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Abstract

This thesis presents a complete framework for the description of implicit surfaces
and solids� We propose piecewise representations that are based on decomposition
models and constructed using methods adapted to the geometry of objects� These
models are general� in the sense that they can represent arbitrary shapes� and support
variable precision� permitting approximations at any desirable resolution�

The contribution of our work consists of� �i	 an original characterization of the
implicit description of shapes� �ii	 a new method for generating a smooth implicit
function corresponding to a solid object� and �iii	 two new piecewise representation
schemes based on a multiscale decomposition of the implicit function and on an
adapted simplicial decomposition of the domain of the implicit function�

We characterize the implicit model through an analysis of the implicit function�
We show that the skeleton of a shape and the tubular neighborhood of its boundary
are dual structures that relate an object with the space in which it is embedded�

We develop a method that allows the generation of smooth implicit functions from
the characteristic function of an object� It employs multiresolution edge detection and
reconstruction using dyadic wavelets�

We introduce a functional decomposition model based on B
spline scaling func

tions that generate nested multiscale approximating spaces� The Laplacian transform
is employed to compute a pyramid in terms of these B
spline bases�

We introduce a spatial decomposition model based on adapted simplicial subdivi

sion� Physics based deformation adapts to the boundary of the object a mesh derived
from this simplicial complex�

Some of the applications of these methods include� approximate conversion be

tween volumetric� implicit and parametric representations� surface rendering� volume
visualization� and animation of implicit objects�

In summary� the relevance of this thesis is twofold� it provides a conceptual� as
well as a practical scheme for piecewise shape description� The piecewise implicit
representations that we have developed are e�ective and e
cient� They capture the
spatial features of objects using composite structures that are constructed from simple
elements�
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Chapter �

Introduction

The physical universe is populated by objects of astonishing diversity� These objects
have one thing in common� a shape� Such concrete embodiment is a fundamental
property of material objects which determines their function and allows us to iden

tify them� For this reason� the study of shape is a central theme in many areas of
science and technology� from mathematics to engineering� Each of these disciplines
is concerned with a particular aspect of the shape of objects� such as its mathemat

ical characterization� its design� its manufacturability� its recognition� its aesthetic
content� etc�

This thesis focuses on the geometric representation of shapes and its applications
to computer graphics� This chapter introduces the thesis topic� gives the motivation
for the thesis research and summarizes its contributions� It presents the structure of
the dissertation and relates it to the thesis results�

��� Background

This section overviews the main mathematical models used for shape description�

����� Shape Description

Shape description is a fundamental problem in computer graphics and related areas�
In particular� graphics algorithms need a mathematical model of the geometry of
objects in a scene� These computational methods require some form of discrete shape
representation describing the properties of interest of objects� In three dimensions�
one of the main interests is in the surfaces that bound solid objects�

The geometry of a surface can be speci�ed in two ways� through a parametric
function or through an implicit function� Although parametric surface models are
still the dominant geometric representation in computer graphics� implicit surface
models have been gaining importance in recent years�

����� Parametric versus Implicit

In the parametric description� the set of points constituting the object is given directly
by a collection of mappings� called parameterizations� These mappings relate a space

�
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of parametric coordinates to the object�s surface such that there is a one to one
correspondence between points in these two spaces� In the implicit description� the
set of points belonging to the object is given indirectly through a point
membership
classi�cation function� This function de�nes the relationship of points in the ambient
space with the object�

Intuitive understanding of the di�erences between the parametric and implicit
forms is gained by means of a simple example�

Example ��� �Unit Circle
 The unit circle can be described by the parametric
equation �x� y	 � f��	� where

f��	 � �cos �� sin �	� � � ��� ���

This parameterization maps the interval ��� ��� of the real line onto the unit circle
S�� It also allow us to directly enumerate points of S�� by varying the parameter �
from � to ���

The unit circle can also be described by the implicit equation f�x� y	 � �� where

f�x� y	 � x� � y� � �� x� y � R

The set of points �x� y	 that satisfy f�x� y	 � � constitute the circumference S�� The
function f classi�es points on the �D plane in relation to the unit disk� When we
substitute the coordinates of a point p � �x� y	 in the equation f�x� y	 � x� � y�� ��
the value of f indicates whether the point is inside� outside or on the circle as follows�
the sign of f is negative in the interior region delimited by S�� the sign of f is positive
in the exterior region delimited by S�� and f is zero if the point belongs to S�� See
Figure ����

0 2

r
p

c

|c-p|  = r =12

f

π

θ

Figure ���� Unit circle

The parametric and implicit descriptions are in some sense complementary� One
form is better suited to some types of operations than the other� and vice
versa� The
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parametric form is suited to generating points on the surface� For example� to draw
an approximation of the circle we connect by straight lines an ordered set of points
lying on the surface� Using the parametric equation� the points are obtained simply
by stepping the value of � from � to ��� The implicit form is suited to testing the
containment of points relative to the surface� For example� to detect interferences
between objects it is necessary to determine if points from one object cross the other
object�s boundary� Using the implicit equation� this is done simply by checking the
sign of f �

����� Volumetric Models

Volumetric models are given by a function whose domain is an n
dimensional region
of the ambient n
space� Usually the function is known only at discrete points and is
represented by this set of sample values� Typical examples are n
dimensional arrays
corresponding to regular sampling grids�

Volume data can be interpreted as samples of an implicit function that are gener

ated by an external process� such as a �uid dynamics simulation� or a sensor� such as
an MRI �Magnetic Resonance Imaging	 device� as is the case in scienti�c visualization
and medical imaging applications�

These applications deal with complex volumetric objects and the identi�cation of
certain features� such as isovalue surfaces� may be as important as the analysis of the
function itself� As a consequence� it may be necessary to infer geometric models from
volume data� Implicit models provide a powerful framework for this type of problems�

����� Relevance of Implicit Models

Implicitly de�ned surface models are important because they give information about
the shape� not only at points on the surface� but also at points in the vicinity of the
surface� As we have seen� the implicit function classi�es points of the ambient space
in relation to the volume enclosed by the surface� This explicit dependency of the
geometric object with the space in which it is embedded can be exploited in most
computational tasks related to modeling and rendering� In fact� this is perhaps the
main advantage of implicit models over their parametric counterparts�

Implicit representations are necessary in computer graphics because they unify
surface� volume and texture descriptions� The same modeling framework can be used
to de�ne surfaces� solids� fuzzy shapes� and spatial data� This is crucial in several
application areas� from photorealism to scienti�c visualization�

��� Motivation

Implicit techniques provide the best solution to many problems in computer graph

ics� The potential of implicit models is largely unexplored� In particular� general
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approaches to implicit shape description are lacking� The present research seeks to
advance the state of the art of implicit representations in the direction of generality
and uni�cation� bridging the existing gap between continuous and discrete models�
This section puts the thesis research into context with previous work� discusses its
goals and the main strategies adopted�

����� Previous Work

Implicit surfaces have been used for a long time in computer graphics� Until recently�
they were employed mostly as an auxiliary representation for classes of surfaces that
allowed both parametric and implicit descriptions� Typical examples are the quadric
and superquadric surfaces�

Exceptions to this rule are constructive solid geometry �CSG	 models that have
simple implicit primitives as their basic building blocks� These models are compu

tationally e
cient� but can represent a restricted class of shapes depending on the
primitives�

More �exible constructive implicit models were developed as a generalization of
algebraic surface models� The implicit function is a density �eld and the surface of
interest is an isosurface� This density �eld may be constructed through a distance
function from a point skeleton�

In Chapter � we review these models in more detail�

����� Piecewise Models

Piecewise models are e�ective because they are based on simple elements and powerful
combination rules� Complex objects can be described by their components in a natural
way� They can be simple and yet retain descriptive power�

There are two types of piecewise models� constructive and decomposition� A
constructive model is generated by assembling primitive blocks� A decomposition
model is generated by subdividing composite structures� Constructive techniques are
most appropriate for shape design while decomposition techniques are better suited
to shape computation�

Most of the existing piecewise implicit models are constructive� The traditional
example is the already mentioned CSG model� Decomposition implicit models are
very attractive� because they can provide a balance between generality and e
ciency�

����� Goals and Strategy

This thesis investigates the implicit description of surfaces and solids� Our goal is to
devise e�ective shape models that could be used in the development of computational
methods for visualization and analysis of complex objects� These models should be
general� allowing the description of arbitrary geometry� They should be adapted to



���� CONTRIBUTIONS �

relevant spatial features and support variable precision� permitting approximation at
any desired resolution�

The main strategy of this research is to explore piecewise representations of the
implicit model� Two mechanisms play a key role in the process� decomposition and
adaptation�

These models are obtained through processes that conform the model to geometric
features of the object� As a result� we obtain implicit descriptions of surfaces and
solids that ful�ll the aforementioned goals�

����� Applications

The success of a representation depends not only on its ability to capture properties of
objects and its suitability for computations� but also on the possibility of converting to
and from other representations� This makes it more versatile� for example facilitating
integration into existing systems� Consequently� this thesis emphasizes conversion
methods between implicit� volumetric and parametric forms�

��� Contributions

We propose as a solution to the representation of implicitly de�ned objects the use
of models that support e�ective representations of arbitrary shapes and that are
computationally suitable for computer graphics applications� This section states the
thesis results and their relevance�

The contributions of this thesis are�

�� A characterization of the implicit de�nition of surfaces and solids through an
analysis of the implicit function�

�� A method to generate a smooth implicit function that approximates a solid
object from its characteristic function�

�� An application of the smooth implicit function generation method to the con

version of parametric to implicit surfaces�

�� An investigation of approximate piecewise descriptions of implicit surfaces based
on decomposition�

�� An implicit model based on a multiscale decomposition of the implicit function�

�� An application of the multiscale decomposition model to the conversion of vol

ume arrays to piecewise implicit functions�

�� An implicit model based on adapted simplicial decomposition of the domain of
the implicit function�
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�� An application of the simplicial decomposition model to the conversion of im

plicit to parametric piecewise surfaces�

Some of these technical contributions have also been reported in �Velho and
de M� Gomes� ����b	� �Velho and de M� Gomes� ����a	� �de Figueiredo et al�� ����	�
�Gomes and Velho� ����	 and �Velho and de M� Gomes� ����	�

Figure ��� depicts the relationship among the thesis results� The �rst column cor

responds to theoretical contributions� the second column to computational methods�
the third column to geometric representations� and the fourth column to applications�

Multiscale
Functional
Decomposition

Simplicial
Domain
Subdivision

Tubular
Neighborhood
Estimation

Conversion
Parametric
to Implicit

Hierarchical
Model

Quasi
Regular
Model

Analysis
of Implicit
Function

Piecewise
Implict
Models

Smooth 
Implicit
Function

Conversion
Implicit to
Parametric

Conversion
Implicit to
Implicit

Figure ���� Graph with the relationships between the thesis results�

We now describe the contributions of the thesis in more detail�

����� Analysis of the Implicit Function

We characterize the implicit de�nition of surfaces and solids through an analysis of
the implicit function f � New results include the identi�cation of the skeleton of a
shape and the tubular neighborhood of the shape boundary as two fundamental char

acteristics for implicit models of surfaces and solids� These are extrinsic properties
that relate a manifold with the space in which it is embedded� We also show that the
skeleton and the maximal tubular neighborhood are dual structures� This theoret

ical framework provides the required criteria for development and evaluation of the
proposed models�
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����� Generation of Smooth Implicit Functions

We develop a method to generate a smooth implicit function that approximates a solid
object from its characteristic function� The method is based on multiresolution edge
detection and reconstruction using dyadic wavelets� It synthesizes edges at multiple
resolutions such that the reconstructed function preserves the shape boundary and
the gradient of the function gives the normal �eld at the boundary� This procedure
provides a rough estimate of a tubular neighborhood of the shape�

����� Conversion from Parametric to Implicit

The method to generate a smooth implicit function from the characteristic function
of a shape can be applied to obtain an approximate but accurate conversion from
parametric to implicit surfaces� The characteristic function of the region enclosed by
the parametric surface is produced by a two step procedure� the surface is rasterized
into a volume array and the interior region is �lled� The method is then applied to
this binary volume array creating a smooth implicit function in volumetric form�

����� Analysis of Piecewise Implicit Models

We classify implicit models according to their representation structures� The repre

sentation can be global or piecewise� Piecewise models are studied further from the
point of view of their generation process� As we have mentioned before� we identify
two classes of piecewise models� constructive and decomposition� Implicit decom

position models are investigated and the basic strategies used to compute them are
discussed�

����� Multiscale Decomposition Model

We create a multiscale decomposition model for implicit surfaces and solids� The
model is based on B
spline scaling functions that are Riesz bases of approximating
spaces at multiple scales� The Laplacian transform is employed to generate the model�
This model gives a structured representation consisting of a hierarchical strati�cation
of the implicit function�

����� Conversion from Volumetric to Implicit

The procedure to generate the multiscale implicit model can be used for the conversion
of volumetric to implicit models� It transforms an implicit function given in the form
of a discrete array of samples into a continuous implicit description expressed as a
linear combination of B
spline primitives� The structure of the model also gives a
scale
space description of the data�
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����	 Simplicial Subdivision Model

We create a simplicial subdivision model � for implicit surfaces and solids� The model
is generated by partitioning the domain of the implicit function into a simplicial com

plex and adapting it to the shape boundary� The adaptation method employs physics

based techniques� It uses a spring
mass mesh that deforms under forces derived from
the gradient of the implicit function�

The above procedure produces quasi
regular space subdivisions that are subordi

nate to the implicit surface� The model can be adapted to various properties of the
object by changing the deformation forces applied to the mesh�

����
 Conversion from Implicit to Parametric

The procedure to generate the subdivision implicit model can be used for an approx

imate conversion of implicit to parametric surfaces� The polygonal mesh is derived
from the simplicial subdivision structure� This polygonal mesh is the dual of the cell
complex approximating the implicit function f �

��� Summary

In summary� a complete investigation of piecewise descriptions for implicit surfaces
and solids is proposed� This includes� the analysis of the properties of such models�
the speci�cation of new representations together with computational methods to con

struct them and the development of applications related to the conversion between
representations�

The claim that a general framework for piecewise implicit shape models has been
formulated is supported by the fact that the methods developed in this thesis can be
used to convert between the main forms of geometric descriptions� namely� volumet

ric� implicit and parametric�

This section presents the structure of the thesis and gives an outline of its contents�

����� Structure

The thesis is structured into four main parts�
The �rst part� Chapters � and �� introduces the thesis topic� gives the motivation

to the thesis research and compares the thesis results with related work�
The second part� Chapters � and �� presents a mathematical analysis of the

implicit model of surfaces and solids� The objective of this part is to supply the basic
concepts that will be used throughout the thesis� We also de�ne the characteristics
of a suitable implicit function and a procedure to construct it�

�See Appendix D for a de�nition of simplicial subdivision
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The third part� Chapters �� � and �� investigates piecewise implicit models and
develops two decomposition models� This part discusses applications of the models
and the procedures used to generate them�

The fourth part consists of four appendices which provide an overview of the
mathematical tools used in the thesis� These appendices are included� in an attempt
to make the dissertation self contained� mainly because some of these theoretical
results may not be familiar to the graphics community�

����� Outline

Chapter � reviews related work in modeling and computation with implicit surfaces�
Previous work in this area is compared with the thesis contributions� Constructive
models are discussed and contrasted with the decomposition models developed in
the thesis� The use of multiresolution representations in graphics� vision and image
processing are reported and the multiscale representations created in the thesis are
situated in this context� Polygonization methods of implicit surfaces are examined
relative to one of the applications developed in the thesis�

Chapter � analyses implicit models of surfaces and solids� discussing the charac

teristics of the implicit function� The mathematical properties of the implicit model
are studied� Skeleton and tubular neighborhoods are de�ned� Their importance to
the characterization of implicit models is shown�

Chapter � investigates piecewise representation schemes for describing implicit
surfaces and solids� Piecewise representations are divided in two classes� construc

tive and decomposition� Constructive implicit models are reviewed� Decomposition
implicit models are described and the basic strategies to generate them are discussed�

Chapter � presents a method to generate a smooth implicit function corresponding
to a given closed surface� This method is based on multiresolution edge detection�
An algorithm for detection and reconstruction from multiscale edges is described� A
method to generate a smooth function that approximates a solid from its characteristic
function is developed� Applications of this method are discussed�

Chapter � develops a method to produce a piecewise implicit surface represen

tation based on a multiscale decomposition of the implicit function� The theory of
multiscale decomposition is presented� Methods based on wavelet analysis are intro

duced� A procedure to generate a multiscale implicit model is developed� Applications
of this procedure are discussed�

Chapter � gives a method to construct a piecewise implicit surface representation
based on a domain subdivision of the implicit function� The method employs physics
based simulation� Deformation techniques using spring
mass meshes are presented�
Space partition structures are introduced� A procedure to generate an adapted sub

division of the domain of the implicit function based on space partition and mesh
deformation is developed� Applications of this procedure are discussed�

Chapter � summarizes the achievements of this research and discusses directions
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of future work�
Appendix A is a simple introduction to functional analysis� It includes a review

of abstract mathematical spaces� function spaces� linear operators and representation
of functions�

Appendix B is a brief overview of wavelets and related topics� It includes a
description of classes of wavelets� time
frequency analysis� multiresolution analysis
and the wavelet transform�

Appendix C is a review of polynomial splines and a description of spline wavelets�
It includes a discussion of spaces of polynomials� computational methods� spline
wavelets� B
spline wavelets and time
frequency localization�

Appendix D is a study of space decompositions and spatial data structures� It
includes a description of the main types of space subdivision� their properties and
representation�

Note� About the Examples

Most of the examples in this thesis will be for objects in two dimensions� We will
work with curves and areas in the plane instead of with surfaces and volumes in space�
This is done for illustrative purposes and to facilitate the visualization of results� But�
for each group of examples we will include at least one example in three dimensions�
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Related Work

This chapter discusses related work with implicitly de�ned objects and compares it
to our research�

The breadth of the thesis topic makes it di
cult to exhaustively compare the thesis
results with prior work� The main motivation of our research is to investigate general
models for implicitly de�ned shapes� as opposed to the more common approaches
of concentrating on a particular class of models or improving an existing technique�
To our knowledge� there is no previous comprehensive study of implicit models for
arbitrary geometric objects� Most of the research in this area is restricted to speci�c
models� such as implicit algebraic descriptions� For this reason� we believe that there
is a need for a systematic investigation of general models�

Furthermore� the methods developed in this thesis are heavily in�uenced by im

age processing techniques and shape models used in vision� This is a consequence
of the observation that one of the most general implicit representations is the volu

metric description� In this form� the implicit function is usually de�ned by a three
dimensional array of samples� or a �D image� Therefore� it makes sense to extend the
machinery developed for image manipulation and analysis to the context of implicit
representation� Another advantage of this approach is that it establishes a direct
connection between implicit models and volume data� the standard format in scien

ti�c applications� In this way� our methods are automatically applicable to scienti�c
visualization and similar problems�

The central ideas in this thesis are that the development and evaluation of im

plicit models requires an abstract characterization of the implicit description� and
that piecewise descriptions are the best choice of implicit models of general type�
Furthermore� we argue that two e�ective ways to create piecewise implicit models
are through a spatial decomposition and through a functional decomposition� In the
�rst case� we decompose the domain of the implicit function and in the second� we
decompose the implicit function itself�

In the following sections we will discuss these ideas in more detail� talk about
related work and draw comparisons with the results of this thesis�

��
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��� General Implicit Models

The discussion of a general implicit model includes a mathematical characterization of
the implicit description of shapes� as well as the development of methods to generate
the model given an object of arbitrary geometry�

����� Characterization of Shapes

There is a variety of shape models in vision� Among them� multiscale edges and
medial axis models are particularly related to implicit descriptions� In the multiscale
edge representation� a shape is characterized through the variations of the image
intensity function at di�erent resolution levels� The zero crossings of the Laplacian
of a Gaussian �lter can be used to describe the edges �Marr� ����	� In the medial
axis representation� a shape is characterized by a lower dimensional skeleton� The
structure of points that are equidistant from its boundary de�ne the skeleton �Blum�
����	�

These two models have been used independently� partially because the connection
with implicit descriptions was not made� In our characterization of implicit models� we
show that the medial axis representation is related to the skeleton of an implicit solid
and that the multiscale edge representation is related to the tubular neighborhood of
the boundary of the solid� We also show that these two structures are complementary
and that they de�ne the embedding of an implicit object in the ambient space�

����� Construction of the Model

One of the problems in vision and image processing is the reconstruction of a contin

uous image function from a discrete set of sample values�This problem is related in
many ways with general implicit models� If we are given a volumetric representation�
it may be necessary to �nd a continuous interpolant � that describes it� Or� more
generally� if we have the characteristic function of a shape� it may be desirable to
generate a smooth implicit function de�ning it�

Although most of the traditional image reconstruction methods used in vision�
such as �Terzopoulos� ����	 and �Szeliski� ����	� could be applied to the problem
of constructing implicit functions� in this thesis we take a di�erent approach� We
propose the use of a method based on reconstruction from multiscale edges� The
method employs a wavelet algorithm �Mallat and Zhong� ����a	 to generate a smooth
implicit function� It essentially synthesizes a tubular neighborhood corresponding to
the boundary of a shape� The bene�ts of this choice are that it establishes a direct
relationship with the implicit model characterization and provides better control over
the properties of the resulting function�

�Interpolation function
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��� Piecewise Implicit Descriptions

In this thesis� we advocate that piecewise descriptions solve the representation prob

lem for general implicit models� In addition� we assert that� in order to be useful�
these descriptions should allow the conversion between representations�

An analogy with parametric models seems to con�rm our arguments� Parametric
descriptions are inherently piecewise� This is a consequence of the fact that it is not
possible to de�ne a single global parametrization of all but the simplest geometric
objects� So� the solution is to use a set of local parametrizations satisfying certain
continuity conditions� Some examples are NURBS and Bezier surface patch models�

Parametric descriptions are also easily convertible� In most cases it amounts only
to a change of basis operation� As a matter of fact� this is almost transparent in many
graphics systems� We are so used to such conversions that they are not noticed�

Let�s take a simple case as an example� First specify a surface using a revolution
operation� then modify the resulting geometry by moving points of its control mesh
and �nally render its image using a polygon shader� It may not be apparent� but
this example required the use of three di�erent parametric piecewise models and the
conversion was done automatically by the system� The initial surface was de�ned as
a surface of revolution� it was then converted to a bicubic mesh surface� and �nally
to a polygonal surface approximation�

In the case of implicit models� the situation is rather di�erent� Piecewise descrip

tions are far less ubiquitous� There are fewer types of piecewise implicit representa

tions and the conversion problem has not been satisfactorily solved� We claim that
the results in this thesis contribute to improving the capabilities of existing implicit
models and provide methods that will help to make the scenario described above a
reality for implicit modeling systems�

Next� we review traditional piecewise implicit representation schemes and contrast
them with the representation schemes developed in the thesis�

����� CSG

The CSG �Constructive Solid Geometry	 representation scheme was the �rst piece

wise implicit description used in computer graphics� It was introduced as a consistent
model for solid objects �Requicha� ����	 and it was the basis of most of the early
geometric modeling systems �Boyse and Gilchrist� ����	� �Brown� ����	 �Goldstein
and Malin� ����	� The CSG model uses regularized boolean operations on point sets�
In this scheme� a CSG object is build from the union� intersection and di�erence of
primitive objects that are usually de�ned by implicit algebraic equations� A com

pound CSG object consists of a tree structure in which internal nodes are associated
with set operations and leaf nodes with primitives�

Although the CSG scheme is independent of the primitive models �as long as they
de�ne a point set	 and� therefore� also applies to parametric primitives �Mantyla�
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����	� this scheme is best suited to implicit primitives and was initially developed in
that context� That is because� implicit models naturally de�ne the boundary� as well
as� the interior of solids� an essential property for computation with CSG objects�

The CSG representation has several limitations�

� Its descriptive power depends on the set of primitives available in the system�

� It may be computationally ine
cient�

� It is not unique�

These limitations are mostly a consequence of the constructive nature of the CSG
description� This makes it suitable for shape design� but since the composite structure
is de�ned solely by the user� it may not be optimal from the computational standpoint�
In contrast� the decomposition models proposed in this thesis are adapted to the
geometric properties of objects and are computationally e
cient�

����� Skeletons

Primitive implicit solids can be de�ned by a distance function from lower dimensional
geometric elements� such as a point or a curve� As we mentioned� these elements are
called skeletons� The implicit function is expressed as f�x� y� z	� c� where f is some
pseudo
distance function and the boundary of the primitive is a level surface c units
away from the skeleton in this pseudo
metric� The above scheme has connections with
implicit blending operations� This mechanism raises the possibility of representing
implicit objects using blend composition of skeleton based primitives �� Normally�
for simplicity� the composite implicit function is the sum of contributions of each
primitive �L� metric	�

Blinn was the �rst to introduce skeleton based implicit models in computer graph

ics �Blinn� ����	� His model was inspired by electron density maps� It uses a point
skeleton and the distance function is a Gaussian centered at each point of the skele

ton� Blinn�s idea was further developed by �Nishimura et al�� ����	 and �Wyvill�
McPheeters and Wyvill� ����a	� One important aspect of these last two models is
that they use functions that drop to zero at a certain distance from the skeleton� This
has a practical signi�cance in computational e
ciency�

The �rst skeleton models consisted of point skeletons with simple blending func

tions� This made them very attractive computationally� In an attempt to develop
better mechanisms for shape design� the complexity of the skeleton models was in

creased making them less e
cient computationally�

The multiscale decomposition model that we develop can be considered a point
skeleton model that is structured and hierarchical� These two characteristics make it
computationally e
cient� The decomposition mechanism makes it expressive�

�Note that the blending operation does not create a skeleton of the composite shape�
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����� Volumetric Models

Volumetric models are usually represented by �
dimensional voxel arrays� Such a
description can be interpreted as an implicit model in sampled form� In this model�
array values are samples of an arbitrary implicit function at regular grid points�

The data may be generated by external processes or by sensors� This type of
representation is gaining importance in many application areas of computer graphics�
particularly in scienti�c and medical applications �McCormick� ����	�

Volume data is a redundant representation� because the array values are highly
correlated in general� Furthermore� appropriate resolutions demand large memory
and computation resources�

The wavelet decomposition methods employed to create our multiscale models
eliminate the redundancy from the volumetric input data and give a description that
is piecewise analytical�

����� Comparison

Although point skeletons and volumetric models are very di�erent in many respects�
they have some essential characteristics in common� Both models de�ne the implicit
function in terms of values at discrete sets of points and use similar blending functions
to combine them� However� point skeletons are irregular and sparse representations�
while volumetric models are regular and dense� Point skeletons are more compact
and computationally e
cient� while voxel arrays are ine
cient in terms of space and
processing�

The multiscale implicit models proposed in this thesis combine some of the best
features of point skeletons and volumetric models�

��� Functional Decomposition Models

One way to create a piecewise description of an implicitly de�ned object is to de

compose the implicit function into a collection of simpler functions� A particularly
e�ective scheme for this purpose consists in selecting basis functions that are localized
in both space and frequency�

����� Multiscale Representations

The multiscale representation is a description of a function in terms its components
at di�erent scales� Recently� research on wavelet theory contributed to the uni�cation
of results from many �elds and established a rigorous mathematical foundation for
multiscale representations �Daubechies� ����	� �Chui� ����	� The intense interest
in wavelets also stimulated the development of applications� particularly in image
processing �Mallat� ����	�
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A wavelet based implicit model was used by �Muraki� ����	 to represent volumetric
data sets� His model resorts to orthogonal spline wavelets in � dimensions� Muraki�s
model has two major de�ciencies� First� it uses tensor product wavelets which� in
three dimensions� require seven di�erent wavelet functions� These basis elements give
directional information that is very useful for analysis purposes� but make synthesis
computations more complex� Second� it uses basis functions that are not compactly
supported� Therefore� the wavelet transform has to be computed approximately�
introducing inaccuracy into the model� Our multiscale model is based on a wavelet
decomposition of the implicit function� but it employs the scaling function associated
with the wavelet and� for this reason� is more adequate for synthesis purposes than
models that use the wavelet functions directly�

Another implicit surface model inspired on the wavelet decomposition was pro

posed by �Perlin and Zhu� ����	� The model� called �sur�et�� uses a single wavelet
like
function that is oriented� This description is constructed by an empirical procedure
from samples on a uniform grid� One limitation of the model is that it approximates
only one level surface given by the implicit function� Our model describes the implicit
function as a whole� in contrast with the sur�et model which describes only the level
surface�

����� Multiresolution Representations

The multiresolution representation is a hierarchical description which incorporates
versions of the same function corresponding to various scales� It employs a pyramidal
data structure that stores this sequence from �ne to coarse resolutions�

Multiresolution representations have been used in image processing and computer
graphics for a long time� In image processing� it was applied to various computational
tasks �Rosenfeld� ����	� including edge detection �Canny� ����	� image compression
and transmission �Burt� ����	� and variational solution of visual inverse problems
�Terzopoulos� ����	� In computer graphics� it was primarily applied to pre
integration
of textures to accelerate anti
aliasing calculations �Williams� ����	� The multiresolu

tion analysis is intrinsically connected with the wavelet decomposition� It provides a
structure that makes it possible to construct a class of orthogonal and biorthogonal
wavelet functions� Conversely� a wavelet decomposition can be expressed in terms of
the scaling function that is a basis of the multiresolution approximation spaces�

In this thesis� we exploit results from multiresolution analysis� We use multiresolu

tion edge estimation to compute a tubular neighborhood of a surface and to generate
a smooth implicit function corresponding to this surface� We use the multiresolution
analysis to de�ne the biorthogonal B
spline basis of our multiscale implicit model and
employ the Laplacian transform to create its representation�
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��� Physics�Based Spatial Decomposition Models

Another way to create a piecewise description of an implicitly de�ned object is to
decompose the domain of the implicit function into subdomains and approximate
it by simpler functions in each subdomain� The standard domain decomposition
procedures do not give� in general� a space partition that is adapted to the shape of
the object� but a physics based deformation can be used for this purpose�

����� Spatial Decompositions

The decomposition of the domain of the implicit function provides a piecewise de

scription that serves as a basis for the sampling and structuring operations required
in most computations with implicit objects�

A particularly important example is the polygonization of the implicit surface� In
this case� the spatial decomposition is used to localize the surface and to generate the
corresponding polygon mesh� Therefore� a natural classi�cation of polygonization
methods is according to the type of decomposition they use� The main types are
non�simplicial and simplicial methods�

Most non
simplicial methods employ a rectangular tessellation of space� The
marching cubes algorithm �Lorensen and Cline� ����	� is the most popular method
of this type� Similar algorithms have been developed independently by �Wyvill�
McPheeters and Wyvill� ����b	 and �Pasko and Pilyugin� ����	� These methods
are fast and simple to implement� The main drawback is that they cannot be used
to represent the implicit function unambiguously� Therefore� they require a disam

biguating scheme to produce a consistent polygonization �Beier� ����	�

Simplicial methods triangulate the domain of the implicit function� They are
theoretically sound� because they rely on classical results from algebraic topology
related to the piecewise linear structure of a simplicial complex� Computational work
on this type of method was pioneered by Allgower �Allgower and Schmidt� ����	
�Allgower and Gnutzmann� ����	�

Another important characteristic of polygonization methods is whether or not
the space decomposition is adapted to the implicit function� Adaptive methods par

tition space unevenly� such that the decomposition is �ner where necessary� Most
methods start with an initial space tessellation� and re�ne it recursively until some
adaptation criteria are met� Because these methods subdivide cells adaptively� they
must constrain the subdivision process in order to guarantee the compatibility of
the cell complex� Adaptive algorithms based on restricted trees have been proposed
for simplicial �Hall and Warren� ����	 as well as non
simplicial �Bloomenthal� ����	
decompositions� A more e
cient method based on restricting polygon edges was
proposed in �Velho� ����	�

In this thesis� we introduce an adaptive method that employs physics
based tech

niques� rather than recursive subdivision� to generate a simplicial decomposition of
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the implicit function domain� This method produces a polygonization that is quasi

regular� in the sense that all polygons are almost equilateral and the transition be

tween di�erent size polygons is smooth� Note that we generate not only a polygo

nization� but also a piecewise linear description of the implicit function�

����� Physics Based Methods

Physics based methods have been used in vision and graphics for shape estimation�
modeling and animation �Terzopoulos� Witkin and Kass� ����	 �Terzopoulos et al��
����	� �Terzopoulos and Fleischer� ����	�

Discrete physical models constitute a simple and yet powerful mechanism for dy

namics simulation �Greenspan� ����	� A spring
mass mesh is a discrete physical
model de�ned by point masses that are interconnected by springs�

We employ physics based deformation to adapt our spatial decomposition model
to the boundary of the implicit object� This is done by associating the cell structure
describing the space decomposition with a spring
mass mesh� The mesh is then
submitted to forces derived from the implicit function� A similar approach was used in
image processing for the purposes of adaptive sampling and compression �Terzopoulos
and Vasilescu� ����	� The main di�erence between these methods is that we employ
two complementary force �elds related to a tubular neighborhood of the implicit
surface� while they employ only one force �eld for the entire image�
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Implicit Models

This chapter studies the description of surfaces and solids in implicit form� It analyses
the main characteristics of the implicit function and establishes criteria to de�ne the
optimality of this function�

We try to answer the following questions� What is the mathematical characteri

zation of a shape using implicitly de�ned models� Is this unique� If not� what makes
a good implicit model for geometric computation� These questions are very impor

tant� especially if our goal is to develop new geometric representations for computer
graphics applications� The problems they raise have to be addressed at an abstract
level if the intent is a general description of arbitrary shapes�

��� Implicit Object Model

An implicit object is described by a pair �f� c	� where f is a Ck real function of
Euclidean space and c is a real constant�

����� De�nition of Surfaces

A surface S � R
n has an implicit description if there is a function f � U � R� S � U �

and a value c � R� such that S � f���c	� That is�

S � fp � U � f�p	 � cg�

The function f is called an implicit function� U is the domain of f � and c is called
the level of S�

The implicit surface is the set of points which satisfy the implicit equation f�p	�
c � �� Note that this is a root �nding problem with in�nitely many solutions�

����� De�nition of Solids

If an implicit surface S � f���c	 is a closed� codimension one manifold� it separates
the space into two connected components having S as a common boundary� In this
case f can also be used to describe an implicit solid�

��
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A solid object O �with boundary	 is the inverse image f���I	 of the interval
I � ���� c� �or �c��	� depending on the orientation convention	�

S � fp � U � f�p	 � cg
where U and f are de�ned as in the previous subsection� The implicit solid is the set
of points satisfying the inequality f�p	� c � ��

����� Regular Surfaces

The implicit de�nition is broad enough to include a very large family of surfaces� In
fact� this de�nition is too broad and allows degenerate types of surfaces� Hence� it is
necessary to impose restrictions on f and c� so that a sound computational framework
can be developed�

An implicit surface is called regular if c is a regular value of f � This is true if for
all p � f���c	 the di�erential f ��p	 is surjective� otherwise c is called a critical value
of f � The regularity condition means that the gradient vector

rf�p	 �
�
�f

xi
�p	� � � � �

�f

xn
�p	

�

does not vanish at the points p � S�
Any orientable smooth surface may be de�ned as the inverse image of a regular

value c of a function f � U � R� where U is an open subset of Rn � Moreover� Sard�s
theorem says that regularity is a stable condition� and a regular value c can be chosen
with probability one� Mathematically� this means that the set of regular values is
open and dense �Milnor� ����	� We should remark� however� that it is in general very
di
cult to decide about regularity from a computational point of view� The solution
is to design robust numerical methods exploiting Sard�s results�

A regular implicit surface f���c	 is an orientable submanifold of Rn � This implies
that f���c	 is a non
degenerate level surface of f � Moreover� if c is perturbed� we
get a foliation of a neighborhood of f���c	 by regular implicit surfaces� as shown in
Figure ����

����� Geometric Interpretation

Implicitly de�ned surfaces can be interpreted geometrically as the level set of the
graph of a function� This gives a visual intuition of the meaning behind the implicit
form�

Consider a function f � Rn � R� Its graph is a subset of Rn�� de�ned by

g � graph�f	 � f�x�� � � � � xn��	 � �x�� � � � � xn	 � U and xn�� � f�x�� � � � � xn	g
This may be visualized as the height �eld where� for each point p � U � the value

of f�p	 gives the elevation of the hypersurface g at that point� The surface S de�ned



���� IMPLICIT OBJECT MODEL ��

U 

F

-1

c

F   (c)

Figure ���� Level Contours

by f���c	 is the intersection of the graph of f with a hyperplane parallel to U at a
distance c from it� f���c	 � g 	 fxn�� � cg� This is shown in Figure ��� for a circle
de�ned implicitly by x�� � x�� � c� We use a two
dimensional example for clarity� The
graph of f is a paraboloid of equation x� � x�� � x��� and its intersection with a plane
x� � c is a circle for c � ��

c

Figure ���� Implicit surface as a level set

The regularity condition in the geometric interpretation above is re�ected in the
fact the hypersurface g and the hyperplane xn�� � c have no tangency along their
intersection set� In Figure ���� note that c � � is not a regular value of f because it
is a minimum of f and therefore a singular point�



�� CHAPTER �� IMPLICIT MODELS

��� The Implicit Form

The function f is the main element in the mathematical characterization of implicit
surfaces and solids�

����� Point�Membership Function

The implicit function is a point�membership classi�cation function f that returns a
value according to the relationship of a point p � U � given as its argument� with the
implicit surface S de�ned by it�

f�p	

�����
� c p � positive side of S�
� c p � S�
� c p � negative side of S�

����� Space Subdivision

The implicit function induces a subdivision of the ambient space into connected com

ponents that� depending on the sign of f�p	�c� correspond to the interior and exterior
regions of the implicit solid O �Note that interior and exterior are de�ned by a sign
convention which is arbitrary	� Figure ��� shows an example of a solid object with
two connected components� one bounded and the other unbounded�

f = c

f > c

f < c f < c

Figure ���� Implicit solid
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����� Characteristic Function

The characteristic function 	O � Rn � f�� �g of a solid object O� de�ned as 	O�p	 �
� if p � O and 	O�p	 � � if p 
� O� can be trivially derived from the implicit equation�

	O�p	 �

�
� if f�p	 � c
� otherwise

����� The Gradient of the Implicit Function

Given a di�erentiable function f � Rn � R� the gradient vector �eld rf is de�ned
in its domain U � This vector �eld is orthogonal to each level surface f���a	� a � R�
associated with the implicit function f � It points in the direction of largest growth
of f and indicates� at any point of U � a path to the surface S � f���c	�

As pointed out earlier� a regular implicit surface is always orientable� This means
that a globally consistent direction of rotation in the tangent planes of the surface
can be chosen� The orientation is given by the gradient vector �eld�

Furthermore� the vector �eld

N�p	 �
rf�p	
krf�p	k � p � S

de�nes the unit normal at a point p of the surface�

��� Understanding the Implicit Function

An important aspect of the implicit surface description is the nature of the implicit
function f � The understanding of the properties of f gives an indication of the
operations that can be performed with the model� as well as their e�ect on geometry�

����� The Implicit Function and Metrics

The implicit function can be interpreted as a measure of the proximity from the
surface to a point in space� In this sense� f � U � R

n � R gives the signed distance�
induced by some pseudo
metric d � Rn � R� of points p � U to the level surface
S � f���c	�

Example ��� �Circle
 The circle with center o and radius r can be de�ned as the
inverse image f����	 of the implicit function f�p	 � d�o� p	 � r� where d is the
Euclidean metric�

In a �nite dimensional vector space all distance functions derived from a norm are
topologically equivalent� Particularly� in R

n we have the following classical metrics
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d��p� q	 � jp� � q�j� � � �� jpn � qnj

d��p� q	 �
q
jp� � q�j� � � � �� jpn � qnj�

d��p� q	 � max�jp� � q�j� � � � � jpn� qnj	
Note that� although these metrics are equivalent from a topological standpoint� they
produce di�erent geometric results when used to de�ne an implicit surface� Figure ���
shows the circle of Example ��� using the metrics above�

d� d� d�

Figure ���� A ball in di�erent metrics

The metrics d�� d� and d� can be generalized to form the m
norms� a one param

eter family of distance functions�

dm�p� q	 �

�X
i

k pi� qi km
	��m

�

The fact that altering the metrics causes shape changes may be exploited by the
implicit surface model if this is incorporated into the implicit function�

Example ��� �Superellipse
 The superellipse model allows the control of shape
through a modi�cation of the metric� The function f�x	 is de�ned as



x�
a

�e
�


x�
b

�e � �

e

�

where e controls the roundness of the shape and a and b are respectively horizontal
and vertical scaling factors�

����� Changing the Implicit Function

Algebraic and arithmetic operations performed on the function f change some char

acteristic of the implicit function that may or may not alter the surface S � f���c	�
There are operations that leave S invariant and others that modify its geometry or
topology�



���� UNDERSTANDING THE IMPLICIT FUNCTION ��

������� Operations that Leave the Surface Invariant

The following operations� depending on the value of c� change the function f without
a�ecting the surface f���c	�

If a surface S is de�ned as the level set f����	� then it is also implicitly de�ned
by any function g�

g�x	 � 
f�x	�

where 
 � R� 
 
� ��
If f � U � ����	 and S is de�ned as f����	� then it is also implicitly de�ned by

any function g�
g�x	 � f�x	��

where � is a positive real number�
In these two cases� the surface S is said to be embedded in both f and g� Note

that although these implicit functions describe the same surface� they are not induced
by the same pseudo
metric�

������� Operations that Change the Surface

A level surface S of the graph of f is called an isosurface or isovalue surface �in general�
we use the name isocontour to designate the level sets of an arbitrary implicit function
f � Rn � R

m	� The contour surfaces of f can be traversed by a function h de�ned as�

h�x	 � f�x	� ��

where � � R� The surface h���c	 is an o�set surface of f���c	 in the pseudo
metric
induced on h and f �

����� Canonical Forms

There are two canonical formats for the implicit description of a surface� In the
previous subsection� we have seen that the following pairs �R� v	 of range and value

�������	� �	

������	� �	

have special properties in relation to the invariance of f���v	 for Range�f	 � R�
There exists a simple map that can be used to convert between these two formats

as required� Given an arbitrary function f � U � �����	 the transformation�

h�x	 � exp�f�x		�

maps the range �����	 into ����	 and maps the level surface f����	 into h����	�
This transformation has an inverse� de�ned by taking the logarithm

f�x	 � log�h�x		�
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��� Tubular Neighborhoods

The concept of tubular neighborhood is of fundamental importance in the study
of di�erentiable manifolds� because it relates a surface with its normal vector �eld�
Thus� by investigating the tubular neighborhood of a surface S� it is possible to make
a connection between the isocontour S � f���c	 and the associated implicit function
f � This is done indirectly through the vector �eld normal to f���c	� given by the
gradient of f �

����� De�nitions

A normal segment �p� b� to a surface S at the point p is a line segment from p to b such
that p � S and �p� b� is contained in T�p S� the orthogonal complement of the tangent
space of S at p� The point p is called the foot point of b in S� The �
dimensional
set of all segments normal to S at the point p with length less than 
� is denoted as
B��p� 
	�

An admissible normal radius for a subset Z � S is a real number 
 � � such that
any two normal segments� �p� x� and �q� y�� with p 
� q � Z and length � 
 do not
intersect� See Figure ����

p

< ε

q

x y

Z

Figure ���� Admissible Normal Radius

An 
�tubular neighborhood V� of a surface S is de�ned as the union of all segments
normal to S with radius 
�p	 such that 
 is an admissible normal radius for S at p�
That is

V��S	 �
�
p�S

B��p� 
�p		�

See Figure ����
It is possible to prove that any regular implicit surface S � f���c	 has a tubular

neighborhood� This is a consequence of the fact that the gradient vector �eld of f
does not vanish on S�
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ε
ε

S

V  (S)ε

p
B(p;e )

Figure ���� Tubular Neighborhood

����� The Projection on the Surface

The existence of a tubular neighborhood makes possible to de�ne a projection function
� � V��S	� S which� for each point x � V�� associates the unique foot point p of the
normal segment that contains x�

This projection is a very powerful mathematical instrument that can be used
for many purposes in the study of surfaces� In particular� it implies that a tubular
neighborhood is equivalent to the product space S � B�
	� where B�
	 is an open
interval � R with center at the origin and radius 
� This corresponds to a topological
open cylinder� See Figure ����

Vx0

S

V

VxR

φ

Figure ���� Product Space

����� The Maximal Tubular Neighborhood

A tubular neighborhood of a surface is called maximal when it contains all possible


tubular neighborhoods of that surface�
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Intuitively the maximal tubular neighborhood extends the normal �bers of V� as
far as possible without violating the projection conditions above�

The maximal tubular neighborhood Vmax of a surface S � f���c	 is unique� Vmax

gives the largest open set S � U � R
n where a continuously di�erentiable distance

function f � U � R� associated with the surface f���c	� can be de�ned� In other
words� U is the maximal domain in which an implicit function f can be constructed
such that f does not have singular points in U �or� equivalently� rf does not vanish
in U	�

Example ��� �Unit Circle
 The maximal tubular neighborhood of the unit circle
is the entire plane minus the origin �R� � f��� �	g	�

��	 Skeletons

The skeleton describes the structural essence of a shape� It provides a means to char

acterize the topology of solids and to construct a geometric model of their boundary�
In particular� as suggested earlier� the skeleton may serve as the basis for implicit
surface models if it is associated with a suitable distance function�

The skeleton has also been extensively used in computer vision for shape recog

nition and classi�cation purposes �Blum� ����	� �Ho�mann� ����	� �Nackman and
Pizer� ����	�

����� De�nitions

The distance from a point p to a surface S in R
n is the minimum of the Euclidean

distance dE�p� s	� where s is on S�

d�p�S	 � inf
s�S

dE�p� s	�

Since d is continuous� if S is compact� for every p � R
n � there is at least one point

s� � S such that d�p�S	 � d�p� s�	� Such point s� is called the foot point of p in S
�Note that this de�nition is equivalent to the one in Section ���	�

The skeleton of a region of Rn bounded by a surface S is the closure of the set of
points p � R

n such that p 
� S and p has more than one foot point on S�
The interior skeleton consists of all skeleton points that are interior relative to

S� Similarly� the exterior skeleton consists of the set skeleton points that are exterior
relative to S�

����� Intuition

Intuitively� the skeleton is formed by all the points of the ambient space that have
more than one geodesic path to the surface S�
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An alternative de�nition of the skeleton with a geometric �avor employs the notion
of maximal spheres� A sphere is called maximal with respect to a region R� if it is
contained entirely in R� but it is not properly contained by any other sphere in R�
See Figure ����

skeleton

Figure ���� Maximal Sphere

The skeleton can be de�ned as the locus of the centers of all spheres that are
maximal with respect to the interior and exterior regions delimited by S�

The de�nition above was proposed in connection with the medial axis transform
used in vision �Blum� ����	�

����� Characteristics

The skeleton of a region of dimension d is formed by the union of elements of dimension
d� � or lower�

A solid has a unique skeleton� Figure ��� shows the skeleton of a rectangular solid
region of R� �

Figure ���� Skeleton
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��
 Surfaces in Space

In order to analyze the e�ectiveness of implicit surface models it is necessary to study
the extrinsic properties of the surface� The reason this is so important lies in the fact
that implicit surfaces are de�ned by a function of space� The investigation of how
the surface is embedded provides the required criteria to characterize the implicit
function�

����� Surfaces and the Structure of Space

The maximal tubular neighborhood of a surface S and the skeleton of the region
enclosed by S provide a structure of the ambient space that reveals essential aspects
of the implicit surface model�

These two geometric entities are dual structures� More than that� one is the
complement of the other in R

n � This is clear from their very de�nition�
The concepts of tubular neighborhood and skeleton are totally independent of the

implicit description� But� in some sense� they capture all properties of a surface which
depend on its embedding in the ambient space� This is precisely the reason why they
are important� they relate a surface with the space in which it lives�

For implicit regular surfaces�

� The skeleton is contained in the set of singular points�

� The tubular neighborhood is contained in the complement of the set of singular
points�

This is a precise statement about the duality of these structures�
These instruments are useful to analyze and construct implicit surface models�

Tubular neighborhoods provide a way to investigate the domain of the implicit func

tion� skeletons provide simpler geometric objects from which the implicit function can
be de�ned�

����� What is a Good Implicit Function


There are many properties that a good implicit surface model should have� Some of
them� such as simplicity� conciseness or completeness� are of qualitative nature and
apply to any type of geometric model� Others� are speci�c to the implicit model�

In simple terms� speci�c properties of the implicit surface model are related to�

� the information conveyed by the value of f �

� the extent of the domain of f with valid information�
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According to these criteria� a good implicit function should provide the desired
information over a prescribed region of space�

One possible criterion to specify such a function is faithfulness to a metric of the
ambient space� Under this assumption� the optimal implicit function is the Euclidean
distance from the surface� This is a linear function that is singular at the skeleton
points� Such a function will be brie�y described in the appendix to this chapter�

Another optimality criterion is smoothness� In that case� it is not possible to
employ a true metric� So� the model has to resort to a pseudo
metric� Also� some
control over the domain of the implicit function may be required� The most natural
choices are� either the entire Rn � or a prescribed 

tubular neighborhood of the surface�
In Chapter � we will discuss how to compute smooth implicit functions with these
properties�

��� Summary

In this chapter� we investigated the mathematical characterization of the implicit
de�nition of surfaces and solids� We showed that the implicit function is the main
component of the implicit model and that its variations de�ne level surfaces� We also
demonstrated that a solid and an implicit function are related by dual structures� the
skeleton of the solid and the maximal tubular neighborhood of its boundary� These
fundamental structures de�ne the embedding of a shape in space and� therefore the
characteristics of the implicit function� Finally� we discussed a set of criteria which
could be used for analyzing implicit models� From an interpretation of the implicit
function as a distance function� we identi�ed two classes of implicit models � the ones
based on a true metric and on a pseudo
metric�

Although we have built upon many known mathematical concepts from di�erential
geometry� analysis and topology� a general characterization of the implicit de�nition
of shapes has not been attempted before� In particular� the connection between
skeletons and the tubular neighborhood is an original result� Previous related work
was restricted either to particular types of models or to particular applications� for
example� the research in vision on skeleton models �Blum� ����	�

Note� Distance Function Models

Distance function models are closely related to cyclographic maps and to the solution
of the eikonal equation �Ho�mann� ����	�

This implicit surface model is based on the Euclidean metric� The surface S is
de�ned as the zero set f����	 of the function f � Rn � R�

f�x	 � d�x� p	� r�p	�
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where d�x� p	 is the distance from x to its closest point p on the interior skeleton of
S and r�p	 is the distance of p from S �as de�ned in Section ���	�

The value of f gives the signed distance from the point x to its foot point on S�
The gradient of f is a unit vector �eld� de�ned over the maximal tubular neighborhood
of S� that points in the normal direction to the surface�

Observe that this model generalizes the o�set surface model with constant radius
r given in Example ����



Chapter �

Implicit Piecewise Representations

This chapter investigates the piecewise representation of implicit surfaces and solids�
It discusses the implicit representation� reviews constructive representation schemes
and identi�es approaches for creating decomposition representation schemes�

In the previous chapter� we presented a characterization of general implicit shape
models� The implicit function can be represented numerically by uniform sample
values in the form of a volumetric array� Although such a representation is the most
general description of a function� it is too redundant and not suitable for computa

tions� The main objective of this chapter is to provide the conceptual foundation
for the development of e�ective implicit representations� Ideally� these new represen

tations should have the same descriptive power as the volumetric array without its
shortcomings� Furthermore� there must be a practical method to convert to and from
a volumetric description�

��� Background

The representation of an implicit surface in a geometric modeling system consists of
a symbolic description of the implicit function� along with the numeric parameters
required to completely determine it�

����� The Implicit Form

An implicit surface is the level set of a function f � Rn � R� The function f may be
given in one of two ways�

� Continuous Form

� Sampled Form

In the �rst case� f is de�ned by an analytic equation that allows the computation
of its value at any point of the domain� In the second case� the value of f is known
only at a discrete set of sample points� An interpolation scheme must be used to
reconstruct the continuous function and allow the calculation of its value at other
points of the domain�

��
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The ability to convert between these two forms is a key issue in the computation
with implicit surfaces� It also provides a link between geometric models and objects
of the real world�

����� The Implicit Representation

The representation of an implicit surface S � f���c	 depends on how the function f is
speci�ed in a modeling system� In this respect� there are two types of representation
schemes�

� Atomic

� Piecewise

In the atomic representation� an implicit surface is associated with a function f
that is a primitive to the system� Primitive functions usually describe a family of
surfaces� In this case� f has parameters that allows the selection of a member of
the family� The representation consists of an identi�er �of the primitive	 and the
parameters values� An example of primitive is the implicit function de�ning the
family of superellipsoids introduced in Chapter ��

In the piecewise representation� an implicit surface is associated with an expression
involving composition operators and primitive implicit functions� The representation
consists of a symbolic description of the expression and the numerical values involved�
An example of compound implicit object is speci�ed by boolean expressions involving
set operations as discussed later in this chapter�

����� Operations with Implicit Functions

The implicit representation is closed under the following operations�

� Sum� f� � f� � f��x	 � f��x	�

� Product� f� 
 f� � f��x	f��x	�

� Maximum� max�f�� f�	 � maxff��x	� f��x	g�
� Minimum� min�f�� f�	 � minff��x	� f��x	g�
In other words� if two functions f� and f� are valid implicit functions� then their

combination using any of the above operations is also a valid implicit function ��
In general� if g � Rk � R is an algebraic implicit function� it can be used to de�ne

the composite implicit function of k implicit functions f � �f�� � � � � fk	� g� f � Rn � R�

g�f�� � � � � fk	�

�Note that the unary operations� �f and f�� de�ned in Chapter � are particular cases of the
n�ary operations f� � � � � � fn and f� � � � � � fn� n � �� where � � N�
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Also� an arbitrary implicit function can be approximated by a composite implicit
function�

These arithmetic operations with implicit functions correspond to geometric op

erations with the associated implicit objects� For this reason it is important to un

derstand their e�ects and meaning�

����� Piecewise Descriptions

Piecewise descriptions can be further subdivided into constructive and decomposition
representation schemes� Constructive schemes assemble the model using di�erent
types of primitives and operators� Decomposition schemes take a given shape and
form the model using only one type of primitive and operator�

Constructive implicit models have been extensively researched by the solid mod

eling community �Boyse and Gilchrist� ����	� �Brown� ����	�

In this thesis� we will explore decomposition models of implicit surfaces� This is
motivated by the fact that we already have a way to generate a volumetric description
of a shape �see Chapter �	�

��� Constructive Schemes

This section reviews constructive representation schemes� Its main purpose is to
provide the background for a comparison between constructive and decomposition
schemes�

In a constructive scheme� the implicit model is created from primitive implicit
solids using composition operators�

Function composition combine di�erent implicit functions into a new one using
arithmetic operations� This scheme corresponds to shape operations� such as boolean
or blends� that are used to create composite implicit objects from primitive ones�

It is worth noting that the algebraic structure of function composition can be
exploited in many ways in a modeling system�

����� Boolean Operations

The max and min functions can be used to de�ne set operations with implicit solids�
In such a scheme� compound objects are constructed from the union and intersection
of primitives� Other operations� such as di�erence� are de�ned using complementa

tion�

An implicit CSG solid is any set of points in R
n which satisfy f�x	 � � for

some function f � where f is either a primitive implicit function or constructed from
primitives by Boolean set operations �Requicha� ����	�

The Boolean set operations are de�ned as�
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f� � f� � min�f�� f�	�

f� 	 f� � max�f�� f�	�

f� n f� � f� 	 f� � max�f���f�	�
Figure ��� shows an example of these operations�

A B

A �B B n A A 	 B
Figure ���� CSG operations

One drawback of the CSG scheme is that Boolean operations are implemented
using max and min functions� which are not di�erentiable everywhere� Consequently�
the derivative of the composite implicit function is not de�ned along the intersection
of surfaces�

����� Blend Operations

A blend of two solids forms a smooth transition between their bounding surfaces� The
sum and product operations can be used to de�ne a global blend of implicit solids�

The blending function b � Rk � R creates a transition of isosurfaces based on those
operations� The resulting composite function is given as b�f��x	� � � � � fk�x		�

Figure ��� illustrates a global union blend of two solids�
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Figure ���� Union blend operation

A general form of the function b� known as the superelliptic blend �Rockwood and
Owen� ����	� is de�ned by �

kX
i��

�fi � �	p
	 �

p

� ��

The similarity with a metric function is not a coincidence� The blending function
gives the weighted distance to the level surfaces ��

Blend operations may be interpreted as a di�erentiable approximation of Boolean
set operations �Ricci� ����	� Assuming strictly positive implicit functions g�x� y� z	 �
����	 and implicit solids de�ned by g�x� y� z	 � �� the following limits are true
�Tavares and de M� Gomes� ����	�

lim
p��

�gp� � � � �� gpk	
�

p � max�g�� � � � � gk	

lim
p��

�g�p� � � � �� g�pk 	�
�

p � min�g�� � � � � gk	

Essentially� we take the Ln norm on E � E as an approximation to the maxi

mum� or L�� norm on the ring of expressions E de�ning the implicit function g�
When n is small� these operations correspond respectively to smooth global union
and intersection blends�

����� Composite Skeletons

Blending operations are very powerful if used in conjunction with primitives de�ned
by skeletons�

Consider the implicit primitive where f is de�ned in terms of the distance d�o� p	
from a point skeleton o� This model can be extended for a composite skeleton formed

�An alternative function is the hyperbolic blend 	Kleck� 
���
� which is de�ned in terms of a
product instead of a sum�
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by a set of isolated points� The implicit function is a blend of the distances from all
points

f�p	 �

�
kX
i��

d�oi� p	
q

	��q
� r�

Here each point of the skeleton is associated with a metric space M � and we work
with the cartesian product M� � � � � �Mk �Blinn� ����	� �Wyvill� McPheeters and
Wyvill� ����b	� �Nishimura et al�� ����	�

Observe that a primitive de�ned by higher dimensional skeletons� such as a curve�
can be considered as a generalization of the composite point skeleton� Now� the
point set is continuous and the summation becomes an integral �Bloomenthal and
Shoemake� ����	

f�p	 �
Z
S
d�s� p	ds� r�

Alternatively� this type of model can be de�ned using the concept of distance from a
point p to a set S

d�p� S	 � inf
s�S

d�p� s	�

We remark that these two schemes do not give necessarily the same geometry�

��� Decomposition Schemes

In decomposition schemes� the starting point is a complex implicit function that
must be represented in terms of one type of primitive implicit function� Normally�
the composite model will give only an approximation of the original object� The
importance of such a representation is its good computational properties�

����� Approaches

There are two general approaches to decomposing a function for computation purposes

� Spatial Decomposition

� Functional Decomposition

The �rst approach decomposes the domain of the function into subdomains and
works separately with each subdomain� The original function is then approximated in
each subdomain by a simpler function� An example of the this type of decomposition
can be seen in the sampling and reconstruction of functions using linear interpolants�

The second approach decomposes the function itself by a set of simpler functions
that together constitute a good approximation of the function� An example of this
type of decomposition can be seen in the Fourier series in which a function is repre

sented by a summation of scaled sinusoids�
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These two decomposition approaches are present� for example� in the computa

tion of solutions of partial di�erential equations� Another interesting observation� is
that these approaches constitute the basic strategies to obtain theoretical results in
di�erent areas of mathematics� such as the integration of functions on manifolds�

There are cases in which these two approaches are equivalent and correspond to
the same representation�

One example is the piecewise description based on uniform space subdivision and
linear interpolants� This is essentially a representation that is equivalent to the one
given by linear B
spline basis of the space of piecewise linear functions� Figure ���
illustrates both descriptions for a one
dimensional function�

Figure ���� Uniform Subdivision and Linear Splines

Another example can be seen in the �nite element method in which a function
is represented by a collection of elements each corresponding to a subdomain of the
function� The elements are constructed from nodal points that are interpolated giv

ing function values at all points of the domain� The element shape functions are
polynomials that de�ne a basis�

����� Adapted Decompositions

In order to be most e�ective� the function decompositions should satisfy some re

quirements related to the computational tasks that will be performed on them� They
should provide a suitable approximation of the original function �i�e� within the re

quired precision	�

Also� the representation resulting from the decomposition should be simple and
compact� Intuitively� these goals can be achieved if the decomposition is adapted
to variations of the function value� In the context of the domain subdivision� this
implies that the space partition is �ner where the function exhibits large variations
and coarser where the function does not vary signi�cantly� In the context of functional
decomposition� this implies that high frequency waves represent the highly variable
portions of the function and low frequency waves represent portions of lower variation�
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One additional requirement that is also important computationally is spatial lo�
cality� The extent of in�uence of each piece of the decomposition should correspond
to a �nite region of the domain of the function� Note that this requirement is not
satis�ed in the case of a Fourier decomposition�

��� Summary

In this chapter we analyzed the representation of implicitly de�ned shapes� We dis

cussed the forms used to describe the implicit function and their representations� We
developed a classi�cation of piecewise representation schemes� Constructive schemes
are indicated for shape design and have been extensively researched� Decomposition
schemes are suited for computation and will be further investigated in this thesis�



Chapter �

Smooth Implicit Functions

This chapter studies multiscale edges as a characteristic of the implicit function that is
closely related to its level surfaces� We develop a method to generate smooth implicit
functions from edge information�

We have seen in Chapter �� that one of the possible choices of implicit model for a
solid object is based on pseudo
metric functions� This type of function vary smoothly
and must have as one of its isosurfaces the boundary of the solid� In general� there
are many functions satisfying these properties� and the extra degree of freedom can
be used to provide control over a prescribed tubular neighborhood of the bounding
surface of the object�

The problem of constructing such a function is important because it gives an
implicit model for which we have explicit information about the variations of the
implicit function� This knowledge is crucial to robust computation with implicitly
de�ned objects�

	�� Multiscale Edges

An edge of a real valued function is associated with points of sharp variation of
the function� These points are among the most fundamental features for analyzing
structural properties of the function�

����� Variation and Regularity

The behavior of a function can be precisely described through the Lipschitz and
H older conditions�

The variations of the function f are measured by its Lipschitz constant�
A function f � U � R

n � R is Lipschitz with constant K if� for all pairs of points
p and q in U � f satis�es

jf�p	� f�q	j � Kjp� qj�
where j j is a norm in R

n and K � �� This condition implies that f is di�erentiable
and has bounded derivative�

More precise information about the di�erentiability of f is given by its H older
exponent� A function f is H older continuous at the point p with exponent 
 if there

��
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exists a constant 
 � � such that

jf�p	� f�q	j � Kjp� qj�

for a p � U and all points q in a 

neighborhood of p�
The function f is uniformly H older 
 over the domain U if there exists a constant

K such that the above condition holds for any p� q � U �
The H older regularity 
p of a function f is the superior bound of all values 
 such

that f is H older 
 at p� Note that the Lipschitz condition is a particular case of the
uniform H older condition for which 
 � ��

When n � 
p � n��� n � N� f is n times di�erentiable at p but its n
th derivative
is singular at that point�

����� Edges and Scale

The study of a function at di�erent scales gives information about its behavior on
neighborhoods of variable size� Particularly� the evolution of edges across scales re

veals the nature of function variations over its domain�

The de�nition of edges at multiple scales requires the auxiliary notion of smooth

ing� A smoothing function is any real function � whose integral is non
zero� The
smoothing function corresponding to scale s is

�s�x	 �
�

s
��
x

s
	�

In the context of signal processing� it can be interpreted as the impulse response of a
low
pass �lter� One example of such a function is the Gaussian�

The edges of a function f at scale s� or multiscale edges� are de�ned as the sharp
variations of f�x	 convolved with �s�x	�

For the special case of a Gaussian� the characterization above has a simple physical
interpretation� Assuming that the function f measures spatial density� its representa

tion at a given scale s is the result of a di�usion process whose duration is proportional
to s� This gives a one
parameter family of functions F �x� s	 that is a solution of the
di�usion equation

d�F

dx�
� �

dF

ds

with boundary condition F �x� �	 � f�x	 �where � is a di�usion constant	�
The kernel of this partial di�erential equation is the Gaussian� So� instead of

solving the di�usion equation� f may be convolved with a Gaussian �lter that replaces
the density with its average value over a window of diameter s� When s is small�
the smoothing of f by �s is negligible and its edges provide the locations of sharper
function variations� When s is large� the convolution with �s removes small oscillations
so that edges reveal sharp variations of larger structures�
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Edges of a function can be detected from the information provided by its �rst
or second derivatives� In one dimension� the location of multiscale edges are� by
convention� at in�ection points of the function f smoothed by �s� These points
correspond to the extrema of the �rst derivative� or equivalently� to the zero
crossings
of the second derivative of the function�

In n dimensions� the edges of a function f � Rn � R at scale s are de�ned as the
set of points where the magnitude of the gradient of f convolved with �s is maximum
in the direction indicated by the gradient vector� Thus� edge points are the in�ection
points of the hypersurface g � graph�f 
 �s	�

����� Relations with f

In the case of implicit functions� edges are generally located at the boundaries deter

mined by some level surface� This is a consequence of the fact that in order to de�ne
a surface S � f���c	� the value of f has to go from c � 
 to c � 
 in the direction
normal to S�

Although the function f may oscillate in other parts of its domain without crossing
the level c� for implicit surface models the only interest is in the variations producing
that isocontour�

Normally� it is reasonable to assume that all variations of an implicit function f
are associated with some family of surfaces that is de�ned by f �

	�� Edge Detection and Reconstruction

In this section� we describe a method for edge detection and reconstruction with
wavelets that was developed by Mallat and Zhong� This method will be used in our
process to generate a smooth implicit function from multiscale edges�

The wavelet transform is a mathematical tool for the analysis of function variations
at multiple scales �See Appendix B	� In particular� an appropriately chosen dyadic
wavelet transform allows the detection of multiscale edges very e
ciently �Mallat
and Zhong� ����b	� From this type of information it is possible to reconstruct a close
approximation of the function �Mallat and Zhong� ����a	�

����� Edge Detection with Wavelets

Multiscale edges of a function f are the in�ection points of a smoothed version of f �
fs � f 
 �s� that is obtained convolving it with an appropriate low
pass �lter �s�

Since the wavelet transform of a one
dimensional function is de�ned as a convo

lution with a family of functions �s�x�

�T�f	�s� x	 �� f� �s�x �� f 
 �s�x �
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where s is a scale parameter and x is a translation parameter� it constitutes a good
mechanism to compute multiscale edges�

As we have seen in Appendix B� we can de�ne a wavelet � which is the derivative
of a scaling function � �in the present context� the smoothing function phi	� If � is
chosen to be the second derivative of �� then the edges of f at multiple scales are
given by the zero
crossings of �T�f	�s� x	� Similarly� if � is chosen to be the �rst
derivative of �� then the edges of f correspond to the extrema of �T�f	�s� x	� This is
illustrated in Figure ����

Figure ���� Multiscale Edge Detection

When � is a Gaussian� the �rst procedure is exactly a Marr
Hildreth edge detection
�Marr and Hildreth� ����	 and the second is the same as a Canny edge detection
�Canny� ����	� In principle� these two procedures are equivalent but the extremum
detection has some advantages because it allows to distinguish between di�erent types
of edges �Mallat and Hwang� ����	�

It is implied in the above de�nition of �s�x that the parameters s and x vary
continuously� therefore �T�f	�s� x	 is a continuous wavelet transform� For most pur

poses� a continuum of scales is not required� The best option is to employ a dyadic
wavelet transform in which the scale parameter varies along the sequence ��j	j�Z� It
provides a natural decomposition of the frequency domain and allows fast numerical
implementations �Mallat and Zhong� ����a	�

����� Analysis of Multiscale Edges

The dyadic wavelet transform allows a complete characterization of the singularities of
a function� If the wavelet is the �rst derivative of a smoothing function� the multiscale
information gives a precise description of the function edges as well�
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The evolution across scales of the wavelet transform depends upon the H older
regularity of the function� From the maxima of the wavelet transform it is possible to
compute the H older exponent at singular points� The decay of �T�f	 also allows one
to measure smooth variations of the function� This is stated precisely in the theorem
below�

Theorem ��� A function f � R � R is H�older continuous with exponent 
 over an
interval I if there exists a K � � such that the wavelet transform of f satis�es

j�T�f	��j� x	j � K��j	��

for all points x � I�

A proof can be found in �Mallat and Hwang� ����	�
The H older regularity is computed by �nding the constant K and the exponent


 such that K��j	� best approximates the decay of j�T�f	��j� x	j over all scales �j�
This gives a method to discriminate di�erent types of singularities of the function

f � When f is not singular� its smoothness at a point x� is modeled as the convolution
of a function h� that is singular at x�� with a Gaussian of variance ���

If the wavelet � is the derivative of a function � that is close to a Gaussian in the
sense that ��j 
 g� � �s�� with s� �

p
��j � ��� then the wavelet transform of f can

be written as

�T�f	��
j� x	 � �j

d

dx
�f 
 �s�	�x	 �

�j

s�
�T�h	�s�� x	�

where �T�h	�s�� x	 is the wavelet transform of h at scale s�� This shows that the
wavelet transform at scale �j of a singularity smoothed by a Gaussian of variance
��� is equivalent to the wavelet transform of a non
smoothed singularity at scalep
��j � ���
It is not a coincidence that such an approach is essentially the same as the one

used in the de�nition of multiscale edges �see Section ���	�
Although the above theorem only characterizes H older exponents over intervals�

it is su
cient to study isolated singularities and therefore it applies to edge detection
�Mallat and Hwang� ����	� The theorem also extends trivially to n
dimensions�

����� Reconstruction from the Wavelet Maxima

A method to reconstruct a close approximation of a function from the maxima of its
wavelet transform was developed by �Mallat and Zhong� ����a	� It relies on the fact
that a rich representation of a function f is given by the local extrema of the wavelet
transform �T�f	��

j� x	 of f with respect to the wavelet � � d	�x�
dx

and by the values
of �T�f	��

j� x	 at the corresponding locations� �i�e� the multiscale edges of f	�
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The algorithm employs a spline wavelet function that is the �rst derivative of a
cubic spline� similar in shape to a Gaussian� A wavelet with only one vanishing mo

ment is chosen because the main interest is in a characterization of sharp transitions
of the function itself�

The reconstruction is accomplished through an iterative procedure based on alter

nating projections� The derivation of the method follows from a characterization of
the set of functions g which have the same wavelet transform maxima as the function
f �

It is intuitive that� for any scale �j� there exists an in�nite set of functions gj with
local extrema equal to �T�f	��

j� x	� However� such a sequence of functions �gj	j�Z� is
the dyadic wavelet transform of a function if and only if it satis�es the reproducing
kernel associated with � �for more details see Appendix B	�

The reconstruction problem can be broken in two conditions� Let �xj�i	i�Z be the
abscissa where j�T�f	��j� x	j is locally maximum� The wavelet transform of g� at each
scale �j� has to satisfy the following�

�� The local maxima of j�T�g	��j� x	j are located at �xj�i	�

�� For each local maximum at xj�i� �T�g	��
j� xj�i	 � �T�f	��

j� xj�i	�

De�ne the set ! of all sequences �gj	j�Z such that� for all scales �j� gj has the

same extrema as �T�f	��
j� x	� De�ne also the space V of all valid dyadic wavelet

transforms �T�f	��
j� x	� Then� the solution of the problem above is expressed as

" � ! 	 V �
n
�T�f	��

j� x	
o
� j � Z�

In order to �nd the solution� it is necessary to compute the intersection of ! with
V � One can prove that� since ! is an a
ne space and V a Hilbert space� alternate
projections on ! and V converge to the orthogonal projection on "� This is illustrated
by Figure ����

Γ

Λ

V

Figure ���� Alternating Projections
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The orthogonal projection on the space V is implemented by performing a inverse
wavelet transform T��� followed by a direct wavelet transform T�� This is a conse

quence of the fact that any dyadic wavelet transform is invariant under the operator

PV � T� � T��� �

The operator P	 is implemented by adding piecewise exponential curves to each
function of the sequence �gj	 such that for any index j � Z and all maxima positions
xj�i�

gj�xj�i	 � �T�f	��
j� xj�i	�

The reconstruction algorithm consists of applying the operator P � PV �P	 until
convergence� because any element of " is a �xed point of P �

�Mallat and Zhong� ����a	 conjectured that the local extrema constitute a com

plete representation� i�e�� the intersection of ! with V has only one element� It has
been proved that this conjecture is false �Meyer� ����	� but all functions g � " are
very close to f and� in practice� the reconstruction algorithm always computes a good
approximation of the original function�

	�� Generating a Smooth Implicit Function

An important problem in modeling with implicit surfaces is the generation of an
implicit function having the boundary of a given solid object as one of its level sets�

In this section� we develop a method to compute such an implicit function from
the edge information provided by the characteristic function 	 of the solid� The
method is based on the wavelet edge detection and reconstruction algorithm described
in Section ���� It exploits multiscale edge information to provide control over the
properties of the resulting implicit function� This is done by manipulating the values
of the wavelet maxima across scales�

����� Method

The main idea behind this method is the observation that a function f � Rn � R can
be determined from its edges at multiple scales�

The dyadic wavelet transform maxima of f gives the location of its edges at scales
�j� as well as a measure of how smooth f is in a neighborhood of these edges� Thus�
if the maxima values are altered� then the smoothness of f changes� Under certain
conditions� it is possible to make f smoother while maintaining the positions of its
edges invariant� This means that an implicit function f de�ning a surface S � f���c	
may be manipulated without modifying the isosurface at level c� On the other hand�
this procedure may be also used to modify the shape of S if that is desired�

The method consists of the following steps�
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�� Start with a function 	O � U � f�� �g� that is the characteristic function of a
solid object O whose boundary is the surface S�

�� Compute the dyadic wavelet transform �T�	O	��
j� x	 of 	O at scales �j� j �

�� � � � � J as de�ned in Subsection ������

�� Identify the local maxima of j�T�	O	���� x	j and record their locations�

�� For each point belonging to an edge of 	O at scale �� analyze the evolution of
the wavelet transform across scales and derive new wavelet maxima values for
scales �j� j � �� � � � � J �

�� Generate a smooth function f from the maxima values using the iterative re

construction algorithm of Subsection ������

����� Smoothing the Edges

The crucial part of the above method is the determination of how to derive the
wavelet maxima to obtain the desired e�ect on the edges of f � This procedure replaces
the function discontinuities of 	O corresponding to the boundary of the solid with
smoother transitions which still de�ne the same bounding surface�

Let us �rst investigate the problem in one dimension and consider the wavelet
transform maxima of an isolated step edge g�x	� range of g � f�� �g� Since the
function g is discontinuous at the edge� it has H older regularity 
 � �� Consequently�
the value of the wavelet transform at that point is constant at all scales�

j�T�g	��j� x	j � C

Figure ��� shows a plot of a step edge and its wavelet transform maxima at scales
�j� j � �� � � � � ��

The goal of the smoothing procedure is to transform the singularity at the edge
of g in a regular point which is an in�ection point of a smooth function h �i�e� h
is di�erentiable and its �rst derivative has an extremum at that point	� This is
equivalent to creating an edge with H older exponent 
 � �� The wavelet transform
maxima of such an edge evolves as

j�T�h	��j� x	j � K�j�

Figure ��� shows a plot of a smooth edge and its wavelet transform maxima at
scales �j� j � �� � � � � ��

In order to produce a smooth edge� select a scale �J as the reference and assume
that C � K�J � The wavelet transform maxima at all scales �j� j � J � should evolve
as C�j�J � Take C as the maxima value at scale � and set the maxima values at
the remaining scales �j� j � �� � � � � J according to the rule above� When an edge is
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Figure ���� Wavelet Transform Maxima of a Step Edge

Figure ���� Wavelet Transform Maxima of a Smooth Edge

reconstructed from these maxima values� the smoothness of the edge is proportional
to the scale �J and the value of h at the edge should be ����

The smoothing of a function may cause a change in its edge locations or even
make close edges merge together�

When more than one edge is considered� it is necessary to detect at which scale
the smoothing of one edge may cause an interference in other edges� and thus� result
in an undesirable change in the function� The region of in�uence of a point p at scale
s is equal to the support of the smoothing function �s centered at p� Two edges do
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not interfere at a given scale if their regions of in�uence have a null intersection at
that scale�

In order to be able to preserve the original edge locations in the smoothed function�
the edges should be di�used to the extent that they do not interfere with each other�

This type of interference can be detected from the wavelet transform� Since we
started with an original function containing only step edges� the value of the wavelet
transform maxima should remain constant across scales� This will be true for all
scales �j� unless there is an interference from the smoothing of another edge at some
scale� When processing an edge� this fact is used to determine the scale of reference
�J for smoothing the edge without interferences of other edges�

More precisely� for each edge point p� of the characteristic function 	O at scale ��
we analyze the evolution of the dyadic wavelet transform of 	O from scale � to scale
�Jmax in order to determine at which scale the value of �T�	O	��

j� x	 fails to remain
constant� This scale �Js is taken as the reference scale for smoothing at the point
p� For scales �j� j � �� � � � � Js� we create a wavelet maxima point with value C�j�Js�
where C is the original value of the wavelet transform of 	O corresponding to point
p at scale �Js �which� as we have seen� is constant for a step edge in this range of
scales	� For scales �j� j � Js� � � � � Jmax� we simply create a maxima point whose value
is equal to �T�	O	��

j� x	 at x � p�
Figure ��� shows the smoothing of a function containing several step edges based

on the method described above� In the �gure� the top row displays the initial and
�nal functions superimposed� for better comparison� The other rows display the
maxima values computed using the smoothing algorithm� Since the edges are spaced
by di�erent amounts� they are di�used to di�erent degrees by the reconstruction
procedure�

To extend the smoothing method to n
dimensions we need to consider the mag

nitude as well as the direction of the gradient vector �eld of the smoothed function�
as discussed in Appendix B�

As we have seen� in n
dimensions� the edges of a function f are de�ned as the
points where the modulus of the gradient vector of f 
 � is maximum along the
direction of r�f 
 �	� In Appendix B� we describe the representation of the wavelet
transform in spherical coordinates� This form gives exactly the modulus and direction
angles of the gradient of f smoothed by � �recall that the wavelet functions �i are
the partial derivatives of the smoothing function �	�

For an n
dimensional step edge� both the modulus and the direction of the wavelet
transform remain constant across scales� For a smooth edge� the modulus of the
wavelet transform evolves as in the �
dimensional case� while its direction remains
constant�

Figure ��� shows the spherical representation of the wavelet transform of the image
of a �
dimensional smooth function�

Figure ��� is a plot of the amplitude of the modulus of wavelet transform corre

sponding to the central horizontal line of the image in Figure ����
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Figure ���� Smoothing of Multiple Edges

The method in n
dimensions is essentially the same as in �
dimension� except
that the modulus and the direction of the wavelet transform must be considered�
The determination of the reference scale �Js is based on the evolution of both the
modulus and the direction of �T�i

	O	��
j� x� y	� To create a wavelet maxima point�

the value of the modulus is attenuated as in the �
dimensional case� while the direction
is maintained� This is intuitive� since the goal is to smooth the edge while preserving
its location as well as its normal vector �eld�

Example ��� �Diamond Shape
 This example illustrates the use of the method
in two dimensions�

The original function is the binary image of a diamond shape shown in Fig

ure ����a	� The smoothed function is shown in Figure ����b	� Note that the original
image was blurred by di�erent amounts along the edges� Near the corners there is
almost no blur while at the midpoints of the edges there is extensive blurring� Fig

ure ����c	 shows the isocontour of the smoothed image corresponding to gray level
����

Example ��� �Sphere
 This example demonstrates the use of the method in three
dimensions�

The shape is a ball de�ned by a density array of ��� ��� �� samples� A smooth
implicit function is generated from this data set using the method� The surface
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Figure ���� Spherical Representation of the Wavelet Transform of a Smooth Edge

Figure ���� Evolution of the Modulus of the �D Wavelet Transform

corresponding to isovalue ��� is inferred from the smooth function and a polygonal
approximation is produced� Figure ����a	 shows an image of the input density array�
Figure ����b	 shows the smooth implicit function� Figure ���� shows the �� slices
of the density array for the smooth implicit function� Figures �����a	 and �b	 show
a close view of input and output density arrays� Figure ���� shows the polygonal
approximation of the isosurface extracted from the function in Figure ����b	 using
a polygonization algorithm� Figure ���� shows a shaded image of the surface� Note



���� APPLICATIONS ��

that the sphere�s surface was completely recovered in spite of the low resolution of
the input array�

����� Controlling Smoothness

The evolution across scales of the wavelet transform maxima can be used to limit
the variations of the implicit function and control the tubular neighborhood of the
implicit surface�

The smoothness of the edges de�ning a surface S is related to a tubular neigh

borhood of S in which the implicit function gives useful information about S� Par

ticularly� the gradient of f at a point q in this neighborhood gives a path to the foot
point of q in S�

The maximum tubular neighborhood V max
	 �p	� relative to a smooth function �� of

a surface S � f���c	 at a point p is given by the largest scale s for which a smooth
edge can produce the level surface f���c	�

There are three useful ways to determine multiscale edges for generating a smooth
implicit function�

�A	 Produce the maximum tubular neighborhood for �� Vmax��S	�
�B	 Produce a tubular neighborhood with prescribed inferior and superior limits�

Vs� s � �s�� s���

�C	 Produce a uniform tubular neighborhood� Vs� s � K�

Note that in option �A	� s� and s�� correspond to the the inferior and superior
limits of Vmax��S	� This is the maximum tubular neighborhood at each point p � S
that can be generated from the multiscale edges of f 
 � such that the level surface
S � f���c	 is preserved� In option �B	� s� and s� are set arbitrarily� Option �C	 is
just a particular case of option �B	� in which s� � s��

We remark that options �B	 and �C	 may cause a change in the shape of the
surface if the limits exceed the maximum allowable by the smoothing function � and
the surface S�

	�� Applications

The generation of a smooth function f corresponding to a level surface S � f���c	 has
various applications in modeling and graphics� It provides control over the properties
of the implicit function f � providing at the same time valuable information about the
tubular neighborhood of the level surface f���c	� An implicit function that describes
the boundary of arbitrary solid shapes can be created using the method described in
Section ���� The solids may be de�ned either in implicit or in parametric form�
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����� Conversion from Parametric to Implicit

An important application of the smoothing method is to the conversion of a paramet

ric surface that is the boundary of a solid object to an implicit surface approximating
it� The need for this type of conversion may arise in many practical situations� such
as in tolerance analysis in CAD#CAM models�

The conversion is performed by �rst producing a volumetric representation of the
characteristic function of the solid region enclosed by the parametric surface�

The volumetric representation is produced in two steps�

�� Rasterize the parametric surface�

�� Fill the volume enclosed by the surface�

Algorithms for rasterization of parametric objects can be found in �Kaufman�
����	� An algorithm for �lling in regions from their boundaries can be found in
�Pavlidis� ����	�

The resolution required for the volumetric representation can be estimated based
on the smallest surface element� in the case of polygonal surfaces� or on surface
curvature� in the case of higher order surfaces�

After the discrete characteristic function has been computed� the smoothingmethod
described in Section ��� is applied to generate the implicit function�

Now� we give an example that demonstrates the use of the method in the conver

sion of parametric curves to a volumetric implicit form�

Example ��� �B Shape
 We start with a letter �B� described by its outline� in the
form of a Bezier curve� The outline is rasterized into an image array of ��� � ���
resolution� The interior of the �B� shape is �lled� The smoothing method is then
applied to the solid �B� shape�

Figure �����a	 shows the control polygon of the two dimensional Bezier curve that
describes the font outline� Figure �����b	 shows the image of the solid �B� shape after
rasterization of the outline and �lling its interior� Figure �����c	 shows the implicit
function resulting from the smoothing process� Figure �����d	 shows the isocontour
corresponding to level ����

����� Modi�cation of Implicit Functions

Another important application of the smoothing method is the modi�cation of an
implicit function leaving invariant one of its level surfaces� This may be desirable
in situations where it is necessary to perform computations with the level surface
in implicit form� In that case� if the original implicit function is very irregular� the
smoothing process can generate an implicit function having the same level surface�
that is better suited to computation�
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The modi�cation is performed by �rst producing a volumetric representation of
the characteristic function of the interior region de�ned by the level surface� This
is a straightforward operation that requires only to evaluate the implicit function at
each grid point of the volume and compare its value with the value corresponding to
the level surface� The value of the characteristic function at that point is set to �
or � depending on outcome of the test �the function value is greater or less than the
isovalue	�

This example demonstrates the use of the method for modifying an implicit func

tion given in volumetric form�

Example ��� �Head Slice
 The data set is an MRI �Magnetic Resonance Imaging	
slice of a human head with resolution �������� We select an isocontour corresponding
to some features of interest �brain� etc	� To create the solid regions enclosed by these
isocurves� we set to � or � the sample values whose density is respectively less or
greater than the selected isodensity� The resulting binary array gives the characteristic
function of the shapes of interest in the data� The smoothing procedure is applied to
it�

Figure �����a	 shows the original MRI data set� Figure �����b	 shows the binary
image that de�nes the features of interest� Figure �����c	 shows the smooth implicit
function produced by the method� Figure �����d	 shows the boundary of the features
corresponding to isodensity ��� �of the smoothed function	�

Note that the method was able to perform a selective smoothing capturing all
details of the selected isocurves�

����� Manipulation of the Tubular Neighborhood

The tubular neighborhood of an implicit solid can be manipulated by restricting the
values of the wavelet transform maxima of its characteristic function� as discussed in
Section ���� This is an important application of the method� because the knowledge of
the limits of the tubular neighborhood is the key to robust computation with implicit
objects�

The following two examples demonstrate the versatility of the method and the
degree of control provided over the characteristics of the smooth implicit function
it generates� We use as a starting point the same �B� shape of example ���� The
multiscale edges are created to limit the tubular neighborhood of the implicit function�
Note that� as a consequence� the shape of the font is altered accordingly�

Example ��� �Limiting the Tubular Neighborhood
 In this example� we limit
the tubular neighborhood of the implicit function from above and below� The limits
are set by restricting the multiscale edge analysis to scales on the interval �j� j �
�� � � � � ��

Figure �����a	 shows the smooth implicit function resulting from the process�
Figure �����b	 shows a set of evenly spaced isocurves in the tubular neighborhood
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of the function� Figure �����c	 shows the �B� shape generated by thresholding the
function at isolevel ����

Figure ���� depicts the two dimensional implicit function as a three dimensional
height hypersurface�

Example ��� �Uniform Tubular Neighborhood
 In this example� we generate
an implicit function with uniform tubular neighborhood� The smooth implicit func

tion is reconstructed from the edges at scale �j� j � ��

Figure �����a	 shows the smooth implicit function resulting from the process�
Figure �����b	 shows a set of evenly spaced isocurves in the tubular neighborhood
of the function� Figure �����c	 shows the �B� shape generated by thresholding the
function at isolevel ����

Figure ���� depicts the two dimensional implicit function as a three dimensional
height hypersurface�

	�	 Summary

In this chapter� we developed a method to generate a smooth implicit function from
the characteristic function of a solid object� The method is based on multiscale edge
synthesis and employs the wavelet edge detection and reconstruction algorithm from
�Mallat and Zhong� ����a	� Although� this algorithm has been applied to image pro

cessing problems such as compression �Mallat and Zhong� ����b	 and noise removal
�Mallat and Hwang� ����	� it has not been applied before to geometric modeling
problems�

Our method provides e�ective control over the variations of the implicit function
and of their extent� It also gives information about the tubular neighborhood of
the boundary of the generating shape� The method is very �exible and can be used
to create an implicit function with the desired characteristics from practically any
type of geometric description� parametric� implicit or volumetric� It computes the
solution numerically using a fast discrete �ltering algorithm� The resulting function
is represented in the form of a volumetric array�

One application of this method is to the approximate conversion from paramet

ric to implicit surfaces� This is a general algorithm for arbitrary shapes� Previous
algorithms were restricted to particular types of models� such as rational parametric
surfaces �Manocha and Canny� ����	� �Kalkbrenner� ����	�

Note� Alternative Methods

An alternative method to generate a smooth implicit function which has as a level
surface the boundary of a solid shape is based on a regularization technique used in
vision�
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This type of method reconstructs a hypersurface that is a function graph from
sparse data �Terzopoulos� ����	� Such a technique allows the generation of an implicit
function f � Rn � R �i�e� a hypersurface in R

n��	 that is constrained to have as one
of its isocontours the input surface S�

There are several numerical algorithms to implement this technique �Terzopoulos�
����	� �Szeliski� ����	�

The disadvantage of this method is that it does not provide the same �exibility
and control over the properties of the implicit function as provided in the multiscale
edge reconstruction�
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�a	

�b	

�c	

Figure ���� Smoothing in Two Dimensions
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�a	

�b	

Figure ���� Smoothing of a Ball Shape� �a	 input array� �b	 output array
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Figure ����� Slices of the �D Array
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�a	

�b	

Figure ����� Detail of the Input and Output Arrays
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Figure ����� Wireframe of the Polygonal Isosurface Approximation

Figure ����� Shaded Image of the Polygonal Isosurface Approximation
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�a	 �b	

�c	 �d	

Figure ����� Conversion from Parametric to Implicit
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�a	 �b	

�c	 �d	

Figure ����� Modi�cation of an Implicit Function
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�a	 �b	 �c	

Figure ����� Tubular Neighborhood with Limits

Figure ����� Implicit Function as a Height Surface
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�a	 �b	 �c	

Figure ����� Uniform Tubular Neighborhood

Figure ����� Implicit Function as a Height Surface



Chapter �

Functional Decomposition

This chapter develops a method to produce a piecewise representation of implicit
objects based on a multiscale decomposition of the implicit function�

We create a model that is adapted to the local variations of the implicit function
at multiple scales� This model is described in terms of simple functions that are
suitable for computation�

As mentioned in Chapter �� decompositions of the implicit function for modeling
purposes should reveal relevant aspects of the function� such as its variations� The
Fourier transform describes the spectral behavior of a function� discriminating its
frequency content� The Fourier series representation of periodic functions gives the
best localization in terms of frequency� but its basis functions have in�nite support�

It is also desirable that a functional decomposition results in a representation that
exhibits spatial locality �an exception to this rule is the case where certain operations
are performed more e
ciently using some special representation without this property�
such as the Fourier series �Totsuka and Levoy� ����		�

The Fourier representation� unfortunately� does not satisfy the spatial locality
requisite� In fact� spatial and frequency localization are incompatible requirements�
So� if we want a representation that provides frequency information and has spatial
locality� we have to settle for a compromise� Good localization in both space and
frequency is achieved by the �short time Fourier transform� �Gabor� ����	� which
employs a Gaussian windowed sinusoidal function and by the wavelet transform that
uses scaled �small waves� �Daubechies� ����	�

While these decompositions provide suitable representations for image processing�
they are not so e�ective for computer graphics� This will become clear in this chap

ter where we investigate a functional decomposition that is related to the wavelet
transform and is adequate for modeling with implicit surfaces�


�� Multiscale Decompositions

The decomposition of a function in terms of elements at multiple scales provides a
representation that re�ects the function behavior over neighborhoods of variable size�
It is a hierarchical structure which is adapted to the function variations�

��
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����� De�nition

A multiscale decomposition is a description based on a set of functions localized both
in space and scale� Under this representation a function f is expressed as a linear
expansion over this set�

A suitable family of functions for this purpose can be generated by scaling and
translating a single function ��x	 � L��R	� A member of this family is denoted by
�
� where the index � � �s� u	 speci�es the scaling parameter s and the translation
parameter u� Depending upon the properties of � and its parametrization� di�erent
types of decompositions are produced�

Here� we assume that � is a scaling function as de�ned in Appendix B� We restrict
the parameters respectively to dyadic scales s � �j� j � Z and integer translations
u � k� k � Z� Thus� the family �
 is

�
�x	 �
�p
�j
��

x

�j
� k	�

The scaling function � is associated with a multiresolution analysis of L��R	 con

sisting of a sequence of nested spaces Vj

� � �V�� � V� � V� � � �
whose union is dense in L��R	 and whose intersection is the null space� The collection
of functions f��
k � k � Zg forms a basis of the approximation space V� and all spaces
in the sequence are scaled versions of this reference space V� �i�e� each space Vj has
a �natural� scale �j	�

In the framework of multiresolution analysis� a function f is represented by its
approximations simultaneously at all these scales �See Appendix B	� Such a structure
is composed of several versions of the function f that are computed by projecting f
onto the spaces Vj�

In contrast to the above scheme� the multiscale decomposition of a function f is
a linear expansion into a countable subset of elements ��
i�x		i�N� with �i � �j� k	�
from the family �
i � such that

f�x	 �
�X
i��

ai�
i�x	�

where �i is an element of the index set ! � Z
�� Z�

The family of functions �
 plays the role of a dictionary D � ��
	
�	 �see Ap

pendix A	� from which a subset of elements �
i is selected for a multiscale represen

tation�

The coe
cients ai are computed by orthogonal projection on the duals of the
selected vectors �
i of the dictionary D�

ai �� f� e�
i �
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Intuitively� this decomposition indicates the features of f that �belong� to each scale
�j�

A multiscale representation is given by the list of coe
cients ai� together with the
corresponding indices �i � �ji� ki	 in the dictionary D�

In practice� we use only a �nite number of elements from D� For this reason� it is
important to obtain a sequence of decompositions with increasing number of elements
which converges to the function f �

kf �
mX
i��

ai�
ik � 
kfk

This provides a mechanism to approximate f with the desired precision 
�
The de�nition of a multiscale decomposition for n
dimensional functions f � Rn �

R in L��Rn	 is a direct extension of the scheme above�

����� Analysis of the Decomposition

The existence of a multiscale decomposition is simple to prove� It can be shown using
a telescoping argument�

Denote by Pj � L
��R	 � Vj the orthogonal projection onto Vj� The properties of

the hierarchy of spaces Vj guarantee that�

�� limj�� Pjf � f for all f � L��R	� since �Vj � L��R	

�� if f � Vl then f is also in Vj� for all j � l�

Condition ��	 ensures that every function has a trivial decomposition�
Condition ��	 implies that a function f � Vl can be expressed in the basis of any

one of the approximation spaces Vj� j � l� which contain Vl� It is just the projection
on Vj� f � Pjf �there is no loss of information in this projection if j � l	�

Conversely� if a function f � V� has components gj in the spaces Vj� j � �� then
f can be written as as a linear combination of these functions at scales �j

f �
X
j

gj �
X
j

X
i

ai�j��j �ki�x	�

We will see that is always possible to �nd such components gj by projecting f on the
spaces Vj� Note that in this case� there is loss of information in the projections and
the functions gj have to re�ect that�

We stated that a function f � V� can be represented by the sum of its components
gj at scales �

j� j � �� but we have not speci�ed how to compute them� The problem is
to construct a multiscale decomposition of f � such that f �

P
j gj� and it generates a

suitable representation of f � �This discussion will be postponed to the next section�	
The dictionary D is very redundant� This is evident from the nested structure

of the spaces Vj� A direct implication of the redundancy of D is that the multiscale
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decomposition is not unique in general� This can be demonstrated in the following
way�

A function g � Vl may be also expressed in terms of the basis of any one of the
spaces Vj� j � l� without any loss of information� because Vl is also contained in
Vj�

It follows that� if g � Vl then Pmg � Png for m�n � l�

So� it is easy to see that any function f � L��R	 can have in�nitely many multiscale
representations simply by adding and subtracting di�erent projections� Pmg and
Png of the same function g � Vl� with l � m� n�

Two important issues arise as a consequence of the non
uniqueness of the multi

scale representation�

� Which is the best multiscale decomposition of a function� What criteria should
be used to characterize it�

� How to select the elements in D optimally� How to compute e
ciently such a
decomposition�

����� Optimal Decompositions

A quantitative or a qualitative criterion could be used to de�ne the optimality of
a multiscale decomposition� In the �rst case� the best representation would be the
smallest� i�e� a linear expansion of f with the minimum number of elements from
D� In the second case� the best decomposition would be the most adapted to the
function f � i�e� the one whose elements would identify features of interest in f � In
practice� these criteria are used together� Also� good decompositions usually satisfy
both of them to some extent�

����� Decomposition Strategies

There are two main strategies to generate a multiscale decomposition�

�a	 Subdivide the spaces Vj de�ning a partitionWj whose direct sum is equal L��R	�

�b	 Re�ne the components fj belonging the spaces Vj such that f �
P

j fj

The di�erence between these two schemes is that while one deals with the structure
of the approximating spaces Vj� the other deals with the components fj� Scheme �a	
is independent of f and more general� Scheme �b	 is adapted to f and can be more
e�ective�

In the next section we will discuss in detail the �rst one of these two multiscale
decomposition approaches and methods to compute it based on the wavelet transform�
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�� Wavelet Based Methods

Orthogonal wavelets generate a direct sum decomposition of L��R	 and are intimately
related to multiresolution analysis� They provide a rigorous mathematical framework
that can be used to derive multiscale decomposition methods�

The wavelet representation is very e�ective in describing the variations of a func

tion at di�erent scales� This makes it attractive from the standpoint of image process

ing� such as edge detection� The main reason for this is that the wavelet is designed
to detect changes of the function value at di�erent scales� What it really encodes is
the location and scale of these transitions�

From the point of view of graphics applications� a representation in terms of the
wavelet coe
cients is not so desirable� We are looking for a multiscale representation
that is constructive� compact� and expressible in terms of a simple function� Intu

itively� we want a description of a function as a summation of �blobs� of di�erent
sizes�

This is exactly what is given by the multiscale decomposition� In that sense�
we want a representation in terms of a scaling function associated with a wavelet
function�

����� The Wavelet Transform

We saw in Appendix B that the wavelet spaces Wj are de�ned as the di�erence
spaces between two consecutive approximation spaces Vj�� and Vj of a multiresolution
analysis� The Wj is the orthogonal complement of Vj in Vj��

Wj � Vj � Vj��� Wj � Vj�

L��R	 is naturally decomposed intoM
j

Wj � L��R	�

The connection of wavelets with multiresolution analysis is the key to the e
cient
computation of the wavelet decomposition of a function�

The basic process decomposes f recursively from �ne to coarse resolutions� ex

ploiting the hierarchy of spaces Vj and Wj�

The core of the algorithm takes a function fj at resolution �j and splits it into two
parts� through orthogonal projection onto Vj�� and Wj�� �a lower resolution space
and a detail space	� The recursion step is performed by replacing Vj with Vj�� and
applying the above procedure again�

The algorithm can be illustrated by the graph

Vj � Vj�� � Vj�� � Vj�� � � �
� � �

Wj�� Wj�� Wj�� � � �
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Note that the spaces Vj are just intermediate elements in the method� We cannot
use the wavelet representation directly as a multiscale representation because its
coe
cients are relative to a wavelet basis� not relative to the scaling function�

The next �gures illustrate the wavelet transform in one dimension� Figure ���
shows the graph of a function f � R � R�

Figure ���� One
dimensional Function

Figure ��� shows the approximations at di�erent scales of the function in Fig

ure ���� It actually shows the scaling function coe
cients corresponding to each
approximation�

V� V� V� V� V�

Figure ���� Approximations at Di�erent Scales of a Function

Figure ��� is a plot of the wavelet coe
cients of the function shown in Figure ����

����� The Laplacian Decomposition

One idea for creating the multiscale representation takes advantage the wavelet trans

form algorithm� The projection of f onto the spaces Vj gives the multiresolution anal

ysis of f � Unfortunately� we also cannot use this representation directly� The scaling
function coe
cients represent approximations of the function f at each resolution �j�
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W� W� W� W� W�

Figure ���� Wavelet Decomposition of a Function

It is clear that� as a whole� they do not constitute a linear expansion of f in terms of
the scaling function ��

Instead of a multiresolution analysis� we would like to obtain a representation
that is a multiscale decomposition of the function f � Such a representation can be
constructed from the wavelet decomposition�

Observe that Vj � Vj�� �Wj�� implies that Wj�� � Vj� Therefore� Wj�� can be
represented in terms of a basis of Vj without any loss of information� All we need to
do in order to produce the desired representation is to project the wavelet coe
cients
in the subspaces Wj�� back to the subspaces Vj�

This method produces a representation that is multiscale and is given in terms
of the scaling function� This representation is essentially equivalent to the Laplacian
pyramid �Burt� ����	�

Figure ��� is a plot of the scaling coe
cients of the Laplacian decomposition of
the function in Figure ����

V� V� V� V� V�

Figure ���� Laplacian decomposition of a function

Notice that although the function in Figure ��� is positive everywhere� the multi

scale decomposition contains negative coe
cients� The reason is that the coe
cients
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re�ect the di�erence in information between approximations of the function at pairs
of resolutions �j and �j���

����� The B�Spline as a Scaling Function

So far we have discussed the multiscale decomposition without de�ning the scaling
function associated with it� The B
spline� introduced in Appendix C� constitutes a
suitable scaling function for our purposes�

As we have seen in that appendix� the B
spline has several desirable properties�
symmetry� smoothness� compact support� good localization in space and scale� a
simple analytical form in both spatial and frequency domains� and e
cient imple

mentation�

The only disadvantage is that the B
spline does not generate an orthogonal ba

sis� But it is possible to construct a dual function� which together with the B
spline�
de�nes a pair ��� e�	 that is bi
orthogonal and can be used in the multiscale decom

position method� This is described in Appendices B and C�

We will employ in the examples the cubic B
spline� Figure ��� shows a plot of the
cubic B
spline scaling and wavelet functions�

�a	 �b	

Figure ���� Cubic B
spline �a	 scaling function �b	 wavelet function


�� The Multiscale Representation

The results in the previous section allow us to create an implicit piecewise represen

tation based on a multiscale decomposition of the implicit function f � This represen

tation is adapted to the variations of f at di�erent scales�

As we mentioned in section ���� the multiscale representation contains the co

e
cients ai of the multiscale decomposition� The indices �i � �ji� ki	 relate these
coe
cients to elements �
i of the dictionary D�
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In order to produce the representation� we compute the coe
cients ai of the B

spline multiscale decomposition and convert them to a suitable data structure�

����� Computing the Representation

There are two equivalent procedures to compute the Laplacian decomposition of a
function f � V�� a modi�ed wavelet transform� and the Laplacian transform�

In both cases� we assume that we have computed the coe
cients fcg� �� f� e���k �
of the representation of f in the basis of V�� such that f is written as

f�x	 �
X
k

� f� e���k � ���k�x	�

In the modi�ed wavelet transform� as suggested in the previous section� we ap

ply the wavelet decomposition to the coe
cient sequence fcg� obtaining the wavelet
coe
cients fdgj� j � ��� � � � ��n� and then for each scale �j� we project the wavelet
coe
cients fdgj � Wj back to Vj by applying the wavelet reconstruction from level j
to j � �� This procedure is illustrated in the diagram below�

fcgj eH� fcgj�� eH� fcgj�� � � �eG� eG� eG�
fdgj fdgj�� fdgj�� � � �

G� G� G�
fagj fagj�� fagj�� � � �

where H� G� fH and eG are the pairs of discrete �lters associated with the B
spline
scaling function� the B
spline wavelet and their duals �see Appendix C	�

In the Laplacian transform� we exploit the fact that� since Wj�� � Vj � Vj��� the
coe
cients fajg of the multiscale decomposition can be computed by subtracting the
coe
cients of the approximations at Vj and Vj��� This procedure is illustrated in the
diagram below�

fcgj eH� fcgj�� eH� fcgj�� � � �
� H� � H� � H�
fbgj fbgj�� fbgj�� � � �
� � �
fagj fagj�� fagj�� � � �

In one dimension� these two procedures require roughly the same amount of com

putation� In higher dimensions� the Laplacian transform is more e
cient�
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����� Data Structures

We can use three alternative data structures to encode the coe
cients of the multiscale
decomposition�

� A list of the coe
cients l � fai� �ig�
� A pyramid data structure� Aj � �aj�k	�

� A spatial hash table H � f� ai� �ig�
The list structure is simply an enumeration of the coe
cients of the multiscale

decomposition ai and the indices �i � �si� ui	 corresponding to the functions ��j �k of
the dictionary D�

The pyramid structure contains all coe
cients associated with the basis functions
���j �k� of the approximating spaces Vj� This is essentially an enumeration of the
coe
cients corresponding to all elements in D� such that the functions that are not
in �i have a coe
cient aj�k � �� This establishes a one
to
one correspondence between
the elements of D and the coe
cients of the decomposition� and eliminates the need
for including the indices �i in the representation�

The coe
cients ai may also be associated with a spatial hash table in which each
cell has pointers to the elements whose support is in the cell� This cell complex can
be formed by any adaptive subdivision of space� such as an Octree or a BSP tree �See
Appendix D	�

The list structure is the most compact� but it requires extra processing to �nd the
elements that should be evaluated at a given point� The pyramid structure has the
advantage of simplicity and direct access but� since the multiscale decomposition is
usually sparse� it has the disadvantage of using more space than necessary� The hash
table structure o�ers a good compromise between access time and space�

In practice� the choice of a particular data structure will be dictated by the char

acteristics of the implicit function� as well as the requirements of the application�
The list structure is the best for models with a small number of coe
cients� The
pyramid structure is the best for models with uniform spatial complexity� The hash
table structure is the best for models with non
uniform spatial complexity�

����� Properties of the Multiscale Representation

The multiscale representation has the following properties�

� Hierarchical

� Structured
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The multiscale representation describes a function f by its components fj � Vj�
This representation is hierarchical because the spaces Vj form a ladder of approxima

tion spaces� It is structured because the basis functions �j�k of Vj are located in a
regular rectangular grid�

These two properties are the key for e
cient computation with piecewise implicit
models�


�� Applications

The multiscale decomposition can be applied in the solution of many problems in
modeling and graphics� It has the potential to be the basis for the development of
e
cient computational methods�

The main application of the B
spline multiscale decomposition is in the conversion
of volumetric data to an implicit analytic description� Once this representation is
obtained� it can be used in other graphics applications�

In this section� we give examples of the conversion from volumetric to implicit
and indicate some potential applications� such as models with variable level of detail�
surface rendering and volume visualization�

����� Conversion of Volumetric to Implicit Descriptions

The multiscale decomposition can be applied to the conversion of volumetric to im

plicit descriptions� The method takes as input a n
dimensional array of discrete
samples and generates a piecewise implicit representation in terms of the B
spline
scaling basis functions�

The implicit objects in the following examples are given in the form of �D sample
array� This volumetric representation is converted to the B
spline multiscale repre

sentation�

In the �gures� the implicit function is shown as an image� the boundary of the
object as a curve in the plane� and the B
spline pyramid is given a set of circles
corresponding to the support of B
spline basis functions with non
zero coe
cients�

Example ��� �Superquadric
 The object is a superquadric rectangular shape with
rounded corners� It is de�ned by a very smooth implicit function� The B
spline
pyramid representation has only one level and a total of �� non
zero coe
cients�

Figure ����a	 shows the implicit function F �x� y	 �


x
a

�

e� � y
b

�

e�

�e�
� Figure ����b	

shows the support �represented as a circle	 of the B
spline functions in the pyramid
with non
zero coe
cients� Figure ����c	 shows the boundary curve F����	 generated
from the original function� Figure ����d	 shows the boundary curve generated from
an approximation of F obtained using the B
spline pyramid� Figure ��� shows the
B
spline pyramid�
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Example ��� �Koch Snow�ake
 The object is the Koch snow�ake� a deterministic
fractal object generated by a recursive procedure� The implicit function is discontin

uous at the boundary of the object� The B
spline representation is a �
level pyramid
and has non
negligible coe
cients at all levels� Level � has �� coe
cients� level �
has ��� coe
cients� level � has ��� coe
cients� level � has ��� coe
cients� level �
has ���� coe
cients� and level � has ���� coe
cients� Note that while the resolution
increases as n�� the number of relevant coe
cients only doubles from one level to the
next� This is because amount of detail is proportional to the perimeter of the curve�

Figure ����a	 shows the implicit function F � Figure ����b	 shows the footprints of
the B
spline functions used to reconstruct F � Figure ����c	 shows the fractal curve
generated from the original function and Figure ����d	 shows the curve generated
from the B
spline representation� They are visually indistinguishable� Figure ���
shows the B
spline pyramid�

Example ��� �Free�Form Shape
 The object is a free
form implicit shape created
with a painting program� The density function was input as gray values with di�erent
size brushes� The object was designed to exhibit features in a wide range of scales�
The B
spline representation is a � level pyramid with a total of ��� non
negligible
coe
cients� Level � has �� coe
cients� level � has �� coe
cients� level � has ��
coe
cients� level � has �� coe
cients� level � has �� coe
cients� and level � has �
coe
cients� Figure �����a	 shows an image of its density function� Figure �����b	
shows the B
spline functions used in its representation� Figure �����c	 shows the
boundary curve generated from the density function� Figure �����d	 shows the curve
generated from the B
spline representation� Figure ���� shows the B
spline pyramid�
Note how the B
spline functions at �ner scales are concentrated in places where the
object presents more detail�

In some applications� the interest is exclusively in the boundary of objects� In
those cases� the B
spline representation can be used to carry only information con

tributing to the description of the boundary� Then� the implicit object becomes hollow
and is represented by B
spline functions forming a �thick� shell along the boundary�

Example ��� �Diamond Shape
 Figure �����a	 shows the B
spline representation
of a solid object and Figure �����b	 its boundary� Figure �����c	 shows the B
spline
functions in the representation whose support is intersected by the boundary curve�
Figure �����d	 shows the reconstruction of the object using only the functions in
Figure �����c	�

The next example shows the use of the method in three dimensions� The input is
a �D sample array that is converted to the B
spline multiscale representation�

Example ��� �Hypertexture Object
 The object is a �noisy sphere�� a proce

dural implicit shape� It is de�ned by functional composition of an object density




��� APPLICATIONS ��

function with density modulation functions �Perlin and Ho�ert� ����	� In this exam

ple� the object density function is of a soft sphere and the modulation function is a
bandlimited noise function�

Figure ���� shows the volume density array generated by the hypertexture pro

cedure mentioned above� Figure ���� shows the points in the volume corresponding
to the boundary and the interior of the object� Figure ���� is a ray
traced image
of the noisy sphere� It was produced by rendering the B
spline pyramid description
of the data in Figure ����� Figure ���� shows the B
spline pyramid and Figure ����
shows one slice from each level enlarged� In these �gures� the coe
cients are depicted
according to the following convention� zero is middle gray� negative is darker and
positive is lighter� Note that almost all the information is contained in the bottom
level of the pyramid� indicating that most of variations of the implicit function are at
that scale�

����� Variable Level of Detail Models

The multiscale representation describes the model by its components at di�erent
scales� This makes it particularly e�ective to represent implicit objects at variable
level of detail�

From Example ���� it is clear that a large number of B
spline functions are required
to represent accurately the fractal object in Figure ���� The B
spline pyramid is very
�exible in situations like this� because it allows the generation of approximations of
the original object at di�erent resolutions using fewer B
spline functions�

Example ��� �Koch Snow�ake Approximations
 Figures �����a	 to �����d	 are
approximations of the original Koch curve using respectively four� three� two and one
levels of the pyramid� Figure ��� shows the �ve levels of the B
spline pyramid used
in Figure ����

����� Ray Tracing and Soft Shadows

The multiscale representation is suitable for ray casting techniques� There are several
ray
tracing algorithms for implicit surfaces given by polynomial functions �Tonnesen�
����	� �Wyvill and Trotman� ����	 that could be used to compute the ray intersection
with the B
spline primitives� Similarly� the cone tracing algorithm �Amanatides�
����	 can be adapted to handle �fuzzy balls� producing antialiased images as well as
soft shadows �Perlin and Zhu� ����	�

����� Volume Rendering

The multiscale representation is also well suited to volumetric rendering techniques�
Direct projection methods� such as splatting� and volume integration methods� such
as ray marching� can exploit the multiscale representation in various ways�
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�	 Summary

In this chapter we de�ned the notion of multiscale decomposition models and dis

cussed the criteria to analyze such models� We identi�ed the strategies to generate a
multiscale decomposition and investigated wavelet based methods for producing this
kind of description� We presented the wavelet and Laplacian transform algorithms to
compute the biorthogonal B
spline pyramid� described alternatives of data structures
for this representation and commented on its properties�

The wavelet and Laplacian transform have been used mainly in image processing
applications� such as coding and compression �DeVore� Jawerth and Lucier� ����	
�Burt� ����	� Although we employ a multiscale representation which is equivalent
to the Laplacian pyramid� the context in which it is applied is very di�erent� In
image processing� this type of description is used primarily for storage and trans

mission� while in geometric modeling� this description is used for computations� such
as rendering� Consequently� the problems which have to be solved are of a di�erent
nature�

Wavelet based models of implicit surfaces and solids were proposed in �Muraki�
����	 and �Perlin and Zhu� ����	� Muraki�s model is a direct extension of the or

thogonal �D wavelet decomposition to three dimensions� Because it uses a tensor
product formulation� the representation is given in terms of � di�erent wavelet func

tions� which complicates the computations with the model� Perlin�s model uses only
one directional spline wavelet� avoiding this problem� His method employs an empir

ical procedure to construct the representation and model is restricted to a particular
level surface�

Our multiscale implicit model is based on the scaling function associated with a
wavelet decomposition� It gives a description of the implicit function as a whole in
terms of a single B
spline function� For this reason� it is more adequate for image
synthesis computations than the wavelet models� Furthermore� this representation
can be computed with a fast and exact algorithm developed from a solid theoretical
foundation�

The multiscale decomposition model introduced in this chapter has several appli

cations in the area of computer graphics� Some of these applications are the conversion
from volumetric to piecewise implicit representations� variable level of detail models�
rendering of implicit surfaces using ray tracing� and volume visualization�

Note� Unstructured Decompositions

Structured multiscale decompositions have one property that may not be desirable
in some situations� They are not invariant under fractional translations� This means
that the representation of two identical shapes will be di�erent if one is displaced
relative to the other by a non
integer amount�

A possible approach to compute a non
structured multiscale decomposition that
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is translation invariant could be to employ a matching pursuit algorithm �Mallat and
Zhang� ����	� This algorithm consists of an iterative procedure for minimizing the
energy of the residual error between the input function and its linear expansion over
a set of elements in the dictionary� In this case� the model would be formulated in
terms of a dictionary consisting of functions that are the basis of �continuous� spaces
in a dyadic scale sequence� We have already made some preliminary experiments with
this type of model� The main problem we have encountered so far is related to the
long computation times of the algorithm� due to slow convergence�
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�a	 �b	
Density Function B
spline Functions

�c	 �d	
Boundary derived from �a	 Boundary derived from �b	

Figure ���� Superquadric
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Figure ���� B
Spline Pyramid for the Superquadric
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�a	 �b	
Density Function B
spline Functions

�c	 �d	
Boundary derived from �a	 Boundary derived from �b	

Figure ���� Koch Snow�ake
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Figure ���� B
Spline Pyramid for the Koch Snow�ake
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�a	 �b	
Density Function B
spline Functions

�c	 �d	
Boundary derived from �a	 Boundary derived from �b	

Figure ����� Free Form Shape
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Figure ����� B
Spline Pyramid for the Free Form Shape
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�a	 �b	

�c	 �d	

Figure ����� Hollow and Solid Objects
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Figure ����� Slices of the Volume Density Function for the Noisy Sphere
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Figure ����� Boundary and Interior Points of the Noisy Sphere
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Figure ����� Noisy Sphere� Raytraced from its B
spline Pyramid
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�level �	

�level �	

�level �	

Figure ����� B
spline Pyramid of Noisy Sphere
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�level �	

�level �	

�level �	

Figure ����� One Slice of Each Level �enlarged	
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�a	 �b	

�c	 �d	

Figure ����� Koch Snow�ake with Di�erent Levels of Detail



Chapter �

Spatial Decomposition

This chapter develops a method to create a piecewise representation of implicit sur

faces and solids based on a simplicial subdivision of the domain of the implicit function
f �

We create a model that is adapted to the boundary of an implicitly de�ned solid�
This model is described by a structure composed of simple well
shaped cells�

Piecewise representations that are based on domain subdivision should explore
the fact that f is a point
membership classi�cation function which itself induces a
partition of the ambient space�

We have seen in Chapter � that if f���c	 is a connected m
dimensional surface�
then it is the boundary of an implicit solid� It de�nes a decomposition of the domain
of f consisting of two open sets of dimension m�� �the interior and exterior points	
and one open set of dimension m �the boundary points	�

When we perform computations with implicit solids we are primarily interested in
answering questions relative to their boundary surfaces� For example� given a point�
is it on or close to the boundary� Given a line� compute its intersections with the
boundary� This is particularly true in the case of visualization where the goal is to
render the implicit surface� Secondarily� we may also need information about the
interior volume of the object� One example is the computation of the center of mass
for dynamics simulation�

One question that might be asked at this point is why not use the space subdivision
induced by f as the shape description� Although this is the ideal and is used in the
case of primitive implicit surfaces� it may not be feasible in general for arbitrary
surfaces� First� the decomposition de�ned in terms of the entire surface boundary
might be too complex� Second� it may not be possible to �nd a single function that
describes the boundary as a whole�

Therefore� based on the above analysis� it is natural to look for a domain de

composition of f that is adapted to the surface f���c	� Since this boundary is a m
dimensional set� an e�ective solution is to construct a space decomposition that forms
a m � � dimensional layer around the surface�

��
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��� Implicit Descriptions using Space Subdivision

The idea behind space subdivision is to decompose space into a collection of simpler
point sets� As a result a domain is described by a structure that links these pieces
together�

There are di�erent decomposition schemes according to the types of structuring
and the characterization of associated subsets� �See Appendix D	� It is intuitive
that more structured decompositions will encode more information but will be more
restrictive and di
cult to construct� So� it is necessary to �nd a balance between
these two requirements�

A piecewise description of implicit objects using space subdivision consists of a
decomposition of the domain of the implicit function f into a structure of cells� The
function f is approximated by a simpler function in each cell� Each cell is classi�ed
in relation to the partition of space induced by f �

	���� Simplicial Decompositions and Implicit Models

A space decomposition scheme suitable for our purposes is the Simplicial Cell De�
composition� It combines �exibility of structuring with simplicity of description� This
type of space decomposition results in a simplicial complex� in which space is parti

tioned into cells de�ned by open simplices �An n�simplex is the simplest geometrical
object of dimension n	�

The cell decomposition induced by a simplicial complex is also called a triangu�
lation� Among the various triangulations of the Euclidean space R

n � the Coxeter

Freudenthal is the simplest one� It is constructed by subdividing the space using a
uniform cubic grid and the triangulation is obtained by subdividing each cube in n$
simplices� More details about the construction of this triangulation are given in the
Appendix D�

The triangulation is a particular case of a�ne cell decomposition� This allow us
to replace the function f by its a
ne approximation ef � The advantage of using the
simplicial subdivision is that the interpolation of the function f is unambiguously
de�ned from its sample values at the �
dimensional simplices of the cell complex �the
vertices of the triangulation	�

The cells of the triangulation can be classi�ed in relation to the space decomposi

tion de�ned by the implicit surface f����	 by testing the sign of the implicit function
f at the vertices of each cell of the triangulation� Assuming that the sampling grid
is su
ciently �ne� then� if the signs are the same for all vertices� the cell must be
totally inside or outside the object� If the signs are di�erent� the cell must intersect
the bounding surface� Figure ��� shows these three cases�
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�

��

�

�� �

�

�

Figure ���� Cell classi�cation

	���� Subordinate Triangulations

A triangulation is called quasi�regular if its cells can be approximated by regular sim

plices� Quasi
regular cells are almost equilateral # equiangular� Therefore� this type
triangulation is constituted only by well shaped elements� a very desirable property
in many applications�

The meshsize of a triangulation T is de�ned by � � sup��T diam �� where �
represents a simplex of the triangulation� The meshsize depends on the space norm�
and its value for di�erent norms di�er by a constant� Using the Euclidean norm the
meshsize of the unitary Freudenthal triangulation in R

n is
p
n�

For a given positive real number � � �� we say that a triangulation T is ��
subordinated to an implicit surface S � f���c	� if the three following conditions are
satis�ed�

�� S is transversal to the triangulation�

�� Each n
simplex of T is quasi
regular�

�� For each n
simplex � of T that intersects S� there exists a k
face� k � �� f� of
�� and a point p � S 	 �� at a distance � � from the barycenter of �� such that
the tangent plane� TpS� of S at p is �
close to the support plane of f��

Figure ��� illustrates condition ��	 for the two dimensional case�
The notion of subordinate triangulation allows us to de�ne a space subdivision

that is adapted to an implicit surface� Note that the meshsize is related to the tubular
neighborhood of the implicit surface� See Chapter ��

��� Physics Based Deformations

A deformation of space is a bijective map W � Rn � R
n that is a least continuously

di�erentiable� The global transformation W warps the spatial domain along with
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Figure ���� �
subordinated triangulation�

the objects embedded in it� When W is a di�eomorphism it maps surfaces into sur

faces� In a physics based deformation� W is derived from the equations of Newtonian
mechanics�

A discrete physical model abstracts matter as an ensemble of particles related to
each other by forces� Several physical phenomena may be naturally modeled using
discrete physical systems �Greenspan� ����	� In a discrete physical system the parti

cles interact under the action of internal and external forces� The associated motion
equations are easily written as a classical Newtonian equation F � ma� Simple nu

merical integration methods� such as Euler�s method� generally produce good results�

	���� Spring�Mass Systems

A particle system is a �nite set of particles which has an initial position in space
and whose behavior is governed by a function of time� In a physical particle system�
the particles have masses and the Newtonian mechanics dictates their dynamical
behavior� The motion of a particle depends on its mass� position and velocity� and
on the forces acting on it� either by other particles or by the ambient medium�

A spring�mass system is a physical particle system structured by connecting pairs
of particles with springs� The springs impose internal forces that depend on the
distance between these particles and drive the global behavior of the system� The
resulting structure can be represented as a graph� where each particle is a node� and
two nodes are connected when there is a spring joining the corresponding particles�
Conversely� each graph linearly embedded in the space is naturally associated to
a spring
mass system % a duality that can be exploited in association with a
ne
decompositions of space�
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Spring
mass systems are suitable to create physically
based models of deformable
objects for dynamical simulation �Haumann� ����	� �Terzopoulos� Platt and Fleischer�
����	�

	���� The Physical Model

The physical model of spring
mass system consists of a set of equations that balances
for the internal forces generated by the springs and the external forces from the
environment�

The model is governed by the Lagrangian equation

mi
d�xi
dt�

� �
dxi
dt

� ni � ��

where mi are the node masses and � is a velocity dependent damping coe
cient� The
state variables are the node positions xi and velocities vi � dxi�dt� The net force ni
is the sum of internal and external forces at node i�

The deformation energy of the mesh is accounted for by the springs that transmit
attraction and repulsion forces to the linked nodes� The equation below gives the
force sk� resulting from a Hookean spring connecting nodes i and j� at xi and xj

sk � ck�kxi � xjk � lk	

where ck is the spring sti�ness and lk is the natural length of spring�
The physical attributes in the system are assigned to mass nodes and elastic

springs�
The attributes of a mass node are�

mi � mass of node i�

xi � position of node i�

vi � velocity of node i�

ai � acceleration of node i�

ni � net force on node i at time interval t�

The attributes of an elastic spring are�

lk � natural length of spring k�

ck � sti�ness of spring k�

sk � force generated by spring k�

fi� jg � pair of nodes linked by spring k�
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Some of the attributes above are determined during the course of the simulation
of the model� Other attributes are initialized at the beginning of the simulation�
The choice of constants� such as the spring sti�ness and mass� depend on physical
characteristics of the system�

	���� Dynamics Simulation

To simulate the dynamics of the model� the state variables associated with each mass
node are computed� according to the Lagrangian equations of motion�

The internal forces are due to the deformation energy of the elastic springs elon

gation or shrinking� The total internal force on node i comes form all the springs
connected to it

gi �
X

k�L�i�

sk�

The external forces are possibly originated from several sources acting on the
object during the simulation� Some typical examples are� gravitational forces� forces
caused by a viscous �uid� constraint forces and collision forces�

The net force on a node i is the sum of the total internal and external forces
in�uencing the node during a given time interval &t�

ni � gi � fi�

The solution of the dynamics equations can be computed through an explicit
Euler time integration procedure� This is the core of the simulation loop� and runs
continuously calculating the state of the system at di�erent instants in time� The
time step may be adjusted according to the magnitude of the forces in the system�

Given the initial positions x�i and velocities v�i of the mass nodes �i � �� � � �N	�
the current acceleration� the new velocities and positions at each subsequent time
step are determined by�

ati �
nti
mi

vt��t
i � vti �&tati
xt��t
i � xti �&tvt��t

i

This method is only �rst order accurate� and can be numerically unstable� Nu

merical stability is improved using higher order methods such as the Runge
Kutta
formulation�

��� Space Subdivision Representation

In this section we describe the construction of a piecewise representation of implicit
objects that is based on adapted space subdivision�
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The idea is to produce a �thick� shell around the boundary of the object �Velho
and de M� Gomes� ����b	� This is done using a physics based deformation� as ex

plained in section ����

First� a simplicial decomposition of the domain of the implicit function f is cre

ated� as discussed in section ���� Then� we convert this structure into a spring
mass
mesh� We employ dynamics simulation to conform the mesh into the desired shape�
The equilibrium position of the mesh gives a triangulation that is subordinate to the
surface f���c	�

	���� Initial Structure

The initial structure is created using a simplicial space decomposition of the domain
of f as follows�

�� Compute a Coxeter
Freudenthal triangulation of the ambient space�

�� Replace the function f by its simplicial approximation ef relative to this trian

gulation�

�� Classify the cells into� inside� boundary and outside� according to the implicit
function�

�See Figure ���	�

Figure ���� Simplicial Approximation of implicit object�
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	���� Adaptation

The adaptation method consists of the following steps�

�� Associate the triangulation of f with a spring
mass mesh �i�e�� the vertices of the
triangulation are identi�ed with mass nodes and the edges of the triangulation
are identi�ed with springs	�

�� Submit the spring
mass system to deformation forces letting the system relax
to an equilibrium position�

We create deformation forces that conform the mesh to the boundary of the im

plicit object� The simulation takes into account the internal forces produced by the
springs as well as the external deformation forces�

The external forces are derived from the implicit function� More speci�cally� two
opposite attracting and repulsing force �elds are generated using the gradient vector
�eld rf of the function f � One force �eld de�ned inside a tubular neighborhood
of the implicit surface generates repelling forces that prevent points from being too
close to the surface� The other force �eld� de�ned outside this neighborhood� generates
attraction forces that pulls points towards the surface� These force �elds are depicted
in Figure ��� for the two
dimensional case�

Attraction �eld Repulsion �eld

Figure ���� Force Fields

In order to facilitate the relaxation of the mesh structure into the desirable con

�guration� the initial rest length of the springs is made smaller than the initial grid
spacing� This means that we start the process with a tensioned mesh that moves to
a rest position under the action of internal and external forces� The spring sti�ness
is set based on the variation of the implicit function at the nodes of the initial mesh�

The spring
mass system described above reaches an equilibrium state and at this
position it de�nes a triangulation that is subordinate to the implicit surface�

Figure ��� reveals the evolution of the dynamic simulation� It shows four stages
of the mesh deformation process� The initial mesh is shown in Figure �����	� Inter

mediate con�gurations can be seen in Figures �����	 and �����	� The �nal solution



	��� SPACE SUBDIVISION REPRESENTATION ���

is shown in Figure �����	� Note how the geometry of the adaptive mesh converges to
the shape of the object� Note also that the �nal con�guration is very regular�

��	 ��	

��	 ��	

Figure ���� Four stages of the mesh deformation process

We conjecture that the force �elds can be chosen to produce di�erent types of
adapted decompositions� For example� the mesh structure can be made to adapt
either to intrinsic surface properties �such as local curvature	 or to any other spatial
property �such as material resistance	�

	���� Representation

The piecewise linear description of the implicit object can be one of three options�
only the boundary cells� the boundary plus the inside cells� or all the cells of the
adapted simplicial complex� The choice will depend on the kind of computations we
want to perform with the implicit object�
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In the last two cases� the force �elds a�ect only the point masses belonging to the
boundary cells� The internal �and external	 nodes are made passive� i�e� they are not
driven by external forces�

	���� Examples

The following examples illustrate the use of the method in two and three dimensions�

Hollow and Solid Objects

This example demonstrates the generation of a simplicial subdivision representation
for a hollow and solid two dimensional objects�

Example 	�� �Disk
 The implicit object is a disk de�ned by the equation x��y��
r� � �� r � ��

Figure ��� shows examples of the mesh structures for a hollow circular shell and
a solid disk�

Di�erent Mesh Sizes

This example demonstrates the result of di�erent grid sizes�

Example 	�� �Circle
 The implicit object is a circle de�ned by the equation x� �
y� � r� � �� r � ��

Figure ��� shows the adapted meshes respectively for � � �� � � �� �� � �� and
��� �� grids�

Figure ��� is a detail of the mesh corresponding to a grid of size ��� ���

�D Examples

The next two examples illustrate the application of the method to construct the
spatial subdivision in three dimensions�

Example 	�� �Sphere
 The implicit object is a sphere de�ned by the equation
x� � y� � z� � r� � �� r � �� Figure ��� shows the initial and the �nal mesh
structures�

Example 	�� �Torus
 The implicit object is a torus de�ned by the equation

�xa � y� � z� � �a� � b�		� � �a��b� � z�	 � �

Figure ���� shows the initial and the �nal mesh structures� Note that the meshsize
is �ner than in the previous example�
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��� Applications

We developed a method that generates adapted triangulations of the domain of the
implicit function� The resulting structure is quasi
regular and conforms well to the
shape of the implicit surface� The mesh resolution can be easily parameterized� The
mesh construction process is totally automatic�

The method has multiple advantages� Besides the adapted triangulation� it con

structs in a natural way a spring
mass system associated with the implicit object�
This can be exploited in di�erent ways for physics based animation and polygoniza

tion of implicit surfaces�

	���� Conversion to PL Parametric Descriptions

An application of the method developed in this chapter is to solve the problem of
implicit to parametric conversion �de Figueiredo et al�� ����	�

A piecewise linear approximation of the boundary of the implicit object can be
easily derived from the simplicial decomposition of the domain of f � The set of
boundary simplices of ef form a three dimensional combinatorial manifold that has as
its dual a two dimensional manifold that approximates the boundary surface f���c	�
It is constructed from the intersection of the true surface with the edges of the each
�
simplex �� resulting in either one or two �
simplices that approximate f���c	 inside
�� These two cases are illustrated in the Figure below�

Two cases of polygon generation

Since the simplicial complex forms a triangulation that is subordinated to the
surface f���c	� it can be shown that the associated polygonization is quasi�regular�

Polygonization

The polygonization of an implicit surface S is computed from the subordinated tri

angulation of the domain of S� The surface intersects each �
simplex � in at most
� distinct points� each one located on a di�erent �
dimensional face� Therefore� the
linear approximation to S inside � is formed by one or two triangles� The set of all
these triangles constitute the combinatorial manifold that approximates S�
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Example 	�� �Cylinder
 This example illustrates the polygonization of a cylinder
de�ned by the implicit equation x��y� � � Figure ���� shows a sequence correspond

ing to di�erent phases of the mesh deformation process for a cylinder� Figure �����a	
depicts the initial mesh created from a Freudenthal triangulation of the ambient space�
Figure �����b	 reveals the �nal mesh in its equilibrium position� From the images� it
is apparent that the initial mesh was constrained to lie in a tubular neighborhood of
the implicit surface� conforming to the cylinder�s shape�

The polygonal approximation is derived from the �nal mesh� Figure ���� shows
the �nal polygonal approximations for the cylinder�

Figure ���� shows a detail of the polygonization associated with the spatial sub

division representation before and after the deformation process �Figures �����a	 and
�����b	 respectively	�

Note how the deformation of the mesh produces a very homogeneous polygon
structure� transforming long and thin elements in almost equilateral ones� This is
because the triangulation resulting from the dynamical simulation is subordinate to
the surface and� as a consequence� the associated polygonization is quasi
regular�

	���� Physics�Based Animation

Another application of the method developed in this chapter concerns the use of
physics based methods with implicit objects� For example in the simulation and
analysis of deformations �Velho and de M� Gomes� ����a	� We can use this represen

tation to generate a spring
mass mesh or linear �nite elements�

This example illustrates the use of the spatial subdivision representation in a
physics
based modeling and animation environment� A spring
mass mesh describing
the physical properties of the object is automatically generated from this structure�
The mesh is incorporated in the physically
based environment as a means of interact

ing with the implicit object� The visualization of the state of the simulation can be
done either using a polygonal approximation of the surface as described previously�
or by sampling directly the deformed implicit object�

Example 	�� �Flexible Tube
 We simulate a �exible tube falling under a gravi

tational �eld� Figures ���� and ���� show one frame of this dynamics simulation�
Figure ���� depicts the spring
mass mesh used in the simulation� Figure ���� shows
the corresponding polygonization of the tube�

��	 Summary

In this chapter� we developed a spatial decomposition model for implicit surfaces and
solids that is based on the simplicial subdivision of the domain of the implicit function�
We studied space decomposition structures and de�ned the concept of subordinate
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triangulation to a surface� We reviewed physics based deformation methods and
described in some detail the simulation of spring
mass systems�

The spatial decomposition model consists of a simplicial cell complex that is
adapted to the boundary of the solid and composed only of well
shaped elements�
This structure is generated from a Coxeter
Freudenthal triangulation that we identify
with a spring
mass mesh� This mesh is deformed by forces derived from the gradient
of the implicit function to produce a triangulation subordinate to the implicit surface�

This simplicial representation not only gives a piecewise linear description of the
implicit function� but also provides a polygonal approximation of the implicit surface�

Our method is the �rst to combine simplicial decomposition with physics based
simulation to generate a piecewise implicit description� Simplicial methods have been
used to produce a polygonization of implicit surfaces� Some employ an uniform sub

division of the ambient space �Allgower and Gnutzmann� ����	� and others recursive
subdivision �Hall and Warren� ����	� In both cases the resulting structure is not
adapted to the implicit object� Physics based techniques have been used in computer
graphics to obtain samples points on implicit surfaces �de Figueiredo et al�� ����	�
this method employs a uncoupled particle system instead of a coupled structure�
Adaptive Spring
mass meshes have also been used in vision for image sampling and
reconstruction �Terzopoulos and Vasilescu� ����	� In this algorithm the mesh covers
the entire image and the deformation forces are applied to all nodes� and not only to
a set of boundary cells as in our method�

The space decomposition models introduced in this chapter have several appli

cations in computer graphics� Some of these applications are the polygonization of
implicit surfaces� the automatic mesh generation for dynamics simulation and �nite
element analysis�
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Figure ���� Domain Decomposition for Hollow and Solid Objects
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Figure ���� Grid sizes of� �� �� ��� ��

Figure ���� Detail of the shell corresponding to a grid of size ��
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�a	

�b	

Figure ���� Sphere� Initial and Final Mesh ��� �� �	
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�a	

�b	

Figure ����� Torus� Initial and Final Mesh ���� ��� �	
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�a	

�b	

Figure ����� Grid deformation of the Cylinder
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Figure ����� Polygonization of the Cylinder
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�a	

�b	

Figure ����� Detail of the Cylinder�s Polygonization
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Figure ����� Spring
Mass Mesh for Flexible Tube

Figure ����� Frame of Simulation for Flexible Tube
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Chapter 	

Conclusions

This chapter summarizes the thesis� reviews its contributions and proposes directions
for future work�

��� Summary

In this thesis we investigated the piecewise description of implicitly de�ned objects�
The investigation includes an original study of the implicit model as well as the devel

opment of new schemes to represent implicit objects� This study of implicit models
provided a theoretical framework that was used in the de�nition of the proposed
representations and in the evaluation of the associated computational methods� The
implicit models introduced are general and can be used to describe arbitrary shapes�
Their creation is based on decomposition and adaptation processes that produce a
compact representation in terms of simple elements� These characteristics make them
attractive in computer graphics and related areas� The examples in the thesis demon

strated the use of piecewise models for the solution of many types of problems� Be

cause of their relevance� we emphasized applications to representation conversion and
to visualization� As a whole� this research provides a complete modeling paradigm
for implicit surfaces using piecewise descriptions� This statement is supported by the
fact our methods make possible the approximate conversion between the main forms
of geometry speci�cation� as indicated in Figure ����

Volumetric

Implicit Parametric

Figure ���� Conversion between geometric forms�

The starting point of this research was an analysis of the implicit function and
its level surfaces� This made it possible to relate intrinsic and extrinsic properties

���
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of surfaces de�ned in implicit form� It also provided the necessary arguments to
discuss the e�ectiveness of implicit models and it allowed us to identify the important
elements of an e
cient representation� Such a framework gives an indication of the
best strategies for creating piecewise implicit geometric descriptions�

Using the above concepts� we showed the connection between the domain of the
implicit function and the tubular neighborhood of the implicit surface� A good im

plicit model is given by a smooth function whose variations are subordinate to the
surface it de�nes� We developed a method to estimate the tubular neighborhood of
a surface based on multiscale edge detection� The edge information can also be used
to reconstruct the implicit function and control its smoothness� One application of
this method is in the conversion of parametric to implicit descriptions�

In this thesis we exploited decomposition schemes to produce piecewise models
that are adapted to geometric features of the implicit surface� We developed two
methods� one based on functional decomposition and other based on spatial decom

position� The functional decomposition method employs the biorthogonal wavelet
transform to discriminate the components of the implicit model at multiple scales� It
gives a representation that is adapted to function variations and is suited to e
cient
computation� One application of this method is in the conversion of volumetric to
implicit descriptions�

The spatial decomposition method employs a quasi
regular triangulation that sub

divides the domain of the implicit function and is subordinate to the implicit surface�
In order to adapt it to the surface� the simplicial complex is associated with a spring

mass mesh that deforms using dynamics simulation� The result is a piecewise model
composed of well shaped elements� One application of this method is in the conversion
of implicit to parametric descriptions�

��� A Final Example

The example in this section overviews the thesis results and illustrates their appli

cation to the conversion of geometric representations� We apply all the methods
developed in the thesis to a single two dimensional shape� This demonstrates how
the methods �t together and allows a comparison between the di�erent descriptions
that they produce�

We submit the shape to the following changes of representation�

� Parametric �� Volumetric

� Volumetric �� Implicit

� Implicit �� Parametric

The object is a �T� shape� In this �rst step we convert from a parametric to
a volumetric representation using the method developed in Chapter �� The input
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shape is represented by its boundary curve in parametric form� The output is a
representation of the shape in implicit form by a sample array� The method generates
a smooth implicit function that has the boundary curve as one of its level sets�

Figure ��� shows the parametric description of the T
Shape� The boundary is
described by a cubic Bezier curve� It is composed of �� curve segments and contains
a total of �� control points� or ��� coe
cients for the x and y coordinates� The
input to the method is the characteristic function of the shape in volumetric form�
Therefore� we must create this function in a pre
processing stage� The characteristic
function is constructed by scan
converting the boundary curve into a �D pixel array
and �lling in the interior� The resulting characteristic function is shown in Figure ����

The method of Chapter � generates a smooth implicit function by decomposing
the characteristic function into multiscale edges using a dyadic wavelet transform�
The edges are given by the maxima values of the wavelet transform at each scale�
The method modi�es these values so that they correspond to edges of a smooth
function at the same locations� The function is then reconstructed from these new
maxima values� Figure ��� shows the modi�ed maxima values for three di�erent
scales� Smoother edges are produced at locations where the maxima values exhibit
large variations� Sharper edges are produced at locations where the maxima values
exhibit small variations� Figure ��� shows an image of the two dimensional sample
array of the smooth implicit function reconstructed from the multiscale edges in
Figure ����

In the second step� we convert the volumetric representation produced in the
previous step to an implicit representation using the method developed in Chapter ��
The input is a two dimensional array of values corresponding to uniform samples
of an implicit function� The output is a piecewise analytical representation of this
implicit function given as a linear expansion over a set of B
spline functions at di�erent
scales� The method generates a hierarchical and structured implicit representation of
the data�

The method of Chapter � constructs this representation by performing a multiscale
decomposition of the implicit function� The method consists of three parts� the
Laplacian transform is applied to the input sample array producing the coe
cients
in the B
spline basis� the coe
cients with non
negligible magnitude are selected� and
these relevant coe
cients are stored in a spatial data structure�

Figure ��� shows the Laplacian pyramid obtained from the implicit function of
Figure ���� It is a four level pyramid with a total of ��� non
negligible coe
cients�
Level � �the topmost level	 has �� coe
cients� level � has �� coe
cients� level � has
�� coe
cients and level � has �� coe
cients� Figure ��� shows the B
spline functions
in the Laplacian pyramid with relevant coe
cients� The support of the B
spline is
indicated by a circle� So� larger circles correspond to coarser scales while smaller
circles correspond to �ner scales� Figure ��� shows the boundary curve derived from
the multiscale B
spline representation�

In the third step� we convert the implicit representation produced in the previous
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steps to a parametric representation using the method developed in Chapter �� The
input is an implicit function given either in volumetric or analytic form� The output
is a simplicial cell complex that is subordinate to the shape boundary� A piecewise
linear parametric description of the boundary curve can also be generated from such
a representation�

The method of Chapter � constructs this representation from a spatial decom

position that is adapted to the shape boundary using physics based techniques� In
each cell of the decomposition� the implicit function is approximated by interpolating
the function values at cell vertices� The method consists of three parts� a regular
triangulation of the the domain of the implicit function is created� this triangulation
is identi�ed with a spring
mass mesh� the mesh is deformed by forces derived from
the gradient of the implicit function� A piecewise linear parametric approximation of
the boundary curve is then given by the dual of the cell complex structure�

Figure ���
a shows the regular triangulation corresponding to the initial mesh
for a solid shape� Figure ���
b shows the �nal adapted mesh� The triangulation was
constructed from a ����� rectangular grid� It contains a total of ��� cells� Figure ����
shows the �nal mesh for a hollow shape� It contains ��� cells� For each vertex of the
triangulation� the �x� y	 position and implicit function value are stored� Figure ����
shows the approximation to the boundary curve derived from the simplicial complex
of Figure �����

��� Future Work

The work reported in this thesis can be extended in two main directions�

� Integration in a modeling and graphics system

� Development of applications and testing�

Both of these items are related to the consolidation of our framework in a concrete�
real world� environment�

The implicit decomposition models that we proposed can form the foundation of
a graphics system based on implicit objects� There are many issues that need to
be considered in such a system� For example� interaction� user interfaces� modeling
techniques� architecture� etc� The computational methods and associated geomet

ric representations developed in this thesis are well suited to form the algorithmic
substrate of the system� They provide all the machinery required for the internal
description of shapes and their processing� However� there are some other issues to
be addressed� such as the paradigms for object speci�cation and the class of oper

ations with them� If the graphics system is divided in two parts� as shown in the
diagram below� we can say that our work takes care of the lower half of the system�s
functionality� while the upper half remains to be created�



���� DIRECTIONS ���

User  Input

Shape Design

Geometric Operations

Object Representation

Geometric Computations

System Output

Graphics System

As we have demonstrated throughout the thesis� implicit decomposition models
give an e�ective representation of geometric objects and allow e
cient computation�
On the other hand� constructive models are more adequate for shape design and
the de�nition of shape operations� Although it is true that we can convert from
constructive to decomposition models� a seamless integration between these two types
of models still remains as an important research goal�

��� Directions

In almost every area of science and engineering� including computer graphics� we
can classify the problems according their level of complexity� relating them to the
underlying models and techniques used in the solutions�

For problems of low complexity we can always �nd an analytic model which is
described in closed form and allows an exact solution� For problems of moderate
complexity we are usually able to construct a deterministic model which is formu

lated numerically and provides only an approximate solution� For problems of high
complexity we often must resort to a probabilistic model� which is speci�ed using
stochastic methods and gives a solution that is valid only in a statistical sense�

The table below summarizes this classi�cation�

complexity model formulation solution

low analytic closed form exact
medium deterministic numerical approximate
high probabilistic stochastic statistical

This scheme applies� in particular� to the problem of geometric modeling using
implicit descriptions� In that context� we can identify the three levels of shape com

plexity with� respectively� atomic� piecewise and fuzzy implicit models� Examples of
atomic descriptions are primitive shape models� such as the quadrics or superquadrics�
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Examples of piecewise descriptions are constructive models� such as CSG� or decompo

sition models� such as the multiscale B
spline pyramid� Examples of fuzzy description
are hypertexture models� such as fractal clouds�

An open question concerning the practical application of those models is whether
or not it is possible to combine them and� if so� how� This is important for several
reasons� First� these models are complementary� in the sense that the same problem
can be considered at various levels� i�e�� it can be made simpler or more complex
depending on the application� Second� from the user�s point of view� these models
o�er di�erent degrees of control that should be available simultaneously� i�e� global�
local and procedural control� Third� most shapes are not uniformly complex� they
are smooth in some areas and rough in others� Therefore� it would be desirable to
model them di�erently according to their local complexity�

In this thesis� we took a decisive step towards the formulation of powerful de

terministic implicit shape models that are adapted to the geometry of objects� A
natural direction for future development of our framework would be to consider also
probabilistic models� We conjecture that hierarchical representations based on scale
are the key to a seamless integration of deterministic and probabilistic models� The
results in �Szeliski and Terzopoulos� ����	 give a clear indication that this is true�
In this way� large scale properties would be described by a deterministic model and
small scale properties would be described by a probabilistic model� The problem is
how these models can coexist for the same object such that it is possible to make a
smooth transition between them� Also� it would be desirable to provide the user with
the ability to control the scale and range of the transition region� This situation is
illustrated in the following diagram�

Deterministic

Probabilisticsc
al

e

Mixed Hierarchical Model

An answer to those questions may be given by multiscale wavelet models with
deterministic and stochastic components� Initial steps in this direction have already
been taken in the context of image processing �Basseville et al�� ����	�
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Figure ���� T
Shape in Parametric Form� described by a Bezier curve

Figure ���� Characteristic Function of the T
Shape
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Figure ���� Maxima Values corresponding to three di�erent scales ��ner scale at the
top and coarser scale at the bottom	�
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Figure ���� Smooth Implicit Function reconstructed from multiscale edges
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Figure ���� B
spline Pyramid of the Implicit Function
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Figure ���� B
spline Functions

Figure ���� Boundary derived from the Multiscale Representation
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�a	

�b	

Figure ���� Initial �a	 and Final �b	 Mesh for Solid Shape
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Figure ����� Final Mesh for Hollow Shape

Figure ����� Boundary derived from the Mesh above
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Appendix A

Functional Analysis

This appendix gives an overview of Functional Analysis introducing some of the main
concepts of this discipline required to understand the material in the following ap

pendices�

A�� Introduction

Functional analysis builds upon the classical branches of mathematical theory� such
as analysis� algebra and geometry� to provide new methods for the solution of many
problems in pure and applied mathematics� Moreover� it makes possible a uni�ed
understanding of the key concepts from these domains in a more general setting� The
advance brought by functional analysis in�uenced the development of new areas such
as the theory of real and complex functions� approximation theory� qualitative theory
of integral and di�erential equations� among others�

The essential contribution of functional analysis is the creation of a higher level of
abstractions for mathematical objects� While classical analysis studies the properties
of individual functions� functional analysis investigates whole collection of functions
characterized by some property� While classical algebra deals with operations among
variables that represent magnitudes� or numbers� in functional analysis the variables
are functions themselves� While classical geometry is restricted to �nite dimensional
spaces� functional analysis extends this notion to in�nite dimensional spaces�

An example will serve to clarify this point�

Example A�� �Elastic String
 Let us consider the problem of studying a simple
physical system� the oscillations of an elastic string� Let AB be a weightless �exible
string connecting points A and B �See Figure A��	�

Assume that a weight is attached to a point C on the string� as shown in Fig

ure A���a	� If C is moved from its equilibrium position� the string begins to oscillate�
The state of the system at time t is described by the displacement y of the pointC from
its initial position� Now let us place n weights on the string at the points C�� � � � � Cn�
as shown in Figure A���b	� The state of the system is given by the displacements
y�� � � � � yn of the weights� which can be regarded as a vector �yi	� i � �� � � � � n in a
n
dimensional space� Such a geometric interpretation is very useful in investigating
the motion of this system� Finally� let us imagine a homogeneous string whose mass

���
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Figure A��� Elastic String

is continuously distributed along AB� as shown in Figure A���c	� The state of this
system can no longer be described by a �nite set of numbers yi� instead� the displace

ment y�x	 of every point x � �A�B� has to be given� In other words� the state is
represented by a continuous function y on the interval �A�B�� It turns out that y can
be viewed as a vector on a in�nite
dimensional space� This is natural� since when the
number of weights Ci is increased� the distance between them tends to zero and in
the limit a continuous distribution of mass along the string is obtained�

The above example showed how one can de�ne mathematical objects that repre

sent other objects of arbitrary nature� such as an elastic string� As we have seen� we
work with spaces in which the elements describe general properties of objects� such
as physical quantities� Furthermore� these elements do not need to be discrete� they
may be continuous� Functional analysis provides a rigorous mathematical framework
to operate at such general and abstract level�

The methodology of functional analysis has many applications in graphics and
modeling� Some examples are the study of shapes� images� and color�

A�� Mathematical Structures

In this section we describe some of the mathematical structures that may be imposed
on the elements of an abstract space�



A��� MATHEMATICAL STRUCTURES ���

A���� Linear Structure

A linear structure on a space X consists of the operations of addition and multiplica

tion by a scalar� A scalar is� in general� an element of the �eld of real numbers R or
of the �eld of complex numbers C � We will denote a scalar by F� The elements x � X
are called vectors�

For any x� y � X and 
 � F� we de�ne the operations of

vector sum� x � y� and

product of a scalar by a vector� 
x�

These operations must obey associative laws with respect to both vector sum
and product of a vector by a scalar� They relate to each other according to the the
distributive laws� as


�x� y	 � 
x � 
y

�
 � �	x � 
x� �x

Furthermore� for every x� y � X� there is a z � X such that x � z � y� This
implies that there exists for every x � X an element zx � X such that x � zx � x�
It turns out that there is exactly one element z � X satisfying this property� This
element is called zero vector and is denoted by ��

A space with a linear structure is called a vector space�

A���� Topological Structure

A topological structure ' on a space X is a family ' of open sets O
 � X�

' � fO
� � � !g
such that

�� � � ' and X � '

�� O
i 	 O
j � '� for any O
i� O
j � '

��
S�
i��O
i � '� for O
i � '

From ��	 it follows that the intersection of a �nite number of open sets is open� and
��	 states that a denumerable union of open sets is open�

The existence of these open sets O
 imply that is possible to de�ne the notion of
a neighborhood for every element x � X� A point x � X is called an interior point of
a set S � X if there exists an open set O in X such that x � O � S� A neighborhood
of a point x � X is a set V � X of which x is an interior point�

A set S is closed if its complement S is open�
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The topological structure is of fundamental importance to the de�nition of con

vergence� a concept that will be discussed in Section A���

A vector space endowed with a topological structure is called a topological vector
space�

A���� Metric

A metric on a space X is a real
valued function d�x� y	� de�ned on pairs of elements
x� y � X

d � X �X � ����	�

satisfying the following properties

�� d�x� y	 � � i� x � y

�� d�x� y	 � d�y� x	

�� d�x� z	 � d�x� y	 � d�y� z	

The metric measures the �distance� between two elements of the space X�
A space with a metric is called a metric space� Metric spaces are a natural gener


alization of the space of real �complex	 numbers�

A���� Norm

A norm de�ned on a vector space X is a real
valued function

k � k � X � ����	�

satisfying the following properties� for any x � X and 
 � F

�� kxk � � for x 
� �

�� k
xk � j
jkxk
�� kx� yk � kxk� kyk
The norm captures the notion of size of vectors in an abstract vector space�
A vector space equipped with a norm is called a normed vector space�

A������ P �Norms

There are� in general� many possible norms that can be de�ned on a given vector
space� An important instance is the family of p
norms�

For example� on an n
dimensional Euclidean space the p
norm is de�ned as

kxk �
�

nX
i��

jxijp
	��p

�

Particularly interesting are the cases when p is equal to �� � and ��
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A���� Inner Product

An inner product on a �real	 vector space X is a function

� �� � �� X �X � R

with the properties�

�� � x� x � � �

�� � x� y � � � y� x �

�� � 
x � �y� z � � 
 � x� z � �� � y� z �

From the last two properties we conclude that the inner product bilinear�
A vector space with inner product is called an inner product vector space�

A�� Properties of a Space

In this section we discuss some properties associated with abstract spaces�

A���� Dimension

The dimension n of a vector space is the maximal number of linearly independent
elements in it� When n � � we say that the space is �nite dimensional� When
n ��� we say that the space is in�nite dimensional�

When dealing with spaces of in�nite dimension it is necessary to be very careful
because the notions are not as intuitive as in �nite dimensions and some additional
complications may arise�

For example� it is easy to see that any element x of a �nite n
dimensional vector
space X may be represented as a combination of a maximal set of linearly independent
elements fyig� i � �� � � � � n� yi � X�

x �
nX
i��

aiyi�

where ai � R�
On the other hand� it is not at all clear that the same applies to in�nite dimensional

spaces� In general� in order to study in�nite dimensional spaces� we must impose some
extra structure� We will come back to this topic later�
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A���� Convergence

The concept of convergence requires at least the existence of a topological structure
in order to be de�ned�

A sequence fxigi�I � of elements of a topological space X is convergent to x � X
if for each neighborhood V of x� there exists iV � I such that xi � V for i � iV �

Convergence is indicated by xi � x or x � limxi�
The above concept also applies� in particular� to metric and normed spaces� In

these cases� we translate the de�nition respectively� in terms of the distance function
d and the norm k k� In a metric space� we say that a sequence fxig of elements of
X converges to some x � X if for every 
 � � there exists a number N such that for
every i � N

d�xi� x	 � 


In a normed space� the de�nition is similar� Two di�erent norms are equivalent if
they de�ne the same convergence�

A���� Cauchy Sequence

A sequence of vectors fxig in a metric space X is called a Cauchy sequence if there
exists for every 
 � � a number N such that

d�xj� xi	 � 
�

for all i� j � N �
Note that every convergent sequence is a Cauchy sequence� It is also clear that

every Cauchy sequence converges and is bounded�
The concept of a Cauchy sequence makes it possible to de�ne in abstract spaces

the equivalent of many important properties of the real and complex numbers�

A���� Closure and Compactness

The closure of a subset S � X� denoted S� corresponds to the intersection of all
closed subsets containing S�

In a normed space� the closure of S is the set of limits of all convergent sequences
of elements of S�

S � fx � X � xi � x for all xi � Sg�
A subset S of a normed space X is called compact if every sequence fxig in S

contains a convergent subsequence whose limit belongs to S�
A subset S � X is called dense in X if S � X�
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A���� Completeness

A metric space X is complete if and only if every Cauchy sequence in this space con

verges� Or more generally� every convergent sequence in X� �xn	n�Z� always converge
to an element of X�

lim
k��

d�x� xn	 � �� x � X�

When a space is complete� the limit points of all convergent sequences are in the
space� This guarantees that there is always an element in the space for a sequence to
converge to�

Note that completeness is not a topological concept� but a metric concept�
Given a metric space X� there exists a metric space Y � such that X � Y and the

closure X � Y � The space Y is called the completement of the space X�
From the above� it follows that

Any closed subset of a complete space is also complete�

Every complete set is closed�

A�� A Hierarchy of Spaces

In Section A��� we described mathematical structures that that can be imposed on
vector spaces� Although it may not be apparent� these structures form a containment
hierarchy� This means that we have in fact nested classes of abstract spaces� i�e��
spaces belonging to more speci�c classes are also part of the more general classes�

A���� Causal Relations

Going from most speci�c to most general� we will show that these structures have
indeed a causal relation as illustrated in Figure A���

Inner Product

Norm

Metric

Topology

Figure A��� Causal Relations
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Given an inner product � �� � �� we can de�ne a norm by

kxk � p
� x� x ��

A space with an inner product is automatically a normed space�
Given a norm k � k� we can de�ne a metric by

d�x� y	 � kx� yk�

A normed space is always metrizable�
Given a metric d��� �	 we can construct a topology with the neighborhood structure
de�ned by the open balls with center at x and radius r�

B�x� r	 � fd�x� y	 � r � y � Xg�

A metric space has an intrinsic topology�
We remark that the converse of these relations does not hold in general� That is�

there are spaces whose topology does not come from a metric� there are metrics that
are not generated by a norm� and there are spaces whose norm does not come from
an inner product�

A���� Classes of Spaces

The mathematical structures de�ned in Section A�� and the relations above produce
the following sequence of nested spaces�

The nested sequence of abstract spaces is shown in Figure A���

Euclidean
Spaces

Hilbert Spaces

Banach Spaces

Topological
Vector Spaces

Figure A��� Hierarchy of Abstract Spaces
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A������ Topological Vector Spaces

A vector space consists of a set X that is algebraically closed under a linear structure�
This property means that the result of sums and scalar products must be also in X�

A vector space with a topological structure is called topological vector space�
In practice� the most general type of in�nite dimensional space that we work with

are the topological vector spaces� In�nite dimensional spaces without extra structure
are not interesting at all� In fact� we could say that Functional Analysis studies
in�nite dimensional vector spaces with the addition of a topology�

A������ Banach Spaces

A Banach space is a normed topological vector space that is complete� Note that
an in�nite dimensional space may be closed in relation to a given norm and not to
another�

As we have seen� a closed vector subspace of a Banach space is a Banach space
itself�

The fact that Banach spaces have a norm and are complete� means that the result
of operations will be in the space and it is possible to quantify error� In other words� it
is possible to de�ne a Banach space of operators that is closed under approximation�

A������ Hilbert Spaces

A Hilbert space is a Banach space whose norm comes from an inner product�
Hilbert spaces have a geometrical �avor because the inner product leads to the no


tion of orthogonality� Two vectors x� y of a Hilbert space X are said to be orthogonal�
denoted x � y� if

� x� y �� �

Similarly� a vector x � X is orthogonal to a set S � X� if x � y for all y � S�

A������ Euclidean Space

An Euclidean n
space is a �nite dimensional Hilbert space of dimension n which is
naturally isometric to R

n � Furthermore� the Euclidean space has a natural system of
coordinates�

At this point� it is imperative to realize how much is taken for granted when we
work on Euclidean spaces�

A���� Function Spaces

The elements of an abstract vector space may be of arbitrary nature� as long as they
comply with the rules of the mathematical structure imposed on the space�
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Some examples of vector spaces are Euclidean spaces� the space of polynomials of
one variable� and the space of n� n matrices�

Function spaces are one of the most fundamental types of spaces in functional
analysis� A function space is a space whose elements are functions de�ned as

f � U � V

where U is a open set of a topological space and V is a vector space�
This can be made clear if we recall Example A��� There� the object of study was

a function f � �a� b�� R�

Example A�� �Functions on Interval
 An example of function space is the col

lection of all real
valued functions on the interval �a� b�� denoted by F � The elements
of F form a vector space if addition and scalar multiplication are de�ned pointwise�
More precisely� for f� g � F � and each x � �a� b��

�f � g	�x	 � f�x	 � g�x	

�
f	�x	 � 
f�x	

Similarly� it is possible de�ne on the space F all other mathematical structures
presented in Section A���

Next� we present the most important spaces of functions�

A������ Lp�R	 Spaces

The spaces Lp�R	 play an important role in functional analysis� They are Banach
spaces of functions f � R � F with the Lp norm�

For � � p ��� the expression

kfkp �
�Z
R

jf�x	jpdx
���p

must be well de�ned and �nite�
For p ��

kfk � sup
x�R

jf�x	j
Note that for the p
norms with p ��� the integral of f must exist� This leads to

the question of which integral is used �which relates to the problem of completeness	�

A������ L��R	 Space

An important particular case of the Lp spaces is when p � �� In this case� the space
L��R	 is a Hilbert space of functions over R� for which the inner product is de�ned by

� f� g ��
�Z
R

f�x	g�x	dx
����

Note that L� is the only Hilbert space among the Banach spaces de�ned by an Lp

norm�
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A������ l��Z	 Space

Another important case is the vector space l��Z	 of square
summable sequences

l��Z	 �

�
�
i	i�Z �

�X
��

j
ij� ��
�

Note that we can consider the space l��Z	 as the space of functions f�i	 � 
i de�ned
on the discrete domain Z�

A�	 Linear Operators

A mapping T between two vector spaces X and Y is linear if it satis�es

T �
x� �y	 � 
T �x	 � �T �y	�

for any x � X and y � Y and 
� � � R� If T is linear� it is traditional to write Tx�
When X � Y we call T a linear operator�
If y � T �x	� then y is called the image of x under T and x � T���y	 is called the

inverse image of y�

A���� Integral Operator

The integral operator T is de�ned by

�Tx	�s	 �
Z b

a
K�s� t	x�t	dt�

where K � �a� b�� �a� b�� R is a continuous map� The function K is called the kernel
of the operator� The kernel is essentially an extension of the concept of a matrix to
an in�nite dimensional space�

A���� Di�erential Operator

The di�erential operator Dx is de�ned by

�Dx	�s	 �
dx�s	

ds
� x��s	

Note that the operator Dx is not a continuous map�
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S

x

y+z

z
PS(x)

Figure A��� Projection

A���� Projection Operator

If V is a Hilbert space and S � V is a closed subspace of V � the projection operator
P � V � S is de�ned by

PS�x	 � y� for x � y � z� y � S� z � S��

This is illustrated in Figure A���
The linearity of the projection operator P follows from the uniqueness of the

decomposition x � y � z�
The identity operator I is the projection operator onto the whole spaceX �S � X	�

A���� Convolution

The convolution of two functions x and y� denoted by x 
 y� is de�ned by

�x 
 y	�s	 �
Z
x�s� t	y�t	dt�

A�
 Representation

In this section� we discuss the problem of representing the elements of an abstract
space�

Basically� the problem consists in establishing an scheme to describe continuous
entities �elements of an in�nite dimensional space	 in terms of a discrete set �a dictio

nary of elements in the space	� This concept is analogous to the process of de�ning
a coordinate system in a �nite dimensional space�

The representation problem can also be interpreted as performing a generalized
sampling relative to a set of basis functions�

We remark that since an exact representation is not always possible we may have
to take into account the problem of approximation as well�

Next� we will present several representation schemes from the most restricted to
the most general�
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A���� Complete Orthonormal Systems

A family of vectors S � �xn	 of an inner product space is called an orthogonal system
if� for any two distinct vectors x� y of S� x � y�

In addition� if kxk � � for all x � S then S is called an orthonormal system�
Every orthogonal set of non
zero vectors can be normalized�

N �

�
x

kxk � x � S

�

The systems N and S are equivalent in the sense that they span the same space�
In inner product spaces� instead of �nite linear combinations� in�nite sums are

allowed and the condition of linear independence is replaced by orthogonality�
Note that orthogonal systems are linearly independent� A �nite or in�nite se


quence of vectors which forms an orthogonal system is called an orthogonal sequence�
An orthonormal sequence fxng in a Hilbert space H is called complete if the

condition � x� xn �� � implies that x � � for all n � N�
A consequence of the above is that a complete orthonormal set fxng in a space X

gives a unique representation of the elements of X� For every x � X� we have

x �
�X
n��

� x� xn � xn�

A���� Schauder Basis

A collection of vectors �xn	 is linearly independent if


�x� � � � �� 
kxk � �

only if 
i � �� i � �� � � � � k�
The linear span of a subset S of a vector space X is the space formed by all �nite

linear combinations of vectors from S

span S � f
kX
i��


ixi � xi � S� 
i � R� i � �� � � � � kg

A set of vectors B � X is called a Schauder basis of X if the vectors B � �xn	
are linearly independent and they span the space X�

In a in�nite dimensional �normed	 space we require that there exist� for all x � X�
a unique sequence ��n	 such that

x � lim
N��

NX
n��

�nxn

The uniqueness requirement of the ��n	 guarantees the linear independence of the xn�
Note that a Schauder basis is constituted by a �nite set of vectors xn� Moreover�

the Schauder basis is a conditional basis� i�e� the ordering of the xn may be important�
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A���� Riesz Basis

An unconditional basis in a Banach space X is a linearly independent set of vectors
�xn	� satisfying one of the following two equivalent requirements�P�

n��� 
nxn � X � P�
n��� j
njxn � X

if
P�

n��� 
nxn � X� then
P�

n��� 
n�n xn � X for randomly chosen �n � ���
The order in which the basis vectors are taken does not matter for an unconditional
basis� We remark that not all Banach spaces have unconditional basis� For example�
L��R	 and L��R	 do not�

In a Hilbert space an unconditional basis is also called a Riesz basis� An equivalent
characterization of a Riesz basis is based on the concept of frames�

A frame in a Hilbert space H is a collection of vectors xn satisfying� for all x � H


kxk� �
�X

n���

j � x� xn � j� � �kxk��

with 
 � � and � ���
A Riesz basis is de�ned as a linearly independent frame� Note that we only require

that the set of vectors xn be countable�

A���� Dictionary

A dictionary on a Hilbert space H is a denumerable family D � �g
	
�	 of vectors in
H� such that kg
k � ��

We denote by V the closed linear span of the vectors g
 from the dictionary� Finite
linear expansions of vectors in D are dense in the subspace V �

A dictionary D is said to be complete if its elements span the whole space� That
is� V � H�

Therefore� if a dictionary is complete� it can be used to represent arbitrary ele

ments x � V

x �
�X
n��


ng
n �
�X
n��

� x� g
n � g
n �

where the coe
cients 
n of the linear expansion are computed by orthogonal projec

tion on the vectors g
 of the dictionary D� That is� 
n �� x� g
n ��

In general� the family D � �g
	
�	 is very redundant and to represent e�ectively
any element x � V we must select an appropriate countable subset of vectors g
 from
D� The goal is to �nd a linear expansion over the set of vectors selected from the
dictionary that best match the inner structures of x�

Depending upon the choice of the vectors g
� the expansion coe
cients provide
explicit information of certain properties of the elements x of V �
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A�� Main Theorems

In this section we present some important theorems in functional analysis�

A�	�� Fixed Point Theorem

A mapping T from a subset of a normed space S � X is a contraction if there exists
a positive number 
 � � such that

kT �x	� T �y	k � 
kx� yk

for all x� y � S�

Theorem A�� �Fixed Point Theorem
 Let T be a contraction mapping from a
closed subset S of a Banach space X into S� There exists a unique z � S such that
T �z	 � z�

The above theorem has many important applications in the solution of problems
in functional analysis�

A�	�� Riesz Representation Theorem

A linear mapping F �x	 from a normed space X into a scalar �eld R� �or C 	� is called
a �linear	 functional�

The set of all bounded linear functionals on X� denoted by X�� is called the dual
space of X�

If X is an inner product space then for any �xed element x� � X� the formula

F �x	 �� x� x� �

de�nes a bounded linear functional on X�
It turns out that in a Hilbert space� every bounded linear functional is of this

form�

Theorem A�� �Riesz Representation Theorem
 Let F be a bounded linear func�
tional on a Hilbert space H� There exists exactly one x� � H such that F �x	 ��
x� x� � for all x � H� Furthermore� kFk � kx�k�

The set H� of all bounded linear functionals on a Hilbert space H is a Banach
space� A consequence of the Riesz Representation Theorem is that H and H� are
isomorphic� In other words� for most practical purposes H � H�� The element x�
corresponding to a functional F is also called the representer of F �
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A�	�� Spectral Decomposition

Theorem A�� �Spectral Theorem
 Let A be a self�adjoint compact operator on
a Hilbert space H� There exists a complete orthonormal system in H consisting of
the eigenvectors fvng of A� Every element x � H has a unique representation in the
form

x �
�X
n��


nvn � y�

where y satis�es the equation Ay � ��
Moreover� for every x � H

Ax �
�X
n��

�n � x� vn � vn�

where �n is the eigenvalue corresponding to the eigenvector vn�

A�� The Fourier Transform

The Fourier transform of a function x � L��R	 is de�ned by

Ffx�t	g � (x�k	 �
�p
��

Z �

��
e�iktx�t	dt

The Fourier transform is a linear operator F � L��R	 � L��R	�
The extension of the Fourier transform to L��R	 is possible but somewhat involved

because not all square integrable functions are integrable�
The Fourier transform is an invertible operator� The inverse Fourier transform is

de�ned by

F��f(x�k	g � x�t	 �
�p
��

Z �

��
eikt(x�k	dk

A�
�� Properties of the Fourier Transform

The Fourier transform has the following properties�

Ffx�s� t	g � Ffx�s	ge�ikt

Ffx�
t	g � �
�
Ffx� t

�
	g� 
 � �

If x�t	 is a continuous piecewise n
times di�erentiable function� x� x�� � � � � x�n� �
L��R	 and limjxj�� x�j��t	 � � for j � �� � � � � n� �� then

Ffx�n�g � �i	nknFfxg
Let x� y � L��R	� Then

Ffx 
 yg �
p
��FfxgFfyg
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Theorem A�� �Parseval Identity
 Let x � L��R	 be a continuous function van�
ishing outside a bounded interval on R� Then (x is also in L��R	 and

k(xk� � kxk�
In physical problems� kxk� is a measure of energy and k(xk� is the power spectrum

of x�

A�
�� The Fourier Series

The Fourier series of a �� periodic function x is de�ned by

x �
�X

k���


k�k

where

�k�t	 �
eiktp
��

The numbers 
k are called the Fourier coe�cients of x and are computed by


k �
�p
��

Z �

��
x�t	e�iktdt

The sequence

�k�t	 �
eiktp
��

� k � ���� �� � � �

is a complete orthonormal sequence in L����� ���	�

A�
�� Fourier Transform versus Fourier Series

While the Fourier transform is de�ned on general Banach spaces Lp�R	� the Fourier
series represents only periodic functions� The simplest way to periodize a function
f � Lp�R	 is to consider

)f �t	 �
�X

k���

f�t� ��k	

The �rst question we need to ask is whether or not )f is a function in Lp� This
is a
rmative for p � ��

Lemma A�� Let f � L��R	� Then� the series
P�

k��� f�t � ��k	 converges to some
���periodic function )f � Furthermore )f � L����� ���	 with

k)fkL��
������ � �

��
kfk�
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If the Fourier series of )f converges to )f � then these two quantities can be
equated� The problem is that )f is only in L����� ���	� and its Fourier series may
diverge� In order to ensures that equality is valid we have to impose some conditions
on )f �

Theorem A�� Let f � L��R	 satisfy the conditions

	� The series
P�

k��� f�t���k	 converges everywhere to some continuous function�


� The Fourier series �
��

P�
k���

(f�k	eikt converges everywhere�

Then� the Poisson Summation Formula holds

�X
k���

f�t� ��k	 �
�

��

�X
k���

(f�k	eikt

for all t � R�

In order to comply with the conditions ��	 and ��	 of the above theorem a function
and its Fourier transform must have su
cient decay�

Lemma A�� Let f be a mensurable function� and

f�u	� � (f�u	 � O

�
�

� � juj�
�

for some 
 � �� Then� the Poisson summation formula applies to f �



Appendix B

Wavelets

In this chapter we introduce the theory of wavelets and the computational methods
associated with it�

Wavelets constitute a recent development in applied mathematics� The theory
of wavelets is the synthesis of many concepts originated in engineering� physics and
mathematics� As a consequence� it provides a rigorous framework for applications in
these areas�

The central theme of wavelets is the description of a function in terms of sim

ple building blocks �or atoms	� Such atomic decompositions result in an e�ective
representation of complex phenomena and allow an e
cient numerical solution in
applications�

The wavelet representation is a linear expansion on elements of a family of func

tions that are based on a single function called the mother wavelet� These elementary
blocks are generated by scaling and translating the mother wavelet� We will see that
in order to be able to describe an arbitrary function in L��R	 the wavelets must have
the following properties�

� oscillation

� fast decay

Therefore� such functions are �small waves� �in French ondelette	� This is the origin
of the name wavelet�

B�� Classes of Wavelets

In this section we present the main classes of wavelets and the operators associated
with them�

B���� Continuous Wavelet

In its most general form� as mentioned above� the wavelet representation is based on
a single function � � L��R	� called mother wavelet �or simply wavelet	� This basic

���
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function originates a family f�a�bg of functions

�a�b�t	 �
�q
jaj

�

�
t� b

a

�
�

where a� b � R� and a 
� �� The parameters a and b vary continuously� corresponding
respectively to dilations and translations of ��

The wavelet transform of a function f � L��R	 maps a continuous function of one
variable �space	 to a continuous function of two variables �scale and location	�

�T�f	�a� b	 �
Z �

��
f�t	�a�b�t	dt �� f� �a�b � �

The operator �T�f	�a� b	 is� therefore� the orthogonal projection of f onto the
elements of the family f�a�bg �up to a normalization	� The wavelet transform gives
the correlation of f with � shifted by b and scaled by a�

The representation of a function by its continuous wavelet transform is redundant
and the inverse transform may not be unique�

It can be shown that in order for the wavelet operator to be invertible� the mother
wavelet must satisfy the admissibility condition

C� �
Z �

��

j (���	j�
j�j d�

where (� is the Fourier transform of ��
The inverse of the continuous wavelet transform is then given by the equation

f�t	 �
�

C�

Z �

��
�T�f	�a� b	�a�b�t	

da db

a�

The admissibility condition implies that (���	 has to be �� and� hence � has to
oscillate� This is equivalent to Z �

��
��t	dt � (���	 � �

Also� if (� is continuous at zero� � has to decay fast �for example j��t	j � O�t��	 as
jtj � �	�

Not every function �Tf	�a� b	 is the continuous wavelet transform of a function f �
The function �Twf	�a� b	 must satisfy the reproducing kernel equation in order to be
a valid wavelet transform� For all �a�� b�	 � R � f�g � R

�T�f	�a
�� b�	 �

Z �

��

Z �

��
�T�f	�a� b	K�a� a�� b� b�	

da db

a�
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The function

K�a� a�� b� b�	 �
�

C�

Z �

��
�a�b�t	�a��b��t	dt

is called the reproducing kernel and it express the redundancy between �T�f	�a� b	
and �T�f	�a

�� b�	� for any pairs �a� b	 and �a�� b�	�
We remark that there are other ways to de�ne the continuous wavelet transform�

For example� the space of parameters �a� b	 can be restricted to R
� � R� Nonetheless�

this is not essentially di�erent than what was presented above�
The continuous wavelet transform is a very useful tool for the detection and char


acterization of singularities of functions�

B���� Wavelet Frames

It is often desirable have a discrete representation of a continuous function� This
motivates the need for a discretization of the continuous wavelet transform� The goal
is to sample the wavelet transform of a function f at a discrete set of points �a� b	 in
its parameter space R � R such that those values still characterize the function f �

If the �a� b	 plane is discretized by restricting the dilation parameter to a � am� �
with m � Z and the translation parameter to b � nb�a

m
� � with n � Z� then� the

discrete wavelet transform becomes a map from L��R	 to l��Z�	 with basis elements
of the form

�m�n�t	 �
�p
am�

�

�
t� nb�a

m
�

am�

�
� a

�m��
� ��a�m� t� nb�	

We are now faced with two questions�

�� Is it possible to reconstruct a function f from the coe
cients � f� �m�n ��

�� Is there an algorithm to compute the coe
cients of the discrete wavelet trans

form�

If any function f � L��R	 can be written as a superposition of �m�n� then these
basis elements are called atoms and the representation is called atomic decomposition�

The two questions above are dual aspects of the same problem� We want to �nd
a solution of the form

f �
X
m�n

� f� �m�n � g�m�n

In order to meet the above requirements the wavelet family f�m�ng has to consti

tute a frame�

A family of functions f�kgk�K is a frame of a Hilbert space H if for all f � H�
there exists � � A � B �� such that

Akfk� � X
k�K

j � f� �k � j� � Bkfk�
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The numbers A and B are called frame bounds�
The frame operator F � f � f� f� �k �gk is invertible because it is bounded�
When A � B� we call the frame a tight frame� In this case� the inversion formula

is

f�t	 �
�

A

X
k

� f� �k � �k�t	

If the vectors f�g constituting a tight frame are normalized� then A � B indicates
the redundancy of the frame� For A � B � � the frame is an orthonormal basis�

When the frame is not tight the reconstruction formula becomes

f�t	 �
X
k

� f� �k �
g�k�t	 �

X
k

� f� f�k � �k�t	

and we must determine g�k�t	�
This computation amounts to

f�k�t	 � �F �F 	���k�t	

where
�F �F 	f �

X
k

� f� �k � �k

The amount of computation necessary to determine f�k to a desired accuracy is
proportional to the ratio B�A�

There are some appropriate choices of �� a�� and b� such that we have

g�m�n�t	 � e�m�n�t	 � a
�m��
�

e��a�m� t� nb�	

for a single e�� This function e� is called the dual of the wavelet ��

B���� Orthonormal Wavelets

When a family of wavelets constitute an orthonormal basis of L��R	 the associated
wavelet representation has no redundancy� The parameters space �a� b	 is critically
sampled and in some sense the wavelet transform of a function f is the most compact
atomic decomposition of f �

It is possible to construct orthonormal basis of wavelets by restricting the param

eters a and b to dyadic scalings and shifts in the following way�

a � ��j

b � k
�j
b�
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for j� k � Z� Here b� is called the sampling rate�
We now have the dyadic wavelets of the form�

�j�k�t	 � �
j
����jt� k	

where b� � ��
The fact the f�j�kg is an orthonormal basis� means that

k�j�kk � �� j� k � Z

� �j�k� �j��k� �� �j�k � �j��k�� j� k� j �� k� � Z

B������ Orthonormalization Procedure

If the family f�j�kg is a Riesz basis of L��R	 we can construct from � an function ��

which generates an orthonormal basis of L��R	

(����	 �
(���	
P�

k��� j (��� � ��k	j�
����

B�� Multiresolution Analysis

Dyadic wavelets can be used to generate a Multiresolution Analysis �MRA	 of L��R	�
or conversely� we can derive dyadic wavelets from a multiresolution analysis� The
idea is to decompose L��R	 into a direct sum of closed subspaces Wj� spanned by the
functions �j�k�t	� Consequently� the complementary subspaces

Vj � � � � �Wj�� �Wj��� j � Z

form a nested sequence of subspaces whose union is dense and whose intersection
is the null space� This motivates the investigation of a scaling function ��t	 that
generates the spaces Vj� j � Z� in the same manner that ��t	 generates the spaces
Wj� j � Z�

B���� De�nition

A multiresolution analysis of L��R	 is a hierarchical decomposition of that space into
a sequence of closed subspaces fVjgj�Z satisfying

� � �V�� � V� � V� � � �
with �

j�Z

Vj � L��R	

�
j�Z

Vj � f�g
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and

f�t	 � Vj � f��t	 � Vj��

f�t	 � Vj � f�t� ��jk	 � Vj

The spaces Vj are called approximation spaces� In a multiresolution analysis� all
approximation spaces are scaled versions of the central space V�� For this� we require
that there exists a function � � V� of the form

�j�k�t	 � �j�����jt� k	

with j� k � Z� such that
f���k � k � Zg

is a Riesz basis in V�� The function � is called a scaling function of the multiresolution
analysis� A given space V� may have many functions that satisfy the above properties�
but only one will be an orthonormal basis of V��

We denote by Pj the orthogonal projection operator onto Vj

Pjf �
X
k�Z

� f� �j�k � �j�k

This corresponds to the approximation of f at the resolution �j�
The fact that the limit of the sequence of spaces fVjgj�Z is dense in L��R	 ensures

that
lim
���

Pjf � f

for all f � L��R	�
Although f�j�kg�j�k��Z� spans the space L��R	� it is not a minimal spanning set� due

to the nested nature of the multiresolution analysis� On the other hand� it is possible
to construct an orthogonal decomposition of L��R	 if we exploit the complementary
structure of a multiresolution analysis�

We de�ne Wj to be the orthogonal complement of Vj in Vj��� Then we have

Vj�� � Vj �Wj

and
Wj � Wj�

if j 
� j ��
The spacesWj are called detail spaces� in the sense that they contain the di�erence

in information between the spaces Vj and Vj��� Therefore� Wj contains the detail in

formation needed to go from the approximation at resolution �j to the approximation
at resolution �j���
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Observe that� because the spaces Wj � Vj� � Wj� if j � j �� then we have

Vj � VJ �
J�j��M
k��

WJ�k

for j � J �
Also� the family of spaces fWjg��Z constitute an orthogonal decomposition of

L��R	 expressed as
L��R	 �

M
j�Z

Wj

The spaces Wj inherit from Vj the scaling property of the multiresolution analysis

f � Wj � f��j	 � W�

It is possible to �nd a wavelet � such that� for �xed j� f�j�k � k � Zg constitute
an orthonormal basis of Wj� Therefore� the whole family f�j�kg�j�k��Z� constitutes an
orthonormal basis of L��R	�

B���� Two Scale Relations

We are now faced with the problem of de�ning the scaling and wavelet functions �
and �� This can be done exploiting the inner structure of the multiresolution analysis�

Since V� � V�� any basis element ���k can be expressed as a linear combination of
the basis elements ���k in V�� In particular�

� �
X
k

hk���k

with
hk �� �� ���k �

Then� we have
��t	 �

p
�
X
k

hk���t� k	

The above equation is called the dilation equation or two scale relation� It expresses
� as a weighted sum of compressed and shifted versions of itself�

By integrating the dilation equation on both sides� and using the fact that the
integral of � does not vanish� we see thatX

k

hk � �

The scaling function is� under very general conditions� uniquely de�ned by the
dilation equation and the normalization requirementZ �

��
��t	dt � �
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Because V� � V��W�� the wavelet basis ���k of W� can also be expressed in terms
of the basis of V�

� �
X
k

gk���k

with
gk �� �� ���k �

Then� we have the dilation equation for the wavelet

��t	 �
p
�
X
k

gk���t� k	

As a consequence of the two scale relation above and of the admissibility condition
that requires Z �

��
��t	dt � �

we conclude that X
k

gk � �

We have developed a characterization of the scaling function � and of the asso

ciated wavelet function � using the multiresolution analysis� The structure of these
functions is governed by the two
scale relations�

��t	 �
p
�

�X
k���

hk���t� k	

��t	 �
p
�

�X
k���

gk���t� k	

Note that � and � are uniquely determined respectively by the l�
sequences fhkg and
fgkg� Also� note that � is de�ned in terms of ��

The next step is to �nd functions � and � satisfying the above conditions�

B�� Construction of Wavelets

The construction of particular dyadic wavelets is best done in the frequency domain�
An indication that this is the way to go is the admissibility condition for continuous
wavelets which imposes the �niteness of the Fourier transform of ��

B���� Working in the Frequency Domain

If we express the two scale relation for the scaling function � in the frequency domain�
we get

(���	 �
�p
�

X
k

hke
�ik��� (�����	
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or
(���	 � H����	(�����	

with

H��	 �
�p
�

X
k

hke
�ik�

H is a ��
 periodic function in L����� ���	�
If � is a scaling function that is an orthonormal basis of V�� it forms a partition

of unity X
k

��t� k	 � �

for all t � R� Consequently� using the Poisson summation formula �see Appendix A	
we have that

(���	 � �
(����k	 � �� � 
� k � Z

Since (���	 � �� by applying the two scale relation recursively� we get

(���	 �
�Y
j��

H���j�	

This product formula allows us to construct � from the sequence hk�
As a consequence of the above we conclude that

jH��	j � �

jH��	j� � jH�� � �	j� � �

Furthermore� H��	 � � and X
k

���	khk � �

Similarly� If we express the two scale relation for the wavelet function � in the
frequency domain� we get

(���	 �
�p
�

X
k

gke
�ik��� (�����	

or
(���	 � G����	(�����	

with

G��	 �
�p
�

X
k

gke
�ik�

where G is ��
periodic�
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The requirement that � integrates to zero together with the fact that it is de�ned
in terms of � implies that

G��	 � �

For a orthogonal wavelet � X
l

j (��� � ��l	j� � �

or
jG��	j� � jG�� � �	j� � �

From the two previous conditions we conclude that

G��	 � �

The constraint that W� � V� implies that � � ���k andZ ��

�

(��� � ��l	(��� � ��l	e�ik�d� � �

or� in terms of the Fourier series

X
l

(��� � ��l	(��� � ��l	 � �

for all � � R�
Substituting in the above equation the expressions of (� and (� in terms of� respec


tively� H and G� we obtain after regrouping the sums for odd and even l

G��	H��	 �G�� � �	H�� � �	 � �

A possible choice of G satisfying the above equation is

G��	 � e�i�H�� � �	

Note that G is de�ned in terms of H� as expected�
From this� we can construct an orthogonal wavelet from an orthogonal scaling

function by choosing
gk � ���	kh�k��

B���� Quadrature Mirror Filters

The functions H and G can be interpreted as the discrete Fourier transform of a pair
of discrete �lters� The function H is a low pass �lter for the interval ��� ����� and the
function G is a band pass �lter for the interval ����� ���
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From these observations and from the de�nition of � and � in the frequency
domain� we conclude that the main part of the energy of (� and (� is concentrated
respectively in the intervals ��� �� and ��� ����

The fact thatH��	 � G��	 andG��	 � H��	� together with the relationG��	H��	�
G�� � �	H�� � �	 � � makes them a pair of �lters that are complementary� These
�lters are called quadrature mirror �lters� This means that the wavelet transform
essentially splits the frequency space into dyadic blocks ��j�� �j���� with j � Z�

Note that is possible to construct discrete �lters H and G that satisfy the above
properties� but do not correspond to any functions � and � in *L��R	 as de�ned in
this section�

B�� Computing the Wavelet Transform

An e
cient method to compute the coe
cients fcj�kg of the dyadic wavelet transform
and reconstruct a function from these coe
cients exploits the hierarchical structure of
the multiresolution analysis� It is based on the two scale relations and the associated
pair of discrete �lters H and G�

We start with a function fJ � VJ � The multiresolution analysis guarantees that
every function f � L��R	 can be approximated as closely as desired by an fJ � VJ for
some J � Z� We assume that we have computed the inner products of f with �J�k�
Since Vj � Vj�� �Wj��� fJ has a unique decomposition

fJ � fJ�� � gJ��

where fJ�� � VJ�� and gJ�� � WJ��� By applying this recursively N times we have

fJ � fJ�N � gJ�N � � � �� gJ�� � gJ��

for fj � Vj and gj � Wj� This is called the wavelet decomposition�
The goal of the fast wavelet transform algorithm is to compute the above decom


position of a function and obtain the reconstruction of a function from it e
ciently�

B���� Algorithm

Since� fJ � VJ it can be represented as

�PJf	�t	 �
X
k

cJ�k�J�k�t	

with cJ�k �� fJ � �J�k ��
But� as we have seen�

�PJf	�t	 � �PJ��f	�t	 � �QJ��f	�t	
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where Pj and Qj are respectively the orthogonal projections on the spaces Vj and Wj�
Therefore�

� fJ � �J ��� fJ � �J�� � � � fJ � �J�� �

The e
ciency of the fast wavelet transform algorithm is due to the fact that�
because of the structure of the multiresolution analysis� the lower resolution coe


cients can be computed directly from the higher resolution coe
cients� and vice
versa�
without resorting to the L��R	 inner products�

From the two scale relations we have

� f� �j�k ��
X
n

hn��k � f� �j���n �

and
� f� �j�k ��

X
n

gn��k � f� �j���n �

Or in terms of the coe
cients cJ�n

cJ���k �
X
n

hn��kcJ�n � HcJ�n

and
dJ���k �

X
n

gn��kcJ�n � GcJ�n

Again� applying the above formulas recursively on the coarse sequence of approx

imation coe
cients fcj�kg we get an algorithm to decompose the �ner approximation
coe
cients into coarser approximation and detail coe
cients� This is illustrated in
Figure B���

cJ cJ-1

dJ-1

H

G

.  .  .  .

.  .  .  .

cJ-N-1 cJ-N

dJ-N

H

G

dJ-N-1

Figure B��� Wavelet Decomposition Algorithm

Going the other way� we have the reconstruction algorithm� Using again the
relation �Pj��f	�t	 � �Pjf	�t	 � �Qjf	�t	

fj�� �
X
k

cj�k�j�k �
X
k

dj�k�j�k

Also
cj���n �� fj��� �j���n �
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Substituting the previous equation we get

cj���n �
X
k

cj�k � �j�k� �j���k � �
X
k

dj�k � �j�k� �j���k �

�
X
k

�hn��kcj�k � gn��kdj�k	

The above formula gives an algorithm to reconstruct coe
cients of �ner approx

imations recursively from the coarse approximation and detail coe
cients� This is
illustrated in Figure B���

cJcJ-1

dJ-1

.  .  .  .

.  .  .  .

cJ-N-1cJ-N

dJ-N

H

G

dJ-N-1

H

G

Figure B��� Wavelet Reconstruction Algorithm

B���� Connection with Subband Filtering

The wavelet decomposition and reconstruction algorithms correspond respectively
to the analysis and synthesis steps of an exact subband �ltering scheme� In this
case we have a discrete two
channel subband �ltering� The input sequence �cJ�k	k�Z
is convolved with a low
pass �lter H and a band
pass �lter G� The two resulting
sequences �cJ���k	k�Z and dJ���k	k�Z are then subsampled� i�e�� only the even �or only
the odd	 elements are retained� The process is repeated recursively on the result of
the low pass part�

The whole scheme is illustrated in the diagram of Figure B���

2 2

2 2

H

G

H

G

+cJ cJ-1 cJ

dJ-1

Figure B��� Subband Filter Bank Analysis and Decomposition Scheme
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B�	 Time�Frequency Analysis

In this section we discuss the localization properties of wavelets in the time and
frequency domains�

The wavelet functions are localized in time �or space	 and frequency because of
its oscillation and decay characteristics� Consequently� the wavelet transform of a
function provides valuable information about the variations of the function and their
locations�

B���� Time�Frequency Plane

It is convenient to analyze the wavelet transform in the time
frequency plane�

Time�Frequency Window

A function w � L��R	 is a window function if it satis�es the decay requirement that
tw�t	 � L��R	 and jtj���w�t	 is also in L��R	� so that it is possible to identify its center
and radius�

The center cw and the radius &w of the window w are de�ned respectively by

cw �
�

kwk�
Z �

�
tjw�t	j�dt

and

&w �
�

kwk�
�Z �

�
�t� cw	

�jw�t	j�dt
����

The window function w has most of its energy concentrated around the mean cw
with standard deviation &w� In other words� w is localized in the window

�cw �&w� cw �&w�

A time
frequency window is a window w that has a su
ciently fast decay such
that both w and its Fourier transform (w are window functions�

Theorem B�� �Uncertainty Principle
 Let w � L��R	 be such that w is a time
frequency window� Then

&w& �w � �

�

The uncertainty principle says that a function cannot be concentrated simultane

ously in time and frequency� i�e�� the function and its Fourier transform cannot be
both compactly supported�

The orthogonal projection � f�w � of a function f onto a time
frequency window
function w gives information about the function inside the rectangular region of the
time
frequency plane

�cw �&w� cw �&w�� �c �w �& �w� c �w �& �w�
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It is of fundamental importance to realize that the elements represented in the
time
frequency plane must comply with the uncertainty principle� Consequently� it
does not make sense to speak about a single point in the time
frequency plane�

It is customary to represent a function in the time
frequency plane by its Wigner
distribution� The Wigner distribution of a function f�t	 denoted by Wf�t� �	 �
W �f� f ��t� �	 is de�ned by

W �f� f ��t� �	 �
�

��

Z
f�t� ���	f�t� ���	e�i�
d�

This gives an energy distribution which re�ects the joint time
frequency localiza

tion of the function f �

Figure B�� shows the Wigner distribution of a function in the time
frequency
plane�

Figure B��� Wigner Distribution of a Function

B���� Short Time Fourier Transform

The standard Fourier transform of a function f gives information about the frequency
content of f � but this information corresponds to oscillations of the function over the
entire real line �the time domain	� Therefore the Fourier transform does not provide
any indication of the location of function variations� such as a high frequency burst�

Time localization can be achieved by �rst windowing the function f in order to
cut o� a localized slice of f and then taking the Fourier transform� Equivalently� we
can de�ne the windowed Fourier transform� also called short time Fourier transform
�or Gabor transform	� by windowing the Fourier operator itself

�Gwf	��� s	 �
Z �

��
f�t	�w�t� s	e�i�s	dt

If both w and (w are concentrated around zero� then �Gwf	��� s	 can be interpreted
as the content of f near time s and near frequency �� The short time Fourier transform
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produces a description of f in the time
frequency plane� The time
frequency window
associated with �Gwf	��� s	 for each point ��� s	 is de�ned by

�s�&w� s�&w�� �� �&��� � �&���

�assuming that cw � c�� � �	�
Note that the area of the time
frequency window is constant �equal to �&w&�	

and remains unchanged for localizing a function� since the parameters ��� s	 only
translate the window in the time and frequency axis respectively�

It is clear that we can discretize the short time Fourier transform by assigning to
� and s regularly spaced values � � m�� and s � ns�� where m�n � Z and ��s� � �
are �xed�

�Gwf	�m�n	 �
Z �

��
f�t	�w�t� ns�	e�im��s	dt

For appropriately chosen window function w and parameters ���s� the discrete
values of �Gwf	�m�n	 are su
cient to completely characterize the function f �

The windowed Fourier transform induces an uniform partition of the time
frequency
plane� as shown in Figure B���

ω

t

Figure B��� Partition of the Time
Frequency Plane Induced by the Short Time Fourier
Transform

The discrete windowed Fourier transform is invertible only if this tiling covers the
time
frequency plane completely�

B���� Wavelets

The wavelet transform

�T�f	�a� b	 �
�p
a

Z �

��
f�t	��

t� b

a
	dt
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localizes a functionf with a time window

�b � ac� � a&�� b� ac� � a&��

where the center of the window is at b � ac� and its width �a&��

On the other hand� setting ���	 � (��� � c ��	� then � is a window function with
center at zero and radius &�� The wavelet transform can also be written as

�T�f	�a� b	 �
a

��
q
jaj
Z �

��

(f��	eib���a�� � c��
a
		d�

using the Parseval identity�
Hence� �T�f	�a� b	 also gives localized information of the spectrum (f��	 with a

frequency window

�
c�
a
� �

a
&���

c�
a

�
�

a
&���

where the center of the window is at c��a and its width is ��& ��	�a�
We then have a time frequency window

�b� ac� � a&�� b� ac� � a&��� �
c�
a
� �

a
&���

c�
a

�
�

a
&���

Note that the scaling parameter a makes the window change its shape while it
is translated� but maintaining a constant area ��&�& ��	� The window narrows for
large center
frequency c��a and widens for small center
frequency c��a� This is a
very desirable property in the time frequency analysis of functions�

The discrete wavelet transform can be chosen such that it covers the entire time
frequency plane� The dyadic wavelet transform does a recursive binary partition of
the frequency domain� Figure B�� shows the tiling induced by the discrete wavelet
transform in the time frequency plane�

B�
 Properties of Wavelets

In this section we discuss brie�y some important properties of the wavelet function
and their impact on applications of the wavelet transform�

B���� Orthogonality

With orthogonal wavelets the fast wavelet transform yields a perfect numerical condi

tion ensuring stable computation of the decomposition and reconstruction algorithms�
If the multiresolution analysis is orthogonal� the projection operators produce optimal
approximations in the L��R	 sense�

Orthogonality is very a desirable property� but it imposes a severe restriction on
the candidate wavelet functions�
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ω

t

Figure B��� Partition of the Time
Frequency Plane Induced by the Wavelet Transform

B���� Support and Decay

If the scaling function and wavelet are compactly supported� the �lters H and G have
�nite impulse response� which is desirable in the implementation of the fast wavelet
transform� If these functions are not compactly supported� fast decay is desirable� In
this case� the �lters H and G have in�nite impulse response� but can be approximated
reasonably well by truncation�

B���� Smoothness

Smooth basis functions are desired in applications where derivatives are involved�
Smoothness also corresponds to better frequency localization of the �lters�

B���� Vanishing Moments

The number of vanishing moments of the wavelet is connected to its smoothness�
Vanishing moments are important in singularity detection using wavelets and in

the rate of convergence of wavelet approximations of smooth functions�

B���� Analytic Form

The analytic expression for the scaling function and wavelet is� in general� not avail

able� These functions are de�ned indirectly through the �lter coe
cients fhg and
fgg�

Nonetheless� the de�nition of the scaling function and wavelet in analytic form is
very useful in many applications�
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B�� Biorthogonal Wavelets

The orthogonality condition is a very strong constraint that limits the construction
of wavelets� For example� it is not possible to create an orthogonal wavelet that has
both compact support and is symmetric�

A practical solution� that allows more �exibility on the choice of wavelet functions
with desirable properties� is to replace the orthogonality requirement by a biorthog

onality condition�

In this case� we have a family of biorthogonal scaling functions and wavelets that
are dual basis of the approximating and detail spaces of a multiresolution analysis�

More precisely� we de�ne a pair of scaling functions �j and e�j that are� respectively�
Riesz basis of the subspaces Vj and eVj� Similarly we de�ne a pair of wavelet functions

�j and e�j that are� respectively� Riesz basis of the subspaces Wj and fWj�
These functions generate dual multiresolution analysis

� � � � V�� � V� � V� � � � �
� � � � eV�� � eV� � eV� � � � �

We impose that
Vj � fWj and eVj � Wj

Consequently�
Wj � fWl

for j 
� l�
The above biorthogonality condition implies that

� ��t	� e��t� l	 ��� e��t	� ��t� l	 �� �

and
� ��t	� e��t� l	 �� �l and � ��t	� e��t� l	 �� �l

Which can be extended to the multiresolution analysis by a scaling argument giving

� �j�k� e�j�m �� �k�m� j� k�m � Z

and
� �j�k� e�l�m �� �j�l�k�m� j� k�l�m � Z

In the frequency domain� the biorthogonality condition is equivalent to

X
k

be��� � k��	 b��� � k��	 � �

X
k

be��� � k��	 b��� � k��	 � �
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X
k

be��� � k��	 b��� � k��	 � �

X
k

be��� � k��	 b��� � k��	 � �

for all � � R�
This means that the �lters H� G and their duals fH� eG have to satisfy

fH��	H��	 � fH�� � �	H�� � �	 � �eG��	G��	 � eG�� � �	G�� � �	 � �eG��	H��	 � eG�� � �	H�� � �	 � �fH��	G��	 � fH�� � �	G�� � �	 � �

This can be written in matrix form as

fM��	MT ��	 � I

where

M��	 �

�
H��	 H�� � �	
G��	 G�� � �	

	
and I is the identity matrix�

Interchaging the left side� we get

H��	fH��	 �G��	 eG��	 � �

H��	fH�� � �	 �G��	 eG�� � �	 � �

Note that this condition is equivalent to a perfect decomposition#reconstruction sub

band �ltering scheme�

The projection operators onto the approximation and detail spaces are respectively
of the form

�Pjf	�t	 �
X
k

� f� e�j� k � �j�k �
X
k

� f� �j� k � e�j�k
and

�Qjf	�t	 �
X
k

� f� e�j� k � �j�k �
X
k

� f� �j� k � e�j�k
where the role of the primary functions �� � and their duals e�� e� can be interchanged�

From the relation of these functions with the respective �lters we derive that the
coe
cients are ehk��l �� e��t� l	� ���t� k	 �

and egk��l �� e��t� l	� ���t� k	 �
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By writing ���t�k	 � V� in terms of the bases of V� and W�� we get the two
scale
relation

���t� k	 �
X
l

ehk��l��t� l	 �
X
l

egk��l��t� l	

The fast biorthogonal wavelet transform uses the above decomposition#reconstruction
relation� The algorithm employs the two pairs of primary and dual �lters and ex

cept for this di�erence� it is essentially similar to the orthogonal case� The pair of
�lters H
G is employed in the decomposition step and the pair of �lters fH
 eG in the
reconstruction step� Remember that� as we already noted� the roles of these two �lter
banks can be interchanged�

B�� Multidimensional Wavelets

We can extend the one
dimensional wavelets presented in this appendix to higher
dimensions using a tensor product formulation� In this section we will describe the
two
dimensional case� the general case is analogous�

B�
�� Tensor Product Wavelets

In this construction� we use the tensor product of two one
dimensional multiresolution
analyses� As a consequence� the dilations of the resulting basis functions are applied
to all the variables simultaneously�

We de�ne the spaces Vj� j � Z

V� � V� � V�

such that
F � Vj � F ��jx�� �

jx�	 � V�

The sequence of spaces

� � �V�� � V� � V� � � �

forms a multiresolution analysis of the L��R�	 with

�
��Z

� L��R�	�
�
j�Z

Vj � f�g

The orthonormal basis of Vj is given by the functions

)j
k��k��x�� x�	 � �j���jx� � k�	���
jx� � k�	

with �k�� k�	 � Z
��
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We de�ne� as in the one
dimensional case� the spaces Wj as the orthogonal com

plement of Vj � Vj��� Expanding the one
dimensional multiresolution analysis� we
have

Vj�� � Vj�� � Vj��

� �Vj �Wj	� �Vj �Wj	

� �Vj � Vj	� ��Vj �Wj	� �Wj � Vj	� �Wj �Wj	�

� Vj �Wj

Therefore� Wj is the direct sum of three subspaces �Vj � Wj	� �Wj � Vj	 and
�Wj �Wj	� with orthogonal basis given respectively by the three wavelets below

+h�x�� x�	 � ��x�	��x�	

+v�x�� x�	 � ��x�	��x�	

+d�x�� x�	 � ��x�	��x�	

The wavelet functions

f)l
j
k��k� � k�� k� � Z� l � h� v� dg

is an orthonormal basis of Wj�
The whole family of wavelets f)l

j
k��k�
g� j � Z constitute an orthonormal basis of

the entire space
L��R�	 � �j�ZWj

Note that this construction gives in two dimensions not just one but three wavelets�
In the general case� the tensor product construction results in �n � � wavelets�

B�
�� Multidimensional Wavelet Transform Algorithm

The tensor product structure of the multiresolution analysis implies that the scaling
function and the corresponding wavelet functions are separable� and so are the asso

ciated �lters H and G� An important consequence of this property is that the fast
wavelet transform algorithm can be implemented very e
ciently as a multi
pass trans

formation� In the two
dimension algorithm� one
dimensional �ltering is performed on
rows and columns of the two
dimensional arrays� This means that at each step of the
algorithm the data is processed in the horizontal direction �rst and in the vertical
direction after that� Figure B�� shows a schematic illustration of the two
pass wavelet
transform algorithm�

Due to the subsampling� if the original function consists of an N � N array�
after the �rst decomposition� it will be decomposed into four arrays of N�� � N��
elements� one corresponding to the coarse resolution component and the other three
corresponding to the detail components� Because the recursion is performed on the
coarse resolution residual� the whole transformation can be done �in place�� This
scheme is depicted in Figure B���



B��� DERIVATIVE WAVELETS ���

c0 c1

d1,h

d1,v

d1,d

H rows H cols

G rows

G cols
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G cols

Figure B��� Two Pass Algorithm for the Wavelet Transform
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Figure B��� n
dimensional Wavelet Decomposition

B�
 Derivative Wavelets

In this section we describe a wavelet which is de�ned as the derivative of a scaling
function� This special type of wavelet is useful in many applications� such as edge
detection and estimation of regularity of functions�

B���� ��dimensional Wavelet Transform

To construct a derivative wavelet� we start with a scaling function ��x	 with the
following two propertiesR�

�� ��x	dx � �

limx��� ��x	 � �

If � is di�erentiable� we can de�ne the function

��x	 �
d��x	

dx
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The function ��x	 is a wavelet because it satis�es the admissibility condition �i�e��
its integral is zero	 Z �

��
��x	dx � �

The families of scaling and wavelet functions associated with � and � are de�ned
respectively by

�s�x	 �
�

s
��
x

s
	

and

�s�x	 �
�

s
��

x

s
	 � s

d�s�x	

dx

where � and � are dilated by the scaling factor s�
The wavelet transform of a function f�x	 at scale s and position x is de�ned by

�T�f	�s� x	 � f 
 �s�x	
where 
 denotes convolution�

From the de�nition of �� this is equivalent to

�T�f	�s� x	 � f 
 �s �s
dx

	�x	 � s
d

dx
�f 
 �s	�x	

In other words� the wavelet transform �T�f	�s� x	 is the �rst derivative of f convolved
with � scaled by s� This makes the this type of wavelet particularly indicated for
analyzing the regularity of functions as well as detecting their variations at multiple
scales�

B���� N�dimensional Wavelet Transform

In order to extend the wavelet transform discussed above to n dimensions� we de�ne n
wavelet functions that are the partial derivatives of an n
dimensional scaling function
�

�� �
��

�x�
� � � � � �n �

��

�xn

As before� these prototype functions are de�ned at scale �� At an arbitrary scale
s� the scaling function is

�s�x�� � � � � xn	 �


�

s

�n
��
x�
s
� � � � �

xn
s
	

and the wavelets are

�s�k�x�� � � � � xn	 �


�

s

�n
�k�

x�
s
� � � � �

xn
s
	

for k � � � � � n�
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The wavelet transform of a function f � L��Rn	 is a n
dimensional vector function
where each component is

�T��kf	�s� x�� � � � � xn	 � f 
 �s�k�x�� � � � � xn	�

From the de�nition of �k� it follows that�BB�
�T���f	�s� x�� � � � � xn	

���
�T��nf	�s� x�� � � � � xn	

�CCA � s

�BB�
�
�x�

�f 
 �s	�x�� � � � � xn	
���

�
�xn

�f 
 �s	�x�� � � � � xn	

�CCA
This shows that the wavelet transform is equal to sr�f 
 �s	� i�e� it is proportional
to the gradient vector �eld of f convolved with �s�

For the purposes of edge detection it is convenient to convert the wavelet trans

form from rectangular coordinates to spherical coordinates� In this way� the wavelet
transform is expressed in terms of the modulus of T�

�Mf	�s� x�� � � � � xn	 �
q
j�T���f	�s� x�� � � � � xn	j� � � � �� j�T���f	�s� x�� � � � � xn	j�

and the spherical angles Al� l � � � � � n� �� that give respectively the magnitude and
direction of the n
dimensional vector function T��

Figure B�� shows the two dimensional wavelet transform of the image of a disk in
rectangular coordinates and spherical coordinates�

The spherical representation is also important in studying the smoothness of a
function through its wavelet transform� The local regularity of a function f must
be estimated from the evolution of all components T��k� k � � � � � n� of its wavelet
transform� But� since the value of each T��k is bounded by M � the computations need
only be performed on the modulus of the wavelet transform�
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Figure B��� �D Wavelet Transform in Rectangular and Spherical Coordinates



Appendix C

Splines

In this chapter we review some concepts related to splines as well as the application
of splines to multiresolution analysis�

C�� Spaces of Polynomials

Algebraic polynomials are probably the best choice of functions in many problems
of mathematics and its applications� They have many desirable properties that
make then e�ective as a representation and e
cient for computations� The Stone

Weierstrass theorem guarantees that every continuous function may be approximated
uniformly with arbitrary precision by an algebraic polynomial�

An algebraic polynomial in n variables� x�� � � � � xn� over a �eld F is a function

f�x�� � � � � xn	 �
kX
i��

aix
p��i
� � � �xpn�in

where the coe
cients ai � F and the exponents pj�i � N� The degree of the polynomial
is the maximum combined degree of the non
zero terms�

A polynomial scalar function in R
n is a map f � Rn � R� where f�x�� � � � � xn	 is a

polynomial� A polynomial vector function in R
n is a map f � Rn � R

m � de�ned by m
polynomial functions

f�x�� � � � � xn	 � �f��x�� � � � � xn	� � � � � fm�x�� � � � � xn		

C���� Parametric and Implicit Descriptions

Piecewise algebraic polynomials can be used equally well in parametric and implicit
descriptions�

In the parametric case� we have a function

f � V � R
l � R

n

where f is a piecewise polynomial whose domain is the space of parameters V and
whose range is the the Euclidean space R

n � In terms of a geometric description� this

���
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means that we have a representation given by the parametric function f�v	 � x�
which speci�es the point set

X � fx � f�v	 � v � V g

of dimension l embedded in the n
dimensional ambient space� Typically� we deal with
surfaces in the three dimensional space �i�e� l � � and n � �	� Note that in general�
f is a vector function de�ned on the parameter space�

In the implicit case� we have a function

f � U � R
n � R

m

where f is a piecewise polynomial whose domain is a subset U of the ambient space
R
n and whose range is the space R

m � In terms of geometric description� this means
that we have a representation given by the implicit function f�x	 � c� which de�nes
as the inverse image of the value c � R

m � the point set

X � fx � f���c	 � x � Ug

of dimension n�m �the codimension of f	 embedded in the n
dimensional ambient
space� Again� the usual situation is related to surfaces in three space �i�e�� m � � and
n � �	� Note that in this case� f is a scalar function de�ned on the ambient space�

C���� Piecewise Polynomials

Here� for simplicity and for practical reasons we will concentrate on piecewise poly

nomial functions�

Let P n��a� b�	 denote the space of all algebraic polynomials of degree at most n
de�ned on the interval �a� b��

Let Cn�R	 denote the collection of all functions f such that f� f �� � � � � f �n� are
continuous everywere�

The space Sm of piecewise polynomials of order m with equally spaced simple
knots k � Z is the collection of all functions f � Cm��� such that the restrictions of
f to any interval �k� k � �	� are in Pm����a� b		�

Note that the space Sm is constituted of piecewise algebraic polynomials of degree
m� �� with continuous derivatives �i�e�� f j
k�k��� � Pm�� and f � Cm��	�

A direct consequence of the above de�nition is that an element fm � Sm is con

stituted by a sequence of adjacent polynomial pieces pm�k � f j
k�k���� k � Z� In order
to guarantee derivative continuity we have to enforce

�p
�l�
m�k � p�l�m�k��	�i	 � �

for l � �� � � � � m� � and i � Z� This means that the derivatives of contiguous pieces
have to be equal up to order m� ��
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Furthermore� adjacent pieces pm�k of fm are related by the identity

pm�k�t	 � pm�k���t	 �
ck

�m� �	$
�t� k	m��

where ck � p
�m���
m�k �k	 � p

�m���
m�k���k	 �The above relation is derived from the di�erence

of the Taylor expansion of adjacent pieces	�

C���� Truncated Power Basis

In order to construct a basis for the space of piecewise polynomials� we �rst concen

trate on a interval ��N�N �� where N � Z� and then extend it to R�

If we restrict the attention to functions f � Sm�N de�ned on the interval ��N�N �
we have for all t � ��N�N �

f�t	 �
N��X

k��N��

ck
�m� �	$

�t� k	m���

where x� � max��� x	�
Consequently� the collection of functions

f�� � � � � tm��� �t�N � �	m��� � � � � � �t�N � �	m��� g

is a basis of the space Sm�N �
Since f is restricted to the interval ��N�N �� we can replace the monomials �� � � � � xm��

with
�t �N	m��� � � � � � �t�N �m� �	m���

This de�nes the basis of Sm�N in terms of the truncated powers �t � k	m��� � that
is generated by a single function and is independent of N �

The basis of Sm�N can be extended to the space Sm of piecewise polynomials over
the entire real line R� by taking the union of the basis over the intervals ��N�N �

Sm �
��

N��

Sm�N �

Hence the family
T � f�t� k	m��� � k � Zg

constitutes a basis of Sm�

C�� Types of Splines

In this section� we discuss the di�erent types of splines�
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C���� B�Spline

One problem with the truncated power basis is that it is formed by functions which
do not belong to L��R	� This is due to the fact that these functions grow without
bounds as t�� �this didn�t cause problems in the construction of the basis because
these functions were used only inside the intervals ��N�N �	�

In order to construct a practical basis of Sm� we tame the polynomial growth of
the functions �t�k	m��� by taking di�erences of elements of the truncated power basis�
These new functions are made to vanish outside the intervals of interest because they
cancel when combined with the other elements of T � Note that� in spite of the fact
that we are not in a Hilbert space� ��nite	 linear combinations are allowed in a general
vector space�

Let

Bm�t	 �
�

�m� �	$

mX
k��

���	k
�
m

k

�
�x� k	m���

It can be shown that the collection

B � fBm�t� k	 � k � Zg
of integer translates of Bm is a Riesz basis of Sm�

The functions Bm are called B�splines of order m and B is called B�spline basis�
A function f � Sm is represented by its B�spline series

f�t	 �
�X

k���

ckBm�t� k	

where the coe
cient ck is associated with the k
th knot� of the integer sequence k � Z�

C���� Orthogonal Spline

The B
spline basis does not constitute an orthonormal basis of Sm�
If an orthonormal basis is required� we can use the fact that the family of B
spline

functions is a Riesz basis of Sm and apply the orthonormalization formula given in
Appendix B to get

bOm��	 �
bBm��	
P

k j bBm�� � ��k	j�
����

The basis function O�t	 is obtained by computing the inverse Fourier transform
of bO��	�

C���� Cardinal Spline

In the B
spline representation� the values of f�k	� k � Z approximate the knot se

quence fckgk�Z� For some applications it is desirable to have a representation which
interpolates the values of its knot sequence�
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With this goal in mind we can formulate a basis of Sm with interpolatory proper

ties� We can de�ne an m
th order cardinal spline function

Lm �
�X

k���

akBm�t�
m

�
� k	

such that Lm�k	 � �k�
In order to determine this function� we solve the bi
in�nite system above in the

frequency domain�
Using the fact that� because the properties of the B
spline basis� the sequence

fakg decays to zero exponentially as k � ��� we can rewrite this system of linear
equations using the z notation as

X
k

ckz
k
X
k

Bm�
m

�
� k	zk � �

or eCm�z	 �
�eBm�z	

where z � e�i��
Applying the Poisson Summation Formula �see Appendix A	 we rewrite the above

equation as eBm�z	 �
�X
��

bP �� � ��k	

where � bP 	��	 is the Fourier transform of Bm�t�m��	�
Now� taking the Fourier transform of Lm and substituting eCm

bLm��	 �
bP ��	P�

��
bP �� � ��k	

�

This formula can be used to compute Lm for speci�c values of m�
Alternatively� we can solve the linear equation above directly in the time domain�

This is relatively simple for small values of m�

C���� Other Splines

There are many other types of spline functions used in computer graphics� To mention
a few� we have

� Hermite spline

� Bezier spline

� Beta spline
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� Catmull
Rom spline

among others�
These spline functions are constructed by specifying a set of constraints on the

knot sequence fckgk�Z� similarly to the construction of the Cardinal splines� The
constraints result in a system of linear equations which must be solved to de�ne a set
of basis functions� Note that� di�erently from the previous examples� the basis is not
formed by the integer translates of a single function anymore�

C�� Computation

Once we have de�ned a spline basis of the space Sm of piecewise algebraic polynomials�
there are two fundamental computational operations we need to perform�

Given a function f � Sm and a spline basis S�
�� Compute the representation of f relative to S�
�� Reconstruct f from its representation in terms of S�

C���� Computing the Spline Series Coe�cients

In order to determine the representation of a function f � Sm in the spline basis
S � fsk � k � Zg we have to �nd a decomposition of f in terms or the basis
elements sk� This amounts to compute the coe
cient sequence fckg of the spline
series associated with each function sk in the series� such that f is given by the linear
expansion

f�t	 �
�X

k���

cksk�t� k	

If the basis is orthonormal� the coe
cients ck are computed through the orthogonal
projection of f onto the basis elements sk

ck �� f� sk �

C���� Computing F from the Spline Series

The reconstruction of a function f � Sm represented in terms of a spline basis S �
fsk � k � Zg consists in computing the value of f�t	 at all points t � R of its domain�

The basic operation� then� consists in computing the value of f�t	 at a point t
from its spline representation�
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C������ Direct Method

The direct computation of the value of f from the spline basis representation associ

ated with it is the most straightforward reconstruction method�

In this method we simply substitute the parameter t into the spline series

f�t	 � � � �� c��s���t� �	 � c��s��t	 � c�s��t� �	 � � � �

and compute directly the value of f at point t� A practical concern is the number of
basis functions evaluations in the doubly in�nite sum� If the spline basis functions
have compact support� then the series above will have only a �nite number of non

zero terms �namely� the ones corresponding to basis elements whose support contains
t	� When the spline basis functions do not have compact support� they usually have
a su
ciently fast decay so that the series can be truncated with marginal error�

C������ Matrix Formulation

The direct reconstruction method is simple� but not very e
cient� The computation
amounts to evaluating several polynomials of degree m � � and then summing the
resulting values� One problem with the direct method is that� because the spline
basis functions are of the form sk�t� k	� when we are evaluating f in a given interval
�k� k � ��� the individual basis elements sk have to be considered separately�

More precisely� the spline series takes the form

f�t	 �
KX

k��K

ck�ak�m���t� k	m�� � ak�m�t� k	m�� � � � �� ak���t� k	 � ak��	�

where we assume that at a point t the non
zero terms of the spline series correspond
to basis elements sk� k � �K� � � �K�

This operation can be simpli�ed� using a matrix formulation� In order to do this
we need to transform the polynomials of the form sk�t � k	 into polynomials of the
form sk�t	 This can be accomplished by a simple algebraic manipulation�

We rede�ne the spline series on the canonical interval t � ��� �� as

f�t	 � c�K�ea�K�m��t
m�� � ea�K�m��t

m�� � � � �� ea�K��t� ea�K��	

�
���

�

c K�ea K�m��t
m�� � ea K�m��t

m�� � � � �� ea K��t� ea K��	

by replacing the coe
cients ak�l of the original algebraic polynomials sk�t � k	 with
new coe
cients eak�l of algebraic polynomials sk�t	 for t � ��� ���
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The above equation can be written in matrix notation as

f�t	 � �tm��tm � � � t �	

�BBBBBBB�

ea�K�m�� ea�K���m�� � � � eaK���m�� eaK�m��ea�K�m�� ea�K���m�� � � � eaK���m�� eaK�m��
���

���
���

���ea�K�� ea�K���� � � � eaK���� eaK��ea�K�� ea�K���� � � � eaK���� eaK��

�CCCCCCCA

�BBBBBBB�

c�K
c�K��

���
cK��
cK

�CCCCCCCA
or simply as

f�t	 � tAcT

Note that this pre
process step needs to be performed just once for a given spline
basis and it does not depend on the knot coe
cients�

Obviously� to evaluate f�t	 at a point t in an arbitrary interval �k� k � �� we �rst
have to express it in terms of the canonical interval ��� �� as t� k�

The matrix form has several advantages�

� Separates the three main components t� A and c� where A depends on the
spline basis being used and c contains the coe
cients of the knot sequence�

� The powers of the variable t can be computed once for a given value of t�

� Special purpose hardware can be use to compute the matrix products�

� The formulation generalizes naturally to n dimensions

C������ Forward Di�erences

When several values of f�t	 need to be computed at uniformly spaced points� the
reconstruction operation can be made even more e
cient by employing a forward
di�erence polynomial �or matrix	 and computing f�t	 incrementally�

C���� Change of Basis

If two sets of functions S� and S� are basis of the same vector space S� it is possible
to �nd a linear transformation that maps S� into S� and vice
versa�

Therefore� we can convert between di�erent spline representation by an appropri

ate basis change�

C�� The B�Spline Representation

The B
spline has a number of properties that characterize it as the standard basis for
the space Sm of piecewise algebraic polynomials of order m�
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C���� Recursive Formulation

The B
spline basis function

Bm�t	 �
X
k��

m
���	k

�m� �	$

�
m

k

�
�t� k	m���

satis�es the property that for any value of m

Bm�t	 � �B� 
 � � � 
B�	�t	

where the convolution is applied m times�
Because B� is the characteristic function of the unit interval

B��t	 � 	
�����t	 �

�
� � � t � �
� otherwise

�

we can de�ne Bm recursively from B� as

Bm�t	 � �Bm�� 
B�	�t	 �
Z
Bm���t� s	ds

C���� Properties of the B�spline

The recursive de�nition is important because it allows us to derive useful properties
of the B
spline function�

�� The B
spline function Bm is compactly supported with

supp Bm � ��� m�

In fact� the support is minimal among all polynomial splines of order m�

�� The B
spline function Bm is positive

Bm�t	 � �

for � � t � m

�� The derivative of the B
spline function Bm can be de�ned by taking backward
di�erences

B�
m�t	 � Bm���t	� Bm���t� �	

�� The inner product of a B
spline function with itself shifted by integers can be
de�ned by sampling a higher order B
spline

� Bm�t	� Bm�t� k	 �� B�m���k	

for t � R and k � Z�
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�� For every g � Cm�Z �

��
g�m��t	Bm�t	dt �

mX
k��

���	m�k
�
m

k

�
g�k	

�� The B
spline basis B � fBm�kg forms a partition of unity

�X
k���

Bm�t� k	 � �

for all t � R�

C���� B�spline in the Frequency Domain

The Fourier transform of the B
spline function has a simple formula that can be
derived from its recursive de�nition�

bBm��	 � sincm����	

where sinc��	 � sin��
��

�
Also� it can be shown that

bBm��	 �
�

�

mX
k��

��m��

�
m

k

�
e�ik��� bBm����	

a formula that will be important in the de�nition of the two
scale relation for the
B
splines�

C�	 Splines as Scaling Functions

The spline functions can be interpreted as a scaling function associated with a mul

tiresolution analysis� Below we develop the theory for the B
spline basis� but the
same can be done for other spline basis that are generated by the integer translates of
a single function� such as the Cardinal spline basis and the Orthogonal spline basis�

C���� B�splines and Multiresolution Analysis

The B
spline function can be used to construct a hierarchy of nested subspaces that
forms a multiresolution analysis of L��R	� This is given by the �ne
to
coarse sequence
of dyadic dilations of the basic spline space Sm�

More precisely� for a �xed m� the approximation space Vj� piecewise polynomials
of order m� is de�ned at scale �j as

Vj � ffj � fj�t	 �
X
k�Z

ck�j�k�t	� ck � l��R	g
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where the basis functions of Vj are the normalized order m B
spline functions

Bm
j�k�t	 � �j��Bm��

jt� k	

As we have seen� the integer translations of the B
spline function Bm�t	 constitute
a Riesz basis of V�� Therefore� the collection of functions Bm

j�k�t	 forms an uncondi

tional basis of the spaces Vj�

C���� Two�Scale Relation

The two
scale relation for the B
splines of order m is

Bm�t	 �
mX
k��

��m��

�
m

k

�
Bm��t� k	

So� the coe
cients of the discrete �lter H are given by the sequence fhkg

hk � ���m
�
m

k

�
for k � �� � � �m�

C�
 Spline Wavelets

Spline wavelets are polynomial functions whose dilations and translations constitute
a basis of L��R	� It is possible to construct di�erent types of spline wavelets with
distinct properties� In this section� we discuss the most important spline wavelets
with some emphasis on the biorthogonal B
spline wavelets�

The method of choice to construct a spline wavelet is to start with a multiresolu

tion analysis generated by a speci�c spline basis function� The spline wavelet is then
constructed from the spline scaling function using one of the methods discussed in
Appendix B�

C���� Orthogonal Spline Wavelet

The orthogonal spline wavelet is associated with the orthogonal spline scaling function
speci�ed in Section C�����

In the frequency domain b���	 � bO��	

Because � is an orthonormal basis� it follows that � is given byb���	 � e�i���H���� � �	 bO����	

The orthogonal wavelet functions are also called Battle�Lemarie wavelets�
The orthonormal scaling functions and the corresponding wavelet functions are

Ck with exponential decay�
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C���� B�spline

The B
spline wavelet is associated with the B
spline scaling function that was analyzed
in the previous section�

The B
spline functions are not orthogonal to its integer translates and constitute
only a Riesz basis of the approximating spaces Vj of the multiresolution analysis� For
this reason� we need to determine the B
spline wavelet as well as the corresponding
duals to the scaling and wavelet functions� as discussed in Appendix B� Note that once
the B
spline scaling function is �xed� there are many choices of associated wavelets
and dual functions�

Here we will describe a formulation due to Ingrid Daubechies in which all the
functions involved are compactly supported�

The low
pass �lter H associated with the B
spline scaling function of order m is
given by

H��	 �

�
� � e�i�

�

�m
To �nd the high
pass �lter G and the corresponding dual �lters fH and eG we recall

the biorthogonality condition

H��	fH��	 �H�� � �	fH�� � �	 � �

Because we are looking for functions with compact support� we also impose that these
functions are trigonometric polynomials of the form


cos
�

�

��l
q��	

if the order m of the spline is even� or

e�i���


cos

�

�

��l��

q��	

if m is odd� and where q is a polynomial in cos��
Combining both conditions gives

�cos���	�Lq�cos�	eq�cos�	 � �sin���	�Lq�� cos�	eq�� cos�	 � �

with L � l � el for m even and L � l � el � � for m odd�
De�ning q�cos�	eq�cos�	 � p�sin� ���	� then we obtain the Bezout equation

��� x	Lp�x	 � xLp��� x	 � �

whose general solution is given by

p�x	 �
L��X
n��

�
L� � � n

n

�
xn
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Since H��	 is already �xed� it is straightforward to �nd fH� The factorization of
p into q and eq is done by setting q � � and solving for eq� Then� we have

H��	 �


cos

�

�

��l
and

fH��	 �


cos

�

�

��l l�el��X
n��

�
l � el � � � n

n

�

sin�

�

�

�n
for m even� and

H��	 � e�i���


cos

�

�

��l��

and

fH��	 � e�i���


cos

�

�

��l�� l�elX
n��

�
l � el � n

n

�

sin�

�

�

�n
form m odd�

The �lters G and eG are derived fromH and fH using the biorthogonality condition

G � e�i�fH�� � �	

and eG � e�i�H�� � �	

The scaling function� the wavelet function and their duals are de�ned recursively
in the frequency domain as

b���	 � H�
�

�
	��

�

�
	

be���	 � fH�
�

�
	 e���

�
	

b���	 � G�
�

�
	��

�

�
	

be���	 � eG�
�

�
	 e���

�
	

The result is a family of biorthogonal spline basis functions with compact support�
Note that� for a preassigned orderm of the B
spline �i�e� �xed l	� there exists in�nitely
many choices of el� The function � is completely determined by l alone� while the
functions e�� � and e� are determined by both l and el� For increasing values of el� we
have di�erent � with larger support and di�erent e� and e� with more regularity�

An important question is how to �nd an optimal value of el� For large m� it can
be shown that e��t	 � Ck if m � �����n�������k��	 where n � l� el or n � l� el��
depending on the parity of m�
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Recall that the coe
cient sequences fhkg� fehkg� fgkg and fegkg are de�ned by the
�lters H� fH� G and eG

H��	 �
�p
�

X
k

hke
�ik�

G��	 �
�p
�

X
k

gke
�ik�

and similarly for fH and eG�
The sequences fgkg and fegkg are derived respectively from fehkg and fhkg

gk � ���	k��eh��kegk � ���	k��h��k

C�� Space�Frequency Localization

In this section we analyze more closely the space
frequency localization properties of
the spline and wavelet spline functions�

C�	�� Uncertainty Principle Revisited

The Uncertainty Principle states that the area in the time
frequency window function
w has a �xed lower bound� It says that the product of the variances �or uncertainties	
in the time �&w	 and the frequency �&bw	 domains has to be greater or equal to ����

Moreover� it also asserts that the only function for which the equality is attained
is the window function

w�t	 � cei�tg��t� b	

where g��t	 is the Gaussian function

g��t	 �
�

�
p
�


e�t
����

with c 
� �� 
 � � and a� b�� R�

C�	�� Convergence

The convolution property of the B
splines suggests that these functions converge
optimally to a Gaussian as the order of the spline m tends to in�nity�

The observation above indicates that the B
spline wavelet transform gives near
optimal information in terms of time
frequency localization�



Appendix D

Subdivision of Space

This appendix gives an overview of the concepts related to space decompositions
and discusses the data structures for their representation� The existence of certain
subdivisions of a space allows us to obtain valuable information about the geometry
and topology of that space� This plays an important role in the representation and
computation with implicit objects� A more extensive treatment of the subject in the
context of graphical applications is given in �Carvalho� Gomes and Velho� ����	�

D�� Types of Space Decompositions

The intuitive idea of a space decomposition is to subdivide the space in a collection
of disjoint connected subsets� Subdivision of the space into simpler pieces� along with
a structure that links these pieces together� allows us to obtain valuable information
about the geometry and topology of the space� This strategy is related to the �divide
and conquer� paradigm� We get smaller� easier
to
understand pieces of the space�
and structure them together in order to get information about the space as a whole�
There is a trade
o� involved when obtaining a decomposition of a given space� a more
structured decomposition certainly will give us more information about the space� but
it is harder to construct and may not even exist in general�

D���� Space Partition

A space partition of a set U is a collection U�� 
 � I� of subsets of U such that

� SU� � U �

� U�� 	 U�� � � if 
� 
� 
��

Every set has a trivial space partition� that consists of the collection of all of its
points� In fact it is easy to see that� for any in�nite set U � there always exists an
in�nite number of �nite partitions� Space partition is also called in the literature
space decomposition�

A natural way to de�ne space partitions is by using some equivalence relation
de�ned on the points of the set U � If R is such a relation� for each point p � U we

���
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de�ne Up � fq � U � �p� q	 � Rg� If R is an equivalence relation� then it is clear that
the sets Up� p � U de�ne a partition of the set U � Conversely� every partition of the
space induces in an obvious way an equivalence relation by de�ning two elements to
be equivalent if they are in the same set of the partition�

A partition is the most general decomposition scheme that can be used to sub

divide a space� All decomposition schemes studied below are partitions with some
additional structure� which may impose requirements on the geometry or topology
of each set of the partition or on the relationships among these sets� This addi

tional structure enables us to represent geometrical and topological properties of the
underlying space�

D���� Cell Decompositions

We now discuss a family of �nite space decompositions of a set U � in which further
structuring is imposed� Each set of the partition is now required to be a k
dimensional
cell� that is� a set which is homeomorphic to an open disk of some dimension k�
Furthermore� we require the boundary of each cell to be a ��nite	 union of lower

dimensional cells�

More precisely� a cell complex is a �nite collection of subsets cqj �where q �
�� �� �� � � � � d represents the dimension of the cell and j ranges over some index set
Jq	 such that�

� each cqj is homeomorphic to the open qth
dimensional disk for q � � and is a
single point if q � ��

� For each q in �� �� �� � � � � d and each j in Jq� the boundary of cqj is equal to the
union of all lower dimensional cells that intersect that boundary�

D���� A�ne cell decomposition

A
ne cell decompositions are examples of special cases of cell decompositions ob

tained by restricting the geometry of the cells� For this decomposition scheme� one
requires each cell to be a convex polytope�

An a�ne cell decomposition is a cell decomposition such that every cell is a
ne�
A cell in R

n is called a�ne if it is implicitly de�ned by the equations

Li�x	 � bi� i � �� � � � � m�

where each Li is a linear function Li � R
n � R�

Moreover� in order to avoid unnecessary fragmentation� each face of a cell �that is�
a set obtained by turning some of the de�ning inequalities into equalities	 must also
be a cell� Note that� this concept generalizes to R

n the concept of a convex polygon
on the plane�
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The very special cell geometry present in this type of decomposition allows one
to design very e
cient algorithms to deal with it� On the other hand� due to its re

strictive geometric nature� exact a
ne cell decompositions are not generally available
for a given set� However� important families of subsets of the euclidean space can at
least be approximated by an a
ne cell complex� which is su
cient for a huge number
of applications�

Although the conditions imposed on the de�nition of a
ne cell decompositions
concern mainly the geometry of the cells� they also imply additional combinatorial
structure� In particular� the boundary of a d
dimensional cell has dimension d � ��
As a consequence� a
ne cell decompositions have cells of all dimensions from � to the
maximum dimension d� This is not true for arbitrary cell complexes� For instance� if
p is a point on a �
sphere S� then fpg and S �fpg determine a cell decomposition of
S in which there are only cells of dimension � and ��

D���� Simplicial Decompositions

Simplicial decompositions are special cases of a
ne cell decompositions in which cell
geometry is as simple as possible� each cell is a �relatively	 open simplex� Given d��
points v�� v�� � � � � vd not belonging to the same d
dimensional hyperplane� the set
fPi xivi� � � xi � �� i � �� � � � � dg is an open d
dimensional simplex� Furthermore�
single points are considered to be �
dimensional open simplices�

Every a
ne cell decomposition can be turned into a simplicial decomposition by
using a re�nement operation that consists in triangulating in a standard way each of
its convex a
ne cells �see �Munkres� ����		� Thus� the sets which admit an a
ne
cell decomposition are exactly those who have a simplicial decomposition� There is a
natural trade
o� between the two types of decomposition� Simplicial decompositions
are particularly easy to represent due to the fact that each cell of a given dimension
has a �xed number of lower
dimensional bounding cells� On the other hand� general
a
ne decompositions are more concise�

A simplicial complex T over a domain D � R
n is a family of simplices with the

following properties�

�� D � ���T
�� �� 	 �� is either empty or a common face �lower dimensional simplex	 of both

simplices�

�� If D is a compact subset of Rn then it intersects only �nitely many simplices�

Triangulations

A triangulation of a subset U � R
n is a homeomorphism h � T � U from some

simplicial complex C to U � The complex C induces a cell decomposition on U � which
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is called a triangulation of U � A subset U of the Euclidean space is triangulable if it
admits this homeomorphism� Triangulable sets are also called topological polyhedra�

There are many possible triangulations of the space R
n � Some important types

of triangulations are the Coxeter�Freudenthal triangulation and the J� triangulation
of Todd �Allgower and Georg� ����	� Figure D�� shows these triangulations in two
dimensions�

(a) (b)

Figure D��� Freudenthal and J� triangulations

It is desirable to have a small number of cell types� e�g�� congruent cells � that
di�er only by orientation or re�ection� If all the cells are identical� computations are
very simple� It can be shown� �Coxeter� ����	� that in three dimensions the only type
of cell that �lls space is the cube�

A hypercube in R
n is the cartesian product of n non
degenerate intervals

nY
i��

�ai� bi�

It is very easy to obtain a cell decomposition of Rn � where each cell is a hypercube
of appropriate dimension� Therefore� an easy way to obtain a triangulation of Rn is
to use a triangulation of the hypercube� A classical triangulation obtained with this
method is the Coxeter
Freudenthal triangulation�

This triangulation can be de�ned as follows� For the square �the hypercube in R
�	�

we take its diagonal� and the triangulation obtained has two simplices of dimension
�� For the cube in R

� with vertices p�� � � � � p�� we take the diagonal p�p� and project
it onto each face of the cube� We obtain in this way the Coxeter
Freudenthal trian

gulation of the faces� The simplices of dimension � of the triangulation of the cube
are constructed by adding to each �
simplex � of the cube�s faces the vertex of the
diagonal p�p� that does not belong to �� �See Figure D��	�



D��� TYPES OF SPACE DECOMPOSITIONS ���

p0

p7

p1

p3p2

p4
p5

p6

Figure D��� Triangulation of the cube in R
�

We obtain in this way � simplices of dimension ��

�� � �p�� p�� p�� p�	

�� � �p�� p�� p�� p�	

�� � �p�� p�� p�� p�	

�� � �p�� p�� p�� p�	

�� � �p�� p�� p�� p�	

�� � �p�� p�� p�� p�	

It is not too di
cult to see that the Coxeter
Freudenthal triangulation of the
hypercube in R

n has n$ simplices of dimension n� �

It is also important to observe that not all triangulations of R� are obtained by
replicating a triangulation of the cube� An example where this does not occur is
in the already mentioned triangulation of Todd� shown in Figure D�� for the two

dimensional case�

In three dimensions another interesting triangulation is based on the so called
cubic tetrahedra� that are formed by slicing o� the corners of a cube �Hall and Warren�
����	�

�This is not a problem if we are working in ��space� but this combinatorial explosion can be a
serious issue if we need to work in higher dimensional spaces�



��� APPENDIX D� SUBDIVISION OF SPACE

D�� Spatial Data Structures

The spatial decompositions de�ned on the previous section possesses natural graphs
associated to them� They describe the adjacency relations between the several ele

ments of the decomposition� Spatial data structures represent these graphs� They
are used to structure interesting subsets of geometric objects and to provide a means
for operating on them�

There are two ways to describe a region in a space decomposition� either by the
point set that the region represents� or by the boundary that de�nes the region�

Some space decompositions are so simple and structured that it is not necessary
to specify their regions explicitly� They are de�ned indirectly through a canonical
model� This can be seen in some tessellations of space where the space subdivision is
composed by the repetition of a single type of cell�

Spatial data structures can be divided in two main classes� �at and hierarchical�
The former consists of an enumeration of cells� while the latter is de�ned by a recursive
decomposition of cells�

Spatial data structures are designed to encode both the geometry and the topology
of space decompositions� Below we analyze these data structures from the most
general to the most speci�c type�

The most general data structure that can be used to represent space partitions
is a list of cells� This cannot be really considered a spatial data structure because
it does not encode any topological or hierarchical information� It is just a way to
enumerate a set of cells� Note that this is the only type of data structure that can be
used to describe arbitrary partitions of space�

D���� Topological Graphs

The basic data structure that represent space decompositions is a topological graph
in which the nodes of the graph contain information about the geometry of each
decomposing region and the links of the graph give topological information re�ecting
adjacency relationships between regions� This type of spatial data structure is suitable
to describe a large number of space decomposition schemes�

The fundamental topological information in a space decomposition is the associ

ation between a cell and its boundary elements� Note that this is a binary relation
which is su
cient to completely specify the topology of a space decomposition� Since
the boundary of a decomposing region is composed of geometrical elements of dimen

sion lower than the dimension of the region� the graph in our data structure can be
layered in a hierarchical manner such that each layer contains only regions of the
same dimension� The links of the graph representing incidence relations occur only
between layers� Figure D�� shows a diagram of a topological graph�
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Layer of
dim. N.

Layer of
dim. N-1.

Layer of
dim. 0.

.

.

.

Figure D��� Topological graph

D���� Trees

Trees encode the hierarchical geometry of nested subdivisions of space� They consist
of a set of nodes linked recursively starting from the top �or root	 node� In this
scheme we say that parent nodes are linked to children nodes� Terminal nodes are
the leaves of the tree and do not have links� Each parent node corresponds to a cell
which is subdivided into siblings according to some prescribed rule� For example� a
n
dimensional cube can be subdivided into �n cubes�

The tree structures are classi�ed according to the type of cell subdivision per

formed at the nodes�

N�trees �Quadtrees� Octrees
 � Cells are subdivided n subcells by hyperplanes at
regular intervals that are aligned with the axis of the reference frame�

K�d trees �K�dimensional trees
 � Cells are subdivided in two subcells by a
hyperplane arbitrarily positioned and aligned with each axis of the reference frame
cyclically in succession �i�e� x�� x�� � � � � xk	�

BSP�trees �Binary Space Partition trees
 � Cells are subdivided in two subcells
by a hyperplane arbitrarily positioned and oriented�

Restricted trees � are trees that correspond to a balanced partition of space� In
this structure adjacent cells di�er at most by a factor of � in terms of the level
of re�nement� This type of tree is important in adaptive subdivision schemes �von
Herzen and Barr� ����	�

All trees can be reduced to binary trees that are constructed by recursively sub

dividing n
dimensional space into two regions by a n� � dimensional hyperplane�
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D���� N�dimensional Arrays

N 
dimensional arrays re�ect the topology of regular packings of n
dimensional cells�
They consist of a set of records specifying� the dimension of the array and the number
of elements in each dimension� followed by the sequence of elements in a prescribed
order� Arbitrary elements can be accessed directly through an n
tuple of indices
corresponding respectively to each spatial dimension� Note that the spatial location
of each cell relative to a frame of reference can be derived from the index of the
element in the array and vice versa�

Arrays are �at data structures in which the cell geometry is given by a canonical
model� This data structure tends to be quite large� because all the elements have to
be stored�

It is interesting to note that n
dimensional arrays produce uniform subdivision
that can be also represented by N
trees in which the leaves are all at the same depth�



References

Allgower� E� L� and Georg� K� �����	� Introduction to Numerical Continuation Meth�
ods� Springer
Verlag� Berlin� Heildelberg�

Allgower� E� L� and Gnutzmann� S� �����	� An algorithm for piecewise linear ap

proximation of implicitly de�ned two
dimensional surfaces� SIAM Journal of
Numerical Analysis� ����	�����������

Allgower� E� L� and Schmidt� P� H� �����	� An algorithm for piecewise linear approx

imation of an implicitly de�ned manifold� SIAM Journal of Numerical Analysis�
�����������

Amanatides� J� �����	� Ray tracing with cones� Computer Graphics� ����	���������

Basseville� M�� Benveniste� A�� Chou� K�� Golden� S�� Nikoukhah� R�� and Willsky� A�
�����	� Modeling and estimation of multiresolution stochastic processes� IEEE
Transactions on Information Theory� ����	���������

Beier� T� �����	� Practical uses for implicit surfaces in animation� ACM Siggraph
Course Notes� Modeling and Animating with Implicit Surfaces�

Blinn� J� F� �����	� A generalization of algebraic surface drawing� ACM Transactions
on Graphics� ���	���������

Bloomenthal� J� �����	� Polygonization of implicit surfaces� Comp� Aid� Geom� Des��
���	���������

Bloomenthal� J� and Shoemake� K� �����	� Convolution surfaces� Computer Graphics�
����	���������

Blum� H� �����	� A transformation for extracting new descriptors of shape� In
Whaten
Dunn� W�� editor� Models for the Perception of Speech and Visual Form�
pages �������� MIT Press� Cambridge� MA�

Boyse� J� and Gilchrist� W� �����	� Gm solid� Interactive modeling for desing and
analysis of solids� IEEE Computer Graphics and Applications� ����������

Brown� C� M� �����	� Padl
� a technical summary� IEEE Computer Graphics and
Applications� ��������

Burt� P� J� �����	� The Laplacian pyramid as a compact image code� IEEE Trans�
actions on Communications� �����������

���



Canny� J� �����	� A computational approach to edge detection� IEEE Trans� on
Patt� Anal� and Mach� Intell�� ����������

Carvalho� P� C�� Gomes� J� M�� and Velho� L� �����	� Space decompositions� Theory
and practice� IMPA �preprint��

Chui� C� K� �����	� An Introduction to Wavelets� Academic Press�

Coxeter� H� �����	� Regular Polytopes� Macmillan� New York�

Daubechies� I� �����	� Ten Lectures on Wavelets� Number �� in CBMS
NSF Series
in Applied Mathematics� SIAM Publications� Philadelphia�

de Figueiredo� L� H�� de M� Gomes� J�� Terzopoulos� D�� and Velho� L� �����	�
Physically
based methods for polygonization of implicit surfaces� In Proceedings
of Graphics Interface 

� pages ��������

DeVore� R� A�� Jawerth� B�� and Lucier� B� J� �����	� Image compression through
wavelet transform coding� IEEE Trans� on Inf� Theory� ����	���������

Gabor� D� �����	� Theory of communication� J� Inst� Elec� Eng�� ���part III	�����
����

Goldstein� R� and Malin� L� �����	� �
d modeling with the synthavision system� In
Proc� First Annl� Conf� Comp� Graphics in CAD�CAM Systems� pages ��������

Gomes� J� and Velho� L� �����	� Implicit Objects in Computer Graphics� IMPA�

Greenspan� D� �����	� Discrete Models� Addison
Wesley� Reading� MA�

Hall� M� and Warren� J� �����	� Adaptive polygonization of implicitly de�ned sur

faces� IEEE Computer Graphics and Applications� ����	�������

Haumann� D� �����	� Modeling the physical behavior of �exible objects� Siggraph
Tutorial Notes in Animation� pages �����

Ho�mann� C� M� �����	� Skeletons� cyclographic maps� and shock waves� manuscript�

Ho�mann� C� M� �����	� Computer vision� descriptive geometry� and classical me

chanics� In Falcidieno� B� and Herman� I�� editors� Proc� Eurographics Workshop
on Computer Graphics and Mathematics� Eurographics Series� pages ��������
Springer Verlag�

Kalkbrenner� M� �����	� Implicitization of rational parametric curves and surfaces�
Technical Report RISC Linz� Johannes Kepler Univ�� Linz� Austria�

���



Kaufman� A� �����	� E
cient algorithms for �d scan
conversion of parametric
curves� surfaces� and volumes� Computer Graphics �SIGGRAPH ��� Proceed�
ings�� ����	���������

Kleck� J� �����	� Modeling using implicit surfaces� Master�s thesis� University of
California at Santa Cruz� Computer and Information Sciences�

Lorensen� W� E� and Cline� H� E� �����	� Marching cubes� A high resolution �D
surface construction algorithm� Computer Graphics� ����	���������

Mallat� S� and Hwang� W� L� �����	� Singularity detection and processing with
wavelets� Preprint Courant Institute of Mathematical Sciences� New York Uni

versity�

Mallat� S� and Zhang� Z� �����	� Matching pursuits with time
frequency dictionaries�
Technical report� Courant Institute� New York University�

Mallat� S� and Zhong� S� �����a	� Characterization of signals from multiscale edges�
IEEE Trans� on Patt� Anal� and Mach� Intell�� �����������

Mallat� S� and Zhong� S� �����b	� Wavelet transform maxima and multiscale edges�
In et� al�� M� B� R�� editor� Wavelets and Their Applications� pages ������� Jones
and Bartlett Publishers�

Mallat� S� G� �����	� Multifrequency channel decompositions of images and wavelet
models� IEEE Trans� on Acoust� Signal Speech Process�� �����	�����������

Manocha� D� and Canny� J� �����	� Implicitization of rational parametric surfaces�
In The Mathematics of Surfaces� Oxford University Press� England�

Mantyla� M� �����	� Boolean operations of �
manifolds through vertex neighborhood
classi�cation� ACM Transactions on Graphics� pages �����

Marr� D� �����	� Vision� Freemann�

Marr� D� and Hildreth� E� �����	� Theory of edge detection� Proc� Roy� Soc� Lon�
������������

McCormick� B� H� e� a� �����	� Visualization in scienti�c computing� Computer
Graphics� ����	�

Meyer� Y� �����	� Wavelets� Algorithms and Applications� SIAM�

Milnor� J� �����	� Topology from the Di�erentiable Viewpoint� The University Press
of Virginia�

Munkres� J� �����	� Elementary Di�erential Topology� Princeton University Press�

���



Muraki� S� �����	� Volume data and wavelet transform� IEEE Computer Graphics
and Applications� ����	�������

Nackman� L� R� and Pizer� S� M� �����	� Three
dimensional shape description using
the symmetric axis transform I� IEEE Transactions on Pattern Analysis and
Machine Intelligence� PAMI ����������

Nishimura� H�� Hirai� M�� Kawai� T�� Kawata� T�� Shirakawa� I�� and Omura� K�
�����	� Object modeling by distribution function and a method of image gener

ation� Japan Electronics Communication Conference ��� J��
D��	���������

Pasko� A� and Pilyugin� V� �����	� Geometric modeling in the analysis of trivariate
functions� Computer and Graphics� ����
�	���������

Pavlidis� T� �����	� Filling algorithms for raster graphics� Computer Graphics �SIG�
GRAPH ��� Proceedings�� ����	���������

Perlin� K� and Ho�ert� E� �����	� Hypertexture� Computer Graphics� ����	���������

Perlin� K� and Zhu� B� �����	� Sur�ets� ACM Siggraph Course Notes� Photorealistic
Volume Modeling and Rendering Techniques�

Requicha� A� �����	� Representation for rigid solids� Theory� methods� and systems�
ACM Computing Surveys� ����	���������

Ricci� A� �����	� A constructive solid geometry for computer graphics� The Computer
Journal� ����	���������

Rockwood� A� P� and Owen� J� �����	� Using implicit surfaces to blend arbitrary
solid models� In Farin� G�� editor� Geometric Modeling� Algorithms and Trends�
SIAM�

Rosenfeld� A� �����	� Multiresolution Image Processing and Analysis� Springer�
Verlag� New York�

Szeliski� R� �����	� Fast surface interpolation using hierarchical basis functions� In
IEEE Computer Society Conference on Computer Vision and Pattern Recogni�
tion �CVPR��
�� pages �������� San Diego� California� IEEE Computer Society
Press�

Szeliski� R� and Terzopoulos� D� �����	� From splines to fractals� In Lane� J�� editor�
Computer Graphics �SIGGRAPH ��
 Proceedings�� volume ��� pages ������

Tavares� G� and de M� Gomes� J� �����	� Concordance operations for implicitly

de�ned manifolds� In First SIAM Conference on Geometric Design� page ���

���



Terzopoulos� D� �����	� Multiresolution Computation of Visible�Surface Representa�
tions� PhD thesis� Massachusetts Institute of Technology�

Terzopoulos� D� �����	� Image analysis using multigrid relaxation methods� IEEE
Transactions on Pattern Analysis and Machine Intelligence� PAMI
���	���������

Terzopoulos� D� and Fleischer� K� �����	� Modeling inelastic deformation� viscoelas

ticity� plasticity and fracture� Computer Graphics� ����	���������

Terzopoulos� D�� Platt� J�� Barr� A�� and Fleischer� K� �����	� Elastically deformable
models� Computer Graphics� ����	���������

Terzopoulos� D�� Platt� J�� and Fleischer� K� �����	� Heating and melting deformable
objects� In Proceedings of Graphics Interface �
� pages ��������

Terzopoulos� D� and Vasilescu� M� �����	� Sampling and reconstruction with adaptive
meshes� In Computer Vision � Pattern Recognition Conference �CVPR�
	��
pages ������ Lahaina� HI�

Terzopoulos� D�� Witkin� A�� and Kass� M� �����	� Symmetry
seeking models and �D
object reconstruction� International Journal of Computer Vision� ���	���������

Tonnesen� D� �����	� Ray tracing implicit surfaces resulting from the summation of
bounded polynomial functions� Technical report� Rensselaer Polytechnic Insti

tute�

Totsuka� T� and Levoy� M� �����	� Frequency domain volume rendering� In Ka

jiya� J� T�� editor� Computer Graphics �SIGGRAPH �
� Proceedings�� volume ���
pages ��������

Velho� L� �����	� Adaptive polygonization of implicit surfaces using simplicial de

composition and boundary constraints� In Proceedings of Eurographics 
�� pages
�������� Elsevier Science Publisher�

Velho� L� and de M� Gomes� J� �����a	� A dynamical simulation environment for
implicit objects using discrete models� In Proceedings of 
nd Eurographics Work�
shop on Animation and Simulation� pages ��������

Velho� L� and de M� Gomes� J� �����b	� Regular triangulations of implicit manifolds
using dynamics� In Proceedings of Compugraphics 
	� pages ������

Velho� L� and de M� Gomes� J� �����	� A multiscale piecewise representation for
implict objects� In Third SIAM Conference on Geometric Design� page ���

von Herzen� B� and Barr� A� �����	� Accurate triangulations of deformed intersecting
surfaces� Computer Graphics� ����	���������

���



Williams� L� �����	� Pyramidal parametrics� In Computer Graphics �SIGGRAPH
��� Proceedings�� volume ��� pages �����

Wyvill� B�� McPheeters� C�� and Wyvill� G� �����a	� Animating soft objects� The
Visual Computer� ���	���������

Wyvill� G�� McPheeters� C�� and Wyvill� B� �����b	� Data structure for soft objects�
The Visual Computer� ���	���������

Wyvill� G� and Trotman� A� �����	� Ray tracing soft objects� ACM Siggraph Course
Notes� Modeling and Animating with Implicit Surfaces�

���


