(tn−1 − t0)

+N1,n−2(t)

(
− P0

(tn − t0)(tn − t1)
− fracP0 − P1(tn+1 − t1)(tn − t1)

)
+

m∑
i=2

Ni,n−2(t)

(
Pi−2 − Pi−1

(ti+n−1 − ti−1)(ti+n−1 − ti)
− Pi−1 − Pi

(ti+n − ti)(ti+n−1 − ti)

)
+Nm+1,n−2(t)

(
Pm−1 − Pm

(tm+n − tm)(tm+n − tm+1)
− Pm

(tm+n+1 − tm+1)(tm+n − tm+1)

)
+ Nm+2,n−2(t)

Pm
(tm+n+1 − tm+1)(tm+n+1 − tm+2)

)
(C.8)
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APPENDIX D

Gaussian Process Dynamical Model Details

In order to characterize natural human motion, we train GPDMs using motion

capture data of a human swinging his arms and legs. Given the learned model

Γ = {Y,X, ᾱ, β̄,W}, the distribution over a new sequence Ŷ and its associated

latent trajectory X̂ is given by

p
(
Ŷ, X̂|Γ

)
= p

(
Ŷ|X̂,Γ

)
p
(
X̂|Γ

)
. (D.1)

Here, Y ≡ [y1, · · · ,yN ]T are the observations (training data) and y1, · · · ,yN is a

sequence of observed feature vectors. In our application, we use joint angles as the

feature vector. X ≡ [x1, · · · ,xN ]T are the corresponding latent coordinates. Let

D be the dimension of the feature vector y, d the dimension of the latent vector

x, and W = diag (w1, · · · , wD) be a D ×D diagonal scaling matrix. We use two

previous frames to infer a new pose—i.e. we use the poses in frame n − 1 and

frame n to infer the new pose in frame n+1. Thus, we have Ŷ = [ŷn−1, ŷn, ŷn+1]T ,

X̂ = [x̂n−1, x̂n, x̂n+1]T . The distribution of p
(
Ŷ|X̂,Γ

)
is Gaussian and it can be

written as follows:

p
(
Ŷ|X̂,Γ

)
=

|W|M√
(2π)MD |K(X̂)|D

exp

(
−1

2
tr
(
K−1(X̂)ZY W2ZT

Y

))
, (D.2)

where M is the number of feature vectors in the new sequence; in our application

M = 3. We use the RBF kernel to define a kernel kY as

kY (x,x′) = exp

(
−β1

2
‖x− x′‖2

)
+ β−1

2 δx,x′ , (D.3)
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Now,

ZY = Ŷ −KX̂,XK−1
Y Y, (D.4)

and

K(X̂) = KX̂,X̂ −KX̂,XK−1
Y KT

X̂,X
, (D.5)

where

KX̂,X̂ =


kY (x̂n−1, x̂n−1) kY (x̂n−1, x̂n) kY (x̂n−1, x̂n+1)

kY (x̂n, x̂n−1) kY (x̂n, x̂n) kY (x̂n, x̂n+1)

kY (x̂n+1, x̂n−1) kY (x̂n+1, x̂n) kY (x̂n+1, x̂n+1)

 (D.6)

and

KX̂,X =


kY (x̂n−1,x1) kY (x̂n−1,x2) · · · kY (x̂n−1,xN)

kY (x̂n,x1) kY (x̂n,x2) · · · kY (x̂n,xN)

kY (x̂n+1,x1) kY (x̂n+1,x2) · · · kY (x̂n+1,xN)

 . (D.7)

The elements of the kernel matrix KY are defined by a kernel function (KY )ij ≡

kY (xi,xj). Matrix KY need only be inverted once by using the learned model.

The distribution p
(
X̂|Γ

)
is not Gaussian, but it can be expressed similar to

(D.2):

p
(
X̂|Γ

)
=

p (x̂n−1)√
(2π)(M−1)d

exp

(
−1

2
tr
(
K−1(X̂in)ZXZT

X

))
. (D.8)

We use a “linear + RBF” kernel to define a kernel kX as follows:

kX(x,x′) = α1 exp
(
−α2

2
‖x− x′‖2

)
+ α3x

Tx′ + α−1
4 δx,x′ . (D.9)

Now,

ZX = X̂out −KX̂in,Xin
K−1
X Xout (D.10)

K
(
X̂in

)
= KX̂in,X̂in

−KX̂in,Xin
K−1
X K

T
X̂in,Xin

. (D.11)
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where

Xin = [x1, · · · ,xN−1]T , (D.12)

Xout = [x2, · · · ,xN ]T , (D.13)

X̂in = [x̂n−1, x̂n]T , (D.14)

X̂out = [x̂n, x̂n+1]T . (D.15)

The elements of the kernel matrix KX are defined by a kernel function (KX)ij ≡

kX (xi,xj) constructed from Xin, and KX̂in,X̂in
, and KX̂in,Xin

are defined similarly.

Matrix KX also needs only be inverted once by using the learned model.

Conditional Likelihood and Related Derivatives

The likelihood of a sequence with three feature vectors Ŷ and the corresponding

latent positions X̂ is computed as

LS(Ŷ, X̂) = LY (Ŷ, X̂) + LX(X̂), (D.16)

where

LY (Ŷ, X̂) =
D

2
ln |K(X̂)|+ 1

2
tr
(
K−1(X̂)ZY W2ZT

Y

)
(D.17)

and

LX(X̂) =
d

2
ln |K(X̂in)|+ 1

2
tr
(
K−1(X̂in)ZXZT

X

)
. (D.18)

Here, we also provide the partial derivatives of LS:

∂LS
∂ŷn+1

=
∂LY
∂ZY

∂ZY

∂ŷn+1

, (D.19)
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∂LS
∂x̂n+1

=
∂LY

∂K(X̂)

∂K(X̂)

∂x̂n+1

+
∂LY
∂ZY

∂ZY

∂x̂n+1

+
∂LX
∂ZX

∂ZX

∂x̂n+1

. (D.20)

In greater detail,

∂LY

∂K(X̂)
=
D

2
K−1(X̂)− 1

2
K−1(X̂)ZY W2ZT

Y K−1(X̂), (D.21)

∂LY
∂ZY

= K−1(X̂)ZY W2, (D.22)

∂LX
∂ZX

= K−1(X̂in)ZX . (D.23)

Using x̂ji to denote the j-th element of the latent vector x̂i,

∂K(X̂)

∂x̂jn+1

=
∂KX̂,X̂

∂x̂jn+1

−
∂
(
KX̂,XK−1

Y KT
X̂,X

)
∂x̂jn+1

. (D.24)

In greater detail,

∂KX̂,X̂

∂x̂jn+1

=


0 0 ∂kY (x̂n−1,x̂n+1)

∂x̂jn+1

0 0 ∂kY (x̂n,x̂n+1)

∂x̂jn+1

∂kY (x̂n+1,x̂n−1)

∂x̂jn+1

∂kY (x̂n+1,x̂n)

∂x̂jn+1

0

 , (D.25)

where

∂kY (x̂i, x̂n+1)

∂x̂jn+1

=
∂kY (x̂n+1, x̂i)

∂x̂jn+1

= −β1(x̂jn+1 − x̂
j
i ) exp

(
−β1

2
‖x̂i − x̂n+1‖2

)
.

(D.26)

∂
(
KX̂,XK−1

Y KT
X̂,X

)
∂x̂jn+1

=
N∑
i=1

∂
(
KX̂,XK−1

Y KT
X̂,X

)
∂kY (x̂n+1,xi)

∂kY (x̂n+1,xi)

∂x̂jn+1

, (D.27)

where

∂
(
KX̂,XK−1

Y KT
X̂,X

)
∂kY (x̂n+1,xi)

= Gi + GT
i (D.28)
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and

Gi = E
(3,i)
3×NK−1

Y KT
X̂,X

(D.29)

Here, we use E
(3,i)
3×N to denote a matrix whose elements are 0 except that the (3, i)

element is 1. Substituting (D.28) and (D.29) into (D.27), we have

∂
(
KX̂,XK−1

Y KT
X̂,X

)
∂x̂jn+1

= H + HT , (D.30)

where

H =


0 0 · · · 0

0 0 · · · 0

∂kY (x̂n+1,x1)

∂x̂jn+1

∂kY (x̂n+1,x2)

∂x̂jn+1

· · · ∂kY (x̂n+1,xN )

∂x̂jn+1

K−1
Y KT

X̂,X
. (D.31)

Furthermore,

∂ZY

∂x̂jn+1

= −


0 0 · · · 0

0 0 · · · 0

∂kY (x̂n+1,x1)

∂x̂jn+1

∂kY (x̂n+1,x2)

∂x̂jn+1

· · · ∂kY (x̂n+1,xN )

∂x̂jn+1

K−1
Y Y, (D.32)

∂ZY

∂ŷjn+1

= E
(3,j)
3×D, (D.33)

and

∂ZX

∂x̂jn+1

= E
(2,j)
2×d . (D.34)

Partial Derivatives of the Naturalness Objective

To solve the nonlinear optimization problem (5.20) efficiently, we must provide

the partial derivative ∂Enat(x̂n+1)
∂x̂n+1

. We apply chain rule to (5.20) and obtain

∂Enat (x̂n+1)

∂x̂n+1

=
∂Eorient (q̇ (µY (x̂n+1)))

∂q̇ (µY (x̂n+1))

∂q̇ (µY (x̂n+1))

∂µY (x̂n+1)

∂µY (x̂n+1)

∂x̂n+1

+ wprior
∂LX(X̂)

∂x̂n+1

+ 2wsmooth (µY (x̂n+1)− µY (x̂n))T
∂µY (x̂n+1)

∂x̂n+1

+ wconfid
∂σ2

Y (x̂n+1)

∂x̂n+1

. (D.35)
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Here, we provide the mean of the pose reconstruction GP

µY (x̂) = YTK−1
Y kY (x̂) , (D.36)

where

kY (x̂) =


kY (x1, x̂)

kY (x2, x̂)
...

kY (xN , x̂)

 (D.37)

and the prediction variance of the reconstruction GP is

σ2
Y (x̂) = kY (x̂, x̂)− kY (x̂)T K−1

Y kY (x̂) (D.38)

So,

∂µY (x̂n+1)

∂x̂n+1

= YTK−1
Y

∂kY (x̂n+1)

∂x̂n+1

(D.39)

and

∂σ2
Y (x̂n+1)

∂x̂n+1

=
∂kY (x̂n+1, x̂n+1)

∂x̂n+1

− 2kY (x̂n+1)T K−1
Y

∂kY (x̂n+1)

∂x̂n+1

(D.40)

since

∂LX(X̂)

∂x̂n+1

=
∂LX
∂ZX

∂ZX

∂x̂n+1

, (D.41)

where ∂LX

∂ZX
and ∂ZX

∂x̂n+1
are given in (D.23) and (D.34), respectively. Substituting

(D.39), (D.40), and (D.41) into (D.35), we can compute ∂Enat(x̂n+1)
∂x̂n+1

.
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based inverse kinematics. In Proceedings of the ACM SIGGRAPH Conference,

SIGGRAPH ’04, pages 522–531, New York, NY. ACM. 11

Grzeszczuk, R. and Terzopoulos, D. (1995). Automated learning of muscle-

actuated locomotion through control abstraction. In Proceedings of the ACM

SIGGRAPH Conference, Computer Graphics Proceedings, Annual Conference

Series, pages 63–70. 9, 11, 40

Hase, K., Miyashita, K., Ok, S., and Arakawa, Y. (2003). Human gait simulation

with a neuromusculoskeletal model and evolutionary computation. The Journal

of Visualization and Computer Animation, 14(2):73–92. 10

Ho, E. S. L., Komura, T., and Tai, C.-L. (2010). Spatial relationship preserving

character motion adaptation. In Proceedings of the ACM SIGGRAPH Confer-

ence, SIGGRAPH ’10, pages 33:1–33:8, New York, NY. ACM. 49

89



Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F. (1995).

Animating human athletics. In Proceedings of the 22nd Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages 71–78,

New York, NY. ACM. 8

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals

and robots: A review. Neural Networks, 21(4):642–653. 10

Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.-M. (2007). From

swimming to walking with a salamander robot driven by a spinal cord model.

Science, 315(5817):1416–1420. 10

Ikemoto, L., Arikan, O., and Forsyth, D. (2009). Generalizing motion edits with

Gaussian processes. ACM Transactions on Graphics, 28(1):1:1–1:12. 11
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