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Abstract

This dissertation presents a new technique, based on dynamically coupled par-
ticle systems, for creating and manipulating complex three dimensional shapes in a
fluid like manner. The most novel feature of this approach to shape representation
is the use of self organizing primitive elements. In the simplest case, these primitive
elements, or particles, each posses state variables of position and mass, and the sys-
tem of elements interact through pairwise potential energy functions. More complex
systems include additional state variables combined with simple heuristics to create
application specific behavior. The ability of these systems to self organize provides a
representation technique which exhibits dynamically changing structure, an attribute
not found in popular spline and polygonally based representations. To illustrate the
usefulness of this approach it is applied to the following problems: free form shape
modeling, computer assisted animation, and surface reconstruction. For free-form
modeling the approach supports smoothness constraints similar to those inherent in
the deformation energies of popular, elastic surface models. Unlike spline patches or
parameterized surface models, the model does not attempt to enforce analytical con-
tinuity conditions, such as tangent or curvature continuity over the surface. Applied
to computer assisted animation the approach computes the movement and deforma-
tion of models mimicking, at a rudimentary level, the physical behavior of flexible
solids and fluids. Applied to surface reconstruction, these systems can infer surface
structure from sparse data sets, without a prior knowledge of the surface structure or
the topological genus. In summary, dynamically coupled particle systems provide an
useful alternative to traditional shape representation and manipulation techniques.
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Chapter 1

Introduction

1.1 Motivation

There is an endless variety of shapes in the world; from the simple Euclidean shapes
such as rectangles, spheres, and cylinders, through the smooth swept curves of a boat
hull, to the fractal nature of clouds, mountains, and trees. If the computer is to assist
us in our endeavors to represent the world, it is important that we can represent and
manipulate the wide range of shape.

The requirements for a suitable shape representation and for tools to manipulate
such representations vary according to application. Industrial designers require ex-
act analytical control of shape. In automotive, aerospace, and marine vehicle design,
sculptors require control of the “curvature” and “fairness” of a surface. Character an-
imators in the entertainment industry require “expressive” control of their creations.
The special effects industry requires emulations of natural effects to create rich and
complex visual elements. Robotics require spatial shape representations that can be
derived from the environment and then used to navigate through the environment.
Medical scientists require surfaces that segment data collected from non-invasive sens-
ing techniques, such as CAT and MRI scans. The physical sciences require surfaces
that provide an “optimal fit” to empirical data. Traditional computer based tools for
representing and manipulating shapes both limit and enhance the ability to create
specific classes of shapes.

In computer graphics, a common trait among shape representations is that the
global structure is explicitly defined. In the case of the classical primitives (spheres,
cubes, superquadrics) the structure is defined by the underlying parameterized equa-
tions. In the case of splines and polygons, structure is defined by manually connecting
surface patches. And in the case of skeletal implicit surfaces, the structure is defined
by the underlying skeleton structures. While these shaping representations are excel-
lent at creating a wide variety of shapes, large changes in the surface structure and
changes that do not preserve genus require significant user interaction.

In this dissertation, we investigate the problem of developing a shape representa-
tion in which the structure of a shape is inferred, rather than explicitly specified. By
removing the restrictions on structure, we open the door to new ways of both creating
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and manipulating shapes. Our investigation takes us away from a purely geometric
approach to modeling to one that combines geometry and physics.

Our goal is to develop a new shape representation model, based not on an un-
derlying parametric representation, but rather on systems of self-organizing elements
from which shape and structure emerge. We illustrate our approach by applying it
to three common tasks: free-form shape modeling, computer assisted animation, and
surface reconstruction. To this end we have three auxiliary goals:

e To create and manipulate complex shapes, not by the traditional method of
manually defining the arrangement of surface patches and continuity conditions,
but rather through an intuitive and flexible sculpting metaphor where “physical”
tools are used to manipulate synthetic materials.

e To show that these shapes can be animated over time, not by key framing, but
by mimicking the physical behavior of various materials.

e 'To reconstruct and extract surfaces of arbitrary topology from three dimensional
data.

1.2 Application Areas

Our three auxiliary goals apply to the following areas.

1.2.1 Shape Modeling

There are two basic approaches to the modeling of shapes. The first is to create a
shape to meet a known set of specifications. Another approach, more exploratory in
nature, is to evolve a shape from simple to complex, until it is aesthetically pleas-
ing. In this case the focus is not on measurable analytic qualities but on subjec-
tive aesthetic qualities. Spline based interpolation, extrusion, and constructive solid
geometry, enforce analytical constraints on a shape, aiding in the objective design
approach. The success of analytically based tools are in part because the constraints
of each technique assist in defining a particular class of surfaces. However, if used to
create shapes outside of the intended domain, the same constraints may hinder the
creation process by imposing unnecessary limitations. For the exploratory approach,
the design tools must be flexible in the sense that the constraints on the design pro-
cess should be minimized. Since numerous computer based tools exist to assist in
the creation of shapes with strict geometrical properties, good for precise analytical
control of a surface, let us instead consider what properties are useful to designers
who follow a more exploratory approach.

The occupation of the sculptor, whether working in wood, clay, plaster, wax,
glass, or stone, has existed for centuries. The medium that these artists have chosen
to realize their creations have been chosen for their long term durability, and for the
material characteristics which allow the artist to shape and reshape the material to
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its final form. Perhaps some of the needs of the exploratory design process can be
observed from considering the materials and tools sculptors have traditionally chosen.

Sculptors often design their shapes using a malleable material, such as wax, which
can be easily sculpted with a small collection of tools. The shape can be built up or
carved away, thereby providing flexibility to the creation process. After the design is
complete, the sculpture is realized in the more expensive and less flexible materials
of cast metal and stone. Sculptors use glass to create smoothly curving surfaces.
By heating the glass, the artist changes the physical properties so that it can be
shaped without breaking. A common technique is to stretch the glass, either by
directly pulling the glass or using the force of breath to “blow” the glass into a smooth
flowing shape. In industrial applications, smoothly curved lines and surfaces are often
designed by bending strips of metal, exploiting the inherent nature of the material.
The ceramic sculptor has perhaps the widest range of sculpting methods, which is
due to the nature of clay. Beginning with a lump of clay they can stretch the clay,
deform it with pressure, break or cut pieces of clay off of the main body, join pieces
of clay together adding handles and loops, and build up features by incrementally
adding clay to an existing form. If we can incorporate some of these qualities into
our shape design algorithms we will provide the user with powerful metaphors to use
in sculpting shapes on the computer.

This premise is supported by the fact that several current computer techniques
mimic techniques used by sculptors of physical materials. In computer graphics, spline
curves are used to enforce the continuity conditions of metal splines traditionally
used in the ship building industry. Surfaces of revolution are used to create curved
surfaces symmetric about an axis, like shapes thrown by a potter at the wheel or
created by a carpenter at a lathe. The ability to add and subtract geometric objects
from one another are implemented by constructive solid geometry (CSG) and implicit
surface formulations. Still, many of the techniques used by the sculptors of real world
materials are unavailable for the computer based sculptor; and when they do exist,
they usually do not occur within the same shape representation.

For a metaphor to be effective we do not need a formal mapping from the metaphor
source to the target (Madsen, 1994). For example, the piecewise spline model is
based on the behavior of metal splines, yet the computer spline does not need to be
as cumbersome to manipulate and store as long metal strips. To effectively use the
metaphor of sculpting with clay we do not necessarily want to incorporate the fact
that clay must be kept moist while it is being formed to prevent the clay from cracking
and crumbling. Likewise in the molten glass metaphor we do not have to simulate the
fragile nature of cooled glass. In creating a metaphor, undesirable qualities should be
ignored, while desirable qualities enhanced.

For shape design and rapid prototyping applications, we propose an interactive
system, based on a sculpting metaphor, which alleviates the designer’s need to think
about the underlying representation or be limited by its choice (Sachs, Roberts and
Stoops, 1991), similar to how a child can sculpt clay while ignorant of the clay’s chem-
ical structure. Borrowing from traditional sculpting materials, we propose creating
synthetic shaping materials that can be manipulated in a variety of ways. The ma-
terials should provide the user the ability to cut, merge, and join shapes; to deform
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shapes; to carve away and add new material; and to shape and reshape the material
with a basic set of tools.

1.2.2 Computer Assisted Animation

In animation, a story is brought to life as a stream of images and sound. Creating
the images requires capturing all of the visual changes that occur in the story, includ-
ing the shape, color, transparency, structure, texture, time-vary position (motion-
dynamics), and lighting of objects (Foley et al., 1990). Not surprisingly, animation
is expensive and time consuming. The quantity of visual information that must be
created, manipulated, and stored is enormous. While short animations, such as tele-
vision cartoons and commercials, are produced in only a few months, longer feature
length animations require three to five years of effort. It can be argued whether or not
the computer has sped up the process of creating animation, but it cannot be argued
that it has had no impact. The computer has come to assist the artistic process, by
both reducing the time spent per image and expanding the range of images routinely
created.

Three dimensional computer animation is the art of modeling shape changing
over time. To express intent and reaction, the animator needs ultimate control over
the shape. Because of this, specifying the object shape at key frames has been the
dominant method used. Interpolating between key frames parallels the job of the
inbetweening animator in traditional animation. Inverse kinematics is coming to play
a bigger role in animation, because instead of simply interpolating, it computes the
movement of jointed figures. Recently, physics based simulations have been making
their way into the animation and special effects businesses. In these simulations,
control is traded for dynamic complexity and visual richness, making them attractive
alternatives to more time consuming techniques.

For simulating secondary action, the effects animator needs not only a system
which aids him in representing shapes, but also the flexibility to change the shapes
and their behaviors. We propose a physically inspired approach that allows one
to sculpt a variety of shapes, to animate the shapes over time through a physical
simulation, and to varying the physical properties associated with the shape.

1.2.3 Surface Reconstruction

Large quantities of data are routinely generated by computer simulations and collected
by non invasive sensing devices (Ney, Fishman and Magid, 1990; Stytz, Frieder and
Frieder, 1991; Higgins, Chung and Ritman, 1990; Wolfe Jr. and Liu, 1988; Baker,
1988). The sheer quantity of the data collected presents a fundamental problem when
it comes to interpretation. The human visual system is considered a high bandwidth
channel for receiving information (Haber and McNabb, 1990; Hibbard and Santek,
1989), making visualization a powerful data presentation tool. Often specific sections
of the data are of interest and displaying all of the data, as in many volume rendering
techniques, distracts the user from the meaningful features. Such features can be
extracted by fitting surfaces to them.
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Other interesting uses of surface fitting are to recreate surfaces scanned by laser
range finders or from video cameras (Szeliski, 1991; Szeliski, 1993). In the future,
geometric modeling may be simplified by entering geometric descriptions that consist
of “showing” the object to the computer. This would allow users to send “3D faxes”
by scanning an object in one place and interactively viewing a full 3D model at a
remote location (Carlbom et al., 1992).

Unknown object topology poses difficult challenges to surface reconstruction that
have until recently been largely ignored in the vision literature. Unfortunately, vision
systems that must derive quantitative models of complex real-world objects from
multiple views cannot avoid the issue of unpredictable topological structure. This is
also an important concern in the related fields of biomedical and geological imaging
where there is a need to analyze three dimensional arrays of volumetric density or
reflectivity data. These arrays are like blocks of marble with meaningful embedded
structures. For further analysis, the often complex and topologically unpredictable
surfaces of these structures must be extracted and represented as compact geometric
models (Mclnerney and Terzopoulos, 1997). To solve these problems we propose
to use a system of self organizing primitive shape elements which react to both the
content of the data and neighboring primitive elements. In such a system the topology
is not defined by a surface parametrization, but by the relative spatial position of the
primitive shape elements.

1.3 Challenges

In creating our new shape representation technique, we face several challenges:

Changes in Structure

Traditional shape modeling techniques are primarily based on the user manually
defining the structure of the object. Thus, gross deformations and changes in genus
require significant user interaction. The challenge is to create a model where large
changes in shape can be made with minimal user interaction. For free-form modeling,
we want to be able to easily sculpt a shape without having to consider the underlying
structure. For computer assisted animation, the shape structure should change in
a natural manner as dictated by the simulation. For surface reconstruction, the
technique should be able to infer unknown surface structure from 3D data sets.

Synthetic Materials

Our modeling paradigm is based on the metaphor of synthetic materials endowed
with physical properties. For free-form modeling, the synthetic materials should
have properties similar to materials used in designing sculptures, such as wax, clay,
and glass. For computer assisted animation, the synthetic materials should be able
to exhibit a wide range of dynamic and elastic properties and interact with their
environment. For surface reconstruction, the synthetic materials should be influenced
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by the data sets and be able to simulate the optimal fitting properties such as those
of a membrane or thin plate.

Customization

To obtain a general shape representation, we need to customize the behavior of the
synthetic materials. Some desirable properties include: conservation of volume, con-
servation of surface area, mass, elasticity, stiffness, and fluidity. For different appli-
cations we should be able to select and enforce desirable properties.

Efficiency

The computational cost of the model should be tractable. As the complexity of the
shape grows, the time and space costs should not grow exponentially.

1.4 Methodology

We address the challenges with the following approaches.

Criteria

The measure of quality we use for our shape representation is not based on the
realism and accuracy of the synthetic material to real world materials, but whether
the synthetic material exhibits properties and behavior that assist the application.
For example, in a free-form modeling application based on the metaphor of sculpting
a malleable material with tools, the synthetic material does not need to exhibit all
the properties of say, clay or wax, only a select few which support the metaphor.

Structure

We address the issue of defining structure using discrete shape elements that can be
arranged and rearranged into new shapes. The arrangement and spatial proximity
between elements defines the surface structure and hence the topology and genus.
Useful arrangements of the shape elements is achieved by using a self organizing
system. The ability of the shaping elements to self organize, allows us to create
shapes that are not based on parametric patches or a prescribed structure. The
global structure of the shape emerges from the local physics based interactions of
elements.

Particle Systems

We base our modeling representation on particle systems and Newtonian dynamics.
Each particle is a discrete shape element; either a volume element or a surface element.
Interactions between particles are based on energy functions and local geometric
properties allowing for the creation of synthetic materials, that interact with their
environment. In this dissertation we solve for a second order dynamical system for
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applications requiring realism such as animation. For other problems, such as solving
an optimization criteria, a first order system is adequate and is a simplification of the
more complex second order dynamical particle system we present.

Surface Descriptions

Surface descriptions are based on the arrangement of the shaping elements. For
shapes described by volume elements, we use an implicit surface formulation. For
shapes described by surface elements, we generate a polygonization based on the
spatial proximity between elements.

Efficiency

We maintain efficient computation by insuring that the computational costs do not
grow excessively for large systems. We convert a general O(N?) particle system com-
putation into O(N log N) expected computation for surfaces, and O(N) expected
computation for volumes, by reformulating global computations into local computa-
tions. Key to this approach is being able to rewrite energy functions in local terms
of each shape element, and the use of hierarchical tree structures to partition space
into local regions.

Customization

Particle systems are customized to a given application by designing new inter-particle
potentials, application specific forces, and specialized particle creation heuristics. For
example, for modeling volumes we use a potential energy function which encourages
the equal spacing and preservation of volume, and velocity based force functions to
model inelastic deformations. For modeling surfaces we introduce curvature based
potential energies to encourage particles to arrange into surfaces. By varying the
weightings of these potentials we can encourage more or less smoothness of the sur-
face. Particle creation heuristics are designed to allow surface modeling operations
which “stretch” the surface, and surface reconstruction applications to interpolate
between sparse 3D point samples. Forces are designed to provide interaction with
objects external to the particle system, such as colliding with objects in an anima-
tion, interacting with shaping tools in free-form modeling, and attracting particles to
“edges” in surface reconstruction applications.

1.5 Contributions

We close this chapter by summarizing our contributions.

1.5.1 Dynamically Coupled Particle System

This dissertation presents a dynamically coupled particle system for shape represen-
tation and manipulation. This research has been published in the computer graphics
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literature (Tonnesen, 1991; Szeliski and Tonnesen, 1992) and in the computer vi-
sion literature (Szeliski, Tonnesen and Terzopoulos, 1993b; Szeliski, Tonnesen and
Terzopoulos, 1993a).

A novel feature of this approach to modeling shape is the use of a particle dynamics
simulation in which particles interact through potential energy functions to create
volumes and surfaces. The use of a spatially symmetric potential energy encourages
particles to arrange into tightly packed orderings, good for modeling volumes. This
basic model is then extended to develop oriented particles, a particle system which
encourages particles to arrange into surfaces rather than volumes.

In the oriented particle model, each particle represents an oriented trihedral co-
ordinate frame. Based on these frames, we design new interaction potentials which
favor locally planar or locally spherical arrangements of particles. Thus, the oriented
particles support smoothness constraints similar to those inherent in the deformation
energies of popular, elastic surface models. Unlike spline patches or parameterized
models, the model does not attempt to enforce analytical continuity conditions, such
as C' tangent or C? curvature continuity, over the surface. Instead of a parametric
approach to shape modeling, our research uses collections of primitive self-organizing
elements from which geometric structure evolves as the system moves to local minimal
energy configurations. Continuous surface descriptions are created by extending the
concept of two dimensional Delaunay triangulation to generate surface triangulations
of arbitrary topology, embedded in three dimensional space.

1.5.2 Free-form Modeling

Our approach to free-form modeling provides the following abilities:
e to cut, merge, and join shapes,

e to remove and add material,

to shape material using a small collection of tools,

to add handles and loops without having to respecify the basic surface structure,

to add curvature discontinuities by locally ignoring smoothness constraints,

and to “heat” and “cool” the model to vary the material characteristics.

The modeling paradigm we present is based on a sculpting metaphor in which the
user begins with a volume or sheet of material and arrives at a final shape through
incremental sculpting operations In Figure 1.1 we show the result of deforming a
sphere into a torus using two shaping tools. Such properties allow a designer to create
a variety of geometric shapes without the need to be concerned with the underlying
structure or parametrization of the shape.
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Figure 1.1: Free-form surface modeling

Deformation from sphere to torus using spherical shaping tools.

1.5.3 Computer Assisted Animation

When applied to three-dimensional animation, these same properties allow an anima-
tor to interactively sculpt the 3D models which can then be animated according to the
associated physical characteristics. In addition, the physical characteristics may be
modified during a scene to suit changes dictated by the story. For example, the tech-
nique can simulate from solid to fluid behavior, infinitely stretchable material, and
materials that rip, tear, and that can be seamlessly merged together. Once created,
the model may be influenced by a larger environment modeled for the animation. The
manipulations can be global forces such as gravity, local forces derived from collisions
with other objects, forces generated from hand gestures, scripted movement, or vec-
tor force fields defined in space. In Figure 1.2 we illustrate a selection of different
physical properties, such as cloth draping (Figure 1.2a), plastic surface deformation
(Figure 1.2b), and tearing (Figure 1.2c). The differences in physics were easily created
by varying the weights of the potential energy functions.

1.5.4 Surface Reconstruction

When applied to surface fitting, the surface model and reconstruction methods devel-
oped retain the topological flexibility of the local patch methods, while constructing
globally coherent surface models that can evolve consistently with time-varying data
and forces. When reconstructing an object of arbitrary topology, the particles can be
made to “flow” over the data, extracting and conforming to meaningful surfaces. The
process is roughly analogous to pouring a viscous liquid over an object and wetting
its surface. In Figure 1.3 we show the reconstruction of the surface from a CT scan of
a plastic “phantom” vertebra model (decimated to 120 x 128 x 52 resolution). This
smooth, triangulated model contains 6,650 particles and 13,829 triangles, and was
created by seeding a single particle and extending the surface along high 3D edge
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Figure 1.3: Surface reconstruction
Shaded 3-D Reconstruction of a vertebra from 120 x 128 x 52 CT volume data.
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values until a closed surface was obtained.

The approach has two components. The first is the dynamic particle system which
discovers topological and geometric surface structure implicit in the data. The second
component is an efficient triangulation scheme which connects the particles into a
continuous global surface model that is consistent with the particle structure. The
evolving global model supports the automatic extension of existing surfaces with few
restrictions on connectivity, the joining of surfaces to form larger continuous surfaces,
and the splitting of surfaces along arbitrary discontinuities as they are detected.

1.5.5 Results

The main results of this thesis include:

e A new surface model representation that we call “oriented particle systems”.
This model combines particle systems, differential geometry, and physics into
a single model. The model uses potential energy functions for minimizing the
normal curvature, Gaussian curvature, and the twist of a surface, for determin-
ing the principal directions of surface curvature and lines of curvature, and for
emulating the stretching and bending energies of physical objects.

e A free-form modeling paradigm in which surfaces are sculpted using tools in
analogy to sculpting with physical tools. Basic modeling operations include
merging, cutting, extending surfaces, and specifying curvature discontinuities.

e A heat transfer model for dynamically coupled particles derived from the macro-
scopic heat equation.

e A method of varying the stiffness of Lennard-Jones coupled particle models
based on thermal energy while maintaining a conservation of total system en-
ergy. Combined with the heat transfer model, this extends the range of behavior
exhibited to be from solid to fluid. It also allows for local variations in malleabil-
ity of a model thus providing sculptors more control over modeling operations.

e A triangulation algorithm for creating continuous surface descriptions of arbi-
trary topology from 3D point sets.

e An analysis of the computational and memory requirements of dynamically
coupled particle systems. This includes an analysis of neighboring finding tech-
niques and an analysis of the stability and accuracy of the explicit Leapfrog
integration scheme for the Lennard-Jones potential.

e Surface reconstruction algorithms for both interpolating 3D point sets and op-
timal surface fitting of 3D data. The algorithms were designed for both re-
constructing open and closed surface from sparse 3D point sets, polygonizing
iso-surface functions, and segmenting 3D volumetric data, e.g. CT scan data.

e Visuals simulations of volumes and surfaces interacting with external objects
and forces, free-form modeling, and surface reconstruction.
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1.6 Thesis Overview

In Chapter 2 we review the background material and related work. In Chapter 3
we develop a spatially coupled particle system model of deformable volumes. In
Chapter 4 we extend the model of Chapter 3 to “oriented particles” which prefer to
arrange into surfaces rather than volumes. In Chapter 5 we provide mappings from
the discrete nature of a particle system to continuous surface descriptions. In Chapter
6 we further extend the behavior of the surface and volume models to be functions
of thermal energy. In Chapter 7 we discuss implementation and efficiency issues.
In Chapter 8 we apply our model to the applications of physics based animation,
interactive free-form modeling of surfaces, and surface reconstruction of 3D data. In
Chapter 9 we conclude with a summary and final remarks.

In Appendix A we review the differential geometry of surfaces. In Appendix B
we review Newtonian dynamics. In Appendix C we derive equations for computing
the gradient of energy functions based on the Euclidean norm, products of the norm
with normal vectors, and weighting functions. In Appendix D we derive forces and
torques for the co-planarity, co-normality, co-circularity, and Lennard-Jones potential
functions. In Appendix E we provide a finite element analysis of the surface energies.



Chapter 2

Background

2.1 Surface Modeling

There exist a variety of techniques to solve the shape representation and manipulation
problem for specific sets of shapes. For example, piecewise spline patches have gained
wide spread acceptance in applications where controlling the degree of surface conti-
nuity is important. Constructive solid geometry is used in computer aided design and
manufacturing (CAD/CAM) to create solid volume descriptions of shape, where the
intrinsic properties of a solid object such as a continuous inside/outside boundary,
a closed surface, and volume constraints are important. Surfaces of revolution and
extruded two dimensional outlines create shapes with symmetry along a given dimen-
sion. Any faceted surface can be modeled using polygonal meshes, and subsequently
smoothed using subdivision methods. Implicit surfaces are easily defined as an iso-
value of a continuous scalar three dimensional field, and are easily manipulated when
the field is a function of a skeleton or set of control points. Free-form deformations
and parametric warping of space allow shapes to be deformed at global and local
levels. This section reviews the most common shape representations, and discusses
their advantages and limitations.

2.1.1 Polygonal Meshes

Polygonal meshes are perhaps the most widely used shape representation in com-
puter graphics. Geometrically this is the simplest shape representation technique
that allows the description of a wide variety of shapes and topologies. It is a natural
description for surfaces, and with appropriate, constraints a description for solid vol-
umes. Due to its simplicity it is included in virtually every modeling system, creating
a lowest common denominator for shape representation.

However, simplicity comes at a cost. Polygonal meshes are limited to accurately
describing surfaces composed of planar facets and thus are unable to accurately rep-
resent curved surfaces. Instead, curved surfaces are approximated by polygons which
linearly interpolate between points on the original surface. At a fine resolution, the
visual artifacts introduced by such approximations are negligible for rendering appli-
cations. At lower resolution, interpolating the vertex normals across the area of the

13
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polygon during the rendering phase results in the illusion of a smooth surface. For
other more demanding applications, the exact representation of curves are required
and the polyhedral model falls short.

One solution to generating smooth surfaces is to apply surface subdivision meth-
ods. Subdivision can be used to recursively approximate a polygonal mesh with finer
polygonal meshes, which in the limit results in a smooth surface (Catmull and Clark,
1978; Peters and Reif, 1997) except at a number of extraordinary points (Doo and
Sabin, 1978). As an alternative to approximating, one can use an interpolating sub-
division scheme which in the limit interpolates a smooth surface between the original
polyhedral vertices (Zorin, Schroder and Sweldens, 1996).

Still, to sculpt a shape, a designer must specify the location of each vertex, the
edges joining each vertex, and the series of edges and the order of edges belonging to
each polygon. In addition, some systems require that the outward facing polygons all
have the same “sign”, that is the sign of the plane normal defined by traversing edges
around the polygon, either clockwise or counterclockwise, must be the same. Even
with interactive tools to help specify the vertices and connections, this is a tedious
and time consuming process, especially for models containing thousands of polygons.

2.1.2 Parametric Representations

In a parametric representation, a shape is defined by a set of parameterized functions,
such as

z(u,v), y(u,v), z(u,v),

where u and v are parameters, and a surface point x = (x(u,v),y(u,v), z(u,v)) is
given by evaluating the parameterized functions. The parametric representation has
two distinct advantages. First, an arbitrary number of surface points are easily gener-
ated by sweeping the parameters v and v through their domain, thus facilitating the
rendering process. Second, different levels of curvature continuity can be controlled
by careful selection of the underlying parametric equations.

Shapes can be defined using either global parametric or piecewise parametric
patches. Quadrics and superquadrics (Barr, 1981) are examples of global parame-
terized primitives used to define complete surfaces such as spheres, ellipsoids, and
tori. For a wider range of parametric shapes, one usually applies a piecewise surface
construction approach.

Traditional spline techniques (Bartels, Beatty and Barsky, 1987; Farin, 1992)
model an object’s surface as a collection of piecewise-polynomial patches, with ap-
propriate continuity constraints between the patches to achieve the desired degree of
smoothness. Within a particular patch, a surface’s shape can be expressed using a
superposition of basis functions

s(uy, uy) ZVZ (u1, uz), (2.1)

where s(u1, ug) are the 3D coordinates of the surface as a function of the underly-
ing parameters (ug,us), v; are the control vertices, and B;(u1, us) are the piecewise
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polynomial basis functions. The surface shape can then be created by interactively
positioning the control vertices or by directly manipulating points on an existing sur-
face (Bartels and Beatty, 1989). Areas of a surface can be locally refined using a
hierarchy of tensor-product B-splines (Forsey and Bartels, 1988).

2.1.3 Constructive Solid Geometry

Many applications, such as engineering and product design, require the representation
of solid volumes. In constructive solid geometry (CSG), a solid is represented as a
set-theoretic Boolean expression of primitive solid objects (Hoffman, 1989). Standard
primitives are parallelepipeds (blocks), triangular prisms, spheres, cylinders, cones,
and tori. Through a combination of simple primitives, complex shapes are easily
constructed. The advantage of the CSG representation is that valid volumes can
always be guaranteed.

To construct a shape, a user begins by instantiating a generic primitive by specify-
ing the parameters of the primitive, such as the length and width of a parallelepiped
or the radius of a sphere. Once instantiated, these primitives are combined using
rigid motions and regularized Boolean set operations. These operations are regu-
larized union, regularized intersection, and regularized difference. They differ from
the standard set-theoretic operations by operating on the interior of the two solids,
thereby eliminating lower dimensional geometric primitives which do not bound the
resulting volume. The volume resulting from a regularized Boolean operation can
then be combined with other volumes, until the final shape is realized.

2.1.4 Implicit Representation

In the implicit representation, a shape is defined as the locus of points that satisfy
an equation f(x) = 0, where x is a three dimensional point. For points inside of the
surface, f(x) > 0, and for points outside of the surface, f(x) < 0.

Implicit surfaces enjoy several benefits such as the ability to efficiently compute
inside/outside tests and the ability to easily build up complex shapes (Bloomenthal,
1989). For example, the standard set operations of union and intersection are easily
implemented. Surfaces can be defined directly from a function or constrained in term
of other geometric primitives. Skeletal surfaces can be defined in terms of distance
constraints from a geometric entity. For example, a sphere is defined as a fixed
distance from a point and a rounded cylinder is defined as a fixed distance from a line
segment. Alternatively an implicit surface can be constrained to be a fixed distance
from another surface, creating an offset implicit surface. The implicit formulation
also allows for the blending of surfaces at branch points, a difficult problem for piece-
wise parametric surfaces. Implicit surfaces are often defined by combining algebraic
functions based on control points, thus allowing surfaces to be easily deformed by
displacing the control points (Blinn, 1982; Wyvill, McPheeters and Wyvill, 1986a).

A considerable disadvantage of the implicit formulation is that, in general, surface
points cannot be directly computed as in the parametric representation. Algebraic
surfaces may be ray-traced or rendered using incremental scan line techniques, and
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though certain class of implicit surfaces can be ray-traced (Blinn, 1982; Tonnesen,
1989; Wyvill and Trotman, 1989), no similar incremental techniques exist for arbi-
trary implicit surfaces (Bloomenthal, 1989). As an alternative, the implicit surface
can be converted to a polygonal representation which can then be rendered with a
conventional polygon renderer (Bloomenthal, 1988; Bloomenthal, 1989; Velho, 1990;
Witkin and Heckbert, 1994). These techniques are discussed in more detail in Chap-
ter 5.

2.1.5 Geometric Deformations

Geometric deformations provide another method for modeling shape. Mapping from
one R? space domain to another R?® space provides a “warping of space” and the
geometry within that space, creating smooth deformations. By applying such a map-
ping Barr (1984) has shown the ability to bend, twist, and taper geometric objects.
The normal and tangent vectors of the deformed object, as well as the ratio of vol-
ume change, can be calculated from the Jacobian matrix of the point transformation
function. Deformations can also be realized by embedding a geometric object within
a lattice of trivariate polynomials (Sederberg and Parry, 1986; Coquillart, 1990). By
moving the control points of the lattice, one changes the R* to R® mapping and the
embedded geometry is deformed. With appropriate constraints, the deformations can
be defined both globally and locally, in a piecewise manner, and layered into a hier-
archy of deformations. For more intuitive control the user can directly move points
on the original surface to the desired deformed position (Hsu, Hughes and Kaufman,
1992), and then a least squares minimization is used to calculate the new lattice con-
trol point positions, thereby completing the mapping. While such mappings are very
powerful, they preserve the underlying structure and parametrization of the surface,
and thus do not allow the user to change topologies.

2.1.6 Variational Surfaces

By specifying “character lines”, one can outline the shape of a surface and use either
finite element (Celniker and Gossard, 1991) or variational techniques (Moreton and
Séquin, 1992; Welch and Witkin, 1992; Welch and Witkin, 1994) to fit smooth surfaces
between the character lines. The finite element approach provides physically realistic
surfaces by minimizing an energy functional that describes the resistance to stretching
and bending. Control of the final surface shape is achieved by first parameterizing the
shape, then applying loads and geometric constraints. Terzopoulos and Qin (1994;
1996) use finite element techniques to solve a physics based generalization of non-
uniform rational B-splines. Their model allows designers to sculpt shapes by applying
forces and shape constraints, in addition to the traditional method of adjusting control
points. The variational approach also uses geometric constraints and optimizes a
constrained surface functional to create smooth surfaces. By stitching curves together
the user can construct smooth shapes of arbitrary topology. Moreton and Séquin
(1992) perform a non-linear optimization to minimize a fairness functional of the
squared magnitude of the variation in principal curvatures. The result is a patchwork
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of Bézier patches which form a G' continuous surface. The variational surfaces of
Welch and Witkin (1992) differ from the finite element and physically based models
in that they “do not require the surface to respond in an intuitive or natural way
to direct control-point manipulation”. The variational surfaces of Welch and Witkin
(1994) minimize the squared magnitude of the principal curvatures and are similar
to implicit surfaces in that they allow the construction of arbitrary topology surfaces
and, in general, cannot be explicitly computed.

2.1.7 Discussion

Existing surface representation techniques allow users to specify any geometric shape
and any topology. However the specification of the shapes may be both time-consuming
and tedious. Polygon meshes can be used to represent any faceted shape, and linearly
approximate any curved surface. Piecewise parametric functions, such as spline sur-
face patches, can be used to represent any curved surface with tangent plane or higher
continuity conditions. Since polygons can be written as a parameterized equation,
both polygonal meshes and parameterized surfaces are easily rendered by incremen-
tally varying the parameters of the respective equations, thereby generating a stream
of surface points. Implicit surfaces also allow the generation of geometric shapes
of arbitrary topology, but do not possess a surface parametrization making it more
difficult to render. Solutions to rendering are found through ray-casting techniques
or by approximating with polygonal meshes or particles. However implicit surfaces
have other valuable properties such as the guarantee of a closed surface, the ability
to easily perform inside/outside tests, and the automatic blending of surfaces.

From a designer’s point of view, perhaps the most serious drawback is the difficulty
one has in creating and manipulating these complex shapes. The use of CSG allows
the designer to add and subtract shapes with the knowledge that the final shape
will always represent a closed solid volume. The use of free-form deformations allows
shapes of static topology to be deformed both locally and globally. Finite element
and variational techniques solve portions of the shape construction and manipulation
problem by allowing the user to outline the shape as a set of character lines which
the user then “skins” with a surface, which may then be locally deformed. These
techniques address the construction of a valid geometric shape, but do not address
the need to be able to manipulate the final shape at both the local and global level.
While in some applications the specification of a shape is all that is needed, other
applications such as animation require the ability to continually change the basic
shape and in some cases even the topology, with minimal user intervention. The
technique presented in this dissertation provides users a means to interactively shape
surfaces, modify the surfaces locally and globally, including topological changes, with
minimal user interaction.
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2.2 Surface Reconstruction

Many vision researchers have investigated the reconstruction of 21/, -D viewer-centered
surface representations (Terzopoulos, 1984; Boult and Kender, 1986). These represen-
tations are typically based on parametric spline models with internal strain energies.
Equally intense effort has gone into the development of 3-D object-centered surface
representations. These include generalized cylinders (Agin and Binford, 1973; Neva-
tia and Binford, 1977), superquadrics (Pentland, 1986; Solina and Bajcsy, 1990),
and triangular meshes (Boissonnat, 1984), as well as their physics-based generaliza-
tions, dynamic deformable cylinders (Terzopoulos, Witkin and Kass, 1988), spheres
(Miller et al., 1991; McInerney and Terzopoulos, 1993), superquadrics (Terzopoulos
and Metaxas, 1991), and meshes (Vasilescu and Terzopoulos, 1992). Physically based
models incorporate internal deformation energies and can be fitted through external
forces to visual data such as 2-D images or 3-D range points. The 21/5-D viewer cen-
tered and 3-D object centered representations both assume a given topology, usually
parameterized over a planar or spherical domain.

A common way to cope with unknown topological structure is to resort to a
“patchwork” surface representation (Sander and Zucker, 1990) which abandons a
global representation and describes the surface only locally in terms of planar, quadric,
or cubic patches. A drawback of such local surface representations compared to
globally parameterized geometric models is that they do not facilitate common surface
analysis tasks such as area, curvature, and enclosed volume computations. More
serious difficulties arise in the dynamic analysis of objects. Possible scenarios include
the incremental reconstruction of surfaces from sequential views around objects, or
the reconstruction, tracking, and motion estimation of dynamic non-rigid objects
such as a beating heart. A globally consistent surface model can provide powerful
constraints for solving these dynamic estimation problems.

Another approach to inferring topological structure is to construct a graph over
the sample points which reflects spatially adjacent points (Hoppe et al., 1992; Edels-
brunner and Miicke, 1994; Guo, Menon and Willette, 1997). If the data are not
sampled isotropically, that is with the same density in each dimension, then the
correct surface may not be realized (Hoppe et al., 1992). The alpha shapes of Edels-
brunner and Miicke (1994) encode the spatial proximity relationship of the point set
as a simplicial compler' overcoming the isotropic sampling restriction. In general,
the result is not a connected surface interpolating the sample points, but a collection
of points, lines, and surface patches with which the user is left to infer the shape.
In a post-processing phase, the exterior faces of an alpha shape can be converted
into a 2D-manifold surface (Guo, Menon and Willette, 1997), though due to the cho-
sen alpha parameter the exterior faces may not adequately represent the full set of
sample points, resulting in a loss of detail. To extract surfaces from medical images,
T-surfaces (McInerney and Terzopoulos, 1997) overcome the topology restriction by
continually recomputing a deformable surface based on an inside-outside classification

1A three-dimensional simplicial complex is a collection of k-simplices, 0 < k < 3: A 0-simplex is
a point, a 1-simplex is a line connecting two points, a 2-simplex is a triangle, and a 3-simplex is a
tetrahedron.
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of a grid of voxels, analogous to the polygonization of implicit surfaces. A summary
of deformable models applied to medical image analysis can be found in (McInerney
and Terzopoulos, 1996).

Existing surface representations have limitations— viewer-centered methods make
no attempt to represent non-visible portions of object surfaces, while object-centered
methods make strong assumptions about object topology, and graph-theoretic meth-
ods make strong assumptions about the sampling density. This dissertation proposes
a new approach to surface modeling which overcomes these limitations. The ap-
proach leads to flexible reconstruction algorithms which are able to compute detailed
geometric descriptions that are not only inherently viewpoint invariant, but more
importantly, are sufficiently powerful to represent surfaces of arbitrary topology. The
algorithms can interpolate regular or scattered 3-D data acquired from an imaged
object, without any a priori knowledge of the object topology.

2.3 Physically Based Modeling

2.3.1 Deformable models

Physically based modeling provides the ability to generate animations of physical
phenomena through simulation. Starting with a parametric representation for the
surface s(uy, uy) and adding a physical level of abstraction, Terzopoulos et al. (1987)
create elastically deformable surfaces. To define the dynamics of the surface, they
use weighted combinations of different tensor (stretching and bending) measures to
define a deformation energy which controls the elastic restoring forces for the surface.
Additional forces to model gravity, external spring constraints, viscous drag, and
collisions with impenetrable objects can then be added. To simulate the movement
of a deformable surface, these analytic equations are discretized using either finite
element or finite difference methods. This results in a set of coupled differential
equations governing the temporal evolution of the set of control points. Physically-
based surface models can be thought of as adding temporal dynamics and elastic
forces to an otherwise inert geometric spline model.

Physically-based surface models have been used to model a wide variety of ma-
terials, including cloth (Breen, House and Getto, 1991; Terzopoulos and Fleischer,
1988b), membranes (Terzopoulos et al., 1987), and paper (Terzopoulos and Fleischer,
1988b). Viscoelasticity, plasticity, and fracture have been incorporated to widen the
range of modeled phenomena (Terzopoulos and Fleischer, 1988b). By adding muscles
and skin to an otherwise inert model, the movement of characters, such as worms
(Miller, 1988), fish (Tu and Terzopoulos, 1994), and human faces (Waters and Ter-
zopoulos, 1990; Lee, Terzopoulos and Waters, 1995), can be automatically generated.

The main drawback of both splines and deformable surface models is that the
rough shape of the object must be known or specified in advance (Terzopoulos, Witkin
and Kass, 1987). For spline models, this means discretizing the surface into a collec-
tion of patches with appropriate continuity conditions, which is generally a difficult
problem (Loop and DeRose, 1990). For deformable surface models, we can bypass
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the patch formation stage by specifying the location and interconnectivity of the
point masses in the finite element approximation. In either case, defining the model
topology in advance remains a tedious process. Furthermore, it severely limits the
flexibility of a given surface model.

2.3.2 Fluid Models

The complex nature of liquids is extremely fascinating and poses a number of prob-
lems for research in computer graphics. Liquids exhibit a wide range of phenomena,
such as conforming to the shape of containers, wave propagation, cresting and break-
ing as exhibited by ocean waves, splashing, sheeting, foam, and bubbles. Capturing
all of these in one model is difficult and hence a variety of techniques have been pro-
posed, each modeling a subset of the phenomena. Trigonometric functions have been
used to model ocean waves (Peachy, 1986; Fournier and Reeves, 1986). Individual
particles have been used to model the spray of water from boat wakes (Goss, 1990),
the spray of cresting waves (Peachy, 1986), splashes (O’Brien and Hodgins, 1995),
and waterfalls (Sims, 1989). Three approaches to modeling water as height fields
have been proposed: as a linearized approximation to the shallow water equation
(Kass and Miller, 1990), as columns of fluid where the volumes of fluid transferred
between columns is conserved (O’Brien and Hodgins, 1995; Mould and Yang, 1997),
and a solution of Navier-Stokes equations in two dimensions that is then mapped to
a 3D height field (Chen and Lobo, 1995). To model rapid changes in topology of vis-
cous liquids, coupled particle systems with attractive-repulsive forces have been used
(Miller and Pearce, 1989; Terzopoulos, Platt and Fleischer, 1989; Tonnesen, 1991;
Desbrun and Gascuel, 1995; Reynolds, 1997) as well as smoothed particle hydrody-
namics (Roy, 1995; Desbrun and Gascuel, 1996) (discussed in Section 2.4.1). The par-
ticle based models are discussed further in Section 2.4.2. Recent work has solved the
Navier-Stokes equations over a low resolution regular grid using a 3D finite-difference
approximation (Foster and Metaxas, 1996; Foster and Metaxas, 1997a; Foster and
Metaxas, 1997b).

2.4 Particle Systems

A particle system is a collection of point masses with associated forces whose move-
ment is governed by the laws of physics. To describe each particle, a set of attributes,
such as mass, position, velocity, and acceleration, are assigned to the particle. Poten-
tials are commonly used to generate forces acting on the particles, and the movement
of the particles is given by the laws of Newtonian physics,

mi | dt vill) = =g

where f;, v;, x;, and m; are the force acting on, the velocity, the position, and the
mass of particle 7. Given initial conditions, these systems can be simulated over
time by integrating the equations of motion. Depending on the forces applied, such
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systems can model a variety of complex and time dependent behavior. Rather than
modeling as an Eulerian dynamical system, where the system state is defined at fixed
grid samples, particle systems use a Lagrangian approach, where the samples of state
follow the movement of the system.

2.4.1 Particle Systems in the Physical Sciences

In the physical sciences, particle systems have been used by to model a variety of phe-
nomena including the evolution of galaxies, plasma, the properties of semiconductors,
magnetic fields, compressible gas flows, and the phase changes in matter (Hockney
and Eastwood, 1988; Heyes, 1998; Monaghan, 1992). Typically, each particle in the
system models a primitive element, such as a star or molecule, of the phenomena
under study. To predict the correct dynamic behavior, such simulations require the
computation of complex interactions with high numerical accuracy. This problem
is aggravated by the number of elements in the systems under consideration. For
example, on a microscopic scale, the number of molecules in an ounce of water is on
the order of 10%°. And on a cosmological scale, the number of stars in a galaxy? is on
the order of 10 to 10'? (Hockney and Eastwood, 1981).

Astrophysicists model the evolution of star systems based on the density of bodies
and gravitational fields (Hockney and Eastwood, 1988; Heggie, 1987). To maintain
accuracy, several approaches have been suggested. When modeling small clusters of
stars, on the order of a 1000, the system can be directly modeled as a particle system
with each particle representing a star, and forces computed directly. This requires
O(N?) operations for N particles. For coulombic interaction®, the computations can
be reduced to O(N) by using particle-mesh methods where short range forces are
computed directly between particles, and long range forces are computed over a mesh
(Greengard, 1988; Zhao, 1987). For larger systems, each particle models the mean
properties of density and gravitional fields for clusters of approximately 10° stars,
thus allowing a system of 10* particles to model a galaxy.

Molecular dynamicists have used particle systems to study solids, liquids, gases
and the phase changes between these states (Barton, 1974; Christy and Pytte, 1965;
Temperley, 1978; Trevena, 1975; Heyes, 1998). The concept of a pairwise inter-
molecular potential energy function has proven valuable in describing inter-molecular
interactions in a quantitative fashion. The short range repulsive forces can be modeled
by a potential energy function represented as an exponential expression ¢g(r) oc 7",
where r is the distance between the two molecules. The long range attractive forces,
to a reasonable approximation, can be treated together as a single expression, and
modeled by the potential function ¢4(r) oc »~™. Higher body interactions (e.g. 3-
body interactions) can be computed for molecular systems, though the effects of
these interactions are usually incorporated into the model by modifying the values
of a pairwise potential (Heyes, 1998). In addition to modeling the phase transitions,
particle systems have also modeled the macroscopic properties of matter, such as

2The number of galaxies in the observable universe is estimated on the order of 10°.

3Coulombic potentials are inversely proportional to distance, that is r—'. Coulombic forces are

proportional to r~2.
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temperature, volume, and local geometry. Similar to modeling galaxies, modeling
large molecular systems with particles is computationally expensive. Simulations
which ignore distant particle forces have been used to reduce the computational cost,
although this approach has been found to contribute to sensitivities in the computed
phase diagram, especially close to critical points (Heyes, 1998). In modeling the phase
changes between states, physicists are in effect modeling changes in structure. It is
the ability to provide such fluid changes in structure that we wish to capture in our
approach to the volumetric modeling of deformable materials.

Smoothed particle hydrodynamics (SPH) is a Lagrangian method used to study
fluid flow in astrophysics (Monaghan, 1982; Monaghan, 1985; Monaghan, 1988; Mon-
aghan, 1992), in particular compressible fluids such as stellar gases. SPH is based on
the mathematical identity

A(r) = /A(s)é(T — s)ds

given here in one dimension, where ¢ is the Dirac delta function defined to be zero
for all non-zero values of (r — s). Any field A(r) can be approximated by replacing
the Dirac function with an interpolating kernel w(u, h) of compact support, such that
in the limit as the “smoothing length” h goes to zero, the kernel equals the delta
function. In three dimensions a discrete approximation of the continuous integral
is given by representing the volume as particles, and summing the kernel weighted
contributions from each particle. This formulation allows the density of the fluid at
any point in space to be approximated as a weighted sum of particle masses. Forces
on particles result from solving the gradients in pressure as functions of the density at
each particle. Over a set of uniformly ordered particles, the SPH method is equivalent
to finite-difference schemes, with the particular scheme dependent on the choice of
interpolating kernel. Error is minimal when the particles are equally spaced and
increases as the particles become disordered.

2.4.2 Particle Systems in Computer Graphics

In computer graphics, particle systems have been used to model visually complex
natural phenomena such as fire, foliage, and waterfalls; to model and reconstruct
both surfaces and volumes; and to emulate the physics of deformable, elastic, viscous,
and solid materials. To aid in the review of related work, we categorize particle
systems according to the interactions between particles. In systems of independent
particles, the forces on each particle are independent of other particles in the system.
Particle systems with fized connections interact with neighboring particles where the
set, of interactions is constant after the initial specification. In particle systems with
spatially coupled particle interactions, the interactions between particles evolve over
time due to their relative spatial state. This results in the ability to model both
varying geometry and topology as will be shown in the thesis.

Systems of independent particles have been used to model visually complex natural
phenomena such as fire, smoke, foliage, and the spray of splashing water (Reeves,
1983b; Reeves and Blau, 1985; Sims, 1990; Stam and Fiume, 1993; Stam and Fiume,
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1995; O’Brien and Hodgins, 1994; Goss, 1990; Sims, 1992). In these systems, forces
on each particle are independent of the other particles in the system. To create
complex behavior, these techniques use large numbers of particles reacting to forces
such as gravity, obstacles, wind fields, and turbulence. Particles are created and
deleted from the system using rules based on the phenomena being modeled. Most
of these approaches concentrate on creating a particular visual effect and make no
attempt to define either an object volume? or the corresponding surface.

The previously mentioned deformable models of (Terzopoulos and Fleischer, 1988b;
Haumann et al., 1991; Breen, House and Getto, 1991; Breen, House and Wozny, 1994)
and the surface reconstruction model of (Miller et al., 1991) can be categorized as
particle systems with fixed particle interactions. The forces felt by a particle are in
part due to the fixed inter-particle connections and in part due to external forces.
Shapes modeled by a system with fixed particle interactions can be deformed to
change the surface geometry, but are limited to the structure imposed by the original
connections.

In particle systems with spatially coupled particle interactions, the interactions
between particles evolve over time — connections are automatically broken and new
connections are automatically created. Replacing the fixed set of interactions with
interactions that dynamically evolve creates a flexible modeling paradigm in which
geometric and topological changes can occur as the underlying structure of the sys-
tem changes. We briefly mention work cited early to place them in context of particle
systems. The physically-based deformable volumes and fluids of (Miller and Pearce,
1989; Terzopoulos, Platt and Fleischer, 1989; Desbrun and Gascuel, 1995; Reynolds,
1997) are spatially coupled particle systems. The related volume models of Roy
(Roy, 1995) and Desbrun and Gascuel (Desbrun and Gascuel, 1996) have applied
Monaghan’s SPH model (Monaghan, Thompson and Hourigan, 1994) of nearly in-
compressible fluids. To approximate surfaces, spatially coupled particle systems have
been used to re-mesh polygonal models (Turk, 1992), to triangulate implicit sur-
faces (Witkin and Heckbert, 1994; Crossno and Angel, 1997) and variational surfaces
(Welch and Witkin, 1994). Spatially coupled particle systems have also been used to
distribute paint strokes for a painterly effect in rendering applications (Meier, 1996),
and to grow cellular based textures (Fleischer et al., 1995).

2.4.3 Discussion

Sculpting with particle systems does not, fall cleanly into previous modeling paradigms.
It is neither a parametric representation, an implicit representation, nor a solid model-
ing primitive. However, we can construct such representations from our particle-based
model. For the oriented particle system, a natural continuous surface representation
is a triangulation interpolating the particle positions. From this, a subdivision sur-
face (Loop, 1987) or smooth piecewise parametric representation (Loop, 1994) can
be constructed. For the un-oriented particle system, an implicit surface is a natural

4An exception is (Stam and Fiume, 1993; Stam and Fiume, 1995) who use “blobs” to define a
volume.
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surface representation. As a sculpting metaphor, our work (Szeliski and Tonnesen,
1992) shares similarities to the recent work of (Welch and Witkin, 1994) and (Witkin
and Heckbert, 1994) in that both techniques relying on a triangulation of a particle
system to render the surface, though the origin of the surface is distinctly different. In
(Welch and Witkin, 1994), particles are used not to define the surface, but to quickly
approximate a variational surface. Instead of using a particle system as a basis for
continual changes in topology, as this dissertation does, they add “just enough struc-
ture to the particle system to unambiguously fix its topology”. Since their surfaces
cannot be explicitly computed, they approximate them via a triangulation, using a
particle system as a step in the triangulation process. In (Witkin and Heckbert, 1994)
they also present a coupling between particles and an smooth surface, but in this case
they use particles for both sampling and as control points of an implicit surface. The
sampling of the surface using repulsion forces is similar to (Welch and Witkin, 1994)
and (Turk, 1992). The computational expense of using particles as implicit surface
control points requires over O(N?3) time, where N is the number of control particles.
We also allow particles to act as control points, but we have designed our system to
execute in O(N log N) in the number of particles.

Lombardo and Puech (Lombardo and Puech, 1995) extended our oriented particles
to endow objects with memory of their original shape. In this case, particles prefer a
rest state matching originally specified curvature measures instead of a default zero
curvature measure as our method does. This allows them to create oriented particle
skeletons for modeling implicit surfaces with “shape memory”.

In surface reconstruction, it is the dynamic nature of our model that is important
to extracting the surface structure from a set of 3D data. By allowing our surfaces
to extend out from known surface samples we can extend the range of surface re-
construction. For example, this will allow us to overcome some problems associated
with the anisotropic sampling or random under-sampling in regions. In areas of high
sampling density, the samples will be sufficient to reconstruct the correct surface,
while the growth of new particles in low density sampled regions will approximate
the under-sampled area. As adjacent surface patches meet the particles, patches will
automatically join together, completing the interpolation. The energy based nature
of the particle system allows us to optimally fit surfaces to data based on minimizing
flatness and curvature functions. Our particles can be thought of as providing a finite
difference solution to a minimization problem, similar to deformable models. The
difference between this and an actual finite difference scheme is that our grid is not
fixed, but dynamic in nature.

The nature of our particle system has several advantages for animation. The
physical properties embedded in our model allow the animator to mimic a variety
of common real-world materials, reducing the amount of animator effort required to
create a sequence. Since the shape will be continually changing, we do not want to
impose unnecessary constraints on the animator. We would also like to point out that
animating a shape is closely related to sculpting a shape. In fact, animation could
be considered a continuous sculpting exercise, with each new image representing a
complete sculpture. We feel the flexibility our model provides for sculpting will be
directly applicable to animation.
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We apply particle systems to model volumes as do (Miller and Pearce, 1989;
Terzopoulos, Platt and Fleischer, 1989), extending their attractive-repulsive inter-
particle force model, based on the Lennard-Jones function, to create a thermoelastic
model in which the stiffness varies as a function of thermal energy. This provides a
mechanism by which the model can mimic the “melting” and “freezing” of objects.
Two recent papers suggest alternative attractive-repulsive forces. Lombardo and
Puech suggest a “cohesion” force which has a similar shape to the Lennard-Jones
force that we use, and assert this force reduces oscillations, allowing the system to
reach a rest state sooner. Reynolds (Reynolds, 1997) suggests using Boscovich’s law of
force which has multiple minimal energy states, which he states is better for modeling
inelastic deformations.

The recent work of Roy (1995) and Desbrun and Gascuel (1996) model fluids us-
ing the smoothed particle hydrodynamics model (Section 2.4.1). In the SPH model,
forces between particle pairs are a result of gradients in pressure over the volume.
As particles approach, the density and hence pressure increase, resulting in repul-
sive forces. As particles separate, the density and pressure becomes lower than the
surrounding areas, resulting in attractive forces which equalize pressure. In particu-
lar, one must be careful that particles do not become too close with respect to the
smoothing length; otherwise the particles tend to “clump” together in an unrealistic
fashion. This is an artifact of the gradient of the kernel and is discouraged by

e adding a velocity-based damping term (Monaghan, Thompson and Hourigan,
1994) which is analogous to the ideal viscous unit (3.18) that this thesis employs
for modeling visco-elastic materials,

e lowering the smoothing length (Roy, 1995),

e or defining a cusp-shaped smoothing kernel (Desbrun and Gascuel, 1996) such
that the magnitude of the derivative increases rather than decreases when ap-
proaching an inter-particle separation distance of zero.

A cusp-shaped kernel results in a force curve that is similar in shape to the Lennard-
Jones force curve (Desbrun and Gascuel, 1996)[Figure 3]. It differs in that the curve
converges to a constant slope for small separations, like an ideal spring does, rather
than to infinity as the Lennard-Jones model does. Thus the fluids SPH models are
more compressible than fluids modeled using the Lennard-Jones function.

All of the spatially coupled particle volume models share features in common:

e Each particle represents a small volume element.

e The equations defined over pairs of particles result in attractive and repulsive
forces in the direction of the vector separating neighboring particles.

e They can model elastic and visco-elastic materials.

e They are inadequate at accurately modeling incompressible materials, such as
liquids, but they can model nearly incompressible fluids.
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e Stiffer, less compressible materials require smaller time steps than more com-
pressible materials.

In summary, our model is based on previous particle systems work in computer
graphics and inspired by the physical sciences. The particles interact according to
pairwise potential energy functions. These potential energies, inspired by physics and
differential geometry, share similarities to the energy functions used for deformable
models and variational surfaces. The self-organizing nature of our system is distinctly
different than the traditional modeling techniques where one manually specifies the
connectivity of surface patches, as is done in spline, polygonal, and variational based
surface modeling. It allows for the ability to join and separate objects as do im-
plicit surface modeling and CSG methods. While our model is a point based sam-
pling description rather than a continuous description, we can generate full surface
descriptions. The surfaces generated are implicit surfaces for volumetric samplings
and triangulated polygonal models for surface samplings. The polygonal models can
then be converted to smooth surfaces using either surface subdivision techniques or
triangular based splines. Our model, like deformable models, allows us to create an-
imations of visco-elastic materials, e.g. cloth. In addition our synthetic materials
can be stretched, ripped, and joined back together automatically. Our model shares
similarities to previous particle based volume models and recent fluid based particle
models. We can also construct viewpoint invariant 3D surfaces that interpolate sparse
point data and fit optimal surfaces to 3D volumetric data. Unlike object centered
methods, the surfaces can be of arbitrary topology and genus without requiring prior
assumptions of the surface structure.



Chapter 3

Particle Volumes

In order to develop a new model for shape representation and manipulation, we con-
struct synthetic materials that exhibit useful physical and geometric properties. We
do not try to simulate a given material accurately, but rather to imitate properties
that we find useful for sculpting, animation, and reconstruction tasks. The ability to
create large changes in the geometric structure and the ability to change the topology
of the shape at will, suggests the use of primitive shape elements, where individual
elements do not enforce a given topology, but rather the topology is an emergent prop-
erty of the the self-organizing system. As such, we have chosen to use an interacting
particle system that moves in accordance with the laws of Newtonian dynamics. The
physical properties of our system follows from our selection of inter-particle potential
energy functions. The geometry is derived from the relative positions of the particles.

3.1 Particle Systems

Each particle represents a primitive element with mass, volume, and physical prop-
erties defined between particles. A particle system is defined as a collection of point
masses, where each particle has a position and mass, and moves under the influences
of forces according to the principles of classical physics. Such a system is governed
by the set of ordinary differential equations of motion

m,xz+’)/,xz+fzmt :fiext izl,...,N, (31)

where the subscript 7 denotes an attribute of particle 7, N is the number of particles
in the system, over struck dots denote time derivatives, m; is its mass, X; is its
acceleration, x; is its velocity, v; is a damping coefficient that controls the rate of
dissipation of the particle’s kinetic energy, £** is the sum of inter-particle forces and
fe** is the sum of external forces acting on the particle. Inter-particle force terms are
functions of the form

£ (x0, X1, - -, XN) (3.2)

External forces are functions of single particle state and external state variables

fieXt (Xi7 S)a (33)

27
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where S is a set of external state variables such as gravity, the positions of obstacles
or shaping tools, and volumetric data sets. A particle system can be tailored to a
specific application by choosing appropriate inter-particle and external forces.

3.1.1 Potential Energy

Potential energy functions provide an elegant method of describing inter-particle force
functions based on particle positions. For a potential function ¢, the force exerted on
particle 7 with position x;,

fi = _Vxlﬁb
is due to the gradient of the potential energy ¢

86 dp 96 )
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with respect to the change in position.

A common practice, and one this dissertation adopts, is to define a particle’s
potential energy based on the pairwise additivity assumption. This assumption states
that the total potential energy of a particle is the sum of the pairwise potential energies
between that particle and every other particle. That is, the potential energy ¢; of
particle ¢ with respect to a system of N particles is given by

N
¢ = D bij, (3.4)
i

where ¢;; is the potential energy between particles ¢ and j, and N is the number of
particles in the system. Thus the net inter-particle forces acting on a particle ¢ due
to the potential energy function is

N
fi = —in(ﬁi - —Z Vxﬂﬁij- (35)
J#i

The total potential energy of the system is the sum of the pairwise potential energies
for all pairs of particles

i j#i

3.1.2 Kinetic Energy

The kinetic energy of the system is a measure of particle movement. The kinetic
energy K; of a single particle ¢ is given by
1 1
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where m; is the mass of the particle, and v; is the scalar speed of the particle. The
kinetic energy of the system is the sum of the individual particle kinetic energies

Eyx = i K. (3.8)

3.1.3 System Energy

The total energy of the system, Eg, is simply a summation of the individual particles’
kinetic and potential energies,

N N N
i i i

Systems whose dynamics are governed by potential functions and damping will evolve

towards lower energy states. Differentiating the potential energy functions results in

forces acting on the particles. These forces move the particles over time resulting in

an increase in kinetic energy. Assuming no external forces, eventually the system will

come to rest as the kinetic energy is dissipated by velocity based damping.

3.2 Dynamic Coupling

The equations of potential energy from the previous section provide a generalized
framework from which to work, yet for practical purposes they are problematic. To
compute all inter-particle forces, without any restricting assumptions on the potential
energies, requires N? force computations. For a system with thousands of particles,
this is clearly a problem. Since we are not concerned with the long range effects
between particles, as astrophysicists are when studying the evolution of a galaxy,
we instead choose to limit the inter-particle interactions so that only neighboring
particles interact. We define neighboring particles to be pairs of particles that are
closer than a specified neighborhood distance. Thus we can reduce force computations
to O(N log N) for neighbor finding and O(N) to compute the forces. In Chapter 7
we discuss in more detail the choice to limit particle interactions, how we compute
the nearest neighbors, and how we derive the complexity measures.

Letting ; be the set of particles that neighbor particle 7, we can rewrite the force
and energy equations as follows. Particle i’s inter-particle potential energy (3.4) is
rewritten as

N
¢ = D bij (3.10)
JEN;
and the corresponding inter-particle force (3.5) is rewritten as
N
f; = Vi = — > Vi (3.11)
JEN;

The kinetic energy equations (3.7) and (3.8) are unchanged. The total potential
energy of the system (3.6) and the total system energy (3.9) can be rewritten in a
similar manner, though we omit them for brevity.
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Figure 3.1: Potential weighting function.

3.2.1 Weighting Function

Ignoring distant neighbors, as described above, is sufficient under certain circum-
stances, but one must be careful. If at the neighborhood boundary, a given particle’s
contribution to the inter-particle force calculations result in a large enough discon-
tinuity, then undesirable artifacts, such as instabilities in the numerical integration
and visual artifacts, may occur. We present a solution to this problem now, and
defer a detailed discussion to Chapter 7. Instead of ignoring particles outside of the
neighborhood range, a better solution is to insure the inter-particle potentials, and
hence forces, tend to zero at the neighborhood boundary.

We can enforce this condition by appropriately weighting the potential. To main-
tain the nature of the original potential, desirable properties of such a weighting
function are that it be: monotonically decreasing from unity to zero; continuous and
smooth; and continuous and smooth in the first and second derivatives. The smooth-
ness and continuity conditions are important for well behaved numerical integration.
To meet these conditions, we designed the following piecewise continuous function,

1 ifr<r,
w(r) =1 g(s) ifry <r <y, letting s = o (3.12)
0 if r > 7.

where 7 is the distance between two particles, and 0 < r, < 7.
We implement ¢ as a fifth degree interpolating polynomial

g(s) = —6s° + 155" — 10s® + 1.0.

over the interval [0,1]. We designed the polynomial such that the first and second
derivatives of g(s) are zero for s = 0 and s = 1. Figure 3.1 shows the graph of
w(r). We generally set r, to be the standard spacing between particles and 7, to be
equal to the neighborhood boundary range. In essence, the weighted potentials have
compact support. Using such a weighting function we insure that summing weighted
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potentials over all particles is equivalent to summing weighted potentials over nearest
neighbors, that is,

N N
> w(rig)d(rig) = 3 wiri)e(ry)
J#i JEN;

where 7;; = ||r;;|| = ||x; — xi|| is the distance between particles ¢ and j.

Having redefined the potential with a weighting function, the corresponding force
is also redefined. The new force is given by evaluating the gradient with respect to
the position

N do(ri;) | dw(ry)
fi= Vo o) =1y (w478 o200 ) oy
where £;; is the unit vector in the direction of r;;, that is
o r;;
r;,, = .
T eyl

The derivation of (3.13) can be found in Appendix C.6.

3.3 Creating Deformable Volumes

Deformable solids inspired by finite element theory have been modeled using hexa-
hedral assemblies of point masses, springs, and damping elements (Terzopoulos and
Fleischer, 1988a). In such spring-mass models the springs are structural elements that
hold the object together. As two particles connected by a spring are separated, the
force exerted by the spring steadily increases, pulling the point masses back together.
To model a material that fractures, one can “break” a spring when it is stretched
beyond a threshold distance. In general, spring-mass systems are good for modeling
solids with fixed structure exhibiting small deformations and fracturing. It is not
an adequate representation for modeling materials exhibiting large geometric defor-
mations or changes in genus. Instead of a spring potential energy that encourages
particles to maintain a fixed structure, we would like a potential energy that allows
groups of particles to be separated and joined back together in new and different
configurations.

Our goal is to provide an alternative model that allows for large changes in geom-
etry, topology, and genus. To do so, we use a inter-particle potential that is elastic for
small deformations, yet allowing for the rearrangement of elements over large defor-
mations. To allow for rearrangement, without manually redefining the connections,
the function is defined over all particle pairs, instead of a fixed set of pairs as in
mass-spring systems.

3.3.1 Lennard-Jones Potential

The Lennard-Jones potential energy function fulfills these criteria (Heyes, 1998). It
creates long-range attractive forces and short range repulsive forces which encourage
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Figure 3.2: 12-6 Lennard-Jones function

The potential function for n = 12 and m = 6 is shown in black and the corresponding
force shown in gray. The collision distance ¢,, the equilibrium separation r,, and the
dissociation energy e, are all labeled on the graph.

particles to maintain equal spacing. It also allows particles to be rearranged relative
to one another, and yet does not require the manual specification of inter-particle
connections. The Lennard-Jones energy function is defined as a function of separation
distance r between a pair of particles

B_ 4

brs(r) = pry (3.14)

,

In Figure 3.2, we show a Lennard-Jones function with n = 12 and m = 6, as
typically used in the molecular dynamics literature. When two particles are in equi-
librium, the potential energy between them is minimal and marked in Figure 3.2 at
—e,. The magnitude of this energy is known as the dissociation energy and is the
energy required to completely separate two particles. The distance between two par-
ticles when in equilibrium is known as the equilibrium separation distance, r,. The
Lennard-Jones potential goes to zero at two points, at infinity and at a distance de-
fined as the collision distance, c,. These three quantities (e,, 7, ¢,) are labeled in the
figure.

An alternate formulation, called the Lennard-Jones bi-reciprocal function

—€ To " To m
r) = m|—] —n|— , 3.15
o(r) m—n ( ( r ) ( r ) ) (3:15)
provides a convenient method of tailoring the potential function to a specific equi-

librium separation and dissociation energy. This formulation is equivalent to (3.14)
with

A= _CMo B = &M (3.16)

m-—-n m-—-n
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In this form it is easy to see that the collision distance is a function of the equilibrium
separation r, and exponents n and m. For the case of n = 2m it is

Co = To(271/™). (3.17)

Instead of using the typical molecular dynamic values of n, m, and r, which
correlate to the forces felt at the molecular level, we choose values which more closely
mimic behavior found at the macroscopic level. At the macroscopic level a first order
approximation of deformation can be modeled using a spring potential

$(r) = k(r —r,)*

between point masses (Terzopoulos and Fleischer, 1988a). In Figure 3.3 we compare
the spring potential to the weighted and unweighted Lennard-Jones potential with
n =4 and m = 2. We define the constants r, and r, of the weighting function to be
equal to r, and 2r, respectively. Close to the equilibrium separation, the Lennard-
Jones function has a parabolic shaped potential energy well similar to that of the
spring potential energy function.

Similar to increasing the value k to increase stiffness in the spring model, we can
increase the dissociation energy to increase stiffness in the Lennard-Jones particle
model. Varying the exponents n and m varies the width of the potential well while
keeping the minimum potential energy constant. Lower values result in wider poten-
tials and more compressible materials, while higher values result in thinner potential
wells and less compressible materials. A wide potential well will also result in flexible
materials while a thin potential well will result in more rigid materials. Like large
exponents, large dissociation energies will result in large forces and thus more rigid
materials. The difference is incompressibility (the degree of volume preservation) and
how “brittle” the material is. For equivalent forces, brittle materials (high exponents,
low dissociation energy), require less energy to break the inter-particle bonds than
non-brittle materials (low exponents, high dissociation energy).

3.3.2 Damping

The second term of (3.1) is a velocity based damping force, —vy;x;. When ~; > 0,
this term accounts for a loss of kinetic energy, thereby allowing our energy minimiz-
ing system to eventually come to rest. It also provides a measure of inelasticity to
collisions which is more typical of how we expect a synthetic material to behave. A
viscous damping unit force function is given by

=B (% — %5), (3.18)

where (; is the damping coefficient and x; and x; are particle velocities. This velocity
based damping force differs from damping with respect to the world reference frame,
—7;X;, because it is independent of rigid body motion. Instead of decreasing the
momentum of a single particle, it transfers momentum between neighboring particles.
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SP LJ, WLJ SP

—WLJ

LJ

(a) Potentials

SP\ |LJ,WLJ

N\

To LJ

WLJ

(b) Forces

Figure 3.3: Spring and Lennard-Jones compared.

Potential energies and corresponding forces shown. Spring labeled SP. Weighted
Lennard-Jones labeled WLJ. Lennard-Jones is labeled LJ. The spring parameters
are r, = 1 and k£ = 8. The Lennard-Jones parameters are m = 2,n = 4,e, = 1, and
ro = 1. The weighting function parameters are r, = r,, and r, = 2r,.
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___________

Figure 3.4: Longitudinal deformation

3.3.3 Rheology

Rheology is the science of the deformation and flow of matter. According to rheology,
all materials can be modeled as falling between the two extremes of pure elastic
(solid metal) and pure viscous (fluid) behavior (Houwink and de Decker, 1971). No
real materials exhibit ideally elastic or ideally viscous behavior, though there are
materials which come close. Some examples of elastic behavior are the steel spring
and vulcanized rubber. Examples of viscous behavior include liquids such as water
at room temperature, syrups, and molten glass. A few examples of mixed elastic and
viscous behavior are wood, silk, PVC, and nylon.

Elasticity

A material that behaves according to ideal elastic behavior means that the material
deforms under force and returns to its original form after release of the force. The
resistance to deformation is described by the Young’s modulus of elasticity £

F = Ee (3.19)
where F is the normal stress (force) and e is the relative elongation

-1,
=

€

as shown in Figure 3.4.

The modulus of elasticity E is a physical constant only when the deformation
is proportional to the stress. A linear approximation of Young’s modulus can be
computed using the Taylor series expansion. We compute it for small deformations
near the equilibrium separation
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Ignoring higher order terms we have

dF(r,
F(r) = F(r,)+ ﬁ(r —Ty)
dr
= —eo/:;m (T — 7'0).
For this case, Young’s modulus is
g _tonm
/rO

and we have derived the equation for ideal linear elastic deformation, that is Hooke’s
law

F(r)=k(r—r,),
where k = E/r,.

Yield limit

Real materials have definite limits beyond which deformations are no longer elastic.
For example, solid steel or glass wires do not yield elastically beyond 1% of their
length. Nylon fibers can yield 20% of their length at room temperature. An unusual
example, vulcanized rubber can yield 500% of its length (Houwink and de Decker,
1971). The limit after which materials are no longer elastic is known as the yield limit.
After this limit other mechanisms take over, such as plasticity or flow behavior. Under
some conditions there is no mechanism that takes over, in which case the material
breaks. The pieces of such a broken object can be fitted back together to reconstruct
the original shape. The breaking of ceramic coffee mugs or everyday drinking glasses
are examples.

The tensile strength of a material is a measure of the maximum force value exhib-
ited by a material in response to a stress. In the case of the Lennard-Jones function,
the force increases as the particles separate until the maximum force at the separation
value » = 1 is reached and then it decreases until force goes to zero at infinity or the
distance 73, in the case of a weighted potential. The maximum force is when

d?¢ry(r) —0
dr? ’

which is equivalent to the condition

° m+1

The magnitude of the tensile strength is the depth of the well in the force function
as shown in Figure 3.3 (b). Under forces greater than the tensile strength, the bond
will fracture.
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Figure 3.5: Hexagonal packing.

Plasticity

Plastic or visco-elastic behavior is the response of materials that combine both elastic
and viscous responses to stress and can be characterized by the additivity of the
stress. The Voight model (Jaeger, 1969) of plasticity states

de
F=Fe+n—
Tat
where F' is the force and 7 is a viscous term. Our model is similar to the Voight
model with the elastic portion represented by the Lennard-Jones force and the viscous
portion represented by the viscous damping unit equation (3.18).

For stresses less than the maximum force value, the particles will separate by less
than the yield separation value of r; — r,, and will return to the equilibrium separa-
tion when the force is removed. For stresses greater than the tensile strength value,
particle bonds may be broken and permanent deformations may occur as particles
are rearranged relative to one another.

3.4 Packings

Since the Lennard-Jones function is defined in terms of the Euclidean distance from
a particle, it is a spatially symmetric potential energy function. Given two particles
i and j the set of minimum energy states (positions) for particle j relative to i is
the locus of points of a sphere centered at the position of particle i. When external
forces are insignificant, particles arrange into closely packed structures to minimize
their total energy.

For spherically symmetrical potential energy functions in 2-D, such as the Lennard-
Jones potential, the particles arrange into hexagonal orderings as shown in Figure 3.5.
In 3-D the particles arrange into hexagonal ordered 2-D layers, making Lennard-Jones
good for modeling volumes of material.



38 CHAPTER 3. PARTICLE VOLUMES

3.4.1 Density

The dense packing of particles lets us ask “How many particles will it take to fill a
given volume?” We have found this to be a common question. The answer is also
used in computing the efficiency of neighboring finding techniques given in Section 7.2.
We can approximate the answer by considering the related question “How many solid
equal size spheres will it take to fill a given volume?” The volume packing factor is
defined as the ratio of the unit-sphere to the unit-enclosure (Gasson, 1983). For a
given packing, this is equivalent to the ratio of the volume of a sphere to the associated
3D Voronoi region, where the Voronoi diagram is computed over the center points of
the spheres. A hexagonal close packing of spheres has a volume packing factor of P,

™
Py = —=~0.74. 3.20
373 (3.20)

In comparison, a cubic packing of spheres, where each sphere is positioned at the
corner of a cubic lattice, has a packing factor of 7/6 ~ 0.52 which is significantly less
than the hexagonal packing factor. Given the packing factor, the expected number
of spheres n, in a volume V, is given by

where V; = %7‘(7’3 is the volume of a sphere with radius r. For hexagonal packing this
reduces to

Vv
42y

In accordance to the Lennard-Jones force, at equilibrium two particles will be sepa-
rated by the equilibrium separation r,. Thus we approximate the volume of a particle

n

Ve  15°
V==, 3.21
p Pv \/i ( )

as the volume of sphere, with a radius of one half the equilibrium separation, divided
by the hexagonal packing factor. When the neighborhood range includes only parti-
cles of a distance r, this accurately represents the effective particle volume. However
when the neighborhood range includes more distant particles, the particles will be
packed more closely. The amount of compression depends on the strength of the
attractive forces and any external pressure on the system.

3.5 External Forces

Our model of volumetric shape becomes more interesting when we put it in an en-
vironment with external forces and obstacles. In this section we describe two such
external forces.
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3.5.1 Gravity

We add the force of gravity, f = gm,, where g is a gravitational acceleration in a
given direction and m; is the mass of particle 4, to our simulated world so that we
can drop objects and pour fluids.

3.5.2 Collisions

We introduce obstacles into our environment and create collision forces so that parti-
cles will not penetrate these objects. A repulsive force is defined between each particle
and object surface similar to the repulsive force between particles. The repulsive force
is limited to a short range so that particles are only repelled when they are very close
to the surface. The force is based on inverse powers of the distance between the object
and particle. As a particle and object collide, the particle will slow down due to the
repulsive force and gain potential energy relative to the obstacle.

For an object k and particle ¢ separated by a distance dy;, we define the collision
potential energy function as

\_ ) a/di;+ Bdyi +~ when dy; < d,
e (dii) = { 0 otherwise, (3.22)
and the resulting force as
e — B when dy; < d,
c dz = dnj—l 3.23
e (dr) { Ok otherwise. (3.23)

The distance d, is the distance from the obstacle surface at which the particle gains
potential energy relative to the obstacle. By constraining e. (d,) = 0 and f, (d,) = 0,
the potential energy and force functions are continuous for dy; > 0. For a constant
value of 7, the user need only specify the distance d, > 0 and the scaling factor o > 0,
and the remaining constants are uniquely determined. This works for all obstacles
given there is a function for computing the shortest distance between a point and the
surface.

3.6 Examples

3.6.1 Deformations

Figures 3.6 and 3.7 shows an object modeled using volume particles. The parameters
of the Lennard-Jones potential are varied to make one version of the model rigid and
the other flexible. In both figures the bonds between particles are strong enough so
that the objects behave as solids, maintaining their structure under the influence of
external forces, in this case gravity and collision forces. In this example we varied
the exponents of the Lennard-Jones potential, thus increasing the maximum binding
force, without increasing the dissociation energy. That is it “sharpens” the potential
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Figure 3.6: Flexible solid

Figure 3.7: Rigid solid
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Figure 3.8: Beam colliding

A solid beam falling, colliding with obstacles. The frames were taken from an ani-
mation at the following times: ¢t = 0,3,4,5,9,12,25,70,83. In the second frame the
beam collides with the sphere, and floor (not shown), causing it to bounce back into
the air (frames 3 and 4). Note the slight flexing of the beam. In frames 6 and 7 it rolls
forward, further displaying rigid body motion. In the last two frames the magnitude
of the dissociation energy is reduced (see Chapter 6) and the initial structure of the
object is lost.
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well without “deepening” it. This creates rigid materials, but also ones that are
“brittle”.

Another approach to creating rigid solids is to increase the magnitude of the
dissociation energy. This also increases the maximum binding force, but creates
materials that are more durable and less likely to break under sudden external forces.
The bouncing beam in Figure 3.8 is an example using this approach. In this example,
a solid beam falls colliding with obstacles, exhibiting rigid body motion with slight
deformation. After striking a sphere and the floor plane the beam bounces back into
the air. After the second collision with the sphere it rolls forward coming to rest on
the ground plane. In the last few frames the dissociation energy is reduced and the
solid looses its initial structure much like the varying structure found in fluids.

For Figures 3.6 and 3.7 the Lennard-Jones parameters are equilibrium separation
r, = 1.192, dissociation energy of e, = 200, and the exponents values (n = 4, m = 2)
and (n = 8,m = 6) for the flexible and rigid solids respectively. The remaining
parameters are as follows. The particles have mass m; = 1. The gravitational constant
is g = 1.5. The collision force constants are 8 = 25, d, = 1, and n = 4. The velocity
based damping constant is v = 1.5 and the viscous based damping constant is #; = 0.
Each solid is composed of 69 particles. The numerical integration was performed
according to the Euler method (Chapter 7) and rendered as iso-surfaces (Chapter 7).

We have begun our development of a flexible shape model which allows the user
to create objects of arbitrary topology. The goal of the model is to provide a simple
yet powerful method of modeling objects whose local shape and geometry change
rapidly over time. An important criterion, implicit in this goal, is the ability to make
large changes at the global level, such as changes in topology. It is also important for
the user to be able to control the physical characteristics of the model, such as the
relative amount of deformation due to a given force. We have described a particle
based model suitable for representing volumes and in the next chapter we extend this
model to surfaces.

The approach taken to satisfy these requirements is to represent the object as
a collection of primitive elements, whose relative positions dictate the shape and
geometry of the object. That is, different shapes and geometries will have different
arrangements of the volume elements. Similar to the use of pixels (picture elements)
to portray an unlimited range of two dimensional images, the use of simple elements
can be used to describe an unlimited number of shapes.

The model, based on dynamically coupled particle systems, describes changes
in geometry and the movement of element volumes, as a consequence of external
forces and internal potential energies. By varying the internal potential energies we
can model a variety of physical properties ranging from stiff to fluid like behavior.
Timing results can be found in Section 7.3.5.



Chapter 4

Particle Surfaces

In this chapter we present a new model of elastic surfaces based on interacting particle
systems. Unlike previous surface models, the new model can be used to split, join,
or extend surfaces without the need for manual intervention. While particle systems
are much more flexible than deformable surface models in arranging themselves into
arbitrary shapes and topologies, they do suffer from one major drawback. In the
absence of external forces and constraints, 3-D particle systems prefer to arrange
themselves into volumes rather than surfaces. This is because traditional particles
are point masses with no preferred orientation along which surfaces might form. To
overcome this limitation, we introduce a distributed model of surface shape which we
call oriented particles, in which each particle represents a small surface element (which
we could call a “surfel”). In addition to having a position, an oriented particle also
has its own local coordinate frame, which adds three new degrees of freedom to each
particle’s state. The particles we use have long-range attraction forces and short-
range repulsion forces and follow Newtonian dynamics, like the models of volumes
presented in the previous chapter.

We begin by extending the mathematics of the particle systems presented in Chap-
ter 3 to include oriented particles. Based on concepts from differential geometry, we
derive inter-particle potential functions which encourage particles to form smooth
surfaces. A review of the relevant geometric concepts is provided in Appendix A.

4.1 Oriented Particle Systems

This section discusses the basic mathematics of oriented particle systems. We extend
the definition of a particle system given in Chapter 3 to include the concepts of
orientation, angular inertia, angular velocity, and torque. As such, we build upon our
previous presentation, redefining the properties of the system, such as the definitions
of a particle, the equations of motion, kinetic and potential energies, and the surface
density of particles.

43
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Figure 4.1: Oriented particles in global and local coordinate frames.

The global inter-particle distance r;; is computed from the global coordinates x; and
x; of particles 7 and j. The local distance d;; is computed from r;; and the rotation
matrix R;.

4.1.1 The Oriented Particle

An oriented particle, like the previously discussed volume based particle, has a po-
sition and mass. In addition, each oriented particle has an orientation and inertia
tensor. The orientation defines both a normal vector (z in Figure 4.1) and a local
tangent plane to the surface (defined by the local z and y vectors). More formally,
we write the state of each particle as (x;, R;), where x; is the particle’s position and
R, is a 3 x 3 rotation matrix which defines the orientation of its local coordinate
frame (relative to the global frame (X,Y,Z)). The third column of R; is the local
normal vector n;. While we define rotation as a matrix for conversion between local
and global coordinates and vice versa, we use unit quaternions to store the rotation
in practice. The unit quaternion

_ . = asin(6/2)
q = (w,s) with = cos(0/2)
represents a rotation of # about the unit normal axis a. To update this quaternion, we
simply form a new unit quaternion from the current angular velocity w and the time
step At, and use quaternion multiplication (Shoemake, 1985). Our use of rotations
is discussed in more detail in Appendix B.

The inertia tensor I relates the angular momentum to the angular velocity by
a linear transformation. The angular velocity of a particle describes the rotation
of a particle about the particle’s local origin. The inertia tensor is defined about
the particle’s local origin with respect to the world coordinate axes. Since we are
interested in the property of angular momentum but not a particular rigid body we
choose a simple inertia tensor, one that is a constant scaling of the identity matrix.
This is valid for all positions and orientations of a given particle. We discuss the
inertia tensor in more detail in Appendix B.
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4.1.2 Equations of Motion

A system of oriented particles is governed by the set of ordinary differential equations
of motion: equation (3.1) rewritten here

mzx,+’yzxz+fzmt :fieXt 1= 1,...,N
and for our choice of inertia tensor, the associated equation for angular motion

Izq,—{—gzqz—#'rzm:'rfwt ’L:1,,N (41)
where 7 is the particle index, N is the number of particles in the system, X; is the
acceleration of a particle, m; is its mass, X; is its velocity, 7; is a translational damping
coefficient that controls the rate of dissipation of the particle’s translational kinetic
energy, £1** is the sum of inter-particle forces, ££=* is the sum of external forces, q;
is the orientation of particle ¢ in three-space, q; is the angular acceleration, I; is
the angular inertia tensor (B.1), q; is the angular velocity, & is an angular damping
coefficient that controls the rate of dissipation of the particle’s rotational kinetic
energy, T\"" is the sum of inter-particle torques and 7¢** is the sum of external torques.

The inter-particle internal force term (3.2) is redefined

fiint(xlaqlax2aq25"'aXNan) (42)

as a function of position and orientation. The external force term (3.3) is redefined

as
£ (x;, a4, S) (4.3)

a function of particle position, orientation, and and the set S of external state variables
such as gravity and collision objects. The inter-particle torque terms are defined in a

similar manner
j.nt

T; (X17q17x2aq2;'"7"';XN;qN)' (44)

External torques are functions of position, orientation, and external state variables

TZ?Xt (Xia q;, S) (45)

4.1.3 Potential Energy

Similar to the use of potential energies for un-oriented particle systems, potential
energies provide a convenient description of forces and torques between particles.
This formulation also guarantees that the system will not diverge. For a potential
function ¢, the force exerted on particle 7 with position x;

fi = _Vxl(ﬁ

is due to the gradient of the potential energy ¢ with respect to the change in position.
The torque exerted on particle ¢ with orientation q;

T; = _V97,¢
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is due to the gradient of the potential energy with respect to the incremental change
in orientation ;.

For oriented particle systems we also adopt the pairwise additivity assumption
which states that the total potential energy of a particle (3.4) is the sum of the pairwise
potential energies between that particle and every other particle. Equation (3.5)
describes the total inter-particle forces acting on a particle 7 due to the inter-particle
potential energy functions and

N
T; = _V9¢¢i = _Zvﬂi¢ij (4'6)
J#i
describes the total inter-particle torques acting on a particle due to the inter-particle
potential energy functions. The equation for the total potential energy of the system
(3.6) is the same for oriented particles as for un-oriented particles.

4.1.4 Kinetic Energy

The kinetic energy of an oriented particle is a combination of translational and rota-
tional kinetic energies. The translational kinetic energy K; of a single oriented particle
i is given by equation (3.7). In order to compute the rotational kinetic energy sep-
arate from the translational kinetic energy, it is, in general, necessary to choose a
inertial coordinate system whose origin is the centroid of the object (Marion, 1970).
For a single particle, the rotational kinetic energy of a particle is given by

1
Kior = 2 Z Ijkijk
Jik
where the subscripts j and k refer to individual elements of the interia tensor I. Our
choice of inertia tensor (B.1) allows us to simplify the rotational kinetic energy to be

1
Koo = 5 (Tastws® + Ly, + Loto.?) (4.7)

for the principal moments of inertia I,;, I,,, and I,,. For additional details see
Appendix B.2.

We write the total kinetic energy of the system as the sum of the individual particle
translational (3.7) and rotational kinetic energies (4.7),

N

EK = z (Kz + Krotz’) . (48)

2

This redefines the system kinetic energy equation (3.8).

4.1.5 System Energy

The total energy of the system, Fg, is simply a summation of the individual particle
kinetic and potential energies
ES = EK+EP, (49)

where Ep is given by equation (3.6) and Ff is given by equation (4.8).
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4.1.6 Angular Damping

The second term of (4.1) is an angular velocity based damping force, —&;q;. When
& > 0 this term accounts for a loss of rotational kinetic energy. This is analogous to
the translational damping force —v,;%;. Analogous to the ideal viscous damping unit
between neighboring particles is the angular viscous damping unit function

—03 (4 — ;) , (4.10)

where (33 is the damping coefficient and q; and q; are the angular velocities of particles
7 and 7.

4.1.7 Dynamic Coupling

To compute all inter-particle forces and torques without restrictive assumptions on
the potential energies requires N? force computations. This is similar to the un-
oriented particle case. Assuming particles are uniformly distributed as a sampling of
a surface, each particle will have at on average a constant number of neighbors, and
by ignoring distant particles the inter-particle force calculations for the system are
reduced to O(N) computations. Thus we can rewrite the force and energy equations
in terms of the set of nearest neighbors. This is a straightforward procedure and since
we have already discussed this concept in Chapter 3, we omit deriving the equations
for the oriented case.

4.1.8 Weighting Function

In Section 3.2.1 we discussed a weighting function (3.12) which monotonically de-
creases to zero at the distance of the particle neighborhood range. We have experi-
mented with two other weighting functions. The first one

wo(r) = e "2

is based on the Gaussian distribution with o, = 1.0. The second weighting function

_2%4y? zQ)

ws(z,y,2) = Ke< 2% Wl b<a (4.11)

generalizes this to favor interactions between particles that lie close to their respective
tangent planes. We accomplish this by writing the function in terms of the particle’s
local coordinates, e.g., by replacing the inter-particle distance r;; by

dij = R;lrij = R;I(Xj — XZ’), (412)

where d;; = [z,y, 2]", and R, is the particle orientation. That is d;; is the position
of particle j in particle i’s local coordinate frame.
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11

Figure 4.2: Cross sectional view of a of surface

4.1.9 Density

Assuming that a set of particles present a uniform sampling of a surface we can
compute the density of particles over the surface. Similar to the volume case we
ask the question: “How many particles will it take to fill a given area?” We can
approximate the answer by considering the related question: “How many solid equal
size circles will it take to fill a given area?” The area packing factor is defined as
the ratio of the unit-circle to the unit-enclosure (Gasson, 1983). For a given packing,
this is equivalent to the ratio of the area of a circle to the associated 2D Voronoi
region, where the Voronoi diagram is computed over the center points of the circles.
A hexagonal close packing of circles has an area packing factor P4 of

Py=—_ ~0091.

2V/3

The expected number of circles n in a given area A, is given by

p A A
n = —_— =,
AAC 44/3r2
where A, is the area of the circle with radius r. We can approximate the area of a
surface particle A,
Ao V3,
= — = —7
Py 2°°
as the area of a circle, with a radius of one half the Lennard-Jones equilibrium sepa-
ration r,, divided by the hexagonal packing factor.

Ap

4.2 Surface Potentials

To encourage oriented particles to group themselves into surface-like arrangements, we
devise a collection of new inter-particle potential functions. These potential functions
can be derived from the deformation energies of local triangular patches using finite
element analysis, or from the differential geometry of surfaces. We begin with an
intuitive explanation based on analogies with physical surfaces. We follow with an
analysis correlating the potential functions to the geometric measures of differential
geometry. We defer the details of the finite element analysis to Appendix E.

We derive our potentials by considering an infinitesimally small section of a surface
as shown in Figure 4.2. Over a small section one can notice that adjacent points on
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n;
n;
Xi
ri; X; r 0O X;
X
Initial state, ¢p > 0. Possible new state, ¢p = 0.

Figure 4.3: Interaction due to co-planarity potential: ¢p = (n; - r;;)?

The original particle positions are drawn in black on left and in gray on right.

the surface have normals that are close to parallel and the points lie near the tangent
planes of adjacent points. One can also note that for circular arcs the normals diverge
with equal angles. We use these observations to define potential energy functions
between adjacent particles which encourage such configurations. We define three
potentials: a co-planarity potential to encourage particles to lie in neighboring particle
tangent planes, a co-normality potential to encourage particle normals to align, and
for surfaces with constant curvature, a co-circularity potential to encourage particle
normals to diverge with equal angle.

4.2.1 Co-planarity

For surfaces whose rest (minimum energy) configurations are flat planes, we would
expect neighboring particles to lie in each other’s tangent planes. We express the
co-planarity potential as

¢p (04, 155) = (n; - 1) (4.13)

The energy is proportional to the scalar product between the surface normal and the
vector to the neighboring particle. Recall that two nonzero vectors are perpendicular
if and only if their scalar product is zero.

We illustrate this in Figure 4.3. On the left side is a non-zero potential energy
state. On the right side the particles have obtained a zero potential energy state, by
moving in directions parallel to the normal vector n;. The forces acting on the two
particles are given by the gradient of the potential energy with respect to x; and x;:

fi = —Vxoép =2(n; r;)n,
fj = —ijgbp = —2(1’12 . rij)ni

For the example given, the product n; - r;; is a negative scalar value. Thus particle ¢
moves in the direction of —n; and particle j moves in the direction of +n;. The torques
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n; n; n;
o/ 1
X; X]' X; Xj
Initial state, ¢x > 0. Possible new state, ¢x = 0.

Figure 4.4: Interaction due to co-normality potential: ¢x = ||n; — n,|*

The original particle normals are drawn in black on left and in gray on right.

are given by the gradient of the potential energy with respect to the orientation:

Ti = —Vg,¢p = —2(n; - 1y5)(n; X ry5) = 135 X f;
T; = —Vg,¢0p=0.

For the example given, the torque vector on particle ¢ would be into the page and
result in rotating the particle clockwise until n; and r;; form a right angle. There is
no torque on particle 7 because the potential is independent of j’s normal. However
when we evaluate the potential ¢p(n;,rj;) then the situation reverses, 7; will be zero
and 7; will be non-zero.

4.2.2 Co-normality

The co-planarity potential does not control the “twist” in the surface between two
particles. To limit this, we introduce a co-normality potential

¢x(ni, 1) = ||In; — nyl|” (4.14)

which attempts to line up neighboring normals, much like interacting magnetic dipoles.

We illustrate this in Figure 4.4. On the left side the normals are not parallel
resulting in a non-zero potential energy state. On the right side the particles have
obtained a zero potential energy energy state by rotating until their normals align.
The torques acting on the two particles is given by the gradient of the potential energy
with respect to orientation:

T, = —Vging = 2(1’1] X l’li) (415)
’Tj = _V0j¢N = —2(nj X IIZ') (416)
The torque is about an axis orthogonal to n; and n;, applied equally to both particles.

For the example given it induces a clockwise rotation on particle 2 and a counter-
clockwise rotation on particle j. This potential is independent of particle positions and
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n;
n; n,
n, \ /
X; r;; X X; ri; X;
Initial state, ¢c > 0. Possible new state, ¢c = 0.

Figure 4.5: Interaction due to co-circularity potential: ¢c = ((n; + n;) - r;;)?

The original particle normals are drawn in black on left and in gray on right. The
dashed line shows an arc of constant curvature matching the new normals and passing
through the particle positions.

thus the resulting forces are zero. By itself, the co-normality potential is not sufficient
to form surfaces as the tangent planes may not align, as seen in this example. However
in combination with the co-planarity potential, energy minimization will encourage a
set, of uniformly spaced particles to arrange into a continuous surface.

4.2.3 Co-circularity

An alternative to surfaces which prefer zero curvature (local planarity) are surfaces
which favor constant curvatures. This can be enforced with a co-circularity potential

¢c(ng,nj,155) = ((0; + ny) - 1;5)° (4.17)

which is zero when normals are anti-symmetrical with respect to the vector joining
the two particles. This is the natural configuration for surface normals on a sphere.
That is the energy is zero under the condition that the angle between particle i’s
normal and the separation vector r;; is equal to the angle between particle j’s normal
and the separation vector, or n;-r;; = rj;;-n;. Since rj; = —r;; and the scalar product
is distributive we can rewrite the condition n; - r;; = r;; - n; to be (n; + n;) - r;; = 0.

We illustrate the co-circularity potential in Figure 4.5. On the left side the angles
between normals and the separation vector are unequal. On the right side the particles
have obtained a zero potential energy state by rotating until their normals are anti-
symmetric. The torques acting on the two particles is given by the gradient of the
potential energy with respect to orientation

T, = —Vgi(lsc = O!(Ili X rij) (418)
T; = —Vaj(bc = O!(l'lj X rz’j); (419)

where o = 2((n; + n;) - r;;) is a scalar. For each particle the torque is about an axis
orthogonal to the particle normal and the separation vector. For the example given it
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Osculating
circle

Tangent
plane

Figure 4.6: The osculating circle in the local coordinate frame of particle ¢

induces a counter-clockwise rotation on particle ¢ and a clockwise rotation on particle
j. The forces resulting from the change in potential are

fi = —Vxéc=2((n;+ny) - ry)(n; +ny)
fi = —Viéo=-2(m+ny) ry) (0 +ny) = —fc,.

For particle ¢, the term ((n; + n;) - r;;) is a scalar value that is zero when the particles
are anti-symmetric. The force on particle 7 is in the direction (n;+n;) and for particle
J in the opposite direction. This in effect rotates the line segment r;; in the plane
defined by r;; and (n; + n;). For the example given it rotates r;; clockwise.

4.3 Geometric Interpretation in Local Coordinates

Another viewpoint relating the potentials to the local geometry of the surface may
be found by considering the potentials in the context of a particle’s local reference
frame. This transformation results in simplified equations for the potentials.

We begin by writing the states of particles 7 and j in the local reference frame of
particle 7, where R, is the particle orientation, and where we denote local coordinates
by a prime ’:

x; = Ri'(x;—x)=0,0,0]" (4.20)
x; = Ri'(x—xi) = [z, 95, 4] (4.21)
n; = Ri'n;=[0,0,1]" (4.22)
n;' - Rglnj = [nwanyanz]T (4.23)
r, = Ax=x;-x=[z;,y,5] (4.24)
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Figure 4.6 illustrates two particles in local coordinates with x} and xz- lying in the
osculating plane containing x;, xj, and n;. Note that x| is at the origin, the normal
n; is in the direction of the z axis and the tangent vector to the curve is orthogonal
to the normal. The osculating circle tangent at x; is also shown. In this example
the normal n;- lies in the osculating plane, although in other cases it may not. The
length of the curve segment from x; to x} is labeled as As. The chord of the segment
is the difference of positions and is labeled Ax. If we assume the particles maintain
a constant separation distance, then as the curvature varies the point x;- moves along
the gray arc. As the curvature goes to zero, x; moves down to the tangent axis, and
As tends to the chord length ||Ax]|.

In local coordinates the co-planarity potential reduces to
¢p = (n; - 1;;)" = ()" (4.25)

Minimizing the potential, can be interpreted as encouraging particle j to reduce z;
or, in other words, to move to particle i’s tangent plane. Since we are in 4’s local
coordinate this can also be accomplished by rotating and/or moving particle i in the
world frame. These three possibilities correspond to the three effects (f;, f;, and ¢;)
that were derived in Section 4.2.1.

The co-normality potential reduces to

= |In} — nf|* = 2(1 — n,). (4.26)

By noting ||n%|| = 1, the minimum is clearly when n, = 1, or in other words when
particle j’s normal aligns with the z axis.
The co-circularity potential reduces to

b = ((0f +nf) -x)))" = () 1) +2) " (4.27)

For this case the interpretation is less apparent, yet with a little algebra it becomes
clear. Let a be the angle between n; and r;; and let 3 be the angle between n; and

;,; where r{; = — ] The angle « is glven by n; = [|r};|| cosa = z;. The angle
B is given by n} - r; = ||r};|| cos § = —(n]} - r};). The potentlal (4.27) is obviously at
its minimum (zero) When zj = —(nj- rZ]) or in other words when the angles o and
are equal.

4.4 Curvature

In this section we present a definition of discrete curvature for our oriented particle
system. We then show that minimizing the potential energy functions is equivalent to
minimizing the squared curvature defined for space curves between pairs of particles.
We will also prove that we minimize the magnitude of the sum of squared curvature
and torsion measures of space curves defined by pairs of particles. These space curves
can be thought of as approximating the normal sections embedded in a surface inter-
polating the particles. Furthermore as the particle separation goes to zero the space
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Figure 4.7: Discrete curvature tangent vector

curves between particles become osculating circles of normal sections embedded in the
surface. In the limit, we prove that minimizing our potential functions is equivalent
to minimizing the squared normal curvature over the surface.

We begin with a review of the basic definitions of normal sections, normal cur-
vature, curvature, and torsion. Given points on a surface and direction tangent to
the surface, there exists a unique plane that is defined by the tangent vector and
surface normal that includes the given point. The intersection of the plane and the
surface defines a space curve embedded in the surface. This curve is called a normal
section. The curvature of a normal section is the normal curvature k, and is defined
as being the curvature of the embedded space curve. The curvature of a space curve
is defined as the magnitude of the second derivative of position with respect to arc
length, x = ||t|| = ||%||. The torsion of a space curve is defined as the magnitude of
the derivative of the bi-normal with respect to arc length, 7 = ||b||. We defer a more
detailed discussion of differential geometry to Appendix A.

4.4.1 Discrete Curvature

We now define a discrete curvature measure k4 for our particle system. The discrete
curvature is defined for a given position and direction. The position is the position
x; of a given particle and the direction is in a tangent direction t;; of an adjacent
particle x;. The tangent direction is the vector formed by x; and the projection of x;
onto particle ¢’s tangent plane, as shown in Figure 4.7.

Without loss of generality, we will work in the the local coordinates of particle
i, where ' indicates local coordinates as given in Section 4.3. The position of x| is
[0,0,0]", the normal nj is [0,0,1]", and the position of x} is [z, 1, 2]". The unit
tangent vector t; is given by [z;/t, y;/t,0]" where t = (22 + y?) 3

We now determine the circle with normal matching n at x; and passing through
the points x; and x;-. We do this in a 2D plane where the x axis of this plane aligns

]T

with the tangent vector Eij and the y axis aligns with the particle normal n}. We pick
the three points

(z1,31) = (0,0)
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(x27y2) = (t,Zj)
(z3,23) = (—t,%)

where (73, ys3) is the reflection of x}; about particle i’s normal. The equation
22+ +2r +2ey+ f=0 (4.28)

defines a circle of radius (d?+€? — f) "2 in the zy plane, when d2+¢2 > f (Zwillinger,
1995). Three non-collinear points determine a unique circle. For the three such points

(951,3!1); ($27y2)7 and ($3,y3) the equation

(2 +y*) =z y 1

(@t +y7) o1 oy 1] _

(+u) = ow 1|0 (4.28)
(23 +v3) 25 ys 1

defines the unique circle passing through the points. Expanding the determinant gives
2z;(z” +y°) — 2(t* + 27)y = 0.

as our equation of the circle. Writing in the form of (4.28)

d = 0
2 | .2
e - _Et7)
22_7'
f =20

and thus the radius R is

2 2 2
::rj—}-yj—i-zj.
22]'

R

We define the discrete curvature
22]'

=2 (4.30)
T3+ yi + 25

Ka
as the curvature of the unique circle passing through x} and xg-, such that at point x|

the tangent and normal of the circle match t;; and n}. In the global reference frame
the discrete curvature is given as

2

—
[lxi; |

Kqg = (l’li . rij)- (431)

4.4.2 Minimizing Discrete Curvature

We show that minimizing the co-planarity potential for a pair of particles, with par-
ticle spacing constrained by the Lennard-Jones potential, minimizes the squared dis-
crete curvature measure of that pair.
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hy !
X;
.......u......... h2

Figure 4.8: Inter-particle spacings h; and hs.

In local coordinates, the co-planarity potential (4.25) is
¢p = 232
and the discrete curvature (4.30) squared is
42

:—4_
[

K,d2

Since infinite energies are excluded from our simulations, we can assume that
0 < 7min < [yl

If not, the Lennard-Jones potential energy would be infinite. For completeness we
mention that [[r;|| = [[r};||. The minimum bound 7mi, on the separation distance
bounds the discrete curvature

422
4
(Tfnin < Irll ) = (”5 < 4—J> :

Minimizing the co-planarity potential minimizes the squared discrete curvature be-
tween particle pairs

¢p — min = zf-—)O
= Kk3—0.

4.4.3 Normal Curvature

We show that our discrete curvature measure is equivalent to the normal curvature
of a surface in the limit of infinitesimal particle separation. Let us assume we have a
particle i surrounded by a set of symmetrically spaced particles N' = {x1,Xz,... Xy}
as shown in Figure 4.8. Let h; be the distance between each particle pair x; and
x; € N. Let hy be the distance between adjacent neighboring particles.
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As the separating length hy approaches zero, N goes oo, and the particles sur-
rounding x; now form a continuous circle. Thus our discrete curvature measure kg is
defined for all tangent vectors in particle ¢’s tangent plane.

As the separating length h; goes to zero, we define the curvature measure

. .
Ky = lim ky.
d h1—0 d

It should be clear that the circle defined between our particle pairs (as in Figure 4.6)
becomes the osculating circle of some space curve passing through the two particles.
Thus the discrete curvature ) becomes the curvature x of the space curve.

We now relate x to the normal curvature measure. For any smooth surface, a
point on the surface, and a tangent direction, there exists a plane that is normal to
the surface and which also includes the point and tangent vector. The space curve
lying in that plane and embedded in the surface is the normal section with a curvature
called the normal curvature k,. Since the circle we define lies in the plane normal to
particle %, in the limit as h; tends to zero, this circle becomes the normal section, and
our discrete curvature becomes the normal curvature, that is &)} = kK = K.

4.4.4 Minimizing Torsion

This proof shows that minimizing the co-normality potential, with particle spacing
constrained by the Lennard-Jones potential, minimizes the sum of the squared cur-
vature and squared torsion measures of a space curve. We consider a space curve
passing through the points x; and x;, such that the unit normal vectors of the curve
at x; and x; match the particle normal vectors n; and n; respectively.

An equation for the rate of change of the normal per unit arc length of a space
curve is given by the Frenet-Serret formulas (A.2)

th = —kt + 7b. (4.32)

For a discrete system, the change in normal is

n; —n;

n—-~,_ 4.33
where As is the unit arc length. We combine (4.32) and (4.33) to get
n p— n.
—kt +7b =L —.
Kt + 7 As
We now take the scalar product of both sides
2
K2(t-t) — 267(t - b) + 72(b - b) = ““JAi;‘Z”. (4.34)
s
The tangent and bi-normal are orthogonal and unit vectors so the following hold
t-t = 1
b-b =

t-b = 0.
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Equation (4.34) thus reduces to

2
2, 2 |my —ml
= ——. 4.35
K +T A (4.35)
We can now rewrite (4.35) in terms of the co-normality potential (4.14)
2 2
¢n = |In; — 0" = [|n; — 4] (4.36)

to arrive at the equation

5, 2 On
K +7" = —.
As?

As in to Section 4.4.2, we can assume
0 < Tmin < ||r4]l-
Since the As > ||r;||, we have the relation
0 < rmin < As.

The bound on the arc length bounds the sum x? + 72

(rﬁlin < A$2) = <H2 +7% < Td;—N> .

min
Thus minimizing the co-normality potential minimizes the sum of the squared curva-
ture and squared torsion measures

(¢ — min) = (K2+7'2 —>0).

4.4.5 Discussion

We have shown that a combination of co-planarity and Lennard-Jones minimizes the
squared curvature of space curves defined between particle pairs. Likewise, a combi-
nation of co-normality and Lennard-Jones minimizes the sum of the squared curvature
and squared torsion measures. We did not find a similar proof for the co-circularity
potential. The co-circularity potential’s goal is to encourage symmetric curvature be-
tween particle pairs, but in isolation this does not imply minimum curvature. Smooth
surfaces can be constructed using only the co-planarity and co-normality potentials,
and in fact many of the examples in the dissertation were created using only these
two potentials.

However, in the finite element analysis of Appendix E we show that the co-
circularity potential corresponds to an energy measure based on the variation in
curvature of a three particle patch. And we also show that an approximation of the
Gaussian curvature over the patch can be written as a sum of the co-circularity and
co-normality potentials. Thus, this analysis shows that the co-planarity potential is
not necessary needed to write a curvature-based energy measure. At first sight, these
two different analyses may suggest contradicting results. The observation we draw is
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that either the co-planarity or the co-circularity potential is required, but not both.
In fact the two potentials are closely related. The co-planarity potential is based on
the scalar product of particle normal and the separation vector, and the co-circularity
potential is based on the scalar product of the separation vector and sum of particle
normals. Another point to note is that the different analyses are minimizing different
curvature measures.

To summarize, minimizing co-planarity and co-normality minimizes the magnitude
of curvature and torsion of curves defined between particle pairs, and minimizing
co-circularity and co-normality minimizes the magnitude of the Gaussian curvature
integrated over a three particle patch. That is

¢p + Py = HZ
N+ ;g = nﬁ + 72
bc+odx+dLy = K

4.5 Dynamics

For practical considerations we limit particle interactions between nearest neighbors.
To do this we use a distance based weighting function w(r;;) which decays the energy
potential to zero at the neighborhood boundary. To control the bending and stiffness
characteristics of our deformable surface, we use a scalar weighted sum of potential
energies

Ey; = apgp(ny,rij)w(riy) + andn(ng, nj, ry;)w(ry) + acde(ny, ny, rij)w(ry)
+ aryoLi(rij)-

The first two terms control the surface’s resistance to bending, and the third term
controls the surface’s tendency towards uniform local curvature, and the last term
controls the average inter-particle spacing.

Having defined the internal energy associated with our system, we can derive its
equations of motion. By weighting our potential functions the corresponding forces
and torques are different than those given in Section 4.2. The differences are (1)
the weighting of the original potential terms found in Section 4.2, and (2) new force
terms based on the gradient of the weighting function. The derivation of the distance
weighted inter-particle forces and torques are given in Appendix D and listed below.
For convenience we use the short hand notation

w = w(||r;l]),
o = dw(ffri;|l)
d||ry;|]

For the spatially weighted co-planarity potential, ¢p(n;, r;;)w(r;;), we have:

fpi (n,- . rij)2f'ijw' + 2(1’11 . rij)niw
fpj = —(nz- - I'Z'j)Qf'ij’wl — 2(11, - rij)niw = —fpi
Tp, = —2(1’11 . rij)(ni X rij)w =TI X fpi

7p, = 0.
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For the spatially weighted co-normality potential, ¢x(n;, nj, r;;)w(r;;), we have:

fx; In; — ny|rijw’

fy, |l — 0y Pryjw’ = —fy,
™, = —2(n; xm)w

TN, = 2(n; xn))w = —7y;,.

For the spatially weighted co-circularity potential, ¢c(n;, nj, r;j)w(r;;), we have:

fo, = ((mi+ny) 1) 8w +2((0; + 1)) - 15) (0 +nj)w
fo, = —((mi+mny)-ry)" B0 —2((0; +ny) - ry) (0 +ny)w = —fg,
Tc, = —2((ni+mny)-ry) (n; X rij)w

—2((m; +ny) - 155) (n; X 15) w.

For the Lennard-Jones potential we have:

fl, = —Viéu = tion’

fr;;, = —Viou = —tiou’ = —f;
T, = —Vgou =0

Tuy; = —Vg,or=0.

These forces have the following simple physical interpretations. The co-planarity
potential gives rise to a force parallel to the particle normal and proportional to
the distance between the neighboring particle and the local tangent plane. The first
term in the force, which can often be ignored, arises from the gradient of the spatial
weighting function. The cross product of this force with the inter-particle vector
produces a torque on the particle. The co-normality potential produces a torque
proportional to the cross-product of the two particle normals, which acts to line up
the normals. The force term for the co-normality potential arises from the weighting
function and can usually be ignored. The co-circularity force is similar to the co-
planarity force, except that the local tangent plane is defined from the average of the
two normal vectors. The Lennard-Jones force exerts a force parallel to the separation
vectors holding the particle system together. It effectively counteracts the forces due
to the gradient of the weighting function.

To compute the total inter-particle force and torque from all the potentials, we
use the formulas

fij = 2aLJfLJi (I‘ij) “+ ap (fpl (Ili, I‘ij) + fpi (Ilj, I'ji)) + 2aNfNi (Ilz', Ilj, I‘ij) + 20!(jfci (Ilz', Ilj, rij)
Ty = opTp, (0, Ty) + 2087, (04, 0, 135) + 20T ¢, (03, 0y, T35)
Note that most forces and torques are doubled, i.e., actions generate opposite

reactions. The main exception to this is fp and 7p, which arise from an asymmetric
potential function. This can easily be changed by defining a new potential

dp* (04,04, 155) = ¢dp(ny, 135) + dp(ny, 135),
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although the results would be the same. The second exception is due to the co-
circularity potential which results in torques of equal magnitude but about different
axes; Tp, is about the axis (n; x ry;) and 7p, is about the axis (n; X ry;), which may
be different. However it does produce the desired result.

These forces and torques can be summed over all interacting particles to obtain

f; = Z £ + foxt (%) — Bovi — Z B1(v j— v;) (4.37)
JEN; JEN;

T o= Y Tij— Powi— ) 3w —wi) (4.38)
JEN; FEN;

where N; are the neighbors of 7, v = x and w = . Here, we have lumped all external
forces such as gravity, user-defined control forces, and non-linear constraints into f.,
and added velocity dependent damping forces Gyv; and (ow; and the relative velocity
dependent damping forces f3;(v; — v;) and f5(w; — w;). The above force equations
are related to the equations of motion (3.1) and (4.1) given in Section 4.1.2. The
translational damping coefficient «; in (3.1) is a function of 3y and ;. The rotational
damping coefficient &; in (4.1) is a function of f,, and fs.

4.6 Summary

We have presented a new distributed model of surface shape based on particle systems,
differential geometry, and physics. We extended the volume based particle model of
Chapter 3 to create oriented particles whose minimum energy configurations are sheets
of particles rather than tightly packed clusters of particles. Each particle represents
a local frame, a combination of position and orientation information. The particle’s
local XY plane represents the surface tangent plane at the particle’s position, and the
local Z axis represents the surface normal. Each frame can be thought of as a small
surface element or discrete surface sample.

To encourage particles to arrange into surfaces, we introduced three new poten-
tial energy functions. The co-planarity potential encourages neighboring particle
tangent planes to align. The co-normality potential encourages neighboring parti-
cle normals to align, controlling the “twist” in the surface between two particles.
The co-circularity potential encourages surfaces of constant curvature, e.g. a sphere,
rather than surfaces of zero curvature, e.g. a plane. We have also used differential
geometry (Appendix A) to show how these potentials minimize the squared curvature
for curves defined between particles. In the limit of zero inter-particle spacing, this
is equivalent to minimizing the squared normal curvature over the surface. We also
showed the co-normality potential minimize the sum of squared curvature and torsion
measures for curves defined between particles. In Appendix E we show how the sum
of the co-circularity and co-normality potentials minimizes the Gaussian curvature of
a triangular patch defined by three particles.

Forces and torques on the particles are derived from the change in energy with
respect to changes in the particle’s position and orientation, respectively. In addition
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the surfaces respond to external forces such as gravity and collisions with other ob-
jects. In Chapter 8 we present results from simulations which illustrate the behavior
of oriented particles.



Chapter 5

Continuous Descriptions

While a particle system representation of shape is sufficient for many applications,
continuous surface descriptions are the standard method of describing shape in com-
puter graphics. This chapter focuses on generating continuous surface descriptions
from particle systems. First, we discuss methods used to generate surface descrip-
tions from volumetric particle systems. Second, we discuss methods used to generate
surface descriptions from particle systems of surface elements. These are different
problems requiring different solutions.

5.1 Surface Descriptions Based on Volume Sam-
plings

5.1.1 Implicit Representation

For volume based particle samplings, an implicit formulation of the surface provides
a compact mathematical description. An implicit surface is defined as the locus of
points that obey a point classification function, such as f(z,y,2) = 0. Assuming
there exists a scalar field function that varies throughout space, an iso-surface is the
locus of points in space whose scalar field value equals a given constant. When the
field function varies continuously in space and without discontinuities, the function
defines a set of closed continuous 3D surfaces. An iso-surface of threshold 7 is easily
defined by an implicit function f as

f(x,y,z):F(x,y,z)—T:(],

where F(z,y, z) is the value of the field in space.

To define an iso-surface equation for a particle system, we assign a continuous field
to each particle. The field is maximum at the particle’s center and monotonically
decreases as a function of distance from the particle. The surface comprises all points
in space for which the sum of the particle fields equals a threshold constant. Formally
we write the iso-surface equation f as

flz,y,2) = Zg,-(ac,y, z) =T =0, (5.1)

63
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where g; is the field function for particle ¢+ and 7' is the threshold value.

Blinn (1982) introduced such a class of algebraic surfaces based on control points
and exponential field functions. The exponential field function results in smooth
surfaces, but because the individual fields extend to infinity, it is expensive to compute
the field for a given point in space. To reduce the computational effort, bounded
polynomial functions of a similar shape have been used instead (Wyvill, McPheeters
and Wyvill, 1986b). However, to maintain C' or C? surface continuity, one must be
careful when choosing the polynomial to use.

5.1.2 Explicit Representation

By sampling the field function in space we can generate a C° continuous explicit
description of the surface. The description is a polygonal approximation of the im-
plicit surface representation, with the benefit of being easily imported into almost all
commercial and public domain software rendering packages. Most iso-surface polygo-
nization techniques are based on four steps. First, sampling points in space. Second,
categorizing the points as inside or outside of the surface. Third, determining the sur-
face intersection points between pairs of adjacent inside/outside points. And fourth,
fitting polygons to the surface intersection points.

The well known Marching Cubes algorithm of (Lorensen and Cline, 1987) sam-
ples space on a cubic grid and polygonizes each cell independently. Unfortunately,
ambiguous polygonizations occur since more than one possible plane will match cer-
tain combinations of in/out vertices for a given cube. These cases can be resolved
by testing additional points (Wyvill, McPheeters and Wyvill, 1986b), by applying
surface coherence between adjacent cells (Baker, 1988), or by sampling and testing
the vertices of a tetrahedron instead of a cube (Bloomenthal, 1988; Velho, 1990).

Higher resolution polygonal approximations come at the cost of a finer grid sam-
pling. The majority of these samples fall in empty space and provide no direct benefit.
This can be observed by looking at what happens when we double the sampling rate
along each axis. The number of samples in space grows by O(N?) while the number of
polygons grows at only O(N?). Adaptive polygonizations benefit from concentrating
polygons in areas of high curvature while reducing the number of polygons in areas
of low curvature to produce a more accurate approximation for a limited number of
polygons (Bloomenthal, 1988; Velho, 1990; Hall and Warren, 1990). Alternatively,
methods that spread across the surface from a known surface point minimize cost by
restricting computation to sample points near the surface.

5.1.3 Direct Surface Sampling

If specific points on the iso-surface are required, one can directly sample the surface
by computing ray-surface intersections. The surface points are found by combining
the ray equation with the implicit surface equation (5.1) and solving for the roots.
The problem is complicated by the fact that for a system of N particles, in the
worst case, there may be as many as 2N intersections with a given ray and thus 2NV
roots to the equation. For example, imagine all of the particles lying on the X axis
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Figure 5.1: Ray tracing particle iso-surfaces

(a) A particle field function, defined as a scalar algebraic function of distance from
the particle. (b) Ray intersecting field function bounding spheres. In this example
the ray is split into seven non-overlapping intervals.

and spaced such that the resulting iso-surface of the field is N distinct spheres. A
more likely case, and one that the potential energies encourage, is the clustering of
particles into volumes, with each particle approximately r, distance from its nearest
neighbors. In this case a ray will pass through N 5 of the particle fields on average. If
only the first intersection of the ray with the surface is needed, such as for rendering
opaque surfaces, the problem becomes less complex. Assuming each particle field
function is monotonically decreasing, one can guess an interval along the ray where
the first intersection will occur (Blinn, 1982). The intersection is then isolated using
an iterative root solver.

For particle fields restricted to polynomials of bounded range, there exists an al-
gorithm to find all of the intersections of the iso-surface with a ray in time linear in
the number of particles (Tonnesen, 1989; Wyvill and Trotman, 1989). The key idea
is to split the ray into non-overlapping intervals such that each interval is represented
by a single continuous algebraic equation. Figure 5.1(a) shows the graph of particle’s
field function as a function of distance from the particle position. A scalar field F'
in R? is defined as the summation of individual particle field functions. Since the
individual field functions decay to zero at a fixed distance each separate particle field
is bounded by a sphere. Figure 5.1(b) shows a simple 2D example of particles, their
bounding circles, and a ray. In the 3D case, the iso-surface must lie within the union
of all bounding spheres. The intersection of the bounding spheres partition space into
regions, such that in each region the scalar field F' is defined by the summation of
a subset of the algebraic equations defining the particle fields. The intersection of a
ray and the bounding spheres split the ray into non-overlapping intervals. Solving
for the roots of the combined ray-field equation, over the interval, yields the inter-
section points of the ray and surface within that interval. For low order polynomials,
computing the analytical solution is considerably faster than an iterative root finding
approach. Another benefit of this approach is that it is suitable for constructive solid
geometry modeling systems, which require all ray/surface intersections.
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5.2 Surface Descriptions Based on Surface Sam-
plings

We now consider the problem of generating surface descriptions from particle systems
of surface samples. This is the surface reconstruction problem. In particular we want
the surface function to interpolate the data, passing through the data points. This is
in contrast to a surface function which approximates the data, passing close to but
not necessarily through the data points. The latter functions are appropriate when
the data points may not necessarily be lying on the surface, such as when there is
noise in the sampling process, and the desire is to hide the noise through a smoothing
process.

Reconstruction methods are classified as either global or local in nature. In a
global technique, any given surface patch is dependent upon all of the data. In a local
technique, any given surface patch is only dependent on nearby data points. In highly
structured data, such as data sampled over a grid, the neighborhood relationships are
known a priori. In our case, the case of unstructured point data, we must determine
the neighboring particles. Franke (1982) observes if the data are scattered, one must
inspect, in some way, all of the data to determine which points are nearby. The
question arises as to whether there is such a thing as a “local” method for scattered
data. Since the nature of a local surface fitting or interpolation function does not
depend on how the neighbors are found, only that they are found, we may consider
this to be a rhetorical question. However it reminds us that nearest neighbors must
be found. The calculation of nearest neighbors is discussed in Chapter 7.2.

We have designed our particle systems so that areas of surface will be represented
by collections of evenly spaced sheets of particles. Our first reconstruction goal is
to reconstruct a surface which interpolates the particle positions. Our second re-
construction goal is to limit surface reconstruction to areas where the particles are
sufficiently close, where closeness is defined by a distance measure. In other areas,
where particles are sufficiently far apart, the goal is for the reconstructed surface to
be discontinuous, with breaks or holes.

Surface reconstruction is simplified from the general case if the structure of the
original surface is known. By surface structure we mean the geometric relationship
between points on the surface. For example, if a set of position or point data maps
uniquely to a parameterized surface such as a plane or sphere, that surface imposes
a global structure over the data, and the reconstruction problem reduces to finding
the best local structure that matches the global structure.

The reconstruction problem is much harder when the topology and genus is un-
known, as in our case. Neither are we assuming an open or closed or surface, but
which ever matches the given surface samples the “best”. Since we cannot assume
a global structure, we must instead be able to derive the structure from properties
intrinsic to the data. One approach is to use divide and conquer, solving for local
structure everywhere over subsets of the data and then combining the results to cre-
ate the global structure. By choosing sufficiently small regions of shape with respect
to the curvature, we can assume a locally planar structure thereby reducing the sub-
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Figure 5.2: Voronoi diagram and Delaunay triangulation

(a) Voronoi diagram in 2D. (b) Delaunay graph (triangulation) as the straight line
dual of the Voronoi diagram.

problem to the two dimensional case. We start by considering structure over localized
areas of the shape.

5.2.1 Local Structure

An obvious property of a continuous surface is that points over a small patch are in
close spatial proximity to each other. Thus it is natural to define structure based on
the spatial proximity relationship between points. We consider the two dimensional
problem first. The Voronoi diagram! can be used to solve a number of proximity
problems. In particular, it solves the “loci of proximity problem”. For two dimensions
this is defined as (Preparata and Shamos, 1985):

Given a set S of N points in the plane, for each point p; in S, find the
locus of points (x,y) in the plane that are closer to p; than to any other
point of S.

The solution is a partitioning of the plane into regions of spatial proximity to the orig-
inal data points (Figure 5.2a). Computing the Voronoi diagram requires O (N log N)
optimal computation time.

While the Voronoi diagram provides a structure over the data, it is not suitable as
a surface description, since it contains unbounded edges in 2D. A better solution is to
define a triangulation over the points which encodes the same proximity information.
Such a triangulation is the Delaunay triangulation, the dual of the Voronoi diagram.
A Delaunay triangulation is the graph embedded in the plane obtained by adding
a straight-line segment between each pair of points whose Voronoi polygons share

1Voronoi diagrams also go by the names Dirichlet regions, Thiessen polygons, Wigner-Seitz cells,
and proximal polygons.
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an edge?. It is also defined as the unique triangulation such that the circumcircle?
of each triangle does not contain any other point of S in its interior. Figure 5.2(b)
shows such a triangulation constructed from the Voronoi diagram in Figure 5.2(a).
The Delaunay triangulation can be computed from the Voronoi diagram in O(N)
time, or directly in O(N log N) optimal time. Computationally, both approaches are
equivalent (Preparata and Shamos, 1985, pg. 217).

Other suggested criteria for producing good two dimensional triangulations are:

e maximizing the minimum interior angle,
e minimizing the roughness measure over a height field, and
e minimizing the total length of edges.

Intuitively, a good triangulation should avoid long thin triangles in favor of trian-
gles that are “more or less equilateral”. More formally, the criterion is to mazimize
the minimum interior angle of the triangles over all possible triangulations (Lawson,
1977). Lawson goes on to show that the max-min angle criterion, the circle criterion,
and the straight-line dual of the Voronoi diagram produce equivalent triangulations
in the plane.

Related to 2D triangulation is the triangulation of height field data. Rippa (1990)
has suggested that a good triangulation of height field data is one that corresponds
to the intuitive concept of the “smoothest surface”. He defines a roughness measure
as the L2 norm squared of the gradient of the triangulation. If g; is the planar
interpolating surface for a triangle 7; then the roughness measure of 7T; is
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and the roughness measure of the entire triangulation is the sum of the roughness
measures of all triangles. He then goes on to show that minimizing the roughness
measure of the triangulated height field is equivalent to the Delaunay triangulation
in the plane. It is interesting to note that while the triangulation minimizes the
roughness, it is also independent of values defining the height of the surface.

Another criterion for 2D triangulation is to select triangles of short edge length
over longer edges. The minimum-weight triangulation is the triangulation that ex-
hibits the minimal total length over all triangulation edges. At one time it was
conjectured that the Delaunay triangulation was a minimum-weight triangulation,
until this was disproved by Lloyd (Preparata and Shamos, 1985). Our particle sys-
tems do not present the general case of random point samples, because they naturally
arrange into hexagonal configurations of nearly equal spacing and nearly equal angles
between neighboring points. Thus for our systems, we expect the minimum weight
and the Delaunay algorithms to generate similar if not identical triangulations.

2 As stated this is true when there are not four or more co-circular points. However, the triangu-
lation of these cases is straightforward.

3The circumcircle of a triangle is the circle such that each vertex is on the perimeter of the circle.
There is exactly one circumscribing circle for a given triangle.
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Two graphs related to the Delaunay triangulation are the Euclidean minimum
spanning tree and the Gabriel graph. Given N points {p1, ps, ps, - . ., P, } in the plane,
the Fuclidean minimum spanning tree is the tree of minimum total edge length whose
vertices are the given points. The Gabriel graph is the graph such that there is an
edge between p; and p; if and only if the circle with diameter ||p;, p;|| centered midway
between p; and p; does not contain any other point. These graph structures have the
following hierarchy (Preparata and Shamos, 1985; Goodman and O’Rourke, 1997).

MST C GG C DT

For surface reconstruction of 3D point sets, Hoppe et. al. (1992) propagate orientation
information by traversing the MST embedded in the graph generated by the k-nearest
neighbors of each point. The constrained Delaunay triangulation has been used for
triangular mesh refinement over curved surfaces (Chew, 1993). Chew extends the
circumcircle test to points embedded in a curved surface, thus generating a closed
space curve embedded in the surface. If no points lie inside this loop then the triangle
in question is a valid triangle.

The spatial proximity defined the Voronoi diagram would appear to be a natural
basis on which to form a surface interpolating our particle system. The 2D Delaunay
triangulation encodes information found in the Voronoi diagram as triangles, 2D
geometric simplices, and thus can provide such a surface description. In addition
the Delaunay triangulation has been shown to provide well shaped triangles and
minimizes the roughness of surfaces defined as height fields. It also has an elegant
description, the circumscribing circle test. For our purposes, the main drawback of
2D triangulation algorithms is that they are limited to reconstructing surfaces that
uniquely map to the plane.

5.2.2 3D Structure

The Voronoi diagram and Delaunay graph naturally extend to higher dimensions.
The dual of an D-dimensional Voronoi diagram is the D-dimensional Delaunay graph
which partitions space into volumes bounded by D-dimensional simplices*. For N
points, there are N regions in the Voronoi diagram. Unfortunately the number of
items necessary to describe the Voronoi diagram (and the Delaunay triangulation)
grows exponentially with the dimension (Preparata and Shamos, 1985, pg. 246).
In the three dimensional case, the Voronoi diagram partitions space into N regions
which are bounded by O(N?) edges and vertices in the worst case. Its dual, the
three dimensional Delaunay graph is an O(N?) collection of tetrahedra tessellating
the interior of the convex hull®.

4A simplex in D dimensions is a spatial configuration determined by D + 1 points. A three
dimensional simplex is a tetrahedron, a pyramid with four triangular faces.

5The convex hull is the smallest polyhedron such that all the points are contained within the
volume. As a physical analogy, the convex hull can be thought of as applying shrink wrap plastic
around a set of points. After the plastic shrinks to be a tight surface, the plastic surface is the
convex hull.
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While the 3D Delaunay triangulation defines a complete set of proximity rela-
tionships for a set of points, it does not provide a surface description, but rather a
volumetric description of the data. We know that embedded in the Delaunay trian-
gulation is a polyhedron which passes through all of the data points and is thus an
interpolating surface. The problem now becomes: “How can we extract from this
full set of proximity relations, a set of relationships which describe the surface?”. If
all points are on the convex hull, the convex hull is the surface. If not, one can re-
move simplexes from the set of tetrahedrons until all the points are on the boundary.
Boissonnat (1984) solved this for surfaces of genus 0 (without holes) by providing
a set of rules to iteratively remove simplices with a face on the boundary. The re-
maining tetrahedrons describe the shape’s volume and the boundary faces define the
surface. To my knowledge, this approach has not been extended to the general case
of manifolds of arbitrary genus.

Alpha shapes were designed to allow scientists to explore the spatial structure of
points sets, by extracting subsets of the Delaunay triangulation (Edelsbrunner and
Miicke, 1994). Given a omnipresent ball with radius a, a polytope (a face or edge)
of the triangulation is removed when the ball can enclose the polytope without en-
closing any of the vertices. The resulting triangulation is the alpha shape. Surfaces
can be reconstructed from point sets by extracting surfaces embedded in a-shapes
(Guo, Menon and Willette, 1997), though there is a trade off between reconstruct-
ing over sparsely sampled areas and maintaining details in densely sampled areas.
Unfortunately all of these techniques are based on first generating the 3D Delaunay

triangulation, at a worst case time cost of O(N?) and expected cost of O(N) (Dwyer,
1991).

5.2.3 Triangulation of Particles

Applying two dimensional surface reconstruction solutions suffice for small areas, but
does not solve the larger three dimensional problem. Generating three dimensional
proximity information does not simplify the problem, but transforms the problem into
one of extracting a surface description from a volumetric description. Conceptually
we would like the favorable qualities of a 2D triangulation to extend to triangulat-
ing our shape in 3D. One approach would be to locally compute a 2D triangulation
by projecting the subsets of data onto a plane, triangulating the data points, and
then projecting the triangulation back onto the original data set. Difficulties arise
in determining what are appropriate subsets of points to consider and how to merge
the resulting triangulations together. The real problem is that our data defines full
three-dimensional shapes of unknown structure and not special cases which reduce
to the two-dimensional domain. The N-dimensional Delaunay triangulation tests for
inclusion or exclusion of N-dimensional simplices. In 2D it tests triangles. In 3D
it tests tetrahedrons. We propose a test that takes the criterion of a two dimen-
sional Delaunay triangulation and extends it into the three dimensional domain while
preserving the two dimensional test.

In 2-D, a triangle is part of the Delaunay triangulation if no other vertices are
within the circle circumscribing the triangle. To extend the circumscribing circle idea
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to 3-D, we check the smallest sphere circumscribing each triangle. This is also the
3D analogue of the 2D Gabriel graph. Given any three points, if no other points
fall within the smallest circumscribing sphere, then these three points define a valid
triangle. If another point lies within the sphere, the triangle is not part of the surface
triangulation. Note that the smallest sphere circumscribing three points has embed-
ded in it the smallest circle circumscribing the three points, which is the 2D Delaunay
test. This circle is a great circle of the sphere.

To avoid computing triangles in areas without particles, we limit the length of valid
triangle edges (to 2 units of inter-particle spacing, by default). This also has the side
effect of pruning the number of triplets to test from O(N?) to O(N). The total cost
of the triangulation is O(N log N); O(N log N) to search for all nearest neighbors and
O(N) to test for valid triangles. The reconstruction heuristic works well in practice
when the surface is adequately sampled with respect to the curvature. To better
visualize the resulting surface, Gouraud, Phong, or flat shading can be applied to each
triangle. The results of using our triangulation algorithm are shown in Figure 5.3,
where the original point set is shown along with the resulting triangulation displayed
in wireframe and randomly colored filled triangles. Figure 8.17(e) is an example of a
Gouraud shaded triangulation.

5.2.4 Undesirable Triangulations

The goal of the triangulation algorithm is to compute surface connectivity based on
the spatial proximity of particles. However, the arrangement of the particles may
not suggest a “reasonable” surface. For example, consider the four vertices of a
regular tetrahedron (i.e. a tetrahedron made of equilateral triangles). From this set
of vertices, there are four combinations of three vertices that one can choose. Each
of these triplets corresponds to the face of the tetrahedron and each of these triplets
will pass the minimum sphere test. Thus, given these four vertices, the triangulation
algorithm will generate the faces of a regular tetrahedron. For this case, this is a
reasonable surface to generate.

Now let us consider the case of two spherical arrangements of particles, say V;
and V,. Suppose that when V; and V, are far apart, the triangulation algorithm
generates two triangulated spherical surfaces. Now further suppose Vi and V, are
moved closer together, such that two vertices from V; and two vertices from V,
correspond to the vertices of a regular tetrahedron. It is possible that the triangulation
algorithm will generate two spherical arrangements of triangles, plus the faces of
a tetrahedron and hence connect the two sets of triangles together. This may be
considered an “undesirable” triangulation of the points. We should note that generally
such an arrangement of particles would not be a minimum energy configuration for
an oriented particle system, unless there are external forces acting on the system.

As the two sets of particles are brought even closer together it is likely (depending
on the full set of circumstances) that the two spherical arrangements of particles will
merge, much like two soap bubbles will join with a wall between the two bubbles.
For particles interacting under the influence of the Lennard-Jones, co-circularity, and
co-planarity potentials, this would be a valid minimal energy configuration. Barring
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Figure 5.3: Triangulation of points

(a) A subset of points taken from a sphere of particles at equilibrium. (b) Triangula-
tion displayed as wireframe. (c) Triangulation displayed as filled triangles of various
colors.
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large external forces, the co-normality potential could be used to prevent collections
of particles with opposing normals from merging together. Such arrangements of
particles are the collision of two spheres (as above) and the folding of a sheet of
particles onto itself. With an appropriate choice of maximum triangle edge length,
this may prevent the generation of triangles between the two sheets.

Since our triangulation algorithm imposes no constraints on the possible positions
of the particles, we do not guarantee that the triangles generated will appear as a
“reasonable” or “properly” connected surface. Given a set of samples from a known
surface, it would be interesting to prove the limits of surface curvature and sampling
density over which our triangulation algorithm can correctly reconstruct the surface.
We leave this as an open problem.

We end this section on a philosophical note. The real question facing us is not,
“Does the triangulation algorithm guarantee reasonable surfaces?”, but rather the
more general question, “What is reasonable surface connectivity for arbitrary sets of
points?”.

5.2.5 C' Continuity

For generating smooth surfaces from polygonal meshes, one can apply surface subdi-
vision methods to replace the original polygon mesh with successively finer polygon
meshes, which in the limit results in a curvature continuous smooth surface (Catmull
and Clark, 1978; Peters and Reif, 1997) except at a number of extraordinary points
(Doo and Sabin, 1978). Many subdivision schemes produce meshes which are a com-
bination of quadrilaterals and convex polygons, with extraordinary points introduced
for polygons which are not quadrilaterals and at vertices with edge valence not equal
to four. Unfortunately, when applied to our triangulations, these approaches will
introduce a high number of extraordinary points: approximately 2N for Peter and
Reif’s scheme and 3N for Catmull and Clark’s scheme. Also, many of the polygons
are slow to refine. Luckily there exist subdivision surfaces designed for triangulated
surfaces of arbitrary topology. For example, Loop (1987) defines an approximating
subdivision schemes specifically for triangular meshes. His method generates refined
triangular meshes at each iteration and the extraordinary points are limited to the
original mesh vertices. Zorin (1996) defines a subdivision scheme well suited for tri-
angulations. In the limit, it interpolates a C' smooth surface between the original
vertices .

For imaging purposes, increasing the resolution of the particle system can be as
effective as fitting a C' surface. As the area of each triangle approaches the area
of an image pixel, the visual difference between a C° surface and the corresponding
C! surface becomes negligible. With the ability to render over 1 million anti-aliased
texture mapped triangles per second on current low end graphics workstations to
80 million on high end systems®, rendering large quantities of triangles is a feasible
alternative.

6Statistics from SGI’s Silicon Surf world wide web site (October 1997) discussing the SGI 02 and
Onyz2 RealityMonster systems.
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For guaranteed continuity, there are spline based techniques for specifying C* and
G' surfaces over polyhedra of arbitrary genus. Most techniques require the polyhedron
to be a triangulated polyhedron, thus circumventing difficult cases. In the general
case, the problem reduces to transforming a polyhedron into a triangulation. In our
case this is not a problem, since our polygonization is already a triangulation. Guo
and Menon (1996) and Bajaj and Thm (1992) interpolate triangulations of arbitrary
topology with implicit spline patches. Both assume normal vectors are defined at
the vertices, and construct intermediate geometries as a precursor to constructing the
surface patch. Loop (1994) presents an algorithm for approximating a triangular mesh
of arbitrary topology with triangular surface patches that meet with G' continuity.
The drawback of such techniques is that the generation of high order polynomial
patches which are expensive to compute. A second, equally significant drawback in
many applications (such as character animation) is the lack of control compared to
hand crafted piecewise spline surfaces.

5.3 Summary

This chapter discussed methods of generating continuous surface descriptions from
the discrete description provided by our particle system. We break the continuous
surface description problem into two separate problems, one for volume particles and
one for surface particles.

For particle systems of volume elements, we recommend an implicit surface ap-
proach to surface description. In this model, each particle is associated with a mono-
tonically decreasing field in R?® as a function of distance from the particle. This field
corresponds to the volume of the particle. The summation of all particle fields defines
another scalar field in R® which is a scalar field defined for the particle system, and
iso-surface is defined by the locus of points in R® equal to a constant scalar “thresh-
old” value. For a given point in space, testing the value of the field at that point
against the threshold value computes whether the point is inside, outside, or on the
surface. Polygonal approximations to the iso-surface can be constructed by sampling
the field function on a regular grid and determining surface intersections between
pairs of adjacent inside/outside points. Direct surface sampling techniques, such as
ray-tracing, can also be used for rendering. For general field functions, iterative root
solving techniques can be used to find the surface-ray intersections. For field func-
tions defined by low order polynomials, analytic solutions can be found over discrete
segments of the ray.

For particle systems of surface elements, we present an algorithm to construct
triangulations over an even distribution of particle samples. Our algorithm is based
on spatial proximity information as encoded in the Voronoi diagram and its dual, the
Delaunay graph. However, neither 2D nor 3D Delaunay tests are directly applicable to
our problem. In 2D the three point circumscribing circle test identifies valid triangles,
and in 3D the four point circumscribing sphere test identifies valid tetrahedrons.
Instead we wish to identify valid triangles in 3D. To do so we extend the essence of
the 2D test to 3D. If no other points fall within the smallest sphere circumscribed by
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three points, these three points define a valid triangle of our surface. Note that in
this test, the smallest circle circumscribing the three points (the 2D test) is a great
circle of the sphere. To allow our surfaces to separate, we limit the lengths of triangle
edges. This has the secondary advantage of reducing the number of particle triplets to
test to be linear in the number of particles. For generating smooth surfaces from our
triangulations, either subdivision surfaces or interpolating triangular spline patches
can be used.
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Chapter 6

Thermal Energy

Due to the nature of the Lennard-Jones energy function, it can be used to model
both the limited flexible deformations of a solid and the rapidly varying geometry of
a liquid. By varying the dissociation energy of the Lennard-Jones function, we can
model a continuous range of materials. For rigid solids, we increase the magnitude
of the dissociation energy, and for flexible solids we decrease the magnitude. Further
decreases result in fluid like behavior. Thus by varying the dissociation energy as
a function of thermal energy, we can create models that “melt” and “freeze”. This
chapter describes in detail how we model the effects of thermal energy on the potential
energy function, and a model of the continuous heat equation in terms of discrete
particles.

6.1 The Heat Equation

At the macroscopic level, the thermal energy 7 in a body A is given by integrating

over the volume,
b= / pof dV = / / /A pob dzdydz, (6.1)
v

where V' is the volume, p(z,y,z) is the mass density of the body, o(z,y,z) is the
specific heat, and 0(x,y, z) is the temperature. The amount of heat leaving a body
per unit time is given by

/S ndS = / / /A V- (KV0) dodydsz, (6.2)

where S is the surface, n is the surface normal, and K is a 3 X3 symmetric matrix
known as the thermal conductivity matrix.

Setting the rate of decrease of thermal energy in the body equal to the amount of
thermal energy leaving the body, we arrive at the partial differential equation called
the heat equation

Opol)
ot

V- (KVH). (6.3)

7
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For a homogeneous and isotropic material K = kI, where I is the identity matrix,
the equation reduces to the familiar form
0pat)
ot

= kV20, (6.4)

where V2 is the Laplacian.

6.2 Discrete Heat Equation

We use a discrete approximation of the general heat equation (6.3) to solve for the
thermal energy and temperature of each particle over time. The thermal energy of a
particle is related to the temperature as follows. We assume the specific heat ¢ and
temperature 6 are constant for a given particle. The mass m of an object is equal to
integrating the mass density p over the object’s volume. Since we already know the
mass, we do not need to specify the mass density or volume of a particle. From (6.1)
the thermal energy 1; for a particle reduces to

Y = oytm;. (6.5)
The change in thermal energy of particle ¢ over a time interval At
t—I—At wt
6.6
—x (6.6)

approximates the left side of the heat equation.

To approximate the right side of the equation, the V - (K'V) term, we introduce
a thermal conductivity variable k;; between each pair of particles ¢ and j. The ther-
mal conductivity is a measure of the rate of thermal energy transfer within a given
material. Insulators, such as Styrofoam, will have a lower thermal conductivity than
conductors, such as steel. We compute the approximation on a pairwise basis

Lk (0, —6;
V- (KEVO)~ 3 % (6.7)
JEN; 41
where 7;; is the distance between particles i and j, N is the set of nearest neighbors
for particle 4, and n; is the cardinality of V.

The approximation is based on the finite difference method. To see this, we look at
the 2D hexagonal configuration of particles shown in Figure 6.1. Let us consider the
case of the center particle, numbered 0, which has 6 neighboring particles, numbered
1 through 6. The Laplacian of the temperature at the center particle z = 0 is

9—90
_26 )

when approximated by finite differences (Vitasek, 1969). By combining (6.6) and
(6.7), we arrive at a discrete version of the heat equation over a three dimensional
hexagonal grid. Heat dissipation into the external environment can easily be modeled
by adding a term such as —3,0; to the discrete heat equation.

020 A (01 + 03+ 03+ 0, + 05+ 05) — 6,
0~ 1

4

(6.8)

r2
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Figure 6.1: Finite difference grid for the Laplacian

6.3 States of Matter

Having laid the basic ground work, we now consider the physical states of matter as
a discrete system. Liquids are qualitatively different from solids and the difference is
a matter of geometry (Barton, 1974). At the molecular level, when external forces
are insignificant, molecules arrange into closely packed structures to minimize their
total energy. For spherically symmetrical potential energy functions in 2-D, particles
arrange into hexagonal orderings (Figure 3.5). In 3-D, the molecules arrange into
hexagonal ordered 2-D layers.

As thermal energy is added to the system, the molecules begin to vibrate and
the entropy in the system increases. This movement is quantified at the molecular
level as kinetic energy. It is the relationship between molecular kinetic energy and
inter-molecular binding energy that determines the amount of entropy, and thus the
state of the ensemble. At low temperatures, the mean binding energy is greater
than the mean kinetic energy, and the material is highly ordered as a solid. At high
temperatures the mean kinetic energy is much greater than the mean binding energy
and the material is in total disorder as a gas. In the liquid state the molecules are
sufficiently close together for there to be local ordering, with only a small amount of
compressibility, but the kinetic energy is large enough to prevent long-range ordering.
It is the ability to provide such fluid changes in structure that we which to capture
in our approach to modeling.

6.4 Thermal Energy

As an object heats up, we do not increase the kinetic energy of the particles as
Greenspan does in his simulations of solids (Greenspan, 1973) or as in the molecular
model (Trevena, 1975). Instead, we collapse the mean kinetic energy (thermal energy)
of a small volume into a change in potential energy between volumes. We model
thermal energy and the inter-particle potential energies together by a continuous
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Figure 6.2: Family of inter-particle potential functions.

The weighted Lennard-Jones potential function plotted for m = 2, n = 4, r, = 1,
Ta =T, Ty = V379, and e = 1...14. The potential is weighted to include only nearest
neighbors.

family of inter-particle potential energy functions. Figure 6.2 shows several functions
from a family of functions. “Cold” temperatures map to functions with low potential
energy minima (deeper energy wells), while “hot” temperatures map to functions
with higher potential energy minimal (shallow wells). As thermal energy is added to
a system the total energy increases accordingly.

It is instructive to compare the differences between the typical molecular dynamics
model using particles and our particle approach. In the molecular dynamics model,
the addition of thermal energy increases the kinetic energy and the inter-molecular
potential energy function is fixed. The average speed of a volume of molecules corre-
sponds to a measure of thermal energy. The average velocity of a volume corresponds
to the rigid body motion of that volume.

In our model, the addition of thermal energy decreases the inter-particle potential
energy while the kinetic energy is unchanged. The velocity of a single particle directly
parallels the rigid body motion of a small volume of material, i.e. the average velocity
of a molecular volume. The dissociation energy of the Lennard-Jones potential cor-
responds to the combination of the binding properties and thermal energy. Addition
of thermal energy increases the total energy of the system without directly changing
particle velocity, thus avoiding the numerical instabilities, and possible visual arti-
facts, that would be introduced by increasing kinetic energy. We next discuss how we
modify the binding potential. We discuss the practical consequences in the summary
(Section 6.7).

6.5 The Thermoelastic Lennard-Jones Function

We now derive a thermoelastic version of the Lennard-Jones potential energy. To
insure conservation of energy, we impose the following condition on our system: the
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addition of an amount of thermal energy to a particle system should increase the
total energy of the system by that amount of energy, while leaving the kinetic energy
of the system constant. Let us consider some given particle system in two different
states, an unheated state Sy and in a heated state S;. We let Egq be the energy of
the system with zero thermal energy, and Es; be the energy of the same system with
the addition of E'y thermal energy. We write the energy conservation condition as

ESO + EH = ESl'

Expanding the system energies into kinetic and potential components by (3.9) we
have

EKO + EPO + EH — EKI + EPI' (69)

To derive thermal energy in terms of potential energies, we must formulate the
problem in terms of particle pairs. Toward this end, we make several simplifying
assumptions. These are:

e particle-particle interaction is limited to nearest neighbors,
e the system is at equilibrium,
e and thermal energy in F; is uniform throughout the system.

The first assumption can be easily enforced by setting our weighting function to go
to zero at the range of the second nearest neighbor, a distance of v/3r,. The second
assumption is equivalent to saying the system begins at absolute zero, and thus it
must be in equilibrium. Because it is at equilibrium and interaction is including only
nearest neighbors, the particles will be separated by the equilibrium spacing.

We begin by rewriting the potential energies Ep, and Fp; in terms of dissociation
energy and thermal energy. The term Ep( is equal to the summation of the pairwise
potential energies of an unheated system

N
Epg =) > wijdij, (6.10)

i JEN;

where ¢;;, is potential defined for zero thermal energy. The magnitude of dissociation
energy of the Lennard-Jones function for zero thermal energy is equal to some constant
value, say ey. Since the system is near equilibrium, neighboring particles are separated
by the equilibrium separation r,, the weighting function w;; evaluates to unity, and
the potential energy ¢;;, evaluates to —ey. Thus the inner summation reduces to a
product of the average number of neighbors A times the dissociation energy e,

> widijo = Y (1)(—eo) = —heo.

JEN; JEN;

and (6.10) reduces to
Epo = —Nhey. (6.11)
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Now let e; be the dissociation energy between a pair of particles in the heated system
S;. Similar to above, the potential energy of S; is

Ep, = —Nhe;. (6.12)

We can now compute a formula for the unknown dissociation energy e;. Combin-
ing (6.9), (6.11), and (6.12) results in

EKO - Nhe() + EH = EKl — Nhel.
By noting that the kinetic energy is constant, that is Exy = Ex, this reduces to
EH = —Nh(61 — 60).

Since we assume thermal energy is added uniformly to the system, we divide the
thermal energy F'y among the N particles assigning each particle ¢ thermal energy

Nl/) = —Nh(61 — 60).

The dissociation energy for zero thermal energy e is constant and we solve for ey,

€1 = € A .
This describes a method to vary the Lennard-Jones dissociation energy allowing us
to account for thermal energy.

To allow for heat transfer throughout the system, we remove the assumption of
uniform addition of thermal energy and allow the particles to have differing amounts
of thermal energy. We modify the dissociation energy defined between two particles
to be a function of the average of both particles, and two constants; the dissociation
energy between a pair of particles with zero thermal energy e,, and the average
number of neighbors h (6 for a surface, and 12 for a volume).

vty

6z‘j(¢ia¢j) =€ oh

The final form of the thermoelastic Lennard-Jones potential is as follows:

_ -1 ¢Z+¢ To " To "
olrslovor) = o (e U5 (m () (ig) ) o

where ||r;;|| = |[x; — x;|| is the magnitude of separation between particles 7 and j.
This formulation is valid for all values of ¢y < e,h. Note that negative values of
temperature are equivalent to increasing the stiffness of the material, i.e. increasing
the magnitude of e,.
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Figure 6.3: Neighborhood Interactions

6.6 Thermal Expansion

When the temperature of a body is raised or lowered, the material will expand or
contract. Thermal linear expansion is described by the following formula (Case, 1938)

lz = ll (1 + a(@bg - ’le)) (614)

where [; is the length of a rod at temperature vy, l5 is the length at temperature s,
and « is the linear expansivity. That is, the rod will expand by the amount [;aA.
If the expansion is opposed, then the resulting stress El;aAvy will be determined by
Young’s modulus (3.19). Linear volume expansion is described by

Vo =Vi(1+ B2 — 1))

where V] is the volume at temperature 11, V5 is the volume at temperature 15, and (3
is the volume or bulk expansivity. For values of less than 2%, the volume expansivity
is approximated well by 8 = 3a. In general, solids and liquids expand upon heating,
and contract upon cooling [CRC mathbook pg. 317]. The expansivity coefficients for
liquids tend to be much larger than for solids. Water is a notable exception in which
the expansivity depends on temperature and has a negative value over the range of
0°C and 4°C.

The thermal energy model for our particle system maintains a common equilibrium
separation and collision distance, to avoid unwanted side effects. The expansion or
contraction of the particle model due to temperature changes is dependent on the
neighborhood range. We consider two cases for which the system is at minimum
energy.

In the first case, the neighborhood range is such that a given particle only inter-
acts within the first shell of neighboring particles as shown by the smaller circle in
Figure 6.3. At equilibrium, each neighboring particle will be separated by the equi-
librium separation 7, and the inter-particle forces will be zero. As the object heats,
the equilibrium separation will remain constant and the object neither expands nor
contracts. To tailor the equilibrium separation to specific materials, one could vary
the equilibrium separation according to (6.14), rewritten here as

ro(¥2) = 7o(1h1) (1 + a(th2 = ¢1)) (6.15)
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where « is the linear expansivity, r,(1);) is the equilibrium separation at 1, and r,(12)
is the equilibrium separation at 1)y. Coeflicients of expansion for a wide variety of
solids and liquids can be found in (Miner and Seastone, 1955).

In the second case, the neighborhood range is expanded to include particles beyond
the nearest neighbors, i.e. particles within the larger circle shown in Figure 6.3. At
equilibrium, there will be compression of the solid due to the long range attractive
forces between the center particle and the distant neighbors. As the temperature
decreases, these attractive forces will become stronger and the particle system will
contract further. In this case, the model mimics the general rule of decrease in volume
when the temperature decreases and expansion of volume when the temperature
increases.

6.7 Summary

The contributions of this chapter are the introduction of a particle based thermoelastic
model with energy conservation and the introduction of a discrete heat transfer model
derived from the macroscopic heat equation. Our thermoelastic model states that the
elastic force of the Lennard-Jones potential is linearly related to the thermal energy
(and thus temperature), as is the thermoelastic model presented by (Terzopoulos,
Platt and Fleischer, 1989) for spring-mass systems. It extends their model to particle
systems and adds the constraint of conservation of thermal, kinetic, and potential
energy over the system. Heat transfer is based on the continuous heat equation
at the macroscopic level, which is implemented as a finite difference scheme over a
hexagonal grid.

The model includes the physical quantities of thermal energy, volume, mass den-
sity, mass, specific heat, temperature, and thermal conductivity. For each particle
we need to add only one new variable of state, the thermal energy of the particle,
and one variable to accumulate the heat transfer between neighbors. A thermal con-
ductivity variable could also be added to each particle to model non-homogeneous
materials. The remaining physical quantities can be defined as constants or derived
from existing state variables.

Our model focuses on variations in malleability and does not model a variety
of more complex phenomena found in real world materials. For example, it does
not necessarily model the changes in volume found in some materials such as the
expansion of water upon freezing, the shrinking of many metals when cooled and
some plastics upon heating. Instead, the model encourages conservation of volume.
Such volumetric changes could be added to the model by defining the equilibrium
separation parameter r, as a function temperature, as given in equation (6.15). Our
model is valid for the range ¥ < he, which accounts for solid and fluid behavior. It
is invalid when v > he,. That is, we do not model gaseous behavior.!

'When 9 = e,h, the Lennard-Jones potential evaluates to zero, and when ¢ > e,h the potential
inverts, resulting in long range repulsive forces and short range attractive forces. The long range
repulsive forces mimic the nature of a gas. The short range attractive forces encourage nearby
particles to occupy the same position, unlike a gas. Thus if we wanted to mimic gaseous behavior,
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Figure 6.4: Beam colliding and melting

The first two frames shows the initial rigid structure of the beam colliding with an
object and coming to rest on the ground plane. It is highly ordered and maintains it’s
structure even under external forces and collisions. As heat is transferred from the
ground plane into the object, the inter-particle bonds weaken and the beam exhibits
fluid like behavior with quickly changing structure.
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A simple example of melting is shown in Figure 6.4. A solid beam is dropped,
colliding with a sphere and the ground plane. After coming to rest, it is “heated”
by the ground plane. Heat is transferred through the beam according to the discrete
heat transfer model. The resulting weakening of the inter-particle bonds causes the
solid to “melt”, thus losing its initial structure. Other applications of heat are shown
in Figures 8.11 and 8.12, where heat is used to locally modify the properties of a
surface, making it more malleable than the surrounding material.

we would need to replace the attractive force with a repulsive force for all values ¥y > e,h. One
possible solution would be to replace the Lennard-Jones with a purely repulsive force at these values.



Chapter 7

Implementation Issues

In this chapter we review issues relevant to the implementation of dynamically coupled
particle systems. Of importance are the issues of efficiently computing the forces for
large numbers of particles, computing the set of nearby neighbors for each particle,
the stable and efficient numerical integration of the computed forces over time, and
methods of interactively visualizing the system.

7.1 Efficient Force Computations

The state of a dynamically coupled particle system at a given time is described by
the set of particle positions, orientations, translational and angular velocities. Using
this state information, the forces and torques on each particle can be computed di-
rectly from the inter-particle force functions. By numerically computing a discrete
approximation of the force over the time interval, the system state can be updated
to the next time step.

The tractability of these computations is a limiting factor in the ability to interact
with these systems in real-time. With appropriate assumptions we can reduce the
complexity in both time and memory requirements. In this section we discuss the
computational problems, possible solutions, and our choices.

7.1.1 Direct Pairwise Computation

The definition of the force on a particle ¢ due to the other particles, is the sum of the
pairwise inter-particle forces

N
fi =) £,
J#i
where N is the number of particles. A straight forward computation of the forces for
the above equation is conceptually and computationally simple, but not necessarily
the most efficient. Such an evaluation will require O(N?) operations, making it rea-
sonable for small systems, yet prohibitively expensive for large values of N. Since we
may use on the order of several thousand particles we need a better solution.

87
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7.1.2 Mesh Methods

When individual inter-particle forces are small, yet the cumulative effects of inter-
particle forces are significant, then a mesh method may be useful in reducing the
amount of computation (Hockney and Eastwood, 1988). If the forces can be described
in terms of a continuous potential field, then a mesh approach is valid. The basis of
the approach is to approximate a field that is continuous in space by a set of discrete
values on a finite mesh covering of the space.

The total cost of the mesh approach is proportional to both the number of parti-
cles and the number of mesh points. Thus, for a coarse grid, the mesh method may
result in large gains of speed over the direct approach. One drawback is that the gain
in speed is traded for a loss of accuracy, as each step in the process introduces new
errors. In addition, the accuracy is highly dependent upon the relationship between
the continuous functions and the mesh spacing. In order for the mesh to adequately
approximate a system, the mesh spacing must be smaller than the important wave-
lengths of the system. That is, potential fields are poorly represented on the mesh
for distances less than the mesh spacing. Mesh techniques become useful when the
problem involves smoothly varying forces.

To approximate the Lennard-Jones force would require a mesh spacing signifi-
cantly smaller than the average inter-particle spacing, resulting in more mesh points
than particles. Thus, for our problem, the mesh approach will consume more time
than the direct O(N?) approach.

7.1.3 Combined Methods

The third approach combines features of the direct and mesh approaches, taking
advantage of their respective strengths (Hockney and Eastwood, 1988; Greengard,
1988). It is adequate for highly correlated systems with smoothly varying long-range
forces. The key of the approach is to split the inter-particle forces into two parts:

f=1f +1f (7.1)

a rapidly varying short range force f; which is nonzero for only a few inter-particle
distances, and the slowly varying long range force f; which is sufficiently smooth to
be accurately represented on a mesh. The direct method is used to find the total
short-range force contribution on each particle, while the mesh method is used to
find the total long-range contribution. The total cost is proportional to the number
of particles and the total number of mesh points. This is a reasonable approach for
the potential energies we are using.

7.1.4 Limited Force Range

The final approach is to compute the short range forces using the direct particle-
particle computation, and to ignore distant forces. This is a valid assumption in highly
correlated systems where there exists strong short range inter-particle forces and the
distant forces are insignificant. Assuming a reasonably distributed set of particles,
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there will be at most a small number of neighboring particles that contribute to the
total force of a given particle, resulting in O(N) computation time for the entire
system of N particles.

The drawback of this approach is that it is restricted to forces that decay to near
zero at the force cut-off boundary, otherwise discontinuities will be introduced into
the continuous force function. It is wise to avoid such discontinuities as they will
create instabilities when we numerically integrate the forces.

7.1.5 Discussion

From considering the choices available to us, the combined method and the direct
method! with a limited force range are the two computationally feasible approaches.
The mesh method is not suitable for highly correlated systems such as ours, and the
full direct method would require O(N?) operations per time step, thereby limiting
interactive shape modeling to small systems of particles.

The nature of our applications suggests the use of the direct method with lim-
ited force range as the best solution. We have designed our inter-particle potential
functions so that the forces decay as a function of distance, allowing distant forces
to be ignored. Still the potential discontinuity at the boundary introduces a force
discontinuity contributing to numerical instabilities. To alleviate this we can use the
weighting function (3.12) which goes to zero at the boundary, thus insuring a contin-
uous force function. In addition to computational efficiency considerations, limiting
the potential functions provides a consistent potential energy representation of the
merging and splitting characteristics of our dynamically coupled particle systems.
When two objects are separated by the force range distance, the potential energy
description of the two objects is also independent.

An important consideration, we have neglected so far in our analysis, is the com-
putational cost required to find the neighbors of each particle. We discuss this next.

7.2 Neighbor Computation

We now look at the problem of finding the set of neighboring particles for each particle.
This problem is formalized as the range search problem.

7.2.1 The Range Search Problem

An essential condition of computing the inter-particle forces is finding the neighbors of
each particle. This can be stated as finding an O(N) subset of particle pairs from the
O(N?) possible pairs, such that each selected pair is no farther apart than a specified
distance r. This type of search problem, known as the range search problem, has been
studied extensively in the computer science literature (Overmars, 1983; Preparata and

1The names “direct”, the “mesh”, and “combined” methods also go by the names of “particle-
particle”, “particle-mesh”, and “particle-particle-particle-mesh (P3M)” respectively(Hockney and
Eastwood, 1988).
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Shamos, 1985; Samet, 1989; de Berg et al., 1997; Goodman and O’Rourke, 1997).
Formally we state this as:

Given a set of three-dimensional points {z1,zs,...,2Zx}, and a sphere of
radius r, centered at position x,, which points x; satisfy the condition
|xs — x;|| < r, where ||xs — x;|| is the Euclidean distance measure?

A single range query is easily performed in linear time, by examining each of the
N points. Linear space will suffice as only the positions must be stored. However,
to compute the force of the system, we will need to find the nearby neighbors of
each particle, resulting in O(NN?) operations. In addition to the computing forces,
the range search problem appears in triangulation, particle creation heuristics, and
in the use of modeling tools. Similar to our desire to reduce the force complexity to
something tractable, we want to reduce the computational complexity of the range
search problem.

The approach to choose depends upon the application at hand and properties of
the data, such as: Are the range queries of a constant size search radius or variable
search radius? Is the data set fixed, or will points be added and deleted? Are the
data points uniformly distributed throughout space, or highly localized?

We consider the approach to use in light of the application areas of this thesis:
computer assisted animation, geometric modeling, and surface reconstruction. Below
we list the qualities of the various applications, while noting that the needs of specific
applications within these fields may vary. For all applications, the range queries
will generally be of a small range for the force, triangulation, and particle creation
heuristics. Likewise we can expect the use of modeling tools to range from including
all of the particles to only a few. For all applications the points will be uniformly
distributed in space at the local level, though non-uniform at the global level. Volumes
will have denser local grouping of particles than will surfaces. For all application areas
we can expect cases when we will want to add or delete particles from the system.
The basic search operation required, in order of frequency, are: (1) range search, (2)
insertion, (3) deletion, and (4) point existence. The last three operations assist in
interactively grabbing, moving, adding, and deleting particles.

In the remainder of this section, we review several types of spatial data structures
and comment on them in relation to our dynamically coupled particle system. Because
our points sets and queries will be relatively well behaved, we will focus our discussion
on simple data structures that will perform well on average, instead of focusing on
complex data structures optimized for worst case performance. We begin with the
hashing, followed by direct access grid structures, and end with multi-resolution tree
structures.

7.2.2 Hashing

Hashing is a process used to quickly distribute and retrieve data among a fixed number
of memory locations. Given a data point p;, a hash function H(p;) = A; can be used
to compute an address A; which is the address of a block of reserved memory, called
a bucket, in which the data point is stored for later reference. Frequently this is
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implemented using low level bit operations to provide fast index computation. It
has become common usage to define all indexing functions which use low level bit
operations as hash functions. An example of such a function? is given in Graphic
Gems (Glassner, 1993)[page 343]. Instead, we will use the theoretical definition of
hashing as given below.

The theoretical goal of hashing is to take highly structured and sparse data in the
domain, and provide a mapping into a uniformly distributed range, thus reducing the
amount of memory required while providing constant time access. This is normally
accomplished by defining the hash function to be a randomizing function with uniform
distribution. A given input to the hash function must always produce the same
output address in order to store and subsequently retrieve data values. Thus the
function cannot be truly random, but rather pseudo-random. A random and uniform
distribution of data, has the advantage of reducing the amount of memory required
to be of the same order as the size of the data set. A second advantage is the hash
function provides direct access to each data item for efficient insertion, retrieval, and
deletion. There are, however, two corresponding disadvantages (Samet, 1989). First,
it is difficult to find a suitable hash function that will map each data point to a unique
location. Second, since hashing functions randomize the data, the function destroys
the spatial relationships between data points. Destruction of the spatial relationships
makes such a hashing scheme unsuitable for solving the range search problem.

7.2.3 Fixed Grid

The fixed grid is a spatial data structure that partitions space into equal constant size
cells, with each cell storing the points falling within the cell volume. By partitioning
3D space along orthogonal planes, the mapping from a bounded R? volume to the
finite number of cells can be directly computed from each point’s x, y, and z values.
The extent of the 3D grid can be easily computed by finding the minimum and
maximum values of z, y, and z values. Provided the point set is uniformly distributed,
the fixed grid can provide constant time insertion, deletion, point existence, and range
search queries of small search radii. Thus it is an appealing solution to our problem.

The performance of the fixed grid depends on the ratio of the grid volume search
to the actual search volume, the bucket size, and the distribution of points in space.
As the cell width decreases, a smaller volume of the grid is searched, but at the cost
of accessing more cells. A standard cell width to choose is one equal to the search
radius. This requires testing the cell in which the center of the search radius falls, and
the adjoining cells, for 27 cells in all. Using half the cell width results in accessing five
times as many cells and approximately half the total volume. Using double the cell
width results in accessing only eight cells, but almost three times the total volume.
The most efficient search will result in a tradeoff between accessing more cells and
testing fewer points. The optimal balance between the cell width and search volume
depends on the relative costs of the accessing more cells and of testing a point for

2This function concatenates the high order bits of three integer indices together. The result is a
new integer index.
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inclusion. Both are implementation dependent. The number of points in an average
cell is also dependent on the distribution of particles. Due to the short range repulsive
and long range attractive forces, particles will be uniformly distributed at a local level,
in sheets for surfaces and in tightly packed clusters for volumes. At the global level,
the shape of the object determines the distribution. In general, we suggest using a
cell width equal to the search radius.

The amount of memory required to represent the grid is dependent upon the
number of cells. The number of cells is a function of the extent of the grid and the
cell width. We begin by considering a simple example, such as modeling a sphere.
If we model the sphere by volumetric particles, the number of cells in the grid will
O(N) where N is number of particles. If we model the sphere by surface particles,
the number of cells in the grid will be O(N®/2). This indicates that for large systems
of oriented particles the majority of the grid will not be used. A 2D example of this is
shown in Figure 7.1(a). Of course, we could construct cases where the solid model is
sparse in space, such as a long thin twisted wire. In this case the grid will grow faster
than linear in the number of volumetric particles. Likewise, we could construct cases
where a surface has numerous folds effectively filling space. In this case the number
of grid cells grows linearly with the number of surface particles. From a practical
perspective we will assume dense solid models and surfaces that do not tend to fill
space. Thus we will state that in general the amount of memory used will be of O(N)
for volume particles and O(N3/?) for surface particles.

The final consideration is the bucket size. When the bucket size is too large,
memory resources will be wasted. When the bucket size is too small, bucket over-
flows will occur requiring additional computation. To find a balance we consider the
distribution of the points in space. Let us consider the two simple cases: (1) when
particles are modeling a volume, and (2) when the particles are modeling a surface.

Volume Case

In the volume case, the particles are uniformly distributed throughout the volume of
the object model. Due to the Lennard-Jones force, at equilibrium the particles will be
separated by the equilibrium separation r,, and under external forces we will assume
no closer than the collision distance ¢. To find an upper bound on the number of
particles in a cell we will assume the cell is completely enclosed by the model volume,
with particles represented by tightly packed spheres of diameter . From the volume
packing density (Section 3.4.1) we can compute the number of tightly packed particles
that will be present in a given volume, thus resolving the issue of bucket size. The
upper bound on the number of particles in a cell is the integer ceiling of

- (2)

) — =
Vs o

where P, is the volume packing factor for tightly packed spheres (3.20), V; is the
volume of a cubic cell of width w, and V5 is the volume of a sphere of diameter o.
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Surface Case

We now consider the uniform distribution of particles over the surface of a model. We
could consider the case of a planar section cutting through the cell, but to create a
better upper estimate we consider a surface of high curvature. Let us assume the cell
encloses a hemisphere with diameter equal to the cell width. From the area packing
density, we compute the number of particles in the cell as the integer ceiling of

pAi_ T (ﬂ)
A2 \/3 g
where P, is the area packing density for tightly packed circles (4.1.9), A; is the area
of the hemisphere of diameter w, and A, is the area of a circle with diameter o.

Summary

In summary, the grid provides fast constant time insertion, deletion, point existence,
and range search queries for our problem when the optimal cell and bucket sizes are
chosen as described above. We suggest a cell width equal to the search radius for
efficient range searching. When modeling surfaces, in general, the number of grid
cells will grow O(N'/?) faster than the number of particles, suggesting this is not the
best structure for surfaces. However when modeling volumes, in general, the grid
grows linearly with the number of particles making it a reasonable choice.

7.2.4 Reduced Grid

For certain classes of data, we can combine aspects of the fixed grid data structure
and hashing to create a “reduced grid” which limits the amount of memory required
while maintaining fast storage, retrieval, and range searching (Szeliski, 1998). For
this discussion we relax our definitions of the fixed grid and of hashing. We use the
definition of hashing as the ability to quickly compute an index value and instead
of randomizing the data, the hashing function will maintain the spatial structure
inherent in the data set. The definition of a grid is modified so that cells map to
multiple disjoint regions of the volume.

One reduces the number of cells in a grid of size M3 by a factor of D? by applying
a modulo based hashing function when computing the grid indices for each point. If
the fixed grid indices for a point are the integers i, j, and k, then the reduced grid
indices for this point would be i mod E, j mod FE, and k mod E, where E = M/D.
When E is a power of two, this is equivalent to masking out the high order bits
of the index. Omne can also think of this as a redistribution of points through a
modulo transformation of coordinate space. The result of this transformation is
being able to reduce the number of cells necessary for storage, while keeping the
original spatially close points in adjacent cells, where adjacency includes the concept
of “wrapping around” the grid. A range search on the reduced grid will be guaranteed
to return spatially close points, yet it may also returned distant points. A second
drawback, is that point sets which are aligned with the major axes or point sets with
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Figure 7.1: Storage of points in a grid.

(a) A 2D example a string of points stored in a 16x16 fixed grid. (b,c) Same points
stored in reduced grid using modulo based indexing. (b) Grid reduced to 8x8, (c)
Grid reduced to 4x4.

periodic structures may create high density regions in the reduced grid. Despite these
drawbacks, reducing memory requirements by several orders of magnitude may be a
sufficient reason for its use in certain applications. The reduced grid is illustrated in
Figure (7.1) with a hypothetical 2D curve formed by a string of points.

7.2.5 Hierarchical Structures

One way to reduce the total number of unused cells and avoid the the bucket overflow
problem is to adaptively vary the cell size through recursive subdivision (Samet,
1989). On overflow the volume of a cell is divided among a set of smaller cells, each
with its own bucket. The original cell becomes a parent cell, and the new cells are
children of the parent. As a child cell’s bucket becomes full, it will become a parent
cell, split, and create children. The relationship between the parents and children can
be described by a directed tree structure where the nodes of the graph correspond to
cells and the arcs between nodes correspond to the parent-child relationships.

Region-Based Tree Structures

A region quad-tree® is a directed tree-based data structure which recursively decom-
poses space based on the density of points. Initially, a quad-tree starts as a single

3In two dimensions, a quad-tree subdivides space into four quadrants. A three dimensional
quad-tree, commonly called a oct-tree, subdivides space into eight octants. The quad-tree easily
generalizes to higher dimensions. For generality we will use the term quad-tree to refer to such a
tree in any dimension.
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cell represented by the root of the tree. As data points are added, they are stored in
the root cell’s bucket until it is full. When full, the cell subdivides its space among
24 equal size children cells each with its own bucket (where d is the dimension of the
space), and then transfers each of its data points to the appropriate child. Applied
recursively, this creates a tree structure.

Similar to the region quad-tree, the region kd-tree recursively subdivides space.
At each level of the tree it subdivides space into two equal size regions, alternating
the axis along which space is divided. This gives the kd-tree a branching factor of
two at each node, compared to 2¢ for the quad-tree.

The region quad-tree and region kd-tree exhibit identical theoretical time com-
plexity and are suitable for our purposes. Building a tree of N points will take on
average O(N log N) operations and require O(N) memory. Point insertion, point
deletion, and point existence queries each require O(log N) operations on average,
where log N is the average distance from the root node to a leaf node. A range search
can be performed in O(F + N'*/4) in the worst case, and in practice the query will
take O(F +log N), where F' is the number of points returned and d is the dimension.
Since we expect particles to be evenly distributed over an area, at the local level, it
is unlikely that the worst case time will actually occur.

Point-Based Trees

Point-based trees are spatial data structures used to encode a set of point data, by
recursively subdividing space based on the location of individual points. Each node
in the tree corresponds to a unique point in the data set. For a data set with N
points, this results in exactly /N nodes in the tree.

According to Overmars (1983), such quad-trees were the first data structures
devised for solving the range search problem efficiently. In a point quad-tree* one of
the data points is taken to be the root, and based on the value of the data point,
a d-dimensional space is subdivided into 2¢ quadrants, thus splitting the data set
into 2% subsets. These subsets, minus the original data point, will be encoded in the
subtrees of the root node. This process is recursively applied until each quadrant
contains at most one data point.

The point kd-tree was introduced as an improvement over the point quad-tree.
While the quad-tree is a 2%-ary tree, the kd-tree is a binary tree. This reduces the
branching factor at each node and thus the overall storage requirements. At each
level down the tree, the point kd-tree divides the set of points in two, alternating the
dimensions along which space is split.

The theoretical computational complexity of the point quad-tree and point kd-
trees are the same as their region based counter-parts: O(log V) time for insertion,

Tt has been suggested that the region quad-trees and the region kd-trees be called quad-tries
and kd-tries, to differentiate them from the original point based tree structures they were derived
from. However this naming convention never became popular, and at least in computer graphics
the unqualified term “quad-tree” usually refers to a (region) quad-trie, and not the original (point)
quad-tree. To distinguish between the two data structures (quad-trees and quad-tries), We use the
term “quad-tree” preceded by the qualifiers “region” (a trie) and “point” (the original tree).
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and point existence queries, O(N log N) time to build the tree, and O(/N) memory.
A range search query takes O(N'~/4) in the worst case and O(F + log N) in the
average case. However deletion is more complex because the data points also serve
to partition the space from which they are drawn.

Range Trees

A third type of tree, the range tree, yields better worst-case range search times at
the expense of storage and a more complicated implementation (Overmars, 1983; de
Berg et al., 1997). A range tree query performs a 1-dimensional search along the
first dimension to select a subset of the data. The subset of data is then searched
using a 1-dimensional search along the second dimension to find a smaller subset of
the data. This procedure is recursively applied until all dimensions are exhausted.
Range trees require O(N log?~! N) storage, O(N log® ! N) operations to build, and
provide a worst case range search time of O(log? N + F). Layered range trees (de
Berg et al., 1997) use fractional cascading to reduce the search query time by a factor
of O(log N) to O(log” ' N + F), while maintaining the same storage requirements.
The worst case range search time is better than the quad-tree or kd-tree worst case,
but in practice the quad-tree and kd-tree will perform as well, or better (Overmars,
1983).

Summary

Region based and point based tree structures provide an elegant approach to solving
the range search problem. Point based trees tend to be simpler to code and maintain,
because:

e The partitioning of space is implicit in the data points rather than explicitly
specified as required by a region based tree.

e Leaf nodes and interior nodes can be the same data type.
e One does not have to maintain and search buckets of data.

However, when searching the tree for data points, a region based tree may require
slightly less computation. This is because the use of buckets reduces the depth of
the tree and thus the time required to find the relevant data points. One should
note, however, that for certain data sets the region based trees may result in highly
unbalanced trees. Kd-trees have the advantage that the algorithm is independent
of the dimensionality of data, allowing one to write a single kd-tree implementation
for both 2D and 3D simulations. Also a well designed implementation can be used
for searching arbitrary types of k-dimensional data, not just point based data. It
has also been argued that the kd-tree branching factor of two is preferable to the
2¢ branching factor of a quad-tree, because this reduces the memory cost of interior
nodes (Samet, 1989). From a theoretical point of view, the region based trees, the
point based trees, quad-trees, and kd-trees exhibit similar computation and memory
costs. Range trees provide better worst cast performance at the expense of memory
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and a more complicated implementation, but in practice the simpler tree based data
structures will perform as well or better.

7.2.6 Discussion

A fundamental problem encountered in the implementation of dynamically coupled
particle system is the problem of finding the neighbors for each particle. This problem
appears in the computation of forces, in the particle creation heuristics, in surface
triangulation, and in the use of modeling tools. The problem is formalized in Sec-
tion 7.2.1 as the range search problem. To solve the range search problem we have
compared the use of hashing, fixed grids, reduced grids, and hierarchical based data
structures.

Hashing, a technique for efficiently storing and retrieving data, is ineffective for
computing such spatial relationships. The fixed grid data structure, which partition
space in equal size cells, is a good choice for volume modeling, though inefficient
in memory for surface modeling. The reduced grid data structure overcomes the
memory problem of fixed grids, though search performance may be poor for data
sets aligned with the major axes and for data sets with spatially periodic structure.
Since our particles will be uniformly distributed with respect to the object being
modeled, hierarchical structures are good for both volume and surface based particle
systems. The uniform distribution will tend to create well balanced trees resulting
in efficient access. When the cell bucket size is chosen wisely, the region-based trees
maybe be faster than point-based trees, as the time needed to traverse farther down
a point-based tree will outweigh the extra distance tests that will be included in a
region-based tree search query. If we use uniform splitting of regions, a region-based
tree structure can produce the same partitioning of space as a fixed grid, but with
varying resolution. Thus, we can use arguments similar to those presented for the
fixed grid to select a leaf cell bucket size.

The best data structure to use will ultimately depend on the given application,
and whether one wants to favor generality or speed. In practice, we use a region kd-
tree with uniform splitting along each dimension. To further reduce computation, we
perform this operation occasionally and cache the list of neighbors for intermediate
time steps. We use the kd-tree for both our surface and volume modeling research.
Our implementation is independent of the dimension of the data, the size of the
data set, the data types, and the distribution of data. While we chose a kd-tree for
generality, a production system may wish to trade generality for a strategy finely
tuned to the problem at hand. For such a finely tuned systems, we would suggest
a region tree or reduced grid for surface modeling, and a region tree, fixed grid, or
reduced grid for volume modeling.

7.3 Numerical Integration

In this section we discuss methods for integrating the forces of our particle system
over time to arrive at a new system state consisting of a position and orientation for
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each particle.

7.3.1 Equations of Motion

Having resolved our method of efficiently computing the forces, torques, and the
neighbors for a system of particles, we now turn to the problem of integrating the
forces through time to compute the time-varying positions and orientations. To create
materials which behave as real-world materials, with momentum and the transfer of
momentum between objects, we integrate a second order dynamics system. This is
appropriate for applications such as physics-based animation where the motion of
the objects over time, is more interesting than the final energy minimum. On the
other hand, a first order dynamics system is more appropriate for many applications
which solve an optimization criterion, such as surface fitting to data samples, For
this case, it is adequate to assign the computed forces to the velocity vectors and
solve for the change in positions. This is a straight forward simplification and not
discussed further. We will discuss the more complex problem of integrating a second
order dynamical system.

An un-oriented particle system is governed by (3.1). An oriented particle system
is governed by (3.1) and (4.1). Including the model of heat, the inter-particle force
terms are functions of the form

fz’int = fiint(xla a1, 1/)1’ X2, 42, 1/)27 <o XN, N, ¢N)

and the inter-particle torque terms are of the form

z:nt _ ant

T, =T, (XlathZana"':XN:qN)a

which is identical to equation (4.4). The external force and torque terms f¢** and 7¢**
are functions of individual particle positions, particle orientations, and external state
variables and are given by the Lagrangian equations of motion (4.3), and (4.5).

An optimal solution strategy depends on the type of equations we are trying to
integrate. Equations (3.1) and (4.1) are second-order non-linear ordinary differential
equations. The force and torque functions introduce highly non-linear terms making
this a difficult problem to solve. In addition, the torques are dependent on both
particle orientations and positions, thus coupling (3.1) and (4.1) together. We char-
acterize our problem as an initial value problem on two sets of coupled second order
non-linear differential equations, with the goal of determining the values of the de-
pendent variables x; and q;, for 7 =1,2,..., N, at a set of values in the independent
variable t.

The standard approach is to first reduce the second order system of differential
equations into two coupled sets of first order differential equations, and then numer-
ically approximate the unknown dependent variables using a finite difference based
scheme (Press et al., 1992). For example (3.1) can be rewritten as

dXi
dt
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de' fz
a  m (7.3)
fi = fzmt - fie:ct — YiVi, (74)

where the velocity v; is a new state variable. An equivalent reduction exists for (4.1)
Using numerical techniques, the values of x; and v; can then be advanced from their
values at time ¢ to their new values at time t + At for some value At.

7.3.2 Overview of Integration Methods

To solve the initial value problem, all numerical techniques discretize the changes in
the dependent and independent variables as finite steps, e.g. At, Ax;, and Aq,;. Doing
so allows one to represent the differential changes as algebraic equations composed
of these finite steps. As the step size is made small, a good approximation to the
underlying differential equation is achieved. There are two approaches to constructing
such algebraic equations. Explicit schemes produce new dependent variable values
explicitly from the algebraic equations in terms of previous dependent variable values.
Implicit schemes produce the new values implicitly in terms of both previous and new
dependent variable values.

Implicit schemes applied to linear systems are guaranteed to be stable for any
step size, and for non-linear systems are known to generally exhibit good stability.
The computational complexity required at each time step is their major drawback.
Implicit formulations are easily solved by matrix factorization for linear systems of
equations. However, non-linear systems of equations have to be solved iteratively
at each step, which can be extremely slow compared to explicit methods. Semi-
implicit methods result when one linearizes a non-linear system of equations, and
then iteratively solves the linearized version. This still requires matrix factorization,
perhaps more than once per time step.

Writing the particle system dependencies as a matrix will result in an M x M
matrix, where M is the number of particles times the number of degrees of freedom
per particle. Assuming a particle system with nearby neighbor dependencies, the
corresponding matrix will be unstructured and sparse. In fact, the positions of the
non-zero elements will be continually changing due to the dynamic coupling inherent
in our system. While there exist specialized techniques for inverting certain subclasses
of sparse matrices, such as banded diagonal matrices, unstructured sparse matrices
will require more general techniques. One could use standard techniques such as
Gauss-Jordan elimination or LU decomposition, both requiring O(N?3) time®. Since
our sparsity pattern is irregular one may want to use matrix techniques designed
for sparse linear systems (Press et al., 1992), to reduce the fill-in that occurs during
matrix inversion. Such techniques have three steps: (1) An analyze step is done once
for each non-zero pattern, (2) a factorize step is computed for each matrix fitting
the pattern, and (3) an operate step is computed for each new right-hand side of
a matrix equation. Since our particle couplings will be dynamically changing, the

5Matrix inversion software solutions in general require O(N?) time, however it has been shown
that inversion can be computed in O(N'°827) (Press et al., 1992, page 104).
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analyze portion, the most computationally expensive of the three steps, will need to
be repeatedly computed along with the other two steps. Relaxation methods can also
be used to speed up the convergence of a solution to a matrix equation. Multigrid
relaxation methods (Terzopoulos, 1986) alone and combined with conjugate gradient
descent algorithms (Szeliski, 1990) have been shown to decrease the computational
time needed to find minimal energy states for optimal surface fitting problems in
computer vision.

Explicit schemes are popular because new values can be computed directly from
previous values. However, unless care is taken, they have a tendency to become
unstable or require a small step size. There are a variety of explicit schemes to choose
from depending on accuracy and efficiency. According to Hockney and Eastwood
(1988),

The compromise between accuracy and efficiency can be altered in two
ways - either by using a higher-order scheme and larger time step or by
using a lower-order scheme and smaller time step. The former approach
suffers because (1) the time step is limited by natural frequencies of the
system, (2) higher-order schemes often have more restrictive stability lim-
its on the time step, and (3) high-order schemes need force values at
several time levels. Usually, the best compromise between accuracy, sta-
bility, and efficiency in many-body calculations is found by using a simple
second-order accurate schemes (such as leapfrog) and adjusting the time
step accordingly.

7.3.3 Integration

We have chosen to integrate the system of particles using low order explicit schemes
primarily because our focus has been on applying our system to a variety of prob-
lems including interactive surface modeling. While explicit schemes have drawbacks,
implicit or semi-implicit scheme will generally be slower than linear time, making
these unsuitable for interactive applications. We have used both the Euler and the
leapfrog integration methods. Both approaches require a single evaluation of the force
equations for a given time step.

Explicit Euler

At each time step we sum the all of the forces acting on each particle and integrate
over the time interval. We solve our second order system of differential equations as
two coupled first order systems. We have used Euler’s method for its simplicity (Press
et al., 1988). However instead of using Euler’s method directly on both systems we
can make a better estimate for the second system by using the average of the old and
new velocities computed by the Euler step on the first system (Gould and Tobochnik,
1988). Both the Euler and the modified Euler method have local truncation error of
O(h?) at each step and are first order accurate integration schemes.

We designate time values by superscripts, defining ¢ as the current time and
integrate over the time interval h = At to time ¢+ h. We use the equations of motion
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from Appendix B that are simplified for our choice of inertia tensor. The translational
equations are

ft
a = —
m
vith — vty hat
xt-|-h, _ Xt+hvt+h+vt
2
and angular motion equations are
bt — I—l,rt
Wt = w4 hb
Wttt 1wt
0 = h7+
2
ap = [cos(]|6]l/2),Bsin ([0]/2)]
" = dqa.

For angular motion, the change in orientation 8 is computed from the angular ve-
locity w, where both are represented as vectors. The incremental rotation @ is then
converted to the quaternion qg (Shoemake, 1989), before updating the particle orien-
tation through quaternion multiplication®. To avoid a loss of accuracy, due to finite
floating point representation, we normalize the quaternion after each step.

Leapfrog
The leapfrog scheme is defined by the time centered finite differences
otk gt _ e
h

and
VI _ b2

h

defined here for a one-dimensional space. It is similar to the Euler method in that the
same amount of work is required and no auxiliary storage is needed, as is required in
higher order methods. The leapfrog scheme differs from the explicit Euler in that the
velocity values are defined at the midpoint between time steps. The result is a local
truncation error at each step of O(h?) making this a second order accurate integration
scheme. A differential equation is time-reversible if a particle integrated forwards in
time in a given force field will retrace its path and return to the starting point,
when integrated backwards in time. Time-reversible difference approximations are
obtained by defining time-centered derivatives, such as the leapfrog scheme (Hockney
and Eastwood, 1988).

= a/t’

6Note, the vector 9, in the vector to quaternion conversion, is the unit vector in the direction 8.
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Using the same notation as for the Euler equations, the leapfrog equations for
translational motion are

ft

a = —

m
VITRI2 = yth/2 ot
X = x4 vt

The equations for angular motion are

bt — Ifl,rt
wt—|—h/2 — wt—h/2+hbt

0 = hwt—l—h/?

as = [cos([18]/2),Bsin (|16]/2)]
9™ = da.

Unfortunately leapfrog does not compute v*+?_ but rather v**#/2. If v**" is needed,
such as to compute a damping force, an approximation can easily be computed as
follows. We construct the two formula

Vt—h/2 + vt+h/2

2

Vt:

and t t+h
vith/2 — vtV

2

to describe the velocity at times ¢ and ¢ + h/2 as average velocities. Solving for v'*
results in the extrapolation

h

Fytth/2 _ yt—h/2

2

VH—h

(7.5)

The same method can also be used to extrapolate the angular velocities.

Comparison

To provide a comparison between the various explicit integration schemes we prepared
two tests which we executed for all three integration schemes over a variety of time
steps. The first test is a simple two particle system without damping which allowed us
to compare the stability and accuracy of integration. Without damping the particle
system should conserve energy and thus we could measure the accuracy based on
the relative error in the system energy. The second test used a complex system of
800 particles with both global velocity damping and relative inter-particle velocity
damping. Since the energy in the system should decrease due to the damping terms,
this test does not allow us to measure the accuracy using the relative error in system
energy. However it does provide complex n-body interactions as we might expect in
modeling and animation.
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Figure 7.2: Empirical results of modified Euler integration

The axes of the plots are as follows. Left to right is time ¢ and ranges from 0 to 100.
Back to front is logarithmic in the time step h = 27° and ranges from 2° to 271¢. (a)
The vertical axis is particle separation 7 = ||x; — X»|| and ranges from 0 to 8. (b)
The vertical axis is relative error e in system energy and ranges from —25% to 175%.
For plotting, the data was reduced to 1601 samples for each simulation.
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Figure 7.3: Empirical results of Leapfrog integration

The axes of the plots are as follows. Left to right is time ¢ and ranges from 0 to 100.
Back to front is logarithmic in the time step A = 27° and ranges from 2° to 2716, (a)
The vertical axis is particle separation 7 = ||x; — Xg|| and ranges from 0 to 8. (b)
The vertical axis is relative error e in system energy and ranges from —25% to 175%.
For plotting, the data was reduced to 1601 samples for each simulation.
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(a) Average relative error in system energy
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Figure 7.4: Relative error in system energy

The horizontal axis is logarithmic in the time step h. (a) The vertical axis is loga-
rithmic in the average relative system error over the simulation. (b) The vertical axis
is logarithmic in the maximum relative system error over the simulation. The Euler
method is displayed in red and labeled “E”. The modified Euler method is displayed
in green and labeled “M”. The Leapfrog method is displayed in blue and labeled “L”.
The unusual results for the leapfrog for small relative error values (e &~ 0.01%) we
believe are due to limited machine precision in calculating the error measure. The %
data points corresponds to the simulations with * symbols in Figure 7.3.
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Comparison: First Test

For the first test the particle system studied was as follows:

e Particles interact according to the unweighted Lennard-Jones potential.

e Lennard-Jones parameters of r, =1, n =4, m = 2, and e = 1.0.
e Two particles initially separated by 2 units.
e No neighborhood bounds, that is the particles are always coupled.

e No damping.
The system was integrated under the following conditions.
e For the Euler, modified Euler, Leapfrog explicit integration schemes.
e For times steps h = 27° where b = 0,1,2,..., 16.
e From time ¢ = 0 to ¢t = 100.

For each test case and for each time step executed we collected data on the particle
separation, kinetic energy, and potential energy. The results from these simulations
are displayed in Figures 7.2, 7.3, and 7.4.

In Figures 7.2(a) and 7.3(a) show the particle separation plotted as a height field
for the modified Euler and Leapfrog schemes respectively. Time runs linearly, left to
right. The time step is decreasing, back to front, on a logarithmic scale. The Euler
method is not shown as it is not substantially different than the modified Euler, except
for a factor of two as is explained shortly. Note that the modified Euler method is
still converging to a solution for the smallest time step. This can be noticed by
visually inspecting the right hand side of Figure 7.2 where differences in the period
of oscillation can be seen.

Figures 7.2(b), and 7.3(b) display the relative error in the total system energy.
The relative error e is computed as the percentage difference in system energy at time
t to original system energy

_ Es(t) — E5(0)
)= 50

x 100

where Eg(0) is the sum of kinetic and potential energies at time 0

Ep(0) = ¢r3(2) = —0.4375

and Es(t) is the sum of kinetic and potential energies at time ¢

1

Ex(t) = 5 (mlvi®” +melva(0)I°)

L ([[x1(t) = %2 (2)]])-

S|
s
=
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Figure 7.4(a) displays the average value of the relative error over the entire run of
each simulation. Figure 7.4(b) displays the maximum value of the relative error over
the entire run of each simulation. For both cases the absolute value of the relative
error is used.

The differences between the Euler method and the modified Euler is as expected.
Analysis using a Taylor series expansion shows that the second step of the modified
Euler method has half the local truncation error than does the second step of the
Euler method. This is noticeable in the results. The data shows the modified Euler
with a time step of 2h produces results almost identical to the Euler method with
time step of h. Both Euler methods have a local truncation error of O(h?) per step.

The Leapfrog method performed well in practiced. As the time step decreased,
it quickly converged to a stable solution. Analysis using a Taylor series expansion
shows Leapfrog exhibits a local truncation error of O(h?®) per step and thus global
truncation error of O(h?). The rate of decrease of error in the data, matches this
analysis.

When viewing the raw data for the various integration schemes, at stable time
steps, the Euler methods almost exclusively exhibited positive relative error, though
over small intervals it exhibited negative relative error. The Leapfrog exhibited both
positive and negative relative errors in nearly equal amounts. We speculate the differ-
ence is due to the nature of the potential energy function combined with the fact that
the Leapfrog is a time centered scheme, while the Euler methods are not. However,
the exact reason for these difference requires further study.

Comparison: Second test

For the second test the particle system studied was as follows:
e A particle system containing 800 particles.

e Particles interacting according to the weighted Lennard-Jones potential, global
velocity damping, viscous inter-particle damping, and limited particle interac-
tion.

e The parameters of the Lennard-Jones potential were r, =1, n = 4, m = 2, and
e=1.

e The parameters of the weighting function were r, = r, and r, = 1.77,.
e Neighborhood range was set to 1.77,.

e Neighbors were recomputed after every time step.

e The global velocity based damping was —0.25x;.

e The inter-particle viscous damping was —0.125 (%x; — X;).

e In the case of the Leapfrog integration scheme, extrapolated velocities defined
by (7.5) were used in the damping computations.
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We ran the test on a particle system of 800 particles that was initially positioned on
a hexagonal grid of 8 x 10 x 10 with particles separated by 1.5r,. The separation
value was picked to create a large initial system energy. To provide for more complex
behavior, the positions were slightly displaced by random amounts. This removed the
strong spatial symmetry of the initial placement. The displacement was computed
as a vector of three independent observations of a Gaussian random variable with
zero mean and a variance of 0.05. If the magnitude of the displacement was greater
than the variance, then the displacement vector was scaled to be of length equal to
the variance. This was to keep particles receiving a large random displacement from
deviating too far from their initial position.
The system was integrated under the following conditions:

e For the Euler, modified Euler, Leapfrog explicit integration schemes.

e For times steps h = 27% where b = 3,4,5,6,7. This is equivalent to the range
h =0.125 to h = 0.0078125.

e From time ¢t =0 to t = 20.

The initial configuration for the tests is shown in Figure 7.5. The particles are color
coded based on the number of interacting neighbors. Particles on the edge boundaries
have fewer neighbors and are darker in color. Some particles on the face have more
neighbors than others due to the initial random displacements. The lines drawn
between particles are the neighbor connections.

For each test case and for each time step executed, we collected data on the system
kinetic energy and system potential energy. The results from these simulations are
displayed in Figures 7.6, 7.7, 7.8, and 7.9. The system energies are plotted in the
left column and are labeled by (a), (c), and (e). Images from the final frame of each
animation are displayed next to the energy plots and are labeled by (b), (d), and (f).
The results for each time step are shown on the same page. The results are presented
in the order of increasing time step size.

The first set of results is for the time step of At = 277 (shown in Figure 7.6)
and show all three integration schemes as being stable. The initial cube of particles
collapses into a ball as the system energy is minimized. The plots of energy show
steadily decreasing potential energy (the lower line of each plot) indicating this is a
highly damped system. The difference between the total system energy (top line of
each plot) and the potential energy is the amount of kinetic energy in the system.
The negative total potential energy (and hence system energy) is due to the definition
of the Lennard-Jones potential. For the same time step in the two-particle undamped
system, the Euler method was unstable. The inclusion of damping has stabilized the
Euler method in this test, even though the interactions are more complex.

The second set of results (shown in Figure 7.7) is for the same initial configuration,
yet the a time step was twice as large. Both the Leapfrog and modified Euler method
produce similar stable results, but the Euler method exhibits instabilities. These are
seen as large spikes in the system energy plot. The large potential energy values
indicate that particles came closer than the collision distance. Finally, the flattening
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tine 0.21875

Figure 7.5: Initial particle system configuration

This is the initial particle system configuration of 800 particles arranged on an hexag-
onal grid with random displacements assigned to each particle.

of the potential energy curve to near zero energy indicates that only a few of the
particles are interacting with nearby particles.

The third set of results (shown in Figure 7.8) is for time step twice as large
again. Both Euler and modified Euler methods exhibit instabilities, with the Euler
method becoming unstable almost immediately. The modified Euler method became
unstable at about the same time that the Euler method became unstable in the
previous experiment. The Leapfrog method remained stable.

The fourth set of results (shown in Figure 7.9) is for a time step twice as large
again. In this case all three integration methods became unstable. In the two particle
system, the Leapfrog scheme was stable at this time step. Since the interactions in
this system are much more complex, this is not a surprising result.

In summary, although the Euler and modified Euler method performed better
with the inclusion of damping, the Leapfrog stability limit was still four times that
of the Euler method, and twice that of the modified Euler method.

Additional measures

To allow us to take larger time steps, then would be otherwise be allowable, we can
apply the following measures.

e We can introduce limits on the maximum velocity and maximum change in
velocity.

e We can place limits on the inter-particle forces, such as clipping the magnitude
of Lennard-Jones force for distances less than the collision distance to the value
at the collision distance.

These measures in effect reduce the natural frequencies of the system resulting in
stable integration at larger time steps.

From our testing it became obvious that the majority of error for the Euler method
was introduced when integrating over regions with large changes in force. Since the
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Figure 7.6: Integration with At =277,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (top/green) is the
total system energy Es = Ep + Fx and the lighter line (bottom/red) is the system
potential energy Ep. Note Eg(t) > Ep(t). For this time step, all the integration
schemes were stable.
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Figure 7.7: Integration with At = 276,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (green) is the
total system energy Es = Ep + FEx and the light line (red) is the system potential
energy Fp. Note Eg(t) > Ep(t). The spikes in the bottom energy plot indicate
instabilities in integration. The result was that the particle system exploded.
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Figure 7.8: Integration with At =272,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (green) is the
total system energy Es = Ep + Ex and the light line (red) is the system potential
energy Ep. Note Eg(t) > Ep(t).
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Figure 7.9: Integration with At =24,

The rows above display the results for Leapfrog, Modified Euler, and Euler schemes
respectively. Left column lists the plots of system energy versus time. The right
column displays the final image from each animation. The dark line (green) is the
total system energy Es = Ep + Ex and the light line (red) is the system potential
energy Ep. Note Eg(t) > Ep(t).
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repulsive force between particles, due to the Lennard-Jones potential, is stronger than
the attractive forces, more error tends to be introduced when particles are colliding
than when they are moving apart. This can be seen in the graph of the relative
error for the Euler method (Figure 7.2(b)) as “steps” of increasing error. It can
also be seen as spikes in the error plot (Figure 7.3(b)) of the Leapfrog method. The
net result is that the system energy increases and the system eventually explodes
as the accumulated error exceeds the binding (potential) energy of the system. For
modest time steps, the introduction of damping overcomes the accumulation of error,
reversing the process. From experience, both global velocity based damping and
viscous damping units are effective (Section 3.3.2). The viscous damping unit is
superior for stabilizing numerical errors because it is based on the relative velocity
between particles and is independent of rigid body motion.

7.3.4 Stability and Accuracy Analysis

Instead of empirically testing for a suitable time step, we can analytically derive
stability and accuracy criteria for the leapfrog integration scheme. For simplicity we
analyze a two particle system interacting according to the Lennard-Jones potential.
This provides a starting point for deriving the stability criteria of more complex
systems and thus choosing an appropriate time step.

Stability

Solving for error propagation, (Hockney and Eastwood, 1988, pp. 97-106) derives
the stability boundary
WAt < 2, (7.6)

where w is the highest oscillation frequency of the system: for the second-order dif-
ferential equation of motion for undamped motion between a pair of particles, when
approximated by the time-centered leapfrog scheme. There are two basic assump-
tions made in deriving the boundary: (1) the solution of the differential equation is
oscillatory in nature and (2) the solution is derived for the worst case. The worst case
is defined by the highest frequency w of the system, which occurs at the maximum
change in the magnitude of the force
,_ 1df

for negative forces.

The Frequency of Oscillation

For a general force f(z), equations (7.6) and (7.7) allow us to relate the force to
the highest oscillation frequency of the system and from that determine the stability
and accuracy for a given time step. We determine the time step for a system of
particles absent of any damping forces and interacting according to the Lennard-
Jones potential energy function. We choose the Lennard-Jones potential because of
all our inter-particle potentials it presents the largest magnitude in change of force.
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We follow a one-dimensional argument, similar to that given in (Hockney and
Eastwood, 1988, pp 461-465). We begin by estimating the highest frequency which
occurs when the maximum gradient of the force is present. For the case of the
Lennard-Jones potential, this occurs when the neighboring particles move towards
each other to a position of closest approach. The equations of undamped motion for
two such particles are

d’z

m dt; = —f(x2—21) (7.8)
d’z

mo dt22 = f(zo — 1), (7.9)

where f is the magnitude of the repulsive force, x; and x, are the positions of the
two particles, and m; and msy are the respective masses. We choose to analyze the
repulsive force of the Lennard-Jones function, over the attractive force, because the
repulsive force exhibits higher values of magnitude. Multiplying the first equation by
meo and the second equation by my, and subtracting yields

d2$2 d2l‘1
mimeoe (W — dt2 = mlf — m2f. (710)
Reducing, we get the equation of relative motion
d*r

where r = x5 — 1 is the particle separation, and m* = myms/(m;+ms) is the reduced
mass. Since f(r) is non-linear, to obtain an effective frequency we consider a small
perturbation substituting r + ' for r, where 7’ is small

- d*(r +1")
dt?
We expand the right side as a Taylor series, keeping only the first two terms of the
series.
df

f(r+r')f:f(r)+7"5+...

= f(r+1r"). (7.12)

The left side expands to

m

(r+r') dr &3
* R )
pTE) m e T e

Expanding (7.12) and subtracting (7.11) gives

d*r' df
* =7, 7.13
A T dr (7.13)
Rewriting results in the linearized equation for the perturbation 7’
d2 i
— (7.14)

di?
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where

w= (—iﬂf (7.15)

m* dr

according to equation (7.7).

When df /dr is negative, as it is for the short-range Lennard-Jones repulsion, equa-
tion (7.14) is the differential equation for simple harmonic oscillation with frequency
w given by (7.15). From (7.7) we can see that the maximum frequency will occur for
small masses and steeper laws of repulsion between the particles. For the case of the
Lennard-Jones potential, the frequency is given by

1 / B*  A* \\?
v (_% (r"+2 B rm+2)> ’ (7.16)

where A* and B* are the constants

enm(m + 1)r,™ enm(n + 1)r,"
AF = B* = )

n—m n—m

(7.17)

This expression for w indicates that as the minimum separation r goes to zero, the
frequency of oscillation goes to infinity. Since stability requires wAt < 2, all time
steps, in principle, are unstable. However let us assume that the particles do not
come closer than a given distance. For the purpose of this analysis we will assume
this distance to be the collision distance ¢ of the Lennard-Jones potential. In order to
prevent the few particles that might end up closer, from becoming unstable, one can
limit the force of repulsion for distances less than the collision distance to its value
at the collision distance.

We now compute the oscillation frequency for two cases: a worst case at the
collision distance, and an average case at the equilibrium spacing. We let the defining
parameters of the Lennard-Jones functions be m =2, n =4, e¢=1, and r, = 1. And
we let the mass for each particle be 1.0 so m* = 0.5. This results in a frequency for
the worst case of 15.0 and for the average case of 4.0.

Accuracy

We now consider the issue of accuracy. Let’s assume particles will have an oscillation
frequency w associated with the average separation of r,. If the leapfrog scheme is
used to integrate the equations of motion, then (7.14) is approximated as

r'(t + At) —2r'(t) + 7' (t — At)
(At)?

(At)2 dtr!

2 1
e
W) + 5 g

(7.18)

based on the Taylor series. For an oscillation at frequency w, we apply equation (7.14)

to find
d4 !
dtz = wr'. (7.19)
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The ratio of truncation error (last term on the right-hand side of (7.18)) to the true
force (first term on the right-hand side of (7.18)) is

(wAt)®
12

. (7.20)

Based on the above error measure, we again consider two cases: an average case
and a worst case. Recall that from equation (7.6), the product of the frequency and
time step should be less than 2 for stability. If we let the product equal 0.25 as a
condition for sufficient integration for average separation, by (7.15) we can compute w,
and the relative truncation error from (7.20) reduces to 1/2 of a percent. This appears
to be of reasonable accuracy for the average case. In the worst case, we assume that
few particles will be at the collision limit. Thus we favor a larger time step over
increased accuracy. By choosing a product of 1, we get a relative truncation error of
8 percent. A time step satisfying both accuracy and highest frequency constraints is
the minimum time step of the two computations.

Having computed the worst case and average case frequencies of the Lennard-
Jones function earlier, we now compute time steps. The conditions on the time step
can be summarized as follows

e Accuracy at the average separation:

r=r,=1, w =4, wAt = 0.25, error = 0.5%, At = 0.0625

e Stability at the highest frequency:

r=o0=1/V2, w = 15, wAt = 1.0, error = 8%, At = 0.0667

for the Lennard-Jones parameters m = 2, n = 4, and € = 1. Our analysis matches
the empirical results of Figures 7.2, 7.3, and 7.4. In Figures 7.3 and 7.4 the time step
of 0.0625 is marked with a x symbol. For this time step, the average error was 2.1%
over the entire simulation and the maximum error for any step was 24.7%.

7.3.5 Timing Results

To measure the speed at which one can currently calculate a simulation, we ran
several tests. Rather than quoting the speed in frames per second, we found it more
useful to quote the results in particle pair computations per second. Given a rate of
pairs per second, the frame rate for most scenes can be approximated by estimating
the number of time steps taken per rendered frame and the number of neighbors per
particle. The number of neighbors per particle is dependent both on the neighborhood
range and whether the model is using volume or surface particles. The system we
tested consisted of 1000 volume particles interacting with their nearest neighbors. The
weighting function parameters were r, = r, and r, = 1.4r,, and the neighborhood
range was 1.4r,. Neighbors were computed every 10 steps. The particles interacted
according to the Lennard-Jones potential, inter-particle viscous damping, and global
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velocity damping. Approximately 19,000 particle pair interactions were computed
per second when executing on an SGI O2. That amounts to 6000 pairs per time step,
or 3 steps per second 7. Using the same number of oriented particles would result in
approximately 4 to 6 steps per second, depending on the number of surface potentials
used. It should be noted that the code executed in this test was not optimized, but
rather written for generality. From prior experience, profiling and optimizing the
code should give a speed up factor on the order of 4 to 8 times the unoptimized code
speed. Such optimizations would result in 12 and 16 steps per second on the low end,
and 24 and 48 steps per second on the high end for particle systems of 1000 volume
and surface particles respectively.

7.3.6 Discussion

The equations of motion for a dynamically coupled particle system result in two sets
of coupled second order non-linear differential equations (3.1) and (4.1). To determine
the position and orientations of the particles at new time values, we need to solve
the initial value problem for these equations. To do this, we rewrite the second order
system of differential equations as sets of coupled first order differential equations
and then numerically integrate the first order equations through time using a finite
difference based scheme.

Implicit or explicit integration schemes can be used to integrate over a given time
step. When the system dependencies can be written in matrix form, the matrix will
be large, unstructured, and sparse. In addition, the non-zero values of the matrix
will be continually changing making optimizations more difficult. High order ex-
plicit schemes, such as Runge-Kutta (Press et al., 1988) or semi-implicit methods
(Terzopoulos et al., 1987) could be used, and for typical dynamic systems would re-
sult in good convergence and large time steps, but at the expense of a complicated
implementation and possibly slow interactive response. When considering these al-
ternatives we must keep in mind that the time step will be limited by the natural
frequency of the system and that the system in question is highly correlated and
oscillatory in nature. For the case of a damped non-linear oscillator, the explicit
leap-frog scheme, with stable time step, is more economical than the implicit Euler
scheme while yielding almost identical results (Greenspan, 1973). For most n-body
calculations, simple second-order accurate explicit schemes, such as Leapfrog, provide
the best compromise between accuracy, stability, and efficiency (Hockney and East-
wood, 1988). To maintain interactive update rates and simplicity of implementation,
we have used both the explicit Euler and Leapfrog integration schemes. Empirical
results correspond with analytical derivations showing the Leapfrog method to be
superior.

"The exact results were 5940 pairs per step, 18,978 pairs per second, and 3.19 steps per second.
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7.4 Visualization

7.4.1 Rendering

Rendering, as we know from the ray-tracing and radiosity literature, can be very time
consuming. In general, high quality rendering is based on determining the reflection
of light off of a continuous surface with associated material attributes. In Chapter 5
we discussed the generation of continuous surface descriptions and the rendering of
those surfaces.

However we need not assume that a continuous description surface is necessary
for high quality renderings. There are many cases when a surface description is not
necessary or desirable when rendering an object’s shape. If the object being modeled
is gas-like or of an amorphous nature without definite boundaries, then the particle
system can be rendered directly, thus bypassing the surface description phase. For
example, Reeves (1983b) and Sims (1990) have rendered particle systems as light
emitting points to simulate fire, water falls, and mist. Alternatively if one has assigned
a density field to each particle, one can integrate over the density fields as Stam (1995)
has done to create visually complex scenes of clouds, smoke, and fire. For rendering
similar types of fluid-like behavior, 4D texture maps could also be used to interesting
effect. Since the positions of an oriented particle model provide a uniform surface
sampling of the object, particle systems lend themselves very well to rendering with
paint strokes (Meier, 1996) resulting in a “painterly” rendering style.

7.4.2 Visual Cues for Real-Time Use

For interactive modeling, we prefer rendering techniques which maximize our under-
standing of the system. Except for the final stages of an animation, it makes more
sense to spend the computing power on providing informative displays for the user
instead of regenerating complete surface descriptions. The display should convey in-
formation we are interested in such as particle position, orientation, energy, neighbor
connections, and provide quick approximations of the final surface. Such real-time
visual cues are indispensable in debugging, scripting animations, and modeling. Here
we review some techniques we have found useful.

Light Emitting Points

Rendering each particle as light emitting points is the simplest and quickest method.
The result is an uncluttered scene in which all of the particles are visible. X-Y position
information is obvious and depth perception is enhanced by rotating the scene in real-
time. Additional information can be encoded in the color of the particle. For example
the heat energy of a particle is easily displayed as a variation from white (cold) to
red (hot).
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Figure 7.10: Visualization techniques

(a) axes, (b) discs, (c) wireframe triangulation (d) flat-shaded triangulation.

Wire Frame Particles

Wire frame representations of a particle are useful for approximating the volume or
surface area represented by a particle without obscuring the other particles. For
a solid modeling particle system, we draw the particle as a star: three mutually
perpendicular line segments. Oriented particles can be drawn with the positive Z axis
highlighted to indicate orientation. We have found displaying a wire frame hexagon
for each oriented particle results in an intuitive feel of the surface while still conveying
orientations (Figure 7.10).

Surface Approximations

To quickly approximate the surface of a solid model, the particles can be displayed
as spheres or cubes. Another simple approximation of the iso-surface is to render a
sphere for each particle and shade the sphere according to the gradient of the summed
fields at that point (Miller and Pearce, 1989). To approximate the surface resulting
from oriented particles, the particles can be displayed as filled hexagons. Displaying
the neighbor connections between particles as line segments is another method for
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quickly approximating the surface while at the same time conveying the structure of
the particle system. A slightly longer process is to display a wire triangulation of the
surface (Figure 7.10). The triangulation process is given in Section 5.2.3.

7.5 Summary

Our dynamically coupled particle system presents several computational challenges.
In particular, the continually changing spatial relationships between particles com-
plicates a variety of tasks. The computation of inter-particle forces, particle creation
heuristics, and the triangulation algorithm are defined over all particle pairs making
these O(NN?) problems that must be solved at each time step. Our solution is to con-
vert the problems from global problems involving all N particles, to local problems
involving at most a constant number of nearby particles. This effectively transforms
the problem to O(N) time plus the time needed to find the neighboring particles.

The nearby neighbors problem, or the range search problem, is the problem of
finding all particles within a given distance from a point in space. It computes the
spatial relationships between points, suggesting we should organize the data according
to the embedding space of the points. By using spatial subdivision techniques, which
allow one to focus on relevant subsets of data, the range search problem can be solved
on average in time O(N) time for volume modeling using a fixed grid, and O (N log N)
time for surface modeling using a region-based tree structure. To reduce computation
during a simulation, we cache the results of neighbor computations for several time
steps.

In order to compute the state of the system at new time values, we first calculate
the inter-particle and external forces. To compute the forces in linear time, we limit
the inter-particle force functions to a fixed distance bound, ignoring distant particles.
We use a weighting function to decay our potential energy fields to zero at a fixed
distance. In addition to reducing force computations, this approach provides a correct
energy based representation of the splitting and merging of objects.

The differential equations of motion describe how a system of particles will respond
to inter-particle and external forces. Equations (3.1) and (4.1) are second order non-
linear differential equations, making them difficult to integrate analytically. Instead,
numerical integration techniques, based on a Taylor series expansion, are used to ap-
proximate the solution by taking finite steps through time. To do this, we reduce the
second order set of differential equations of motion to two first order equations and
solve the initial value problem forward in time. We have used simple explicit integra-
tion methods rather than more complicated implicit methods. We have empirically
compared two low order explicit schemes. We also analyzed the leap frog method to
derive analytic equations of stability and accuracy. Our empirical results match well
with theoretical analysis. More sophisticated numerical high order explicit schemes,
semi-implicit, and implicit schemes could also be used but it is unclear whether they
would be fast enough for interactive applications. Physicists studying n-body prob-
lems have asserted that simple 2nd order time-centered explicit schemes work as well
or better than low order implicit schemes, thus supporting our decision.
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For interactive rendering of state we have suggested a variety of rendering styles
(Section 7.4). A discussion of generating continuous surface descriptions is given in
Chapter 5.

Through spatial subdivision of space and the use of explicit integration schemes,
we have been able to reduce the total computational complexity of our system to
expected computation times of () for volumes and O(N log N) for surfaces.



Chapter 8

Applications

8.1 Computer Assisted Animation

For computer assisted animation, we desire a model that can provide a wide range
of dynamic properties and the ability to interact with an environment. Our particle
systems can simulate a range of behavior in both the volume and surface models. We
simulate solid to fluid behavior, infinitely stretchable material, and materials that rip
and tear. Once created, the model can be influenced by a larger environment modeled
for the animation. We now show examples of various physical behavior.

The rigid behavior of a solid is shown in Figure 8.5. The model is being influenced
by gravity and the floor plane. Figure 8.4 shows the same model as a flexible solid.
Flexible surface models are also shown in Figures 8.1(a) and 8.2. A semi-rigid model
is shown in the first six frames of Figure 8.3 where a solid beam of particles exhibit
rigid body motion with slight deformations upon colliding with a spherical object and
the floor plane. Fluid like behavior is exhibited when this object then melts in the
final frames of Figure 8.3. Tearing behavior is exhibited in Figure 8.1(c) when the
force of gravity pulling a sheet over a sphere exceeds the inter-particle binding forces.
The same model exhibits stretching behavior when our stretching heuristic is enabled
(Figure 8.1(b)). In all of the examples, the models are interacting with the external
forces of gravity and collisions, and in one case objects of a different temperature.

8.2 Free Form Modeling of Surfaces

For shape design and rapid prototyping applications, we require a highly interactive
system which does not force the designer to think about the underlying representa-
tion or be limited by its choice. For example, we require the basic abilities to extend
existing surfaces, to split along arbitrary boundaries, or to join several surfaces to-
gether without specifying exact connectivity. Spatially coupled particles provide such
features.

There are numerous modeling paradigms that can be employed. We can “mill” a
solid block of material into a given shape by deleting all particles which lie outside
of a given implicit surface definition. From a geometric surface description we can

123
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Figure 8.1: Variable physical behavior
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Varying the surface characteristics to change the behavior of a sheet of material (a)

cloth draping, (b) plastic deformation, (c) tearing.
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tine 13

tine 16 tine 20 tine 26

tine 30 time 50 tine 80.05

Figure 8.2: Draping cloth

A 32x32 sheet of particles draping over four ellipsoids. The particles nearest neighbor
interactions were computed once at the beginning and then the same neighbors we
kept throughout the simulation. Thus, in this example, there is fixed coupling much
like a spring mass system.
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Figure 8.3: Beam colliding and melting

A solid beam falling, colliding with obstacles and later melting. The frames were
taken from an animation at the following. times: t = 0,3,4,5,9,12,25,70,83. The
beam falls from a height due to gravity and collides with a spherical object and the
ground plane. It deforms slightly and bounces up as seen in the fourth frame. In the
fifth frame it collides again and rolls forward (six and seventh frames). In the last
two frames it is in the process of “melting” after absorbing heat from the hot ground
plane.
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Figure 8.4: Flexible solid

Figure 8.5: Rigid solid

In Figure 8.4 the exponents n and m were set to the values (n = 4,m = 2) and in
Figure 8.5 set to the values (n =8, m = 6).




128 CHAPTER 8. APPLICATIONS

Figure 8.6: Self joining chain under gravity

“cast” solids by pouring liquid particles into a mold and then cool the particles into
a solid. A user can “sculpt” a model by interactively adding, deleting, and deforming
the model. Local sections of the model can be heated to soften the material similar
to how an artist creates a sculpture in wax before casting it in metal.

8.2.1 Basic Modeling Operations

This section describes some basic operations for interactively creating, editing, and
shaping particle-based surfaces or solids. The most basic operations are adding,
moving, and deleting single particles. One can form a simple surface patch by creating
a number of oriented particles in a plane and allowing the system dynamics to adjust
the particles into a smooth surface. One can enlarge the surface by adding more
particles (either inside or at the edges), shape the surface by moving particles around
or changing their orientation, or trim the surface by deleting particles.

All particle editing uses direct manipulation. Currently, we use a 2D locator
(mouse) to perform 3D locating and manipulation, inferring the missing depth coor-
dinate when necessary from the depths of nearby particles. Adding 3D input devices
for direct 3D manipulation (Sachs, Roberts and Stoops, 1991) would be of obvious
benefit.

To control the shape more accurately, we can fix the positions and/or orientations
of individual particles. Figure 8.6 shows an example of two particle “chains” whose
endpoints have been fixed in space.! When simulated gravity is turned on, the two
chains fall together and join at the bottom due to inter-particle attraction forces. The
two chain pieces swing under gravity, and when their endpoints are near each other,
they link into a single chain, like a trapeze.

'We can form chains by restricting the particles to lie in the y = 0 plane. The particles then
cluster into curved segments which behave much like snakes (Kass, Witkin and Terzopoulos, 1987).
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Figure 8.7: Welding two surfaces together.

The two surfaces are brought together through interactive user manipulation, and
join to become one seamless surface.
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Figure 8.8: Cutting a surface into two.

The movement of the knife edge pushes the particles in the two surfaces apart. The
positions of the particles on the left and right edges of the sheet are fixed.
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Figure 8.9: Putting a crease into a surface.

We grab particles on the left and move them

The cylinder acts as a moving tool.

a “creasing” tool to convert oriented particles into unoriented particles which ignore

down. these particles are then fixed at this location. Likewise particles on the right
smoothness forces.

side of the sheet are moved and fixed in position. After creating a bent surface we use
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In addition to particle-based surfaces, the modeling system also contains user-
definable solid objects such as planes, spheres, cylinders, and arbitrary polyhedra.
These objects are used to shape particle-based surfaces, by acting as solid tools,
as attracting surfaces, as large erasers and as volume-cursors (Zhai, Buxton and
Milgram, 1994), which grab all of the particles inside them, allowing groups to be
moved at once. Our geometric objects are positioned and oriented using the same
direct manipulation techniques as are used with particles. Another possibility for
direct particle or surface manipulation would be extended free-form deformations
(Coquillart, 1990).

Using these tools, particle-based surfaces can be “cold welded” together by abut-
ting their edges (Figure 8.7). Inter-particle forces pull the surfaces together and
re-adjust the particle locations to obtain a seamless surface with uniform sampling
density. We can “cut” a surface into two by separating it with a knife-like constraint
surface (Figure 8.8). Here, we use the “heat” of the cutting tool to weaken the inter-
particle bonds. Or we can “crease” a surface by designating a line of particles to
be unoriented, thereby locally disabling surface smoothness forces (co-planarity, etc.)
without removing inter-particle spacing interactions (Figure 8.9). The automatic
placement of such creases and jump discontinuities during surface interpolation is
a problem that has been extensively studied in the computer vision literature (Ter-
zopoulos, 1988).

We have designed a heuristic to control the automatic addition of particles. The
rule is based on the assumption that the particles on the surface are in a near-
equilibrium configuration with respect to the flatness, bending, and inter-particle
spacing potentials. This is a reasonable assumption as the dynamics of our energy
minimizing system are continually updated during modeling. The (stretching) rule
checks to see if two neighboring particles have a large enough opening between them
to add a new particle. If two particles are separated by a distance d such that
Amin < d < dmax, We create a candidate particle at the midpoint and check if there
are no other particles within dpi,/2. Typically dmin & 2.0 79 and dmax = 2.570, Where
ro is the natural inter-particle spacing. An example of this stretching rule in action
is shown in Figure 8.10, where a ball pushing against a sheet stretches it to the point
where new particles are added.

Our particle-based modeling system can be used to shape a wide variety of surfaces
by interactively creating and manipulating particles. This modeling system becomes
even more flexible and powerful when surface extension occurs automatically or semi-
automatically. For example, we would like to stretch a surface and have new particles
appear in the elongated region, or to fill small gaps in the surface.

Using our surface model as an interactive design tool, we can spray collections of
points into space to form elastic sheets, shape them under interactive user control,
and then freeze them into the desired final configuration. We can create any desired
topology with this technique. For example, we can form a flat sheet into an object with
a stem and then a handle (Figure 8.11). Forming such a surface with traditional spline
patches is a difficult problem that requires careful attention to patch continuities
(Loop and DeRose, 1990).

To make this example work, we add the concept of heating the surface near the tool
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Figure 8.10: Particle creation during stretching

As the ball pushes up through the sheet, new particles are created in the gaps between

pairs of particles.
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Figure 8.11: Forming a complex object

A complex shape is formed as the initial surface is deformed upwards and then looped
around. The new topology (a handle) is created automatically.
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and only allowing the hot parts of the surface to deform and stretch. Without this
modification, the extruded part of the surface has a tendency to “pinch off” similar
to how soap bubbles pinch before breaking away. As another example, we can start
with a sphere, and by pushing in the two ends, form it into a torus (Figure 8.12). New
particles are created inside the torus due to stretching during the formation process,
and some old sphere particles are deleted when they are trapped between the two
shaping tools.

Discussion

The particle-based surface model we have developed has a number of advantages over
traditional spline-based and physically-based surface models. Particle-based surfaces
are easy to shape, extend, join, and separate. By adjusting the relative strengths of
various potential functions, the surface’s resistance to stretching, bending, or variation
in curvature can all be controlled. The topology of particle-based surfaces can easily
be modified. Like previous deformable surface models, our new particle-based surfaces
can simulate cloth, elastic and plastic films, and other deformable surfaces. The ability
to grow new particles gives the models more fluid-like properties which extend the
range of interactions. For example, the surfaces can be joined and cut at arbitrary
locations. These characteristics make particle-based surfaces a powerful new tool for
the interactive construction and modeling of free-form surfaces.

One limitation of particle-based surfaces is that it is harder to achieve exact an-
alytic (mathematical) control over the shape of the surface. For example, the torus
shaped from a sphere is not circularly symmetric, due to the discretization effects
of the relatively small number of particles. This behavior could be remedied by
adding additional constraints in the form of extra potentials, e.g., a circular symme-
try potential for the torus. Particle-based surfaces also require more computation to
simulate their dynamics than spline-based surfaces; the latter may therefore be more
appropriate when shape flexibility is not paramount.

One could easily envision a hybrid system where spline or other parametric sur-
faces co-exist with particle-based surfaces, using each system’s relative advantages
where appropriate. For example, particle-based surface patches could be added to
a constructive solid geometry (CSG) modeling system to perform filleting at part
junctions.

8.3 Surface Reconstruction

An important application of our oriented particle systems is the interpolation and
extrapolation of sparse 3D data. This is a particularly difficult problem when the
topology of the surface to be fitted is unknown. Oriented particles can provide a
solution to the unknown topology problem by extending the surface out from known
data points. This technique is particularly useful for interpolating sparse position
measurements available from stereo or tactile sensing.

The basic components of our particle-based surface extension algorithm are two
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heuristic rules that control the addition of new particles. The stretching and growing
rules are based on the assumption that the particles on the surface are in a near-
equilibrium configuration with respect to the flatness, bending, and inter-particle
spacing potentials.

The first rule, the stretching rule (section 5.2.3), allows particles to be added in
openings between two existing particles. The second (growing) rule allows particles
to be added in all directions with respect to a particle’s local z-y plane. The rule
is generalized to allow a minimum and maximum number of neighbors and to limit
growth in regions of few neighboring particles, such as at the edge of a surface. The
rule counts the number of immediate neighbors n, to see if it falls within a valid
range Nmin < Ny < Nmax. It also computes the angles between successive neighbors
00; = 0;,1—0; using the particle’s local coordinate frame and checks if these fall within
a suitable range 0, < 00; < O,.«. If these conditions are met, one or more particles
are created in the gap. In general, a sheet at equilibrium will have interior particles
with six neighbors spaced 60° apart while edge particles will have four neighbors with
one pair of neighbors 180° apart.

8.3.1 Surface Fitting

With these two rules, we can automatically build a surface from a collection of sparsely
sampled 3D point data. We create particles at each sample location and fix their
positions and orientations. We then start filling in gaps by growing particles away
from isolated points and edges. After completing a rough surface approximation,
we can release the original sampled particles to smooth the final surface, thereby
eliminating excessive noise. If the set of data points is reasonably distributed, this
approach will result in a smooth continuous closed surface. The fitted surface does
not assume a particular topology as many previous 3D surface fitting models have
(Terzopoulos, Witkin and Kass, 1988; Miller et al., 1991; Vasilescu and Terzopoulos,
1992).

In Figure 8.13, a toroidal surface is interpolated through a set of seed points. The
resulting particle surface can be triangulated to generate a continuous surface descrip-
tion. The toroid was sparsely sampled using only 300 points which is significantly
less dense than the sampling in other commonly sampled data (such as range images,
height fields, and cat scan volume data sets). Oriented particles have the additional
benefit in that they are not restricted by surface topology.

We can also fit surfaces to data sampled from open surfaces, such as stereo range
data (Fua and Sander, 1992). Simply growing particles away from the sample points
poses several problems. For example, if we allow growth in all directions, the surface
may grow indefinitely at the edges, whereas if we limit the growth at edges, we
may not be able to fill in certain gaps. Instead, we apply the stretching heuristic
to effectively interpolate the surface between the sample points (Figure 8.14 and
Figure 8.15). When the surface being reconstructed has holes or gaps, we can control
the size of gaps that are filled in by limiting the search range. This is evident in
Figure 8.14, where the cheek and neck regions have few samples and were therefore
not reconstructed. We could have easily filled in these regions by using a larger search
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Figure 8.13: Surface interpolation through 3D points

Surface interpolation through a collection of 3D points. The surface extends outward
from the seed points until it fills in the gaps and forms a complete surface. When
viewed in color, the original points are blue, the interpolated points are red, and the
final torus is composed of triangles of various colors.




8.3. SURFACE RECONSTRUCTION 139

Figure 8.14: Interpolation through 3D points

Interpolation of an open surface through a collection of 3D points. Particles are
added between control points until all gaps less than a specified size are filled in.
When viewed in color the blue circles are the original data points, and the red circles
are the interpolated data points. Increasing the range would allow the sparse areas
of the cheek and neck to be filled in, as shown in Figure 8.15.
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Figure 8.15: Interpolation with increased range

Interpolation of an open surface through a collection of 3D points. We used the same
initial data as in Figure 8.14. The difference in results is due to increasing the search
range. The dark discs represent the initial data points and light discs represent the
interpolated points.

range.

8.3.2 Principal Frames

We can extend our reconstruction process to compute the principal frames and lines
of curvature over the surface. A principal frame is defined as a local frame aligned
with the principal directions, e; and ey, at a given point (appendix A). The principal
directions are in the directions of minimum and maximum curvatures x; and ky. We
can rotate each particle frame such that local x and y axes align with the directions
of principal curvature at that point. These directions can be used to compute lines
of curvature, which are useful in computer vision applications. From the principal
frames, we can then compute estimates of the principal curvatures.

We can rotate a particle’s local frame into a principal frame using a potential
function that induces a torque about the local z axis. We can define such potentials
using the notation in local coordinates of particle ¢, as given in section 4.3

x; = [0,0,0]"

n, = [0,0,1)*

x; = [z}, 7]

v o= X=X =[x, %4]

for example, the potential term
2

¢Sl = JTJZJ' (81)
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Figure 8.16: Lines of curvature

The spin torque potential ¢g forces the local coordinate frames to align with the
minimum and maximum curvatures of the surface (short and long axes, respectively).
The upper and lower images are before and after the addition of ¢s.
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encourages the x axis to align itself in the direction of the “smallest” curvature (and
greatest negative curvature). Similarly, the potential term

Psy = 333292 (8.2)

encourages the x axis to align itself in the direction of the minimum absolute value
of normal curvature, i.e. |k|. The potentials can also be written in global coordinates

*(n; - 1))

(ni ) rij)2:

¢s1 = (er-Ti))
$so = (e1-1y)”
where e; = r;[1,0,0] is the direction of particle ’s z axis. In order not to disturb the
original dynamics of the surface, the above potential is used only to compute a torque
around the local z axis. Orienting each particle in the system results in a covering of
the surface with principal frames indicating the principal directions over the surface
(Figure 8.16). The top Figure shows particles with random twists about the normal.
The middle Figure shows particles aligned as principal frames. The bottom Figure
is drawn such that the length of the axes correspond to the magnitude of curvature
computed.

8.3.3 3D Volume Segmentation

Our surface fitting algorithm may be used to help segment structures in 3D volumetric
data such as CT, MRI, or other 3D medical imagery. To perform this segmentation,
we first apply a 3D edge operator (Monga et al., 1990) to the data and use the edges
to initialize and attract particles, or directly use gradients in the 3D image as external
forces on the particles. In this application, our 3D surface model can be viewed as a
generalization of the active deformable surface model (Terzopoulos, Witkin and Kass,
1988; McInerney and Terzopoulos, 1993), but without the restrictions imposed by a
manually selected surface topology.

Figure 8.17(a)—(c) shows slices from a CT scan of a plastic “phantom” vertebra
model (decimated to 120 x 128 x 52 resolution). Figure 8.17(d) shows the recon-
struction near completion. Figure 8.17(e) shows a Gouraud shaded rendering of the
reconstructed surface. This smooth, triangulated model contains 6,650 particles and
13,829 triangles, and was created by seeding a single particle and extending the sur-
face along high 3D edge values until a closed surface was obtained.

8.3.4 Surfaces From Silhouettes

We have applied our particle-based approach to the reconstruction of triangulated
surface models from the output of a shape-from-silhouettes algorithm (Szeliski, 1991).
The algorithm constructs a bounding volume for the object by intersecting silhouettes
from a sequence of views taken around an object—in this case, a cup—as it rotates
on a turntable. The algorithm represents the volume using an octree (Samet, 1989)
(Figure 8.18a).
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3D reconstruction of a vertebra from 120 x 128 x 52 CT volume data
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To reconstruct the surface model of the cup, we first create a volume occupancy
array from the octree representation and then apply the 3D edge operator and our
reconstruction algorithm as in the vertebra example. Figure 8.18b shows the recon-
structed model of the cup. The reconstructed surface has 3,722 particles and 7,568
triangles.

8.4 Summary

We have applied our dynamically coupled particle system to three different prob-
lems, that of computer assisted animation, free form surface modeling, and surface
reconstruction. We briefly summarize.

For animation, our model provides the ability to model from rigid to fluid like
behavior. By changing the parameters of the Lennard-Jones potential we can change
how rigid and how brittle our objects are. We have included a model of heat into
our system allowing objects to be frozen and melted. Our model exhibits behavior
similar to physically based finite element approximations for small deformations. For
large deformations, we simulate tearing and infinitely stretchable materials. For rigid
body dynamics and modeling small deformations, our model is computationally more
expensive than specialized techniques limited to these behaviors. In contrast, our
model exhibits a wide range of physically inspired behavior, allowing gross changes
in topology.

For free form surface modeling we have implemented an interactive system for
creating, editing, and shaping surfaces. We can add, delete, and move single par-
ticles. In addition, arbitrary polygonal models can be used as tools to select and
move groups of particles, to act as large erasers, and to repel or attract particles.
Particle surfaces can be “cold welded” together or cut into separate pieces. Groups of
particles can be constrained in position and orientation similar to defining character
lines of variational surfaces. Local curvature discontinuities in the surface can be
encouraged by “unorienting” lines of particles, such that the discrete curvature ener-
gies are not applied to those particles. Heat can be applied to create more malleable
areas, enhancing local shaping operations. The disadvantages of our model is it does
not enforce analytical constraints such as strict smoothness criteria found in spline
models, and it is more expensive in terms of data and computation time than strictly
geometric techniques. Our model does possess distinct advantages. Particle based
models are easy to shape, extend, join, and separate. Adjusting the relative strengths
of the potential functions varies the surface’s resistance to stretching, bending, and
variation in curvature. Large changes in surface topology and genus can be easily
achieved with minimal user interaction, allowing complex natural looking shapes to
be easily constructed. Our surfaces incorporate physical properties modeled over time
and thus react to user manipulation in a natural and intuitive manner.

For surface reconstruction our particle model can reconstruct surfaces of arbitrary
genus from a variety of 3D data. We can interpolate surfaces through sets of sparse 3D
data points to reconstruct both open and closed surfaces. By extending our surface
from known data points, we can reconstruct closed surfaces of arbitrary topology.
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Figure 8.18: Reconstruction from silhouettes

Reconstruction of a surface model of a cup from silhouettes: (a) cup bounding volume

represented as an octree, (b) triangulated surface of reconstructed model.
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To reconstruct open surfaces from sparse 3D point sets, we interpolate the original
surface by inserting particles between known sample points. After a rough surface
shape is achieved, we can release the original sampled particles to smooth the final
surface, thereby attenuating the original samples. Our surface fitting algorithm can
be used to help segment 3D volumetric data such as CT and MRI data. By attracting
particles to an edge filtered version of the volume data or by following gradients in
the original image, we can construct surfaces which segment the data into sets. This
can be viewed as a generalization of iso-surface polygonization. Our technique could
easily be applied to generating surface descriptions of iso-surface fields. Our approach
can be applied to other types of 3D data, such as volume occupancy arrays generated
by shape-from-silhouette algorithms. The disadvantages of our model are that it
is not guaranteed to reconstruct the correct surface if the original data sampling is
highly anisotropic, and that it may be more computationally expensive than using
algorithms designed for a known surface genus and topology. The advantages of our
model is that it can reconstruct continuous connected surfaces of arbitrary topology
and genus even when this information is unknown. It is an optimal surface fitting
procedure minimizing selected energy functionals, and the degree of smoothness can
be controlled by weightings of the potential functions. In addition, principle frames
can be computed over the final surface, which can then be used to compute lines of
curvature over the surface and estimates of the principal curvatures.
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Conclusions

The modeling, description, and animation of shape is a central issue in computer
graphics. Our new model, based on dynamically coupled particle systems that inter-
act according to physically inspired potential functions, is free of topological restric-
tions. Our model has characteristics of traditional spline models, physically-based
surface models, and of particle systems. It can be used to model smooth, elastic,
moldable surfaces, like traditional splines. Like physically based surface models, by
adjusting the relative strengths of various potential functions, a surface’s resistance
to stretching, bending, or variation in curvature can all be controlled. And yet it
allows for arbitrary topologies, like particle systems.

The ability to split, join, and cut are critical to the free-form modeling of shape.
Particle based surfaces have the distinct advantage of being easy to shape, extend,
join, and separate. For example, the surfaces can be joined and cut at arbitrary
locations. Previous approaches, such as spline based models and deformable models,
require manual discretization of the surface into patches (for spline based surfaces) or a
specification of connectivity (for spring-mass systems) to accomplish these operations.
In addition, the ability to easily change topology greatly simplifies the creation and
animation of topologically complex surfaces. Unlike previous surface models, the local
connections in our system are determined automatically rather than through manual
intervention. It is through the interaction of a collection of primitive elements that
global shape emerges.

Our geometric shaping tools are analogous to tools used to shape physical objects.
These tools allow for intuitive interaction in which topologically complex surfaces
can be easily created and modified. In addition, the ability to grow new particles
gives our models more fluid-like properties which extend the range of interactions.
Like previous deformable surface models, our particle-based surfaces can simulate
flexible materials such as cloth, elastic sheets, and plastic films. The ability of our
models to automatically connect and disconnect in response to forces provides for
the physically inspired animation of models in which the topology changes over time.
The combination of these characteristics make particle-based surfaces a powerful new
tool for the interactive construction, modeling, and animation of free-form surfaces.

The flexibility of particle based modeling comes at a cost. A limitation of particle-
based surfaces is that it is harder to achieve exact analytic (mathematical) control
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over the shape of the surface. For example, the reconstructed torus is not circularly
symmetric, due to the discretization effects of the relatively small number of particles.
This behavior could be remedied by adding additional constraints in the form of extra
potentials, e.g., a circular symmetry potential for the torus. Particle-based surfaces
also require more computation to simulate their dynamics than spline-based surfaces;
thus the latter may be more appropriate when shape flexibility is not paramount.
One could easily envision a hybrid system where spline or other parametric surfaces
co-exist with particle-based surfaces, using each system’s relative advantages where
appropriate. For example, particle-based surface patches could be added to a con-
structive solid geometry (CSG) modeling system to perform filleting at part junctions.

Our demonstrations to date have been limited to 2D pointing (input) devices
and a modest number of particles. Further investigation into the use of true 3D
input devices, preferably with force feedback, would complement the flexibility and
intuitive nature of this modeling technique. Implementing these two ideas on the more
powerful computers of the future could result in “computational modeling clay”.

Oriented particles can also be used to automatically fit a surface to sparse 3-D
data even when the topology of the surface is unknown. Particle systems can compute
complete, detailed, viewpoint invariant geometric surface descriptions. Both open and
closed surfaces can be reconstructed, both with and without holes. We can also use
our surfaces to segment 3-D volumetric data, and to incrementally construct 3-D
object models from motion sequences. Unlike most other deformable models, the
topology of the surface need not be initially specified. Because of the flexibility of
the technique, and because it is an optimal surface fitting approach, we believe this
approach will form the basis of a powerful new class of shape models for computer
vision applications.

We have demonstrated that we can interactively shape, extend, join, and separate,
particle based surfaces (Figure 8.7). Using shaping tools, we can create topologically
complex surfaces (Figure 8.11). We have shown that particle based surfaces simulate
a wide range of behaviors, such as the draping of cloth, the stretching of elastic
surfaces, the flexibility of thin plastic films, the ability to break or tear, fluid like
behavior, the variation of physical properties based a temperature, the diffusion of
heat, and interaction with other objects. We have interpolated both open and closed
surfaces through collections of sparse 3D points and segmented scalar 3D data. The
surfaces are viewpoint invariant and support optimal fitting based on the selected
energy functions. A reconstructed surface model can be used as the starting point
to interactively create a new shape, manipulate, and then animate it within a virtual
environment. Thus particle systems provide a powerful new interface between surface
reconstruction in computer vision, free form modeling in computer graphics, and
computer assisted animation.



Appendix A

Differential Geometry

Differential geometry is the mathematical study of intrinsic shape (Kreyszig, 1959;
Lord and Wilson, 1984; Koenderink, 1990; Farin, 1992; Gray, 1993). In this appendix
we introduce the differential geometry of three dimensional space curves and surfaces
embedded in three dimensions.

A.1 The Geometry of Curves

A three dimensional space curve can be thought of as the locus of a point moving
through space. The movement can be expressed as a function of a single parameter,
such as x(t) = (z(t),y(t), 2(t)) where ¢ is a real number, and z(t), y(t), and z(t) are
single valued functions. Instead of focusing on the parametrization of the curve we
will discuss the shape of the curve, that is the geometric properties of the curve, in
terms of the distance traveled along the curve.

A.1.1 Arc Length

The distance traveled in moving along a curve, from say t = a to ¢ =b, is given by

(Kreyszig, 1959)
1
b b fdx dx?
i / a (dt dt)

which can be written symbolically as

dx
dt

ds® = dx - dx. (A.1)

ds is called the arc element and s is the arc length. Note that arc length is independent
of the choice of parametric representation. Thus geometric measures based on the
arc length are invariant to parametrization.
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U
t

Figure A.1: The Frenet frame.

A.1.2 The Frenet Frame

The first derivative of a curve with respect to arc length defines the unit vector that
is tangent to the curve at the point under consideration

% = t,

where over-struck dot denotes a derivative with respect to s. We call this the unit
tangent vector. The second derivative with respect to arc length

X = Km

yields a vector with magnitude k. The unit vector m is called the principal normal and
k the curvature. The tangent and principal normal vectors are orthogonal. Taking
the vector product of the tangent and the principal normal yields the unit bi-normal
vector

b=txm

resulting in a frame at point x, as shown in Figure A.1. This frame, called the Frenet
frame, describes the local properties of the curve. The first derivative of the bi-normal
with respect to arc length

b=—rm

yields a vector in the direction of the principal normal with magnitude of 7. The
scalar 7 is the torsion. The curvature, and torsion describe the rotation of the Frenet
frame as it moves along the curve in direction s.

A.1.3 The Osculating Circle

The plane spanning the tangent and principal normal vectors is the osculating plane.
In this plane, there exists a unique circle that is tangent to the curve and with second
order continuity matching the curve at x(s). The circle is named the osculating circle
and its radius the radius of curvature. The fact that it is second order continuous
means that the rate of change of the circle’s and the curve’s tangent vectors, match.
This measure of change is the curvature x and is equal to the inverse of the radius p
of the circle, that is p = 1/k. Thus, for straight lines, the curvature is zero and the
radius of curvature is infinite. The osculating circle is shown in Figure A.2.
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where
C=X-+pm

Figure A.2: The osculating circle

As the frame moves along the curve the frame changes position and orientation.
One can think of the curvature as the angular velocity (Farin, 1992) of the rotation
of the tangent vector, per arc length. The rotation is in the osculating plane, in the
direction of the normal vector. The torsion 7 is the angular velocity of the bi-normal
vector, which twists about the tangent.

A.1.4 The Frenet-Serret formulas

The Frenet-Serret formulas (Kreyszig, 1959; Koenderink, 1990; Farin, 1992) describe
the changes in the Frenet frame in terms of the frame itself,

t 0 k 0 t
I:Il =| -k 0 T m |. (A.2)
b 0 -7 0 b

A.2 The Geometry of Surfaces in 3D

A surface may be described by a regular parametrization of position

where the coordinates z, y, and z are differentiable functions of the two real variables
u and v. To allow a succinct mathematical description of the geometrical properties
of the surface, we adopt the notation where subscripts denote partial derivatives with
respect to the parameters v and v. For the first partial derivatives we use the notation

Lo
T Ou YT o’

Xy
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For the second partial derivatives we use the notation

0°x 0°x _Oxox 0% 0°x

= o Xov = o2 Huw = Oudv  Oudv  Ovdu Xou-

XUU

A.2.1 The Arc Element

Given two points on the surface x(u,v). The vector dx connecting the two points is
given by

dx = x,du + x,dv.
The distance on the surface (Lord and Wilson, 1984) between two such points is
ds® = dx - dx = Edu® + 2Fdudv + Gdv?, (A.3)
where
E = (x,)? F=x,-x%, G = (x,)%

This is a direct result of equation (A.1). The arc element, ds, is a geometric invariant
of the surface and thus does not depend on the chosen parametrization, similar to
the 3D curve analysis. Equation A.3 for the squared arc element is called the first
fundamental form of the surface in classical differential geometry.

A.2.2 Tangents and Normal

The vectors tangent to the surface in the directions of the parametrization v and v
are given by the partial derivatives x, and x, respectively. The vector

Xy X Xy

is orthogonal to the tangent vectors and thus normal to the surface. The magnitude
of the normal vector (Kreyszig, 1959) is

%y X %, = (Xu)Q(Xv)2 — (x4 'Xv)2 = EG — F2a

so the unit normal is given by

Xy X X,
(EG — F?)3

Figure A.3 shows a local portion of a parametric surface. The dashed lines indicate
curves on the surface of constant u and v value. The tangential vectors x, and x,
are the rate of change of the surface along the lines of constant v and u respectively,
and the vector n is normal to the surface.
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n

constant u

constant v

Figure A.3: Surface x(u,v) with partial derivatives and normal.

A.2.3 The Second Fundamental Form

The first fundamental form (A.3) determines the intrinsic geometrical properties of
the surface and is independent of the embedding space. To specify the embedding in
Euclidean 3-space requires additional information. That information is the way the
normal to the surface varies from surface point to surface point. The difference in
unit normal at two infinitesimally close points is

dn = n,du + n,dv.

The second fundamental form (Kreyszig, 1959; Farin, 1992) is

—dn - dx = Ldu® + 2Mdudv + Ndv?, (A.4)
where

L = —n, -x,=4N Xy, =N-Xyy (A.5)

M = —n, -X,=-N, X, =1"Xy, (A.6)

N = —n, -xX,=+N"Xy, =N - Xy (A.7)

The equality found in M comes from differentiating the identities n - x, = 0 and
n - x, = 0 with respect to v and v. The first and second fundamental forms together
determines the shape of the surface uniquely; however they do not specify global
position and orientation.

A.2.4 Normal Curvature

The first and second fundamental forms determine the shape of the surface local to
each point on the surface. Consider a 3D space curve on the surface passing through
the surface point x. The relation

—dn - dx

=— A.
K cosf 75 (A.8)
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Figure A.4: Curve on sphere where m # n.

relates the curvature k of the curve to the angle # between the curve normal m to the
surface normal n. While at first one might expect the normals to match identically one
can easily see that this is not necessarily the case, as shown in Figure A.4. Consider a
circle as a space curve. The normal m of the curve is always pointing inward toward
the center of the circle. For a curve that is a circle, the osculating circle of the curve
is identically the curve. Now consider a sphere where the surface normal n is always
pointing inward to the sphere’s center. For circles lying on the sphere, only circles
that are great circles of the sphere have normals that match the normals of the sphere.
The angle between the curve normal and the surface normal is described by (A.8).
By Meusnier’s theorem (Farin, 1992), the osculating circles of all surface curves
passing through a point x and having the same tangent t form a sphere. This sphere
and the surface share a common tangent plane at x, and the sphere has a unique center
of curvature, its center. Thus to describe the shape of the surface it is sufficient to
study a subset of these curves; namely the curves at x for which m = n. There exists
one such curve for each tangent vector t. When the osculating plane of a surface
curve passing through point x is perpendicular to the surface tangent plane, then
f = 0 and m = n. Such curves are called normal sections and can be thought of as
the intersection of the surface with a plane normal to the surface and which contains
the desired tangent vector t, as shown in Figure A.5. The curvature of a normal
section at a point x is the normal curvature k, and is given by (A.8) with # =0

_ —dn-dx  Ldu®+ 2Mdudv 4+ Ndv®
 ds? Edu?+ 2Fdudv+ Gdv?’

Kn

A.2.5 More Curvature Measures

In differential geometry curvature is measured in a variety of ways. For completeness
we will quickly review some of the more common measures.
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Figure A.5: The normal section.

The extreme values of normal curvature, x; and ko, at a given point are called
the principal curvatures. The unit tangent vectors, e; and ey, for which the extreme
values occur are called the principal vectors. The corresponding directions are called
the principal directions. When the principal curvatures are non equal the principal
vectors are unique and perpendicular. A principal frame (Koenderink, 1990) is defined
as a frame with major axes matching the surface normal n and the principal vectors
e; and es.

The arithmetic mean of the principal curvatures, H = %(/{1 +Ky), is called the mean
curvature. The Gaussian curvature is the product of the extreme curvatures, K =
K1Ko. The measures K and |H| are invariant with respect to coordinate transform
(Kreyszig, 1959).
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Appendix B

Newtonian Dynamics

This appendix reviews the basic theory of Newtonian dynamics and the mathematics
necessary for both un-oriented and oriented particle systems. For completeness we
occasionally repeat material presented earlier in the dissertation.

A standard particle is described by its position x and mass m. An oriented
particle is described as a standard particle enhanced with an orientation R and an
inertia tensor I.

B.1 Rotation

Each oriented particle defines both a normal vector n; = z and a local tangent plane
defined by the local z and y vectors. More formally, we write the state of each particle
as (x;, R;), where x; is the particle’s position and R; is a 3 X 3 rotation matrix which
defines the orientation of its local coordinate frame (relative to the global frame
(X,Y, Z)). The third column of R; is the local normal vector n;.

While we use the rotation matrix R to convert from local coordinates to global
coordinates and vice versa, we use a unit quaternion q as the state to be updated.
The unit quaternion

= mnsin(6/2)
= cos(6/2)
represents a rotation of # about the unit normal axis n. To update this quaternion,

we simply form a new unit quaternion from the current angular velocity w and the
time step At, and use quaternion multiplication (Shoemake, 1985).

q = (w,s) with

B.2 Inertia Tensor

The inertia tensor I relates the angular momentum vector to the angular velocity
vector by a linear transformation. In general I is represented as a 3x3 matrix,

I=| Iy Iy Iy
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The inertia tensor is symmetric; that is, I;; = I;;. The diagonal elements, I,,, I,
and [,,, are called the moments of inertia of the object. The off-diagonal elements
are known as the products of inertia.

The inertia tensor is defined with respect to an inertial frame; a set of coordinate
axes and an origin about which the object rotates. For any choice of origin, for any
body, there always exists a set of coordinate axes which diagonalizes the inertia tensor
(Marion, 1970). Thus we can write the inertia tensor as

Ly 0 0
I=| 0 I, 0 |,
0 0 I,

where the associated moments I, I, and I,, are the principal moments of inertia.
These axes are the principal azes of inertia.

For oriented particles we are interested in the property of angular momentum, but
are not interested in mimicking the inertia of a particular rigid body. Thus we choose
the simple inertia tensor of the form

100
I=c|0 10|, (B.1)
00 1

where ¢ is some scalar constant. We define our inertia tensor about the particle’s
local origin with respect to the world coordinate axes. Our choice of inertia tensor is
equivalent to a spherical object with its centroid at the particle origin. This choice
results in a tensor that is constant over change in particle position and orientation.
Using principal axes, as we do, allows us to represent the inertia tensor by a triplet
(like a vector) encoding the principal moments of inertia. Our choice simplifies the
equations of motion as well as the computation of angular momentum and rotational
kinetic energy.

B.3 Velocity

Since we are interested in animating a particle system, we must consider how the
position and orientation of the particles change over time. Thus, we write the position
and orientation as functions of time: x(¢) and R(¢).

The linear velocity is defined as the rate of change of the particle position over
time. At time ¢ the velocity of the particle is

The instantaneous angular velocity is defined as the rate of change of the orien-

tation over time dR( )
t

t) = —=.
w(t) ”
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The vector properties of addition and scalar multiplication hold for instantaneous
angular velocities (Hoffmann, 1966). For example, given two instantaneous angular
velocities w; and wsy, the following holds

Wi+ Wy =ws + wi.

Thus, we can manipulate instantaneous angular velocities as vectors.

We could have derived angular velocity by differentiating the rotation matrix
or quaternion but it is simpler to describe it in terms of the rotation R(t) as shown
above. For matrix and quaternion derivations see Baraff (1991). Since we use angular
velocity to approximate a rotation over a given time interval, the derivation shown
above is ideal for our purposes.

After computing a change in rotation as a vector quantity we then convert it to a
quaternion. To update a particle’s orientation as a quaternion, we simply form a new
unit quaternion @ from the current angular velocity w and the time step At, and use
quaternion multiplication. Details on quaternions can be found in (Shoemake, 1989;
Shoemake, 1991).

B.4 Momentum

The linear momentum p of a particle with mass m and velocity v is
p(t) = mv(t).
The angular momentum of a particle with inertia I and angular velocity w is
L =Iw.

The inertia tensor I relates the angular momentum vector to the angular velocity
vector by a linear transformation. The angular momentum simplifies to

Iwy
L=| I,

Izwz

when the inertial coordinate frame is aligned with the principal moments. Since
we are using the inertia tensor for a spherical object (B.1) the angular momentum
simplifies to

L=cw

for all time values.

B.5 Force and Torque

The force on a particle is the change in momentum which is commonly written in
terms of mass and acceleration:

_ dp(?) _ dmv(t) _ mdv(t) —

£®) dt dt dt
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The torque 7 on a particle is the rate of change in angular momentum and can be
written in terms of inertia and angular acceleration:

= dL() = dlw(?) = gw(t) + Idw—(t) =w x Iw +Ib(?).

Tt)=—g . dt dt

For our system, the inertia tensor (B.1) is constant over time and thus the torque

reduces to
7(t) = Ib(t)

for all values of time ¢.

B.6 Potential Energy

We can derive both forces and torques from potential energy functions. This has the
advantage of allowing the design of energy functions which exhibit minimal energies
at desired particle configurations, and guarantees that the system will not diverge. A
force results from the gradient of the potential energy ¢ with respect to a particle’s
position x;,

fi = _vxid):

and a torque results from the gradient of the potential energy with respect to the

particle’s orientation 6;,
T = —Vglqﬁ

As the energy of the system minimizes, the particles migrate to minimal energy
configurations.



Appendix C

Gradients of Potential

This appendix presents mathematical background and identities necessary to derive
the force and torque vectors from weighted scalar potential fields. The translational
force acting on a particle results from the loss in potential energy due to a change
in particle position. Likewise, an angular force, or torque, results from the loss in
potential energy due to a change in particle orientation. In three dimensions these
are written as the negative gradient of the potential energy function with respect to
the particle position and orientation, as follows:

fz' = _vxi¢a (Cl)
T, = _V0i¢’ (02)

where @; is the infinitesimal change in orientation of particle 1.

The six sections discuss fundamental concepts and derive basic identities which
can be used to quickly derive the appropriate forces and torques from scalar potentials.
Section one presents the multiplication and chain rules of differential calculus applied
to the gradient operator. Section two derives the relationship between an infinitesi-
mal rotation and change of the parameters of the potential functions. Section three
presents differential identities for the gradient of the Euclidean norm with respect to
particle separation and differences in normal vectors. Section four presents differen-
tial identities for the gradient of scalar products with respect to combinations of the
particle normal and particle separation vectors. Section fives derives the gradient of
the weighting function with respect to particle position and orientation. Section six
presents identities for deriving the force and torque due to a scalar potential energy
function.

C.1 Gradient of Scalar Functions

The derivation of force and torque are based on the application of the multiplication
rule and chain rule of differential calculus. If f and g are scalar functions then by the
multiplication rule

V(fg) = fVg+gV. (C.3)
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When f is a function of a scalar variable a then by the chain rule,

Vf(a) = %VCL. (C.4)

C.2 Gradient with Respect to Orientation

In this section we derive the gradient with respect to change in infinitesimal orienta-
tion of a scalar function, that is Vg f.

Unlike general rotations, infinitesimal rotations behave as vectors. In particular
they follow the parallelogram law (addition law) of vectors. Given an infinitesimal
rotation about an axis, we can represent the rotation by a vector @, where the mag-
nitude of the vector represents the angle of rotation, and the direction of the vector
@ points in the direction of the axis of rotation.

C.2.1 The Change in Normal

To understand the relationship between a change in orientation and the corresponding
particle normal consider the following. A particle with fixed position and with a
vector n attached, is rotating about its center. As the particle rotates, the vector n
traces a circle about the axis of rotation. The infinitesimal variation in the vector’s
components may be written, to a first approximation, as the following vector product
(Goldstein, 1950)

dn =n x db, (C.5)

where d@ is an infinitesimal rotation.
We now introduce matrix-vector notation which allows one to write a vector prod-
uct as a matrix times a vector. Given two vectors a and b

axb=A"
where A* is given by
0 —agsg ag
ag 0 —aj
—asg ai 0

Note that b x a equals (A*)"b, but does not equal bA*.
Rewriting (C.5) in matrix-vector notation we have

0 —Il3 11 0)
dn=nx df = ns 0 -1 df = N*d#.
—Ilo n; 0

Thus the change in vector n due to the infinitesimal rotation df is

dn
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C.2.2 Gradient of a Scalar Function

Now let us say we have a scalar function f(n). By the chain rule we can differentiate
f with respect to the infinitesimal rotation d@:

df (df) (dn

0= (an) (30) ©7)
In order to replace the second term on the right hand side N*, we apply the commu-
tative law of multiplication so that

df dn) /df

e [ I 2 C.8

w= (@) (&) o)
We can do this because the multiplication between the various components of the two
terms follow scalar product rules. We replace the first term of the product with (C.6)

(4
N (d_n)

By matrix-vector notation this is equivalent to the cross-product

df
o (2).

When computing the differential of a scalar function with respect to a vector, the
differential due to each component of the vector is computed separately. In three
dimensions, this can be written as the gradient of the function with respect to the
differentiating vector, such as, af

d_n:an

Thus we can write the change of a scalar potential function f due to rotation of a
particle as

Vof =nx (Vaf), (C.9)

where n is the particle normal. This is a valuable identity that we can use in the
derivation of torque due to an inter-particle potential function.

C.2.3 Directional Derivatives

The concise notation in the above derivation has hidden many of the details and may
be confusing to follow. We now show how we go from (C.7) to (C.8). The directional
derivative (Hay, 1953) of a function f(n) at x in the direction b is

of  Of On, N af on, N af on,

ds  On, Os on, Os on, 0s

where 0f /0s is the rate of change of f in the direction b.
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We now differentiate the scalar function f with respect to an infinitesimal rotation
6 = [Gwa Hwa Ow]T

- o
99
df of
a0 Vof_ 80,
of
L 90,

Each element of the vector represents a directional derivative. The derivatives are
with respect to a change in orientation about the three major axes. Expanding the
elements of the vector we have

r Of Ong _*_ﬂany of dn, T
Ong 00y ony 00z on, 00y

Of ong 4 Of Ony | Of dn.
dn, 06, ' on, 06, ' 0n, 06,

of Ong + Of Ony of on.
L Ong 06, ony 08, on, 06,

Each of the partial derivatives evaluates to a scalar value, thus the order of the product
can be interchanged. For example

af on,  On, Of
on, 00, _ 00, Ong’

Thus we can write the above vector as the product of a matrix and vector

[ Ong Ony 9n, 1 [ O8f 17
0, 00, 0b, Ong
Ong % on; ﬁ
00, 060, 00y Ony
onz 9ny On, af

L 96, 20, 86, 1 L on,

The matrix is equivalent to dn/df, and the vector is equivalent to df /dn, which is
the gradient of f with respect to n. Thus

Vof(n) = (3—2) (%) — N*(Vaf) = 0 X Vaf.

C.3 Gradient of the Euclidean Norm

The Euclidean norm of a vector is defined as a measure of the magnitude of the
vector, and for any vector a is defined as

1 1
lall = (a-a)? = (a; +a, +a3)7.

A wunit vector is a vector with Euclidean norm of one. For any vector a, the unit

vector & is given by
. a
a=—.
all
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Differential Identities of Euclidean Norm

The gradient of the Euclidean norm of a vector, with respect to the vector of the
norm, is the corresponding unit vector,

Vala| = a. (C.10)

The proof, which is omitted, involves substituting s for (a2 + a2 + a?), applying the
chain rule, and then solving the partial differential of s with respect to each of a,,
a,, and a,.

Suppose the vector a is a vector separating any two points b and ¢. What then
is the gradient of the Euclidean norm of a, as the end points b and c are varied
respectively? If we define a = ¢ — b, then the gradient of ||al|, while varying c’s
position and keeping b constant, is

V.|la|| = a. (C.11)
And the gradient while keeping ¢ constant and varying b’s position is
Villal| = —a. (C.12)

The proofs are similar to the proof of (C.10) except that as each partial derivative is
evaluated, then the chain rule is applied a second time. Again, proofs are omitted.

Gradient of Particle Separation Distance

The potential energy functions we use are defined in part as a function of particle
separation, so we now derive equations describing the gradient of the separation
distance with respect to change in position and to change in orientation. Let us
assume we have two particles x; and x;, and a separation distance vector defined as
r;; = X; — X;. Applying the general identities (C.11) and (C.12), we arrive at the
following equations for the gradient with respect to the change in positions of x; and
Xj,

Vi llrill = -1y, (C.13)

Vi llrigl| = ;- (C.14)

In deriving the torque equations we will need to evaluate the gradient with respect
to the particle normal vectors n; and n;. Since r;; is not a function of either normal
vector, we have,

Vel = 0, (C.15)
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Gradient of the Difference of Normal Vectors

For the case of the co-normality potential we consider the gradient of the difference
between two normal vectors n; and n;. Applying the identities (C.11) and (C.12)
results in the following equations,

[Ini — n,]
Vi i —nyf| = ———= (C.17)

n; — Ilj
_|Imi — |

Vi, i —ny| = (C.18)

n;, — Ilj
And since the Euclidean norm is constant as the particle positions change,

Ve lmi—n;| = 0, (C.19)
Vy|n —n;| = 0. (C.20)

C.4 Variations of Scalar Products

The scalar product of any two vectors a and b is defined to be

a-b=a,b, +a,b,+a,b,.

Differential Identities of Scalar Products

For any two vectors a and b, the gradient of their scalar product is
Va(a-b)=b (C.21)

with respect to varying a. Given any three independent vectors a, b, and c, by the
distributive property of the scalar product and (C.21), we have

Ve(a-(b—rc)) = a, (C.22)
Ve(a-(b—c)) = —a (C.23)

Variations of the Scalar Product of the Normal and Separation Vectors

The co-planarity potential and the co-circularity potential functions are functions of
the scalar product of normal vectors and particle separation, that is V(n; - r;;). To
derive the gradient with respect to a particle position we apply identities (C.22) and
(C.23). The relevant equations are:

Vi, (n; - 155) n,, (C.24)
V(0 -1i5) = —nj, (C.25)
Vy;(ng-ry5) = n, (C.26)
Vy;(mj-ry5) = ny. (C.27)
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To derive the gradient of the product with respect to a given particle normal, we
apply identity (C.21). The relevant equations are:

Vo, (m - 155) = 1y,

I
=
A~ Y~ A~
aQ a o
[\]
O
~— N —

C.5 Variation of the Weighting Function

The scalar weighting function w(||r;;||) is a monotonically decreasing function used
to limit the range of inter-particle interactions, where r;; = x; — x; is defined as the
distance vector between points x; and x;. In evaluating the gradients of the weighting
function we apply the chain rule (C.4) and equations (C.13), (C.14), (C.15), and
(C.16). Using the following shorthand notation,

w = w(lryl),

d i

o du(lel)

dl|zs; |

we have,

inw w'sz.||rZ~j|| = —f‘ijw', (C32)
ijw = w'ij||rij||:f'ijw', (033)
Vaw = w'Vy|ri| =0, (C.34)
Vo, = 'V [r;] = 0. (C.35)

C.6 Forces and Torques from Weighted Potentials

In this section we use the results from the previous sections to show how to derive
force and torque vectors from weighted scalar potential fields.

Force from a Weighted Potential

The gradient of a weighted scalar potential is computed based on the application of
the multiplication and chain rules. Assuming we have two particles positioned at x;
and x;, the vector r;; separating the two particles is (x; — x;) and the separation
distance is 7;; = ||r;;||. Given a potential ¢(r) and a weighting w(r), both scalar
functions of distance, the gradient of their product is

g dw(r;;
Vi (w(ri)o(riz)) = w(ri;) 1 Vxrij + %M%‘)Vﬂ“z‘j-

Applying (C.1), (C.13) and (C.14) the resultant force acting on particle 7 is thus

fi= =V (0)0(r) = 3 (1) 47 4 ) 7))
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and the force acting on particle j is
f; = -V, (w(r)é(r)) = —f.

It should be clear that these equations also hold for potentials that are a function not
only of particle separation but also of particle normals.

Torque from a Weighted Potential

Assuming we have two particles as above and with normals given by n; and n;,
and given a potential ¢(r;;, n;,n;) and a weighting w(r;;), then the gradient of their
product with respect to variation in normal is

Vi (w(rij)¢(rij, ni, ny)) = w(rij) Vad(rij, ni, nj) + ¢(rij, ni, n;) Vaw(ry;).
And since the gradient of the weighting function is zero this reduces to
Vi (w(ri)¢(rij, ni, n5)) = w(rij) Vad(rij, ni, ny).
By (C.2), (C.9), and (C.6) the torque vector acting on particle ¢ is
Ti = =V (w(rij)d(rij, i, ny)) = —10; X (Vi ¢(ri5, n3, m5)) w(rs).
Likewise the torque acting on particle j is

Ti = —I]_J X (anqs(rij; nzanj)> w(TU)
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Computation of internal forces

Based on the identities and equations of Appendix C, we derive the inter-particle
forces and torques for the distance weighted versions of the co-planarity, the co-
normality, the co-circularity, and the Lennard-Jones potentials. For a pair of particles
1 and j we derive the forces and torques with respect to both particle ¢ and particle

VR

D.1 The Co-planarity Potential

The spatially weighted co-planarity potential is

d)P = (Il,‘ . I‘ij)Q’LU.

To derive the forces and torques, we first derive the gradients of the potential func-
tion with respect to the variation in particle positions, particle normals, and the
infinitesimal change in particle orientations.

Variation in Position

To derive the gradient with respect to the variation in the particle ¢’s position we
apply the multiplication rule (C.3) resulting in two parts to differentiate. To the left
side we apply equation (C.32), and to the right side we apply the chain rule (C.4)
and equation (C.24):

in¢P = (IIZ' - rij)2inw + wai (IIZ' . rij)2 = (Ilz' - rij)Qw'(—f'ij) + ’(UQ(IIZ - rij)(—ni).

The derivation of the gradient with respect to particle j’s position is similar, except
we apply equations (C.33) and (C.26) where appropriate:

Vy;¢p = (n; - rij)Qijw + wVy, (n; - r;;)? = (n; - 1;;)°w's;; + w2(n; - vi)n;.
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Variation in Normal

To derive the gradient with respect to the variation in particle 2’s normal we apply
the multiplication rule (C.3), the chain rule (C.4), and equations (C.34) and (C.28):

Vni(ﬁp = (Il,‘ . rz-j)QVniw + ani(ni . rij)Z = 2’(1)(11z . rij)rij-

The derivation with respect to particle j’s normal is similar, except we apply equations
(C.35) and (C.30) where appropriate:

an(bP = (Ili . rij)2anw -+ anj (IIZ' . rij)2 =0.

Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

V. ¢p = n; X Vy,dp = 20(n; - ry5) (0; X 135)w.

The gradient of the potential with respect to the change in orientation of particle j
is zero, because the potential is independent of the orientation of particle j:

Vg dp =15 X Vp,dp =10, x 0= 0.

Forces and Torques

The forces and torques follow directly from the above derivations:

fo, = —Viobp = (0;-ry)’R5w' + 2(n; - ryj)nw
fpj = —ij d)P = —(IIZ' . I‘,‘j)2f'i]‘wl - 2(11, . rij)niw = —fpi
Tp, = —V01¢P = —2(1'11 . rij)(ni X rij)w
Tp, = —V '(]5}) = 0.
; ,

D.2 The Co-normality Potential

The spatially weighted co-normality potential is
x = [[m; — nj|*w.
To derive the forces and torques, we first derive the gradients of the potential func-

tion with respect to the variation in particle positions, particle normals, and the
infinitesimal change in particle orientations.
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Variation in Position

To derive the gradient with respect to the variation in the particle ¢’s position, we
apply the multiplication rule (C.3) resulting in a left and right side to differentiate.
To the left side we apply equation (C.32), and to the right side we apply the chain
rule (C.4) and equation (C.19):

Vidn = [ = 0l Vigw + 0V, (I = 15°) = |mi — gl (—x5).

The derivation of the gradient with respect to particle j’s position is similar, except
we apply equations (C.33) and (C.20) where appropriate:

Vi, ox = [0 — 0V w + wVy, (; — ny)*) = |In; — ny[*rijw’

Variation in Normal

To derive the gradient with respect to the variation in particle 7’s normal we apply
the multiplication rule (C.3), the chain rule (C.4), and equations (C.34) and (C.17):

Vadx = |Ini =15 Vaw + wVa, (I —ny)*) = w2(n; - ny).

The derivation with respect to particle j’s normal is similar, except we apply equations
(C.35) and (C.18) where appropriate:

Vi éx = i — 0]’V w + wVy, (|[n; — n;]°) = —w2(n; — n;).

Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

V0i¢N =n; X Vp,on = 2w (n; X n;).

The gradient with respect to the infinitesimal change in particle j’s orientation is
derived by a similar process :

V0.¢N =n; X anqﬁN = —2w (n; X n;).

Forces and Torques

The forces and torques follow directly from the above derivations:

fNi _vxi¢N = ”nz - njHQrijwl
fNj = —ij¢N = —||Ili - nj||2rijw, = _fNi
™, = —V01¢N = -2 (Ilj X 1’11') w

J T

™, = —VoquN =2(n; X n;) w = —Ty,.
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D.3 The Co-circularity Potential

The spatially weighted co-circularity potential is
do = ((mi +1y) - 1i5)" w.

To derive the forces and torques, we first derive the gradients of the potential func-
tion with respect to the variation in particle positions, particle normals, and the
infinitesimal change in particle orientations.

Variation in Position

To derive the gradient with respect to the variation in the particle i’s position, we
apply the multiplication rule (C.3) resulting in a left and right side to differentiate.
To the left side we apply equation (C.32), while we apply the chain rule (C.4) to the
right side:

Vido = ((mi+ny)-14)° Viw + wVy, (0; + 1) - 135)°
= ((mi+mny) -ryy)" (—fi)w’ + w2 (0 + 1) - 1) Vi, (05 +1;) - 155).
To solve the gradient on right hand side of the equation we apply the distributive

rule of scalar products, the identity V(a +b) = (Va) + (Vb), and equations (C.24)
and (C.25), thus the gradient is

Vbo = (i +1n;) - 135)* (=)0’ — w2 ((0; + ny) - 135) (03 + n;).

The derivation of the gradient with respect to particle j’s position is similar, except
we apply equations (C.33), (C.26), and (C.27) where appropriate:

Vasbc = (0 + 1) - 145)” B’ + w2 ((0; + 1y) - vy5) (0; + my).

Variation in Normal

To derive the gradient with respect to the variation in particle ¢’s normal we apply
the multiplication rule (C.3), the chain rule (C.4), and equations (C.34), (C.28), and
(C.29):

vni¢c = ((n, + l’lj) . rz’j)Q Vniw + ’U)Vni ((l’lz + l’lj) . rij)2 = w2 ((Ilz + Ilj) . rij) rj.

The derivation with respect to particle j’s normal is similar, except we apply equations
(C.35), (C.30), and (C.31) where appropriate:

anqbc = ((IIZ + Ilj) . rij)2 anw + anj ((IIZ + Ilj) . rz’j)2 = w2 ((Ilz + Ilj) : rij) r;;.
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Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

V. 6c =1 x V¢ = 2w ((n; + nj) - ry5) (n; X r35) .

The gradient with respect to the infinitesimal change in particle j’s orientation is
derived by a similar process:

Vg, ¢c =1, X Vn;¢c = 2w ((n; + ;) - 155) (0 X 155) .

Forces and Torques

The forces and torques follow directly from the above derivations:

e, ~Vxbe = (i + 1) - 15)° F0" + 2 (0 + 1y) - 135) (0 + ny)w

fo, = —Vxoc=—((mi+ny) 1)’ fw' —2((0; +10y) - xy) (i + nj)w = —f,
To, = —Vg.do=—2((m+mn)) i) (n; X 155) w

7o, = —Vgoc=-2(mi+n;) ry)(n; Xry)w

D.4 The Lennard-Jones Potential

The Lennard-Jones function is a scalar function defined in three-space as a function of
particle separation. Similar to the shorthand notation used for the weighting function,
we will use

oLy = ous(|ryl)
¢LI — dd)LJ
! d|[ri; |

in our derivations. To derive the forces and torques, we first derive the gradients
with respect to variation in particle positions, particle normals, and the infinitesimal
change in particle orientations.

Variation in Position

To derive the gradient with respect to the variation in the particle positions we apply
the chain rule (C.4), and equations (C.13) and (C.14):

Vi, by = 11V ||rijll = —Fijés’
V05 = ou1' Vyllrill = B0’
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Variation in Normal

To derive the gradient with respect to the variation in the particle normals we apply
the chain rule (C.4), and equations (C.15) and (C.16):

Vn,¢LJ = (bLJIVni“rij“ = ¢LJ’(O) =0
Vin, 05 = L3 Va,|lri|l = 60,'(0) = 0.

Variation in Orientation

To derive the gradient with respect to the infinitesimal change in the particle orien-
tation we apply equation (C.9) and the above results:

Vg ors = ni X Vpéry=mn;x0=0
V0j¢LJ = n; X an¢LJ =n; X 0=0.

Forces and Torques

The forces and torques follow directly from the above derivations:

f, = —Vixory =100
fly, = —Vyou =Ty’ = —f;
T, = —VgoLy=0

Tuy; = —Vgor =0



Appendix E

Finite Element Analysis of Surface
Energies

To derive the local oriented particle interaction potentials, we analyze the deformation
energies of a triangular surface patch defined by three neighboring particles. For this
analysis, we assume that the particles are in an equilateral configuration with locations
(0,0), (h,0) and (1/2,/3/2) in the (z, y) plane. We examine the small-deflection case
where the height from the plane, z = f(z,y), describes the local shape of the surface.
Both of these assumptions are reasonable for our surfaces, since the Lennard-Jones
forces favor locally hexagonal arrangements, and a sufficiently high sampling density
will ensure small deflections. For an analysis of the general parametric patch case,
see (Celniker and Gossard, 1991). We use a cubic function for f(z,y) since it can
be specified by the heights and gradients at the three corners {(z;,p;,¢;),7 =0...2}
and the height 23 of a “bubble” node in the middle of a triangle. We choose the
(z,y) plane to pass through the three particles, which gives us a height of 0 at all
three corners. To compute the deformation energies, we take integrals of squared
derivatives over the triangle. For example, we can compute the area of the triangle

from
V3., 1 2 2
A://,/1+f§+fgdxdyz7h +§//fm+fydxdy.
We can compute the average Gaussian curvature from
1 2 2 2
C~ 5//fm+2fmy+fyydxdy

and the average variation in curvature from

1
Vo [ [ o382+ 305, + foy dudy.

These three integrals can be thought of as corresponding to the stretching, bend-
ing, and “undulation” energies of the surface. After some algebraic manipulation,
which we performed using Mathematica™ (Wolfram, 1988), we obtain formulas for
the above three equations in terms of the corner gradient values {(p;,¢;)} and the
bubble height 23 (the expressions are quadratic in these variables). In our oriented
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particle system, we desire to have interactions only between pairs of particles. Since
we are only interested in the energies involving two particles, say the particles which
control (pg, qo) and (p1,¢1), we minimize the quadratic energies with respect to the
Do, 2, and z3 variables (this results in lower energies than arbitrarily setting these
unknown quantities to 0, which would be the effect of ignoring these other terms).
To further simplify the energies, we express them in terms of averages and differences
of gradients

py = (po+p1)/2 4 = (@+aq)/2
p- = (po—p1)/2 - = (g —q)/2
Again, using Mathematica™, we obtain
Vo= h%6v3pi, (E.1)
_ V3 2 2 2 2
C = 55(567p% +316p° + 8V/3p_q; +48¢ + 315¢%), (E.2)
V3 6003
A = X1 2 4. E.
71T 2g1gg0P+ T ) (E:3)

To compute these quantities given the state of two particles, i.e., their positions and
orientations, we must first write the scalar quantities pg, p1, o, and ¢; in terms of n;,
n; and r;;. We identify r;; with the z direction in our local plane, and thus compute

Po~ —n; - f'ij and P11~ —n; - f‘ij

for small values of py and p;. Choosing the y direction is more difficult if we wish
to keep the interactions pairwise, since we cannot use the location of the third point
defining the triangle. A simple choice is use the local z direction along the average
normal vector (n; + n;)/2, which leads to the equations

g = _(ni—i-nj)_ni—}-njxf_ijzo’ (E4)
2 2
n—n; n+n;
qg. = —( 12 ‘7)- Z2 JXI'ij, (E5)
1
P2 4+¢¢ =~ Z||ni—nj||2. (E.6)

We are now in a position to relate the finite element based measures for curvature and
variation in curvature to the co-planarity, co-normality, and co-circularity measures.
The variation in curvature V' (E.2) corresponds directly to the co-circularity ¢¢ (4.17).
The curvature itself C' (E.3) can be written as a sum of the co-circularity potential
and the co-normality potential ¢ (4.14). The co-planarity potential is therefore not
needed to write a curvature-based energy measure. It is useful, however, when used
in isolation, since it corresponds to terms of the form

Py + Pt o pL +pP.
While the area-based measure A (E.3) is too complicated to warrant direct imple-

mentation, finite rest area behavior is simulated by the Lennard-Jones interaction
potential ¢r ;.
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