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Abstract of the Thesis

A Framework for Non-Photorealistic

2D Animation

by

Jasleen Singh

Master of Science in Computer Science

University of California, Los Angeles, 2011

Professor Demetri Terzopoulos, Chair

Non-photorealistic techniques are used in Computer Graphics to render scenes

that have an abstract or painterly feel to them. However, most such techniques

usually employ a source image as input in order to produce a stylized image as

output and they use stochastic methods to distribute strokes or other primitives.

This makes it difficult to extend such methods to video and animation, as sim-

ply applying the technique to each frame results in a noisy looking sequence,

commonly known as the shower-door effect.

In this thesis, we present a framework for creating 2D animation and for

rendering it using stroke-based non-photorealistic techniques. Objects in a scene

to be animated are represented as a hierarchy of triangle meshes, each of which

has additional information about color and tone. A generator then distributes

particles over each mesh. An object is animated by deforming its component

meshes, with the particles maintaining their relative position with respect to the

mesh vertices. A renderer then draws the output image given the position of the

particles.

viii



We implement our framework in an application, called LiveCanvas, for creat-

ing stylized 2D animations. The application supports both interpolation (tweened)

and key-frame based animation, or a mixture of the two. Since objects are rep-

resented as meshes and since the application automatically does color blending

between two key-frames, we can also use it to create animated morphs rendered

in various non-photorealistic styles. The generated frames maintain the temporal

coherency of the brush strokes, thus avoiding the shower-door effect, which results

in smooth-looking animations. We demonstrate the flexibility of our framework

by implementing mesh deformation using three different techniques and providing

a number of non-photorealistic styles.
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CHAPTER 1

Introduction

From time immemorial, humans have expressed themselves through art. From

cave paintings dating 32,000 years ago,1 to random doodling by a student in

a boring lecture, drawing and painting have always been natural activities for

humans. In prehistoric times, primarily due to limitations of the tools at their

disposal, humans drew abstract forms and images of natural landscapes, animals

and other objects of interest, real or imaginary. With improvements in technol-

ogy over time and a desire to create life-like depictions, artists and painters strove

to achieve greater fidelity between the subject and its image. The art of photo-

realistic painting was perfected by Renaissance era artists such as Michelangelo

and Raphael. Their exquisite command over the paintbrush and their eye for

detail yielded works of art that are highly prized and sought after. However, over

time, artists started experimenting with other styles of painting, moving back

towards abstraction and simplification. This is exemplified in the works of Van

Gogh, Monet, and more recently Pablo Picasso. These artists developed their

own unique style, which while being abstract and stylized, is able to communi-

cate with and influence the viewer. Figurative imagery can be seen in other fields

such as medical illustration, which conveys important aspects of a specimen by

omitting extraneous details, or even caricature, which by enhancing certain fea-

1See, e.g., The Cave Painters: Probing the Mysteries of the World’s First Artists by Gregory
Curtis, Knoph, New York (2006).
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tures and diminishing others, catches the attention of the viewer, often resulting

in amusement.

We can see a similar trajectory in the field of computer graphics. With the

introduction of early graphics terminals, researchers developed systems to create

plain drawings and abstract two and three dimensional worlds. For a long time

since, there has been a drive towards photorealism in graphics. This has been a

largely successful venture, and one might be hard pressed today to find images

around them that have not been touched or enhanced by computer-based tools,

if not entirely created using such tools. The entertainment industry has bene-

fited greatly from the advancement in graphics technology and ever increasing

computing power, as is evident in the latest blockbuster movies and immersive

games. Health is another area that utilizes graphics, in this instance to help

doctors visualize internal anatomy and even to perform complex surgery through

computer assisted tools. Computer graphics is indispensable in engineering and

architecture, where renderings of buildings and equipment can help in visualizing

and understanding the final product through virtual walkthroughs and physical

simulations before it is physically constructed.

As in painting, so in the field of Computer Graphics, we see a collection of

people experimenting with ways to convey information better by abstracting and

removing details. Blending ideas from both science and art, this fledgling field,

called Non-Photorealistic Rendering (NPR), draws upon human psychology and

perception to create imagery that is aesthetically pleasing, useful, and aids in

creative expression.

NPR research can be classified according to the general approach to generating

the final image:

1. Artistic media simulation,
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2. User-assisted image creation, and

3. Automatic image creation.

Media simulation techniques attempt to model the physical properties of the

medium being emulated. This involves simulating parts or all of the interacting

systems—the medium, such as oil paint or water color, the brush or applicator

used to transfer the media, and the substrate that received and distributes the

media on a surface. User-assisted image creation attempts to incorporate the

skills and techniques of human artists in order to enable non-experts to produce

stylized images with reduced effort. Finally, automatic image creation attempts

to fully automate the process of creating abstract images (usually using a pho-

tograph as input). Though NPR has attracted much interest recently, and there

are impressive examples of the use of its techniques in the mainstream, it is still

in its early days and the field is still somewhat ad hoc and disorganized.

If we look at the landscape of digital art creation tools, we will find a number

of high-end tools for expert users that take lots of time and effort to master.

2D and 3D modeling and animation tools such as Adobe Flash, Maya, or 3D

Studio Max are still out of reach of the casual user. There are not that many

applications that enable a creative-minded but untrained individual to quickly

express themselves through animation.

1.1 Thesis Objective

The goal of this thesis is to develop a framework that combines techniques in

non-photorealistic rendering with the purpose of enabling users to create and

render 2D stylized animations through an simple and intuitive user interface.

We demonstrate the utility of our framework through a desktop application,

3



called LiveCanvas, which enables the user to create animations and render them

in different styles. Objects in a scene are represented as meshes that can then be

manipulated to create a keyframe-based animation. To avoid the “shower-door”

effect that would result if we were simply to apply a filter to each frame in the

animation, a number of ‘particles’ are distributed on the mesh and tracked as the

mesh is deformed. These particles are then used to attach strokes on the mesh

in order to produce the final rendering.

1.2 Thesis Overview

Chapter 2 reviews relevant techniques developed in non-photorealistic rendering

research, as well as 2D animation tools, some of which will be integrated within

our framework.

Chapter 3 presents our non-photorealistic 2D animation framework, which can

be used to create animations in 2D rendered in different artistic styles through

the use of pluggable renderers.

Chapter 4 describes our demonstration application, called LiveCanvas, which

is made up of three components—a Sketch Creator, a Mesh Editor, and an

Animator—that can be employed by the user to move from a concept sketch,

to modeling objects in the scene, to creating frames of the animation sequence,

and finally to rendering them in different styles.

Chapter 5 present examples of some animations and morphs generated using

LiveCanvas.

Chapter 6 concludes the thesis by summarizing its contributions and dis-

cussing future work.
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CHAPTER 2

Previous Work

We first discuss some of the techniques developed in the area of non-photorealistic

rendering (NPR). Specifically, we will focus on techniques that are applicable in

2D.1 Subsequently, we will review tools for 2D animation and discuss how they

may be combined with NPR into a novel framework for creating stylized 2D

animation.

2.1 Non-Photorealistic Rendering

Non-photorealistic rendering began as a experimental science when researchers

tried to mimic the process that an artist follows to create a new painting. Some

methods are based on simulating the actual physics or an approximation of the

underlying process by which pigment interacts with a substrate. Others tried to

position strokes on an image either relying on the user for guidance or automat-

ically, using a reference image.

1Object space methods, usually used in interactive applications, work with 3D geometry
[Markosian et al. 1997, Northrup and Markosian 2000] and are beyond the scope of this review.
The reader may refer to [Gooch and Gooch 2001] for a more comprehensive overview of non-
photorealistic rendering research.
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2.1.1 Simulating Artistic Media

Simulation based techniques work by modeling and simulating the applicator,

such as pencil or brush, and/or the the movement of color particles through

a substrate such as paper or canvas. Sousa and Buchanan [1999] simulated

graphite pencil drawing by observing and modeling physical materials (pencil,

paper, eraser, blender) and how they interact with each other. Strassman’s Hairy

Brushes simulated the effect of a brush by sweeping an integer array, represent-

ing color, along a spline with perturbations based on pressure values [Strassmann

1986]. Small [1991] used cellular automata running on parallel hardware (each

pixel is a separate processor) to simulate the movement of pigment and water

through paper, which is then rendered.

2.1.2 Painterly Rendering

Haeberli [1990] describes a simple interactive application to create abstract rep-

resentations of input images. In his system, strokes are placed in the neighbor-

hood of the path along which the mouse is dragged. Each stroke has a number

of properties that determine the final outcome: 1) Location, 2) Color, 3) Size,

4) Direction, and 5) Shape. Location is determined by the cursor and color by

point sampling the input image at the current location, while the size, direction,

and shape can be controlled either manually or procedurally using additional

information. Once the strokes are distributed throughout the image, a variety

of techniques can be used to render the output image. Using a texture mapped

image of a real brush stroke would give it a more painterly feel, or strokes could

be aligned perpendicular to the gradient of the image, which accentuates the

edges, or finer details and colors could be enhanced by extrapolating beyond the

range formed by an image and its blurred version. If 3D geometry information
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Figure 2.1: An example from “Paint by Numbers” ( c©1990 P. Haeberli, repro-

duced from [Haeberli 1990]).

of the scene is available, surface normals could be used to control the direction

of the strokes. All of these allow a user to experiment with different interesting

variations. Figure 2.1 shows some images created using this method.

Salisbury et al. [1994] presented an interactive image-based tool for creating

pen-and-ink illustrations. Their system uses a grayscale reference image to define

shape and tone in the illustration. As the user moves the ‘brush’ on the canvas,

the system adds strokes from either a stored texture library or they are procedu-

rally generated. The reference image can be used either as a purely visual aid

for the artist or as a source for the system to capture information such as tone,

edges, and texture orientation, which directs the placement of strokes. The paper

[Salisbury et al. 1996] extended the technique to make it scale independent.

To automatically render video in a painterly style, we need more than simply

to apply these techniques to each frame. This is because randomly placing strokes

on each frame, or keeping the location fixed and changing the color of the strokes

produces a sequence that looks as if it has been shot through a glass shower door,

which came be referred to as the shower-door effect. Litwinowicz [1997] created

a system that uses optical flow fields to maintain temporal coherency of brush
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strokes across different frames in a video sequence. His system consisted of three

parts:

1. An algorithm to render and clip strokes,

2. An algorithm to produce brush stroke orientations, and

3. An algorithm that uses a gradient-based multi-resolution technique to com-

pute optical flow that is then used to alter the location of the brush strokes.

Delaunay triangulation is used to remove strokes that bunch up together

as a result of movement, as well as to add new strokes in areas that have a

sparse distribution of strokes. Depth ordering of these strokes is maintained

from frame to frame to avoid jitter.

One of the drawbacks of the methods discussed so far is that all the strokes

that they use are of the same length, which gives the output images a mechanical

appearance. However, artists and painters usually start with the bottom-most

layer, painting large regions with constant color and incrementally adding details

using smaller strokes as the painting progresses. Using this idea, Hertzmann

[1998] created a method to “paint” an image with spline brush strokes on a series

of layers, with the largest brush size used first, followed by progressively smaller

brushes. Given an input image and a set of brush sizes (r1, . . . , rn), a reference

image is created for each layer by blurring the source image (using a Gaussian

kernel with standard deviation proportional to ri for the ith layer.) For each layer,

new brush strokes are placed on areas that differ from the reference image by more

than a threshold T . The pseudocode for this operation is given in Algorithm 1.

The paintStroke method invoked in Line 13 of the Algorithm paints a long spline

curve on the canvas beginning at p and along the normal to the gradient of the

reference images, ending either when it reaches a maximum stroke length or if

8



Algorithm 1: Painterly rendering using multi-sized curved brush strokes.

Input: Is, Ip, r1, . . . , rn

Output: Image rendered in a painterly style

1 foreach brush size r1, . . . , rn from largest to smallest do

2 Iref i ← Is ∗Gfσri , where Gσ is a Gaussian kernel of standard deviation

σ and fσ is a constant

3 S← set of strokes, initially empty

4 grid ← fgri

5 foreach position p on the grid do

6 M ← region(px − grid/2, py − grid/2, px + grid/2, py + grid/2)

7 areaError ← ∑
p∈M ‖Ip(p)− Irefi(p)‖

8 if areaError > T then

9 p← argmaxp∈M‖Ip(p)− Iri(p)‖

10 s← makeStroke(p, Ip, ri, Iref i)

11 add s to S

12 foreach stroke s ∈ S in random order do

13 paintStroke(s)

the image color differs from the stroke color more than the canvas color at the

point.

The effect of this algorithm can be controlled through a number of parameters

such as the approximation threshold T that controls whether to place a stroke or

not, the brush sizes, the curvature filter that is used to limit or exaggerate stroke

curvature, the blur factor fσ, the minimum and maximum stroke lengths (very

short strokes produce a pointillistic effect, while longer strokes produce a more

expressionistic effect), the opacity, the grid size (fg), and the color jitter, which

9



Figure 2.2: Painterly rendering with curved brush strokes of multiple size ( c©1998

A. Hertzmann, reproduced from [Hertzmann 1998]).

adds randomness to the sampled color at stroke placement sites. Figure 2.2 shows

an image to which this method was applied, rendered with different parameter

settings. Hertzmann [2003] discusses this and other stroke-based techniques for

creating non-photorealistic imagery.

We discussed how Litwinowicz [1997] used optical flow to maintain temporal

coherency across frames and eliminate the shower-door effect. Another method

to avoid jitter was proposed by Meier [1996]; it uses a set of particles distributed

over a 3D surface to track the movement of brush strokes as the objects in a scene

move. Having the 3D geometry allows the scene to be rendered using different

shaders to generate reference pictures that encode orientation, brush size, and

color information. Each frame is then rendered by compositing brush stroke

textures using parametric information obtained from reference pictures at each

particle location. To give the frame a painterly look, random perturbations are

applied to each particle changing its position, size, or orientation. Since these

perturbations are stored with each particle itself, their coherence is maintained
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across the entire rendered sequence.

2.2 Particle Generation and Stippling

In [Meier 1996], particles were distributed uniformly across each triangle of the

surface mesh. However, this may not always be ideal, especially in cases where

conveying continuously varying tone is important. The problem of discretely

representing tone has been studied widely in the field of halftoning, which tries to

reproduce photorealistic representations using a number of closely placed dots.

To place points along a single dimension with a probability density function p(x),

we first compute the cumulative density function

C(x) =
∫ x

0
p(t) dt. (2.1)

To redistribute a point xi so that it is more likely to be located in a higher

intensity region in the source image, we invert C(x) and calculate the new position

x′i = C−1(xi). This will cause more points to be located in segments where p(x)

is higher, assuming that the input set x is uniformly distributed.

Secord et al. [2002] extended the idea to images with a given 2D probability

distribution function (PDF), taking into account the tone that would be gener-

ated by the redistribution process. This is necessary as two exactly overlapping

primitives contribute the same to the output tone as a single primitive, and so

the output tone is not a linear function of the number of primitives. They first

calculate the number of primitives needed to convey a particular tone using the

input image and then redistribute a uniformly spread set of primitives to match

the tone in the input image.

Alternatively, points can be redistributed iteratively. Secord [2002] presented

a method to generate stipple drawings by distributed points according to the

11



Algorithm 2: Lloyd’s algorithm

Input: Initial distribution of generating points x1, . . . , xn

Output: Even distribution of points x1, . . . , xn

1 while generating points xi not converged to centroids do

2 Compute Voronoi diagram for xi

3 Compute the centroids Ci using (2.2)

4 Move each generating point xi to its centroid Ci

intensity of a source image. Stippling is a process where an image is represented

as a number of small dots such that their density gives the impression of tone. In

the early days of printing, stippling was especially useful as images could be scaled

down without significantly affecting the perceptual quality of the resized image.

According to this technique, a Voronoi diagram is generated for a distribution of

points in a 2D plane. A Voronoi diagram is a partitioning of a plane into regions

such that all points in each region are closest to a point s from a given set S,

called the generating point for the cell. After computing the Voronoi diagram,

the generating points are redistributed to the centroid of its Voronoi region.

This process is repeated until all points converge to their region’s centroid. The

centroid of a region is defined as

Ci =

∫
A xp(x)dA∫
A p(x)dA

, (2.2)

where A is the region, x is the position, and p(x) is the density function. A

centroidal Voronoi diagram can be thought of as minimizing the energy function∫
A p(x)‖Ci − x‖2.

A method to iteratively relax a Voronoi partitioning so that the generating

points lie on the centroids, known as Lloyd’s algorithm is shown in Algorithm 2.

Figure 2.3 shows images generated using the Weighted Voronoi Stippling
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Figure 2.3: Examples of weighted Voronoi stippling ( c©2002 A. Secord, repro-

duced from [Secord 2002]).

method of Secord [2002].

2.3 2D Animation Tools

The traditional way of making animated cartoons was very time-consuming and

required an innate talent for drawing, as each frame was drawn and painted by

hand. This made cartoon animation accessible mostly to large studios with big

budgets. Recently, however, computers are being increasingly used to reduce

the tedium of inking, painting, and compositing each frame in an animation.

Various approaches have been pursued to automate all or part of the cartoon

animation production pipeline. We will briefly discuss some research prototypes

and commercial applications for 2D animation to get an idea of the kind of tools

available to users.

One of the earliest systems for 21
2
D animation was Inkwell by Litwinowicz

[1991]. The goal was to create an intuitive and and useful user interface for

producing animations quickly with a focus on character animation. The system

13



provided a number of tools for creating and editing drawings, which could then

be animated. In Inkwell, characters were specified using polygons, ellipses, and

splines organized into an hierarchy of layers. This allowed changes in a higher

layer in the hierarchy to be reflected in its children, providing a higher-level con-

trol for making large changes that may be needed. These basic shapes were

animated by interpolating parameters using cubic splines. Shapes could be tex-

ture mapped using Coons patches and animated by warping the space within as

it transformed over time. This allowed a shape to be mapped to different textures

that can then be used to animate similar characters using the same underlying

shape transformation. Since warping is done globally on a patch, however, it

gives the resulting animation a flat look.

Smith and Sederberg [2004] described a user-guided solution to the problem

of automatic inbetweening of keyframes using skeletal interpolation. In their

system, the user specifies keygrames as colored regions bounded by B-splines.

The user also specifies a skeleton for the first frame and attaches control points

of the curves to the bones in the skeleton. The position of the skeleton in other

keyframes is automatically inferred by minimizing the sum of squared error for

each bone

E =
n∑
i=1

‖Tpi − psi‖2, (2.3)

where psi are the control points in the skeletal coordinate system (in the first

frame), pi are the control points in the new keyframe, and T is the affine trans-

formation matrix that produces skeletal coordinates for pi. Once the configura-

tion of the skeleton is known for each keyframe, inbetween frames are generated

by linearly interpolating the ends of each bone from which the position of the

control points is eventually derived. The ends of the bones can be specified to

move along an arc instead of a line to add more life to characters.
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Another tool, called CharToon, that uses skeleton-based animation, but for

faces, was described by Ruttkay and Noot [2000]. Their system allowed a user

to model a face as a 21
2
D drawing that could then be animated and rendered in

different non-photorealistic styles. In CharToon, a user first creates a face by

assembling it from a set of basic components. Each component is defined us-

ing control points on the skeleton and other points that define the shape of the

component. These other points move in relation to the control points (main-

taining the same relative distance and orientation, at a constant ratio from an

edge or are even fixed). One can create different designs for each part of the

face to create a feature repertoire, each of which can then be varied by adjusting

the control points to form an expression repertoire. By interpolating the control

points through time and then rendering the shapes in different styles, CharToon

enabled a user to create non-photorealistic face animation.

This shape blending approach can also be seen in commercial tools such as

Adobe Flash and Toon Boom Animate, which allow interpolation between shapes

using either just the boundary stroke, or by specifying a skeleton and using in-

verse kinematics to manipulate the joints (and also deforming the shape attached

to each bone). However, this often results in animations that look stiff and me-

chanical and are difficult to control precisely as the shapes move and bend in

ways defined by the application.

2.4 Summary

We have reviewed the non-photorealistic rendering literature that is relevant to

our work. Whereas some techniques try to model the artistic medium and tools

and they achieve non-photorealistic effects by running a simulation, others place

strokes on a canvas using some heuristic, as well as an input image to create a
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stylized output image. Our framework is more suitable for the latter category of

techniques, collectively known as stroke-based non-photorealistic rendering. We

also described a technique for painterly rendering using multi-sized curved brush

strokes. We then reviewed some methods for distributing particles in a region,

which if guided by an input image can be used to generate a stippled version of the

image. Finally, we reviewed relevant software applications for 2D animation and

discussed why a new tool is needed that can render smooth-looking animations

in a non-photorealistic style. Next, we will present our non-photorealistic 2D

animation framework, which can be used to create animations in 2D rendered in

different artistic styles using pluggable renderers.
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CHAPTER 3

Non-Photorealistic 2D Animation Framework

We now present our framework for creating non-photorealistic 2D animation. We

decouple the motion of an object within a scene from its rendering, so that the

same underlying object animation can be rendered in different artistic styles. In

our framework, objects are represented as polygonal meshes that have particles

associated with them. An animation is created by deforming the regions covered

by a mesh using control points on the mesh. Objects are then rendered using

the particles as sites for placing strokes. By varying the behavior of the different

components in the framework, we can achieve different styles of non-photorealistic

2D animation.

3.1 Framework Components

We will now describe the different components in the framework and how they

interact with each other to produce the final rendered animation.

Figure 3.1 illustrates the different components in the NPR animation frame-

work, which include the following:

1. Background References: Many non-photorealistic techniques use an im-

age as input to create an artistic rendering as the output image. Images

may also be used to convey tone information, which is employed in many
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Figure 3.1: Framework overview

halftoning techniques, or to create a stippled version of the input image.

In our framework, we provide the option to use images to provide color

and tone, though other methods (such as assigning a fixed color or a gra-

dient) may be used as well. An image or a solid color used in rendering is

generically referred to as a background reference. Each layer can have mul-

tiple background references, and each key-frame can select the background

reference to use. If two adjacent key-frames have difference background

references, colors are automatically blended for intermediate interpolated

frames. Layers and key-frames are explained later in this list.

2. Layers and LayerGroups: We represent a scene as a composition of

stacked layers, a common approach for 2D drawing and animation tools.

Each layer may have multiple sub-layers, thus forming a tree-like structure.

The layers are rendered from bottom to top (ordering among sibling layers),

so objects higher up in the stack are rendered on top of those below. A

LayerGroup is a set of two or more layers that are transformed as a single

unit. A binary operation (join, intersect, or subtract) may be applied to

a LayerGroup containing two layers, which creates a new region from the

regions contained in the grouped layers.
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3. Regions: Each layer (including the background layer) may contain a re-

gion, which represents a boundary around an object feature. A region is a

stored as a polygon with the length of each side fixed. Each region has one

or more associated background references. A region queries its background

reference to obtain the color of each individual pixel contained within it.

Thus, a background reference backed by an image may serve to draw an

arbitrary texture within a region. Alternatively, a background reference

backed by a solid color or a gradient would paint the region with a fixed or

linearly varying color.

4. Meshes: The area within each region is subdivided into a uniform mesh

composed of triangles. Each mesh contains an array of vertices and an

array of triangles, where each triangle contains pointers to 3 vertices. Any

vertex may be set as a control point, which is used by the Mesh Handler to

deform the mesh.

5. Mesh Handler: As soon as the user specifies a region around an object fea-

ture, the Mesh Handler subdivides it into a uniform mesh. It also provides

methods to deform the mesh using its control points. By using different im-

plementations of Mesh Handlers, we can change what the generated mesh

looks like and how it deforms.

6. Key-frames: Once a scene has been specified as a set of layers containing

regions subdivided into meshes with control points, we can proceed with

the creation of key-frames for animation. To change the shape of a region,

the control points are moved around, which deforms the mesh by adjust-

ing the positions of the other unconstrained vertices. Alternatively, global

transformations such as translation, rotation, or scaling can be applied to

each vertex in the mesh. If a region has multiple associated background
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references, the user can select which one to use. Colors are automatically

blended between the background references of two adjacent key-frames. The

user can create the entire animation using only key-frames, or can use in-

terpolation between two adjacent key-frames to create intermediate frames

using an Interpolator. Each key-frame has its own interpolator.

7. Interpolator: An Interpolator controls how the control-point positions or

transformations related to a mesh should vary in the intermediate frames

from one key-frame to the next. Using interpolators, we can create different

types of tweened animation, such as “Ease-in”, “Ease-out”, etc., which is

important to give the animation more life and character.

8. Interpolated Frames: Interpolated frames are generated by interpolating

between two key-frames, using the interpolator attached to the key-frame

on which the sequence ends.

9. Particles: After all the key-frames and intermediate key-frames have been

created, we are ready to render the animation. To do this, we first generate

a set of particles to be distributed on the surface of each mesh. Each particle

contains all the information that is needed to generate a single stroke in

the output image. A particle is essentially a 2D coordinate with pointers

to its parent mesh and the containing triangle. In addition, each particle

contains a generic pointer to any packet of information that a particular

style may want to store. When a triangle within the mesh is stretched or

moved, the particles on its surface change location as well.

By separating the rendering process into stroke placement (via particles)

and stroke drawing, we can avoid the “shower-door” effect that would be

evident if we placed strokes randomly in each frame. This approach is
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similar to that by Meier [1996] with the difference that we do not associate

brush stroke attributes with each particle. So particles in our framework are

more analogous to tracking feature points. This gives tremendous flexibility

to someone implementing a particular style—they have complete control

over how many particles to generate, where initially to place them on the

mesh and how to render them. This allows the application of a number of

techniques using randomly drawn primitives described in the literature to

a sequence of frames without losing frame-to-frame coherency.

10. Particle Generator: A Particle Generator is responsible for creating a

number of particles on the surface of a mesh. The generated particles are

displaced relative to the deformation of the mesh and passed on to the

Renderer for the final rendering of a frame. Particles are generated only

once for the entire animation sequence and stored for use in all the frames.

For multi-pass techniques such as the one by Hertzmann [1998], we generate

and store particles once for each pass.

11. Renderer: A renderer is the final piece our framework’s pipeline. At this

stage, we have all the information we need to color the pixels on the render

surface (usually an image buffer). The renderer is passed a pointer to the

surface along with all the particles that need to be rendered. For multi-pass

rendering techniques, we call the renderer until it signals that it is done.

We now discuss the mesh generation and deformation techniques, which are

used to manipulate the shape of objects in each key-frame. This will conclude

the description of the theoretical basis of the techniques used in the application

of our framework, which will be described in the next chapter.
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Algorithm 3: Generate random points within a polygon

Input: Points x1, . . . , xn on the polygon; g number of points to be

generated

Output: Generated random points y1, . . . , yg within the polygon

1 Construct Delaunay Triangulation (t1, . . . , tT ) for (x1, . . . , xn) where T is

the total number of generated triangles

2 Create cumulative array A = (A1, . . . , Ai, . . . , AT ) such that

Ai = Ai−1 + Area(ti) for i ∈ (1, . . . , T ) and A0 = 0

3 totalArea =
∑T
i=1 Area(ti)

4 for i = 1 to g do

5 N ← Random(0, totalArea)

6 find minimum j such that Aj ≥ N

7 set yi to a random point in tj using (3.2)

3.2 Mesh Generation

To create the mesh, first a number of points proportional to the area of the region

are created. Next, they are distributed uniformly within the region. If the region

is a triangle, we can generate a random point within the triangle (v0,v1,v2) by

generating two random numbers u, v ∈ Random(0, 1), then computing

u′, v′ =


u, v if u + v ≤ 1;

1− u, 1− v if u + v > 1,
(3.1)

and finally

vrandom = v0 + u′.(v1 − v0) + v′.(v2 − v0) (3.2)

For a general polygon shape, we use Algorithm 3.

Finally, Constrained Delaunay Triangulation followed by Lloyd’s Voronoi re-

laxation (see Section 2.2) is used to distribute the vertices of the mesh evenly
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Algorithm 4: Mesh generation

Input: Points vp1, . . . , v
p
P on the polygon Vp enclosing the region; Vertex

density Dmesh of the mesh

Output: Generated mesh (V = (v1, . . . , vV ), T = (t1, . . . , tT ))

1 G← Area(Vp) ∗Dmesh

2 Generate G random points (vg1 , . . . , v
g
G) using Algorithm 3

3 Use Lloyd’s method (see Algorithm 2) to more evenly distribute generated

points

4 V← (vp1, . . . , v
p
P , v

g
1 , . . . , v

g
G)

5 Create Constrained Delaunay Triangulation T′ with all edges on the input

polygon as constraints

6 Remove triangles that fall outside the polygon in T′ to create

T = (t1, . . . , tT ) where T is the total number of triangles in the mesh

7 Mesh = (V,T)

throughout the area of the region. A mesh is represented as a collection of V ver-

tices (v1, . . . , vV ) and T triangles (t1, . . . , tT ), and each triangle contains pointers

to 3 vertices. Algorithm 4 outlines the steps.

Figure 3.2 shows the sequence of steps in the generation of a mesh from a given

polygonal path: (a) Triangulation of the points on the polygon—points are ran-

domly generated by first selecting a triangle with probability proportional to its

area and then generating a random point in it; (b) triangulation of the generated

points before relaxation; (c) triangulation after the application of Lloyd’s algo-

rithm; (d) generating the final mesh after removing triangles outside the input

polygon.

The Constrained Delaunay Triangulation in Step 5 of Algorithm 4 may cre-

ate triangles that fall outside the polygon (see Figure 3.2c). We remove those
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Figure 3.2: Generating a mesh from a polygonal path

triangles in Step 6.

3.3 Mesh Deformation

Mesh deformation has been widely studied in the field of computer graphics, and

it is used in a variety of modeling and animation tools. The input to this step

is a triangle mesh with a number of control points (or pairs of control points

representing the end points of line segments). The goal is to find the coordinates

of the remaining free vertices as the user changes the location of the control

points. Over time, a lot of methods have been proposed that strive to produce

aesthetically pleasing or natural looking deformations as easily as possible. Most

of these techniques have been developed for 3D meshes. A related technique that

operates in 2D is called morphing, which is the visual transformation of one image

into another, usually by warping the space containing the source image onto the

target image so that important feature points correspond.

We discuss three techniques for deforming 2D meshes: 1) Thin-Plate Splines,

2) Feature-Based Mesh Deformation, and 3) As-Rigid-As-Possible Shape Manip-

ulation. Each has its own advantages and disadvantages, depending on the type

of animation. Thin-Plate Splines and Feature-Based Mesh Deformation work

well when the outer shape is more or less preserved, thus making them useful
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for morphing. Finally, the As-Rigid-As-Possible Shape Manipulation technique

gives good results if we also want to change the bounding shape, and it is more

useful for cartoon and character animation. Note that all three techniques have

closed-form solutions, unlike some physically-based and iterative techniques (e.g.,

[Terzopoulos and Vasilescu 1991]).

3.3.1 Thin-Plate Splines

Thin-Plate Splines (TPS) [Chui 2001] is a warping technique that generates a

smooth spatial mapping from one set of points to a second set of corresponding

points, also called control points as they are used to control the deformation. We

define an energy function for the mapping, given a set of corresponding points,

which we then try to minimize. For TPS, the space integral of the square of the

second order derivatives of the mapping function is used:

E =
∫ ∫ (

∂2f

∂x2

)2

+ 2

(
∂2f

∂xy

)2

+

(
∂2f

∂y2

)2

dx dy, (3.3)

where f(x, y) is the mapping function. For a 2D coordinate transformation, two

splines (fx(x, y) and fy(x, y)) are used, the first representing displacement in the

x direction and the second representing displacement in the y direction. The

solution to the energy minimization problem is of the form

fx(x, y) = a0 + axx
s + ayy

s +
P∑
i=1

wiU(|(xsi , ysi )− (xs, ys)|), (3.4)

and similarly for fy(x, y), where U(r) = r2 log(r) and
∑P
i=1 φiwi = 0 with φi =

{1, xsi , ysi }. Written in matrix form, we have K P

PT 0


 w

a

 =

 xd

0

 , (3.5)

where Kij = U(|(xsi , ysi )−(xsj , y
s
j )|) and the ith row of P is [1, xsi , y

s
i ], and vector xd

contains the x-coordinates of the transformed control points (in the destination
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mesh). We invert the matrix on the left and multiply it with the right hand side

to obtain the x components of w and a. A similar computation is done to obtain

their y components.

We then use these parameters in (3.4) to derive the transformation that maps

the other points in the source mesh to the destination.

3.3.2 Feature-Based Mesh Deformation

The Feature-Based Mesh Deformation technique, described in [Beier and Neely

1992], is “based upon fields of influence surrounding two-dimensional control

primitives”. A set of lines in the source mesh and their corresponding positions

in the destination mesh is input by the user. Lines are specified by pairs of

vertex positions p and q. Thus,
−−→
psqs specifies a line in the source mesh, while

−−→
pdqd specifies a line in the destination mesh. Given a pair of corresponding lines,

a vertex in the source mesh xs is mapped onto the destination as follows:

xd = pd + u(qd − pd) +
v ⊥ (qd − pd)

‖qd − pd‖
, (3.6)

where

u =
(xs − ps) · (qs − ps)

‖qs − ps‖2
, v =

(xs − ps)· ⊥ (qs − ps)

‖qs − ps‖
, (3.7)

and ⊥ (·) is the vector that is perpendicular to (i.e., rotated 90deg anti-clockwise)

and of the same length as the input vector. The value u is the position along the

line and v is the distance from the line. The value of u is between 0 and 1 if the

pixel xs falls in the rectangular plane bounded by ps and qs.

If we have multiple pairs of lines, the coordinate transformation for each pair

is calculated and a weight is assigned to each. The final coordinates are calculated

by adding the weighted average of displacements d = xd−xs to the original point

26



Algorithm 5: Feature-based mesh deformation

1 for each vertex xs in the source mesh do

2 dsum ← (0, 0)

3 weightsum ← 0

4 for for each line (ps,qs) do

5 calculate u, v per (3.7)

6 calculate xdi using u, v and
−−→
pdiq

d
i per (3.6)

7 calculate displacement di ← xdi − xsi

8 dist ← shortest distance from xsi to
−−→
psiq

s
i

9 weight ←
(
lengthp

a+dist

)b
10 dsum ← dsum + di ∗ weight

11 weightsum ← weightsum + weight

12 xd ← xs + dsum
weightsum

in the source mesh xs. The weight is calculated as

weight =

(
lengthp

a+ dist

)b
, (3.8)

where length is the length of the line, dist is the distance from the pixel to the

line, a controls the smoothness of the warping (a larger value of a decreases

the effect of distance of the pixel from the line), b determines how the relative

strength of different lines falls off with distance and p, typically 0 or 1, controls

how the relative weight of each line changes with the length of the line—if it is

0, lines with different lengths all affect the weight equally. Algorithm 5 specifies

the multiple line algorithm.

Thus, this method can be used to warp one mesh onto another by treating

every consecutive pair of vertices as a line and providing a corresponding set of
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lines in each mesh.

3.3.3 As-Rigid-As-Possible Shape Manipulation

As opposed to the space warp techniques discussed earlier, Igarashi et al. [2005]

use a two-step process to minimize the deformation of each individual triangle

in a mesh. This technique defines the error function as a quadratic so that it

can be minimized using well known linear algebra methods. Instead of a single

quadratic error function that represents overall distortion, this technique solves

the problem in two steps:

1. Generate an intermediate result by minimizing an error function that allows

only rotation and uniform scaling, and

2. Generate the final result by adjusting the scale of each triangle

We will now describe each step in detail.

3.3.3.1 Scale Free Construction

This step generates a set of intermediate triangles using only rotation and uniform

scaling. The input is the initial and final configurations of a set of constrained

vertices and the output is the final configuration of the remaining free vertices.

The error function for an intermediate deformed triangle (Step 1) v′0, v′1,

v′2 is calculated as follows (see Figure 3.3): First, given the coordinates of the

corresponding triangle in the initial configuration vs0, vs1, vs2, compute the relative

coordinates (x01, y01) of vs2 in the local coordinate frame defined by vs0 and vs1,

as follows:

vs2 = vs0 + x01(vs1 − vs0) + y01 ⊥ (vs1 − vs0). (3.9)
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Figure 3.3: Deformed triangle obtained in Step 1, and the error with respect to

the desired triangle, which is similar to the original triangle after matching vs0 to

v′0 and vs1 to v′1

The desired location of vdesired
2 in terms of v′0 and v′1 is then

vdesired
2 = v′0 + x01(v′1 − v′0) + y01 ⊥ (v′1 − v′0). (3.10)

The error associated with vdesired
2 is defined as the square of the distance from

the actual position in the destination mesh:

E1v′2
= ‖vdesired

2 − v′2‖2. (3.11)

The total error for the mesh is then the sum of the errors of each individual

triangle. We can express the total error in matrix form as

E1 = v′TGv′, (3.12)

where v′ = {v′0x, v′0y, . . . , v′nx, v′ny}.

To minimize this error, we take the partial derivative of E with respect to the

free variables f = {f0x, f0y, . . . , fmx, fmy} and set it to zero. Putting the free
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variables first, we can write

v′ =

 f

c

 , (3.13)

where c are the control points. Thus, (3.12) can be written as

E1 = v′TGv′ =
[
fT cT

]  G00 G01

G10 G11


 f

c

 , (3.14)

and
∂E1

∂f
= (G00 + GT

00)f + (G01 + G10)Tc = 0, (3.15)

giving us

G′f + Bc = 0, (3.16)

and finally

f = G′−1Bc (3.17)

Thus, the free vertices f can be obtained for any set of control points c by simply

multiplying with G′−1B, which remains fixed. This step is very fast and runs at

interactive rates; i.e., the user can see the deformation in real time as the location

of the control points is changed. As this step may cause changes in scale that the

error function in (3.12) does not take into account, a further scale adjustment

step is required.

3.3.3.2 Scale Adjustment

The intermediate triangles obtained in the first step are now scaled to generate

the final result. This is done by first fitting the original triangles within the in-

termediate triangles and then scaling the fitted triangles toward the intermediate

triangles.
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Figure 3.4: Original triangle fitted to the intermediate triangle

To fit an original triangle within its intermediate triangle v′0, v′1, v′2, we must

find a triangle congruent to the original triangle vfitted
0 , vfitted

1 , vfitted
2 (see Fig-

ure 3.4), such that the error

Ef(vfitted
0 ,vfitted

1 ,vfitted
2 ) =

∑
i=0,1,2

|vfitted
i − v′i|2 (3.18)

is minimal. Using relative coordinates x01 and y01 defined in Section 3.3.3.1, and

expressing vfitted
2 using vfitted

0 and vfitted
1 , we have

vfitted
2 = vfitted

0 + x01(vfitted
1 − vfitted

0 ) + y01 ⊥ (vfitted
1 − vfitted

0 ). (3.19)

The error in (3.18) is minimized by setting the derivative with respect to the free

variables w = (vfitted
0x , vfitted

0y , vfitted
1x , vfitted

0y )T to zero:

∂Ef
∂w

= Fw + C = 0. (3.20)

Thus,

w = F−1C. (3.21)
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Figure 3.5: Corresponding edges in the fitted triangle and the final triangle in

the destination mesh. The error metric used in Step 2 tries to minimize the edge

vector difference with the constraint that vertices have the same connectivity as

the original mesh.

Since F−1 is fixed for a mesh, we calculate it initially when the mesh is defined.

Matrix C is obtained from Step 1. The fitted triangle is made congruent by

multiplying by |vs1 − vs0|/|vfitted
1 − vfitted

0 |.

Now we have individual fitted triangles, but we still need to adjust the vertices

so that they form a connected mesh as was originally defined. This is done by

adjusting the edges (see Figure 3.5) by minimizing the error

E2(vd0 ,v
d
1 ,v

d
2) =

∑
(i,j)∈{(0,1),(1,2),(2,0)}

|(vdi − vdj )− (vfitted
i − vfitted

j )|2. (3.22)

Since a vertex vd occurs in multiple triangles, the final position is an average of

its position in the corresponding fitted triangles. Writing the error for the entire

mesh as

E2 = [vd]THvd + bvd + r (3.23)
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=
[
fT cT

]  H00 H01

H10 H11


 f

c

+
[
bT0 bT1

]  f

c

+ r (3.24)

and minimizing by setting its partial derivative with respect to the free vertices

f to zero, we obtain

∂E2

∂f
= (H00 + HT

00)f + (H01 + H10)Tc + b0 = 0, (3.25)

giving us

H′f + Dc + b0 = 0, (3.26)

where H′ and D are fixed, but q and f0 change with the position of the control

points. Note that since the x and y components are mutually independent in H′,

we can apply (3.26) to each component separately.

3.4 Summary

We described the design of our 2D non-photorealistic animation framework, the

different components that make up the framework and how they interact with

each other. We also discussed techniques used to generate and deform meshes that

are used in the implementation of our framework. Our implementation provides

a user-interface that animators can use to create different styles of animation by

changing the components within the framework, as we will discuss next.
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CHAPTER 4

LiveCanvas

Our demonstration application, called LiveCanvas, is made up of 3 components—

the Sketch Creator, the Mesh Editor, and the Animator—integrated into a single

application. These components can be employed by the user to move from a con-

cept sketch, to modeling objects in the scene, to creating frames of the animation

sequence, and finally to rendering them in different styles:

1. Sketch Creator: Includes tools to quickly create a sketch that serves

as a reference image for the creation of meshes for objects in the scene.

The sketch is also used to provide tone and color information for the non-

photorealistic rendering of the animation sequence.

2. Mesh Editor: Imports the sketch created in the previous step to serve as

reference for creating distinct regions for different moving parts of objects

in the scene. For example, a man walking would be segmented into separate

regions for the torso, head, and limbs. These paths are automatically con-

verted into meshes with an approximately uniform distribution of vertices

within each region. The mesh can then be saved to a file.

3. Animator: Imports the mesh created in the Mesh Editor so that it can be

manipulated to create a sequence of keyframes for the animation. Once the

sequence is ready, the user can select a rendering style and press a button

to render the frames as a movie.
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Figure 4.1: The Sketch Creator

Each component, which we will describe in detail in the following three sec-

tions, is presented to the user as a perspective (content within the main window),

and is accessible through a toggle button in the application.

4.1 Sketch Creator

Figure 4.1 shows a screenshot of the Sketch Creator perspective within LiveCan-

vas. The Sketch Creator provides a simple interface to rapidly sketch out an

idea of a scene, offering quick way to create a rough drawing of the scene that

the user has in mind. It provides tools to draw on a canvas, such as a Pencil,

which draws in a sketchy style, or a Brush, which draws thick lines, or a Pen,

which draws cubic curves. Other standard editing tools, such as Bucket Fill and

Erase, are also provided. Some of these tools also have associated parameters

accessible through the user interface, such as Pencil intensity (higher intensity
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Figure 4.2: The Mesh Editor

creates denser strokes) or line thickness for the Pen tool. Additionally, the user

can resize or pan the canvas to draw more comfortably. The sketch produced is

also serves in providing tone and color information when rendering the output

animation. Though more features could be added, we refrained from doing so as

any of the more capable commercial and free painting applications (e.g., Adobe

Photoshop or Gimp) may be used for the same purpose. The Sketch Creator

enables a drawing to be exported as an image.

4.2 Mesh Editor

Figure 4.2 shows a screenshot of the Mesh Editor perspective within LiveCanvas.

The Mesh Editor is used to create the regions that make up an object. The

Pointer tool can be used to select and transform regions. The types of trans-

formations currently supported include translation, rotation, and scaling. Much
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like other 21
2
D animation tools, LiveCanvas enables a user to build a character as

a hierarchy of layers, with the bottom-most layer drawn first. A number of tools

provided in the Mesh Editor can be used to create different parts of a character.

Using the Brush tool, an experienced user can simply draw the regions by hand.

The Pen tool can be used to create regions as piece-wise cubic splines. If required,

a reference image can be imported, which is displayed over the canvas as a semi-

transparent overlay. This can be used to trace over the drawing creating in the

first step, and is analogous to the clean-up process used in traditional animation

(see [Williams 2009]) where a rough drawing is traced onto a new sheet of paper.

If the original sketch has strong, dark edges, the Magic Wand tool can be used

to quickly create a region by clicking on a boundary and then moving the cursor

around the path. The Magic Wand uses an algorithm based on the ‘Intelligent

Scissors’ method by Mortensen and Barrett [1995]. First the reference image is

converted to a grayscale intensity image, followed by convolution with a Sobel

filter to enhance intensity edges. Each pixel in the image is then treated as a

node in a graph, and the edges in the graph that link adjacent nodes are assigned

weights according to a cost function that is proportional to the intensity edges in

the image. When the user clicks on a dark boundary pixel, Djikstra’s algorithm

is used to calculate the cumulative cost from this initial pixel to every other pixel

in the image. As the user moves the mouse, the shortest path from the pixel at

the mouse position back to the initial pixel is calculated and displayed in real

time, which enables the user to interactively see the path being traced as the

mouse is moved around the image. The user can release the mouse button to

select a satisfactory path.

As soon as a region is created (when the user releases the mouse), it is tri-

angulated using the technique outlined in Section 3.2. Once the triangle mesh
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is generated for a given region, the user specifies the control points by clicking

within the mesh. The nearest mesh vertex is selected as the control point. To cre-

ate the animation sequence, control points are used to deform the mesh according

to key-frames. The control points can be thought of as being analogous to the

joints in skeleton-based animation, but in contrast to skeleton-based animation,

control points can be set anywhere (technically, on a vertex of the mesh) within

a region, and thus they provide much more control over how the shape changes

from one key-frame to the next.

Each object in a scene is made of multiple regions each of which resides in a

layer. The layers are organized as a tree with transforms (translation, scaling or

rotation) applied at a “higher” level and propagated to the entire subtree below

it. This is useful as it enables both fine-grained control of individual regions

that make up an object as well as a more coarse-grained control when we want

to modify larger portions or all of an object. A special root layer, which is not

editable, represents the entire scene and is the ancestor of all layers. Standard

layer operations are provided, such as adding a new layer, deleting a layer, moving

a layer up or down (re-ordering is allowed only among sibling layers), re-parenting

a layer, which transplants the entire sub-tree (if one exists) below it, duplicating

an existing layer, and renaming a layer.

The Mesh Editor also provides operations that work on two or more sibling

layers. Multiple layers can be subjected to a Group operator that creates a

grouped layer. A grouped layer can then be manipulated as a single unit. This is

useful, for example, if we want to move the eyes and eyebrows in a face while not

modifying nose and mouth. Constructive area geometry (CAG) binary operators

such as Join, Intersect, and Subtract allow complex regions to be created out of

basic ones. Figure 4.3 shows these operators in action.
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(a) Original shapes (b) Join (c) Intersect (d) Subtract

Figure 4.3: Constructing complex shapes using binary operators

After a region has been defined, the next step is to set its background refer-

ences, which provides color and tone information. A background reference can

be an arbitrary image, a solid color, or a gradient. A region can have multiple

associated background references, though only the currently selected one is used

for sampling. Having multiple background references is useful if we want to blend

colors between adjacent key-frames, for example, when creating a morph between

two images. We can also specify the alignment of the background image (cen-

tered, top-left corner, etc.) with respect to the canvas. The background reference

of a layer (or all its sub-layers) can be made invisible, in which case the layer will

not be rendered.

Sometimes, we may want to create a mesh from an image that is imported as a

background reference. The Mesh Editor provides an option to create a mesh grid

from the background reference associated with a layer. This feature is especially

handy when creating a mesh for an image used as background in a scene, or

when we want to create a morph between two images. A regularly spaced grid of

vertices and edges is added within a rectangular region around the image.

Once all the objects in the scene have been divided into regions (meshes), the

user can click a button to see a preview of the non-photorealistic rendering. A

drop-down widget enables the user to select the style in which to render the scene.

Figure 4.4 shows an example of a (Cheshire Cat) character created and rendered
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(a) Mesh (b) Sketchy rendering

(c) Texture rendering (d) Mosaic rendering

(e) Sand rendering (f) Painterly rendering

Figure 4.4: Example of a character created and rendered in the Mesh Editor
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Figure 4.5: The Animator

in the Mesh Editor. The mesh around the teeth was created by intersecting two

meshes.

4.3 Animator

Figure 4.5 shows a screenshot of the Animator perspective within LiveCanvas.

The Animator is used to create the sequence of key-frames from the scene created

using the Mesh Editor and then render it as a movie. It provides a timeline of

key-frames in the animation. The user first imports the meshes in a scene saved

from the previous step, which creates the first key-frame of the sequence. A

background reference image must be set for the first frame and optionally for

each key-frame in the timeline. The reference image of the first frame is used to

capture color and tone when the scene is rendered.
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The timeline shows a thumbnail view of each key-frame in the animation.

The user interface provides buttons to add a new key-frame, delete the selected

key-frame, set and unset the reference image for the selected key-frame or enable

and disable a semi-transparent drawing of the previous and/or next key-frame.

This last feature is sometimes called Onion Skinning and it enables the user to

see surrounding frames while changing the current frame. This is particularly

useful for inexperienced animators as they can instantly see the current drawing

in relation to preceding and subsequent drawings.

The Animator uses frames as opposed to time as the basic pace unit of the

animation. The user can set the frame-rate, specified as number of frames per

second. A higher frame-rate will make the animation go faster.

By default, each key-frame corresponds to one frame in the resulting an-

imation. However, the Animator also allows tweening between two adjacent

key-frames, which smoothly interpolates shapes over a user-specified number of

intermediate frames, along a cubic Bézier curve. The curve can be edited using

a tool called the Interpolation Editor, which enables the user to control the total

count and timing of the intermediate, inbetween frames. The timing is specified

by dragging control points on a Bézier curve plot with (0, 0) and (1, 1) as end

points. The x-axis on the plot represents time and the y-axis represents the in-

terpolation factor. The user can also specify the number of intermediate frames

to be generated. Figure 4.6 shows examples of interpolation that can be obtained

by adjusting the control points. A number of predefined templates are provided

by the Interpolation Editor, such as linear, ease-in, ease-out, etc.

Figure 4.7 shows several frames from a bouncing ball animation. Of those

shown, frame 6 and 30 are automatically generated through tweening, while the

rest are key-frames. Frame 18 shows how we can squash an object through by
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(a) {(0, 0), (1, 1)} (b) {(0, 1), (1, 1)} (c) {(1, 0), (0, 1)}

Figure 4.6: Timing control for 10 inbetween frames of a pair of key-frames. The

coordinates of control points are shown in brace brackets.

(a) 0 (b) 6 (c) 12 (d) 18 (e) 24 (f) 30 (g) 36

Figure 4.7: Frames from a simple bouncing ball animation, showing the mesh

and control points for the ball object.

(a) 0 (b) 6 (c) 12 (d) 18 (e) 24 (f) 30 (g) 36

Figure 4.8: Frames from a simple bouncing ball animation, rendered using tex-

tured brush strokes.
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manipulating the control points on its mesh.

Figure 4.8 shows a bouncing ball animation rendered using textured brush

strokes. The user provided a background reference image for only the first frame,

which was then used to derive color information for the particles distributed on

the mesh.

4.4 Implementation

LiveCanvas is written in Java and source code is available online at

http://code.google.com/p/livecanvas.

4.5 Summary

We demonstrated our framework in an application prototype called LiveCanvas,

which provides an integrated user-interface to create animation, from the ini-

tial concept sketch to the final rendered animation sequence. We described the

components that make up LiveCanvas, highlighted their important features, and

gave some examples of using LiveCanvas to create simple animations. The next

chapter shows several more complex results and demonstrates the wide variety of

animation, including key-frame based or tweened cartoon animation and image

morphs, that may be created using LiveCanvas.
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CHAPTER 5

Animation Results

We now present frames from some of the animations and morphs generated us-

ing LiveCanvas. All results shown were obtained on a Windows Vista machine

running a 32-bit JRE with 1GB maximum heap size. Please refer to the online

project page for full videos and additional examples.1

Figure 5.1 shows a morphing animation generated by mesh deformation using

Thin-plate splines (see Section 3.3.1 for details), with particle distribution on the

mesh and rendering in the sketchy style. This style places a line stroke centered

at each particle position and aligned with but jittered slightly from a particular

angle.

Figure 5.2 shows the morphing animation rendered in the mosaic and halftone

styles. The mosaic style, inspired by Hausner [2001], places square tiles randomly

on a rectangular region. The halftone stipple pattern is generated by uniformly

distributing particles on the mesh and then using a threshold to calculate the

size of each particle.

Figure 5.3 shows a morphing animation generated by mesh deformation using

Feature-Based Mesh Deformation (see Section 3.3.2 for details), with particle dis-

tribution on the mesh, rendered using textured brush strokes. This style stamps

a colored brush image at each particle position aligned with but jittered slightly

1http://www.cs.ucla.edu/~jasleen/livecanvas
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(a) Mesh deformation with particles

(b) Sketchy rendering

Figure 5.1: Thin-plate morphing showing particle distribution and sketchy style

rendering
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(a) Mosaic rendering

(b) Halftone rendering

Figure 5.2: Thin-plate morphing showing mosaic and halftone style rendering
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(a) Mesh deformation with particles

(b) Texture strokes

Figure 5.3: Feature-based morphing showing particle distribution and rendering

with texture strokes
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Figure 5.4: Key-frame based animation of a walking dog

from a particular angle.

Figure 5.4 shows a key-frame based animation of a walking dog. Each key-

frame is generated by deforming the mesh representing each body part of the

dog, using the control points (shown in red). The regular mesh-grid is associated

with the background image.

Figure 5.5 shows the walking dog animation rendered with brush texture

strokes. Note that the background translation is created by setting the position

of the mesh-grid in the first and last frames, and then generating a motion tween

in the intermediate key-frames. Thus, we can apply tweening to both frames
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Figure 5.5: Rendering with brush texture strokes of the walking dog animation.

The background has been animated using a translation tweening.

generated automatically (between two adjacent key-frames), as well as to the

key-frames themselves. We can also freely mix tweening and manually-adjusted

mesh deformations in any animation.

Figure 5.5 shows the walking dog animation rendered in the sand style. The

sand style uses a threshold first to classify each particle as dark or light and then

render each type using points sampled on corresponding dark-sand and light-sand

textures.

50



Figure 5.6: Sand style rendering of the walking dog animation
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CHAPTER 6

Conclusion

We will now conclude the thesis by reviewing our contributions and discussing

interesting directions for future work.

6.1 Thesis Contributions

We have proposed a novel framework for 2D animation and rendering in non-

photorealistic styles using stroke-based techniques. Creating an animation using

tools such as Adobe’s Flash and then simply applying a non-photorealistic filter

results in a sequence that looks noisy and flickery, also called the shower-door

effect. To avoid this problem, our framework represents objects in a scene as tri-

angle meshes. Each mesh has an additional background reference that provides

color and tone information. Particles are distributed over each mesh. These

particles, each of which is essentially a 2D coordinate pair with an additional

information packet, are then used as sites for placing strokes. An object is ani-

mated by deforming its component meshes, which causes the particles distributed

on each mesh to move appropriately and coherently in relation to the motion of

the three vertices of the triangle face containing each particle.

Each part of our framework is inter-changeable, thus affording flexibility and

control to the animator. We have implemented and applied our framework in an

application called LiveCanvas, which can be used to create stylized 2D anima-
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tions. The application enables an animator (or even a casual user) to go from

concept sketch to non-photorealistically rendered animations by employing an

intuitive and user-friendly interface. LiveCanvas provides access to a number of

features commonly found in 2D animation tools and utilizes the 2D animation

framework to structure and ultimately render the frames in an animation. It al-

lows both interpolation (tweened) and key-frame based animation, or a mixture

of the two. Since objects are represented as meshes, and the application also

supports color blending between two key-frames, one can also use it to create

animated morphs and then render the frames in different styles. The synthe-

sized frames maintain temporal coherency of the brush strokes thereby yield-

ing smooth-looking animations that avoid undesirable shower-door artifacts. We

demonstrated the flexible nature of our framework by implementing mesh defor-

mation using three different techniques and providing several non-photorealistic

styles.

6.2 Future Work

Our work was focused on designing a framework for 2D animation unifying dif-

ferent stoke-based non-photorealistic techniques, demonstrating its feasibility by

implementing it in an application, and creating animations of reasonable complex-

ity. In LiveCanvas, we have developed a usable prototype, which can nevertheless

be extended in many ways.

Currently, the filters used to render scenes are fully specified by the initial

parameters and once the rendering process starts, there is little the animator

can do to control the final outcome. Extending the framework to include the

artist-in-the-loop has interesting HCI and design challenges.
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Moreover, the objects in a scene are represented as layered 2D regions, which

often results in flat-looking animation. To give more character to the animation,

we would like to look into ways to include more 3D information about an object,

without specifying the entire underlying geometry in 3D. Rivers et al. [2010]

presents an interesting technique to interpolate between different poses specified

in 2D to generate plausible renderings in any view.

Finally, it would be beneficial to conduct a user study in order to obtain feed-

back from artists and animators that may guide the process of making LiveCanvas

more useful and powerful.
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