
UNIVERSITY OF CALIFORNIA

Los Angeles

A Constraint-Based Approach

to Crowd Simulation and Layout Synthesis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Tomer Weiss

2018

c© Copyright by

Tomer Weiss

2018

ABSTRACT OF THE DISSERTATION

A Constraint-Based Approach

to Crowd Simulation and Layout Synthesis

by

Tomer Weiss

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2018

Professor Demetri Terzopoulos, Chair

Position-based methods have become popular for real-time simulation in computer graphics.

In contrast to traditional simulation methods, which are based on Newtonian dynamics, par-

ticularly forces, a Position-Based Dynamics (PBD) method computes the positional changes

directly, based on a set of well-defined geometric constraints. Therefore, position-based

methods are reputed to be more controllable, stable, and faster, which make them well-

suited for use in interactive environments. This thesis introduces position-based approaches

to addressing the important tasks of virtual crowd simulation and virtual layout synthesis.

For crowd simulation, we introduce a novel method that runs at interactive rates for

up to hundreds of thousands of agents. Our method enables the detailed modeling of per-

agent behavior in a Lagrangian formulation. We model short-range and long-range collision

avoidance to simulate both sparse and dense crowds. On the particles representing agents, we

formulate a set of positional constraints that can be readily integrated into a standard PBD

solver. We augment the tentative particle motions with planning velocities to determine

the preferred velocities of agents, and project the positions onto the constraint manifold

to eliminate colliding configurations. The local short-range interaction is represented with

collision and frictional contact between agents, as in the discrete simulation of granular

materials. We incorporate a cohesion model for simulating collective behaviors and propose

a new constraint for dealing with potential future collisions. Our method is suitable for use

ii

in interactive games.

For layout synthesis, we propose a position-based interior layout synthesis method that

is able to rapidly synthesize large scale layouts that were previously intractable. An interior

layout modeling task can be challenging for non-experts, hence the existence of interior

design professionals. Recent research into the automation of this task has yielded methods

that can synthesize layouts of objects respecting aesthetic and functional constraints that are

non-linear and competing. These methods usually adopt a purely stochastic scheme, which

samples from a distribution of layout configurations, a process that is slow and inefficient.

We introduce an alternative physics-based, continuous layout synthesis technique, which

results in a significant gain in speed and is readily scalable. We demonstrate our method

on a diverse set of examples and show that it achieves results similar to conventional layout

synthesis based on a Markov chain Monte Carlo (McMC) state-search step, but is faster

by at least an order of magnitude and can handle layouts of unprecedented size and tight

layouts that can overwhelm McMC.

iii

The dissertation of Tomer Weiss is approved.

Song-Chun Zhu

Joseph M. Teran

Stanly J. Osher

Demetri Terzopoulos, Committee Chair

University of California, Los Angeles

2018

iv

To my family, friends, . . .

and everyone else who supported me.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Contributions of the Thesis . 5

1.1.1 Position-Based Multi-Agent Dynamics for Real-Time Crowd Simulation 5

1.1.2 Fast, Scalable Layout Synthesis . 9

1.2 Thesis Organization . 13

2 Review of Related Work . 14

2.1 Physics-Based Modeling . 14

2.2 Position-Based Methods . 14

2.3 Crowd Simulation . 15

2.4 Layout Synthesis . 17

3 Review of Position-Based Dynamics . 19

3.1 Fundamentals . 19

3.2 Iterative Solver . 23

4 Crowd Simulation . 25

4.1 Algorithm Overview . 25

4.2 Details of the Algorithm . 27

4.2.1 Velocity Blending . 27

4.2.2 Frictional Contact . 28

4.2.3 Cohesion . 28

4.2.4 Long Range Collision . 28

4.2.5 Avoidance Model . 30

vi

4.2.6 Maximum Speed and Acceleration Limiting 31

4.2.7 Walls and Obstacles . 31

5 Layout Synthesis . 33

5.1 Algorithm Overview . 33

5.2 Details of the Algorithm . 34

5.2.1 Algorithm Setup . 34

5.2.2 Layout Synthesis . 35

5.2.3 Constraint Projection . 36

5.2.4 Constraint Setup . 37

5.2.5 Layout Constraint Types . 38

5.2.6 Differentiation of the Layout Constraints 47

6 Experiments and Results . 51

6.1 Crowd Simulation . 51

6.1.1 Setup and Parameter Settings . 51

6.1.2 Benchmarks and Analysis . 53

6.1.3 Comparison . 58

6.1.4 Discussion . 59

6.2 Layout Synthesis . 60

6.2.1 3D Layout Synthesis . 61

6.2.2 Layout Synthesis in Tightly-Packed Scenarios 64

6.2.3 Application: Layout Synthesis from Real-World Images 65

6.2.4 Comparison . 66

6.2.5 Discussion . 68

vii

7 Conclusion . 71

7.1 Summary . 71

7.2 Future Work . 72

7.2.1 Crowd Simulation . 72

7.2.2 Layout Synthesis . 75

A Details of the Constraints Setup . 77

A.1 Theater Constraints . 77

A.2 Picnic Constraints . 77

A.3 Living-Room Constraints . 78

A.4 Desk Constraints . 78

A.5 Tightly-Packed Bedroom . 79

A.6 Tightly-Packed Picnic . 79

B Simulated Annealing Comparison . 80

C Automated Layout Synthesis From Real-World Images 83

C.1 Introduction . 83

C.2 Related Work . 84

C.2.1 Layout Synthesis . 84

C.2.2 Understanding Environments . 85

C.2.3 Pixel-Wise Semantic Segmentation 86

C.3 Algorithm . 86

C.3.1 Semantic Segmentation of the Scene 87

C.3.2 Inferring a 3D Estimate of the Scene 87

C.3.3 Layout Synthesis and Visualization 90

viii

C.4 Results . 91

C.5 Discussion . 92

C.6 Conclusion and Future Work . 93

References . 95

ix

LIST OF FIGURES

1.1 3D Modeling Setup . 2

1.2 Convex vs Nonconvex landscape . 3

1.3 Projection on constraint manifold . 4

1.4 Crowd simulation in games . 6

1.5 Variety in crowd simualtion . 7

1.6 Position-based crowd simulation . 8

1.7 Interior layout modeling software . 10

1.8 A tightly-packed picnic layout . 12

3.1 Points and constraints . 20

3.2 Distance constraint . 22

4.1 Illustration of the avoidance model . 29

4.2 Agents passing each other using long range collision avoidance 31

4.3 Agents passing each other using the avoidance model 32

5.1 Positional layout constraints . 38

5.2 Wall distance, orientation, and accessibility constraints 41

5.3 Collision constraint . 43

5.4 Visual balance constraint . 43

5.5 Various synthesized layouts . 44

6.1 High density agent simulation . 54

6.2 High density and high agent count . 55

6.3 Agents of different sizes passing each . 56

x

6.4 An ellipsoid-shaped group passing through a larger group 56

6.5 Proxemic group behavior . 57

6.6 A group of agents passing through a narrow corridor 57

6.7 A force-based power law stuggles in dense agent settings 59

6.8 Layout synthesis run-times . 62

6.9 Run-time scaling in theater scene . 62

6.10 Synthesized living room . 63

6.11 Layout variety by different initialization . 65

6.12 McMC-SA struggles in tightly packed layouts 65

6.13 Different synthesized tightly-packed picnic layouts 66

6.14 Image augmented with a synthesized layout . 66

6.15 Outdoor yard layout . 67

6.16 Energy plot of our methods versus a McMC-SA implementation 68

7.1 Real-time navigation planning . 73

7.2 School of fish . 74

7.3 Hospital use cases can affect layout design . 76

B.1 Energy plots for tightly-packed picnic . 81

B.2 More energy plots for tightly-packed picnic . 82

C.1 The results of our segmentation and edge detection 88

C.2 Synthesized game-room layout . 89

C.3 Synthesized bedroom . 91

C.4 Living room . 91

xi

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Professor Demetri Terzopoulos. I am truly

fortunate that I got to know him. Even though he was not my initial PhD advisor, he

gracefully accepted me into his lab during the second year of my PhD program. He provided

unconditional support and advice whether I needed it, and for that I am grateful. His advice

was always given willingly and cheerfully. Without his leadership and guidance, I would not

have accomplished the results reported in this thesis. He is my role model as a researcher

and a research leader.

Secondly, I would like to express my appreciation to the other members of my PhD thesis

committee, Professor Stanley Osher, Professor Joseph Teran, and Professor Song-Chun Zhu.

The various insights from their course lectures and their feedback during my oral qualifying

exam and other interactions was valuable in advancing my research.

Additionally, I would like to thank all my fellow members of the UCLA Computer Graph-

ics and Vision Laboratory and other colleagues. Their companionship made my PhD expe-

rience extraordinarily fulfilling, and my time in Los Angeles and at UCLA very pleasant. In

particular, I thank my current lab colleagues Masaki Nakada, Tao Zhao, Alan Litteneker, Ab-

duallah Imran, and Ali Hatamizadeh, as well as my previous and senior colleagues, Sharath

Gopal, Xiaowei Ding, Noah Duncan, Gregly Klar, Lap-Fai Yu, and Chenfanfu Jiang. It also

was a pleasure to share our lab with some of Professor Joseph Teran’s students, including

Andre Prahadana, Qi Gao, and Daniel Ram. Even though we did not get the opportunity

to collaborate on the same research projects, I learnt a lot from them. I would like to thank

Professor Teran for his willingness to answer a non-trivial number of my questions.

My special thanks goes to the UCLA Computer Science Department, which financially

supported me during my PhD program, through a departmental fellowship in my first year,

followed by teaching assistantships. In the course of my teaching assistantships, I had the

pleasure of working with Professor Paul Eggert, who impressed upon me the importance of

teaching in the life of an academic professional. It was a real pleasure to contribute to the

xii

education of all those undergraduate students. My teaching experiences and interactions

with students taught me a lot more than is possible to learn within the confines of a research

lab.

Finally, I would like to thank my parents, grandparents, and extended family for sup-

porting me so far away from home. I would also like to thank my other friends in Los

Angeles: Jaime Flor Flores, Nick Weires, Aviv Solodoch, Ran Gelles, Akshay Wadia, and

Pratik Chaudari, who made my stay in LA so much more enjoyable. A very personal thank

you goes to my partner, Monica, for her patience and support, especially during the stressful

periods of my PhD program.

xiii

VITA

2011–2012 Software Engineer

Datonics LLP

Tel Aviv, Israel

2012–2013 Software Engineer

Parametric Technology Corp.

Herzeliya, Israel

2013 B.S. Computer Science

Tel Aviv University

Tel Aviv, Israel

Summer 2015 Software Engineer Intern

Bloomberg LP

New York City, NY

2015 M.S. Computer Science

University of California, Los Angeles

Los Angeles, CA

Summer 2016 Machine Learning Intern

A9.com (Amazon)

Palo Alto, CA

Summer 2017 Research Intern

Autodesk Research

San Fransisco, CA

2014–2018 Teaching Assistant

Computer Science Department

University of California, Los Angeles

Los Angeles, CA

xiv

PUBLICATIONS

T. Weiss, A. Litteneker, N. Duncan, C. Jiang, L. Yu, D. Terzopoulos. “Fast, Scalable

Layout Synthesis.” Under review by the IEEE Transactions on Visualization and Computer

Graphics, 2018.

M. Nakada, T. Zhou, H. Chen, T. Weiss, and D. Terzopoulos. “Deep Learning of Biomimetic

Sensorimotor Control for Biomechanical Human Animation.” In ACM Transactions on

Graphics, 37(4):1–14, August 2018. (Proceedings of ACM SIGGRAPH 2018, Vancouver,

Canada, August 2018.)

T. Weiss, A. Litteneker, C. Jiang, D. Terzopoulos. “Position-Based Multi-Agent Dynamics

for Real-Time Crowd Simulation”. In Proceedings of the Tenth International ACM SIG-

GRAPH Conference on Motion in Games (MIG ’17), Barcelona, Spain, November 2017,

pp. 10:1–10:8,

Best Paper Award.

T. Weiss, A. Litteneker, C. Jiang, D. Terzopoulos. “Position-Based Multi-Agent Dynamics

for Real-Time Crowd Simulation”(Extended Abstract). In Proceedings of the ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation (SCA ’17), Los Angeles, USA,

July 2017, pp. 27:1–27:2

T. Weiss, M. Nakada, and D. Terzopoulos. “Automated Layout Synthesis and Visualization

From Images of Interior or Exterior Spaces.” In Proceedings of the Third IEEE Workshop

on Vision Meets Cognition: Functionality, Physics, Intentionality, and Causality (FPIC),

IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’17), Honolulu, HI,

July 2017, pp. 41–47.

xv

T. Weiss, G. Klar, D. Terzopoulos. “Optimizing Design of Physical Objects for Fabrication.”

UCLA Computer Science Department Technical Report No. 170005, Los Angeles, USA,

2015.

xvi

CHAPTER 1

Introduction

Computer graphics researchers have long focused on modeling and simulating virtual worlds.

Popular simulation topics include, for example, deformable solids (such as cloth), fluids,

and human characters. Common concerns pertain to how to simulate all these phenomena

realistically, in real-time if possible, and in a manner that scales tractably. Modeling refers

to the process of creating these objects and the virtual worlds that they occupy (Figure 1.1).

To model virtual worlds, researchers aspire to design tools such that the design process

will be minimally manual and laborious. Hence, we are motivated to devise new tools and

algorithms to facilitate the modeling process. These tools can be interactive, automatic, or

semi-automated.

Many research problems in modeling and simulation may be formulated mathematically

as optimization problems. In general, an optimization problem requires maximizing or min-

imizing an objective function. An optimization method seeks the value(s) of the variables

in the objective function’s domain that yield the maximum or minimum—i.e., optimum—

value(s) of the function. Objective function optima may be local or global. A local optimum

is at least as good as any nearby points in the domain, whereas a global optimum is at least

as good as any other feasible point in the domain.

To solve an optimization problem effectively, we must choose an appropriate optimization

algorithm. The choice depends on different factors, such as:

• Computational cost: What is the computational budget for a finding a feasible so-

lution? Some applications, such as computer games, require a real-time, interactive

response.

1

Figure 1.1: Typical setup for a 3D modeling artist.

• Optimum type: Does the problem require finding the global optimum, or would a local

optimum suffice?

• Accuracy: How close to optimal need a “solution” be in order to satisfy the task at

hand?

The choice of optimization algorithm depends on the complexity of the optimization land-

scape generated by the terms in the objective function (Figure 1.2).

Some optimization problems have a special structure that simplifies finding the optima.

In the case of a convex optimization problem, a local optimum of the objective function is also

the global optimum. For example, the optimal solution for a simple quadratic cost function

2

Figure 1.2: Illustration of a convex (left) vs nonconvex (right) objective function. A convex
problem has a unique global optimum, while a nonconvex problem has multiple local optima.

can be found by the least-squares method. If the optimization landscape is highly noncon-

vex, employing least-squares will most likely not yield a satisfactory solution. Fortunately,

stochastic optimization methods such as Metropolis-Hastings (Chib and Greenberg, 1995),

simulated annealing (Kirkpatrick, 1984), genetic algorithms (Grosso, 1985), and others, are

more likely to obtain optimal solutions. These methods are generally applicable to almost

any type of optimization problem; however, the downside of stochastic approaches is that

they are computationally expensive when confronting medium and larger-scale problems,

which makes them inappropriate for most applications that require real-time interactivity

and controllability.

Classical simulation techniques in graphics follow a Newtonian, force-based approach, in

which forces drive the movements of the objects to be simulated in accordance with Newton’s

laws of motion. Based on the forces, and given the masses of the objects of interest, the

velocities and positions of these objects are computed using numerical methods. However,

graphics researchers have proposed alternative simulation techniques based on constraints

(Witkin et al., 1987; Witkin and Kass, 1988). In a constraint-based simulation, each timestep

3

Figure 1.3: PBD satisfies constraints by finding the closest point on the constraint manifold.

in the simulation can be viewed as step towards solving a constrained optimization problem.

Viewing the simulation as an optimization is the essence of the so-called Position-Based

Dynamics (PBD) approach, which was independently proposed by Müller et al. (2007) and

later by Stam (2009). PBD has become increasingly popular for real-time simulation in

games. Instead of computing forces, PBD directly computes positions in each time step,

which often affords more direct control over the simulation. The computation of the po-

sitions is based on the approximate solution of an optimization problem, which we can

interpret as finding the closest point on the constraint manifold (Figure 1.3). While this ap-

proach is approximate and not an accurate simulation of a physical system, it is satisfactory

for games, for which visual plausibility suffices. Hence, PBD’s popularity is driven by its

simple formulation in terms of position-based constraints and its ability to produce visually

satisfying simulations at interactive rates.

Surprisingly, little work has been done in generalizing PBD as an optimization-based

framework for other graphics problems, such as layout modeling and crowd simulation.

Modeling layouts is an important research topic in graphics and other domains such as

interior design and architecture. When modeling layouts, we either create and refine virtual

worlds, or design future real-world layouts. These layout are then used for other purposes,

for example simulating crowds of people in a computer game. Crowd simulation in virtual

environments has long occupied researchers in graphics and other research communities,

such as urban studies. Algorithms that can simulate crowds in real-time are particularly

4

important for computer games, visual effects, and other entertainment applications. This

thesis explores how to adapt PBD to these research goals, with the objective of achieving

computational efficiency, stability, and speed advantages over previous work.

1.1 Contributions of the Thesis

This thesis develops new algorithms and software tools to help professionals and non-

professionals in domains ranging from modeling and computational design to visual effects

for gaming and simulation. In particular, we propose the following:

• A PBD approach to simulating real-time virtual crowds. This work has been published

as (Weiss et al., 2017a).

• A PBD approach to the fast and scalable synthesis of layouts. This work has been

published as (Weiss et al., 2018, 2017b).

1.1.1 Position-Based Multi-Agent Dynamics for Real-Time Crowd Simulation

The realistic simulation of crowds is important in several domains, from computer games and

visual effects, to real-life situational analysis such as evacuation scenarios, urban planning,

architectural simulation, and multi-agent planning and coordination. Thalmann et al. (2009)

define a crowd simulation by the following criteria:

• To be qualified as a “crowd”, a simulation should involve more than 1,000 virtual

characters (Figure 1.4).

• The simulation should be interactive, running at a frame rate of 30 Hz. This frame

rate is extremely important for some of the aforementioned use cases.

• A crowd should have a nice appearance, with individuality and variety (Figure 1.5).

This variety can be expressed in the body types, or any other visually noticeable

qualities of the virtual characters, such as an agent’s actions, gait, walk and run cycles,

etc.

5

Figure 1.4: A war scene in the computer game Medieval Total War 2, which contains more
than a 1,000 agents.

• The crowd should be engaged in a specific scenario to be simulated, reacting to events,

and having goals.

There are numerous problems to tackle in a crowd simulation task. The task can be

divided to the following main components: modeling the crowd to be simulated, defining

the scenario to be simulated, computing the movements of the characters, and rendering the

computed motion of each character (Reynolds, 1999).

We address the task of computing the local movement of characters; i.e., in each time step,

a character needs to decide in which direction to move. Usually, a character has a locomotion

target; for example, a door in the end of a corridor. A typical scenario encompasses a

scene with walls and obstacles, numerous virtual characters, and their respective locomotion

goals. A successful crowd simulation method will have the characters make realistic progress

towards their locomotion goal, while taking all these factors into account, including possible

6

Figure 1.5: Variety in crowd simulations. Characters have different hair styles, clothing,
accessories, among other visual qualities.

path planning and collisions between the characters.

The goal of this thesis is to develop a method that is capable of simulating large to huge

crowds in real time (Figure 1.6). Since alternative approaches are expensive, we approxi-

mate the crowd using a particle-based model. Particle-based crowd models are common in

multiple research communities, such as graphics, physics, and computational social science.

In the particle-based approach, forces control the behavior of the characters (a.k.a., agents),

pushing them toward their locomotion goal, and acting locally to avoid collisions. While

carefully designed models, such as the social force model (Helbing and Molnar, 1995) and

the power law model (Karamouzas et al., 2014), can yield some realistic crowd behaviors,

they occasionally require elaborate numerical treatments to remain stable and robust. An

additional challenge stems from the difficulty in leveraging all these competing forces into

a unified model that scales and works well for both sparse and dense crowds. Furthermore,

in most cases, the agents to be simulated represent humans, so a particle model has to take

certain physical constraints into account when computing the resulting motions in each time

7

Figure 1.6: Our PBD-based crowd simulation method animates both sparse and dense groups
of agents at interactive rates.

step; for example, not allowing agents to locomote a distance that is more than humanly

possible, not allowing extreme velocities, accelerations, changes of orientation, etc.

In this thesis, we investigate PBD as an alternative approach for simulating both dense

and sparse crowds. Given the success of PBD in simulating various solid and fluid mate-

rials in real-time physics, our work further extends the concept to crowd simulation. Our

motivation is to develop a numerical framework for crowd simulation that is robust, stable,

and easy to implement, ideally for use in interactive games. Due to the flexibility of PBD

in defining positional constraints among particles, our proposed framework provides a new

platform for artistic design and control of agent behaviors in crowd modeling and animation.

Furthermore, we adopt the PBD approach since it is an unconditionally stable scheme. Even

though it may not always converge accurately to the solution manifold, a nonlinear Gauss-

Seidel-like constraint projection enables the algorithm to produce satisfactory results with

modest computational cost suitable for real-time applications. Additionally, the resulting

solution scheme is easy to implement and does not require any linear solves.

The method that we propose in this thesis can simulate both sparse and dense crowds

comprised of up to 100,000 or more agents, in real time. Furthermore, this method is easily

implementable for anyone using existing PBD software. Our work makes following technical

contributions:

• We show how crowds can be simulated within the PBD framework by augmenting it

8

with a non-passive agent-based planning velocity.

• We adopt the position-based frictional contact constraints of granular materials to

model local collision avoidance among nearby agents. An XSPH viscosity term is also

added to approximate coherent and collective group behavior.

• We develop a novel long-range collision avoidance constraint to deal with anticipatory

collisions. Our model permits the natural development of agent groups.

• We demonstrate multi-species crowd coupling by supporting spatially varying La-

grangian physical properties.

1.1.2 Fast, Scalable Layout Synthesis

The aesthetic and creative process of interior design is laborious and surprisingly complex;

hence, it is usually done by professional interior layout designers with extensive training.

For example, to find a desirable furniture arrangement for a living-room, one must consider

the visibility of the television, a suitable separation of sofas, and access to adjacent rooms,

among other factors that differ according to taste and style. It would be helpful to have

software that can aid professionals or less experienced users in this design process.

Typically, a realistic indoor scene is populated with different kinds of furniture items

and accessories (Figure 1.7). All these pieces of furniture should be placed according to

different interior design constraints, some of which are conflicting. Interior layout synthesis

research aims to automatically generate such a layout given these constraints, for both real

and virtual worlds. Layouts in virtual worlds are useful for game design, educational, and

training purposes, and are more useful in practice if they are larger, more complex, realistic

and can be quickly synthesized autonomously.

In recent years, researchers have proposed several methods for synthesizing layouts, ei-

ther automatically or interactively (Smelik et al., 2014). Some of these methods pose layout

synthesis as a highly nonconvex optimization problem with many complex constraints. The

method proposed by Yu et al. (2011) is considered the baseline comparison for future auto-

9

Figure 1.7: Home design software is now available for users with mobile phones. For example,
Amikasa, an interior layout and room modeling software available on iOS and Android.

matic layout synthesis work. Due to the complex nature of the layout synthesis problem, and

since constraints are often difficult to express as differentiable functions, Yu et al. apply a

probabilistic scheme to effectively sample viable layout candidates. The underlying machin-

ery for this sampling is based on Markov chain Monte Carlo (McMC) (Chib and Greenberg,

1995). While this work and similar approaches (Merrell et al., 2011; Yeh et al., 2012) are

able to obtain satisfactory results for a mélange of different layout considerations, they do

not scale to layouts containing more than a few objects, due to the high computational

costs involved in the underlying McMC machinery, resulting in very long run times that are

unsuitable for interactive purposes. Also, when confronted with a large numbers of objects,

the majority of these techniques become intractable because of the high dimensional search

10

spaces.

To overcome these issues, we propose a novel continuous framework for layout synthe-

sis, which is interactive for most interior layouts, and also seamlessly scales to layouts that

contain up to hundreds of objects. Our main observation is that there are a lot of common

factors between elasticity-inspired simulation of deformable objects and layout synthesis.

Elasticity penalizes deformation of a model and layout synthesis penalizes constraint vio-

lation; i.e., elasticity pulls a deformed model towards a goal configuration, the same way

a layout enforces its geometric layout constraints. Both can be formulated as optimization

problems amenable to the PBD approach. Consequently, our PBD-based method enables the

fast generation of dense, large-scale layouts that are intractable using previous approaches.

Like probabilistic methods, however, our continuous approach can synthesize multiple viable

layouts in a given environment. To our knowledge, this is the first time a physics-based

approach has been applied to layout synthesis.

The input for our method is an empty environment, a number of layout objects, and a

set of layout constraints. Initially the orientations and positions of the objects are random-

ized, which is analogous to choosing a random initial guess in an iterative solver. It then

iteratively modifies the positions and orientations to achieve viable layouts (Figure 1.8). At

each iteration, the objects are moved so as to satisfy competing constraints. We stop the

iterative solver when the synthesized layout satisfies most constraints and the layout quality

does not improve.

Our main contributions are as follows:

1. We propose a novel, physics-based framework for layout synthesis with a PBD-based

solution.

2. We formulate a set of common layout constraints within our framework.

3. We demonstrate that our approach is faster than previous layout synthesis work by an

order of magnitude, enabling the quick prototyping complex layouts.

11

Figure 1.8: A tightly-packed picnic layout (top), and a theater layout with a large number
of chairs (bottom), automatically placed by our method given user-specified constraints that
include distance, viewing angle, and spaciousness criteria.

12

1.2 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 reviews relevant related work.

Chapter 3 provides an overview of the position-based dynamics technique.

Chapter 4 presents our novel, PBD-based crowd simulation method.

Chapter 5 tackles the problem of interior layout synthesis with our PBD-based approach.

Chapter 6 reports on experiments and results with our two methods.

Chapter 7 presents our conclusions and proposes avenues for future work.

Appendix C presents an augmented reality application of our layout synthesis technique.

13

CHAPTER 2

Review of Related Work

In this chapter, we give a brief overview of research related to each of the two problems that

we address in this thesis.

2.1 Physics-Based Modeling

Physical simulation is a well-studied problem in the computational sciences. Physics-based

modeling techniques have been used in various contexts, from animation (Terzopoulos et al.,

1987; Manteaux et al., 2016), to geometric design (Qin and Terzopoulos, 1996; Attar et al.,

2009), to architectural floor plan design (Harada et al., 1995; Arvin and House, 2002). Tra-

ditional simulation methods include the Finite Difference Method (Terzopoulos et al., 1987),

the Finite Element Method (FEM) (O’brien and Hodgins, 1999), the Finite Volume Method

(Teran et al., 2003), the boundary element method (James and Pai, 1999), and particle-

based approaches (Desbrun et al., 1999). Graphics researchers have adopted these methods

for animation, with the main goal of recreating physical effects in entertainment industry

applications, such as visual effects in motion pictures and computer games. Hence, compu-

tational time and interactivity are important factors in addition to visual plausibility. This

is especially true for real-time applications.

2.2 Position-Based Methods

Position-Based Dynamics (PBD), independently introduced by Müller et al. (2007) and later

by Stam (2009), was proposed to simulate physical models in situations where the simulation

14

speed and robustness takes priority over physical realism.1 The method works by iteratively

projecting the solution state onto a set of constraints (see Section 3 for more details).

Later, Macklin et al. (2014a) expended this early work, and presented a unified PBD

solver for various natural phenomena, such as fluids, smoke, and granular materials. Re-

cently, XPBD was proposed to eliminate the iteration count and time step dependence of

PBD (Macklin et al., 2016). Even though PBD traditionally defines geometric constraints

among particles, it can also approximate force responses from continuum mechanics. Bender

et al. (2014a) formulated continuum energies as PBD constraints. Müller et al. (2014) de-

fined constraints based on element strain measures. The close relationship between PBD and

popular continuum-mechanics-based discretization was further explored in recent work on

optimization-based methods for real-time animation (Liu et al., 2013; Bouaziz et al., 2014a;

Wang, 2015; Narain et al., 2016).

Bouaziz et al. (2014b) recently introduced projective dynamics, a point-based method

that is a more physically principled modification to PBD. The method was further generalized

by Narain et al. (2016). Tonge et al. (2012) used a Jacobi-based method for the large-scale

simulation of rigid-body dynamics. In the Jacobi method, changes to the states of the

objects, subject to the constraints, are computed in parallel rather than sequentially as in

the Gauss-Seidel method.

A more complete survey of PBD is provided by Bender et al. (2014b).

2.3 Crowd Simulation

There exist two main simulation models for computing the movement of crowds of agents:

The artificial life approach (Shao and Terzopoulos, 2007; Yu and Terzopoulos, 2007), and

particle-based models (Karamouzas et al., 2014; Helbing et al., 2000, 2007). In this thesis,

we pursue the latter.

1PBD is part of a larger family of physical simulation methods called point-based methods. The common
property of these methods is that they do not explicitly compute physical quantities such as momentum and
forces, but instead work directly with positions. Bender et al. (2014b) present a survey.

15

Out of the various simulation considerations above, we focus on collision avoidance be-

tween crowd agents. Collision avoidance algorithms can be classified into discrete and contin-

uum approaches (Golas et al., 2013). Continuum approaches, such as the technique proposed

by Narain et al. (2009) have proven efficient for large-scale dense crowds, but are less suitable

for sparse crowds. Force-based discrete approaches, such as the recently proposed power-law

model (Karamouzas et al., 2014), are well suited for sparse crowds, but can be computation-

ally expensive and may require smaller time steps due to explicit time integration.

Efficient, natural, and stable collision avoidance in sparse and dense distributions of

agents remains a very active area of research in crowd simulation. In multi-agent simulations,

it is essential to capture both individual local behaviors and aggregate collective behaviors.

Continuum approaches—such as ‘Continuum Crowds’ (Treuille et al., 2006), a crowd model

that uses continuum dynamics to simulate pedestrian flow—are particularly suitable for

dense crowds and complex environments (Jiang et al., 2010). Unfortunately, the traditional

regime of pure continuum models tends to smooth out local agent behaviors, motivating

research on hybrid methods. For example, Narain et al. (2009) simulated dense crowds with

a hybrid, Eulerian-Lagrangian particle-in-cell approach and the unilateral incompressibility

constraint (UIC), which has proven to be an effective assumption for crowds. Subsequently,

frictional forces were taken into account in modeling crowd turbulence (Helbing et al., 2007;

Golas et al., 2014), which is essential in extra high-density scenarios. This has also inspired

us to treat dense agent collisions with a frictional contact model similar to PBD dry sand

simulation (Macklin et al., 2014a). To robustly model multiple densities, Golas et al. (2013)

proposed a hybrid scheme for simulating high-density and low-density crowds with seamless

transitions.

Other techniques for collision avoidance have been proposed. Many researchers adopted

force-based models (Reynolds, 1987, 1999; Helbing et al., 2000). An interaction energy

between pedestrians was modeled with a power law in recent and concurrent work by

Karamouzas et al. (2014, 2017). As an alternative to forces, the reciprocal velocity ob-

stacle was proposed in robotics for multi-agent navigation (Van den Berg et al., 2008). Guy

et al. (2009) extended velocity obstacles and used a parallel optimization framework for col-

16

lision avoidance. Ren et al. (2016b) augment velocity obstacles with velocity connections

to keep agents moving together, thus allowing more coherent behaviors. He et al. (2016)

simulated dynamic group behaviors based on the least effort principle. Guy et al. (2010a)

simulated large-scale crowds by optimization based on the Principle of Least Effort. Bruneau

and Pettré (2015) presented a mid-term planning system to fill in the gap between long-term

planning and short-term collision avoidance.

2.4 Layout Synthesis

We focus on layout synthesis problems in which a set of objects is to be arranged in an

open space. The objects are assumed to be rigid bodies. The goal of the layout problem

is to position and orient the objects such that they satisfy several functional and aesthetic

criteria. These criteria are encoded in the form of a complex, nonconvex objective function

that typically has multiple terms. The main challenge stems from finding an arrangement

that respects conflicting terms, resulting in a multitude of possible layout outcomes, some of

which may be unsatisfactory. There are numerous publications in this category. For brevity,

we focus on a few related ones:

Yu et al. (2011) and Merrell et al. (2011) introduced an McMC-based approach for

furniture arrangement. Yeh et al. (2012) formulated layout constraints with factor graphs,

allowing a variable number of elements in the synthesized layout. These McMC-based,

probabilistic sampling methods can synthesize scenes that respect a complex and conflicting

set of constraints, but they have been shown to work only on layouts with a limited number

of objects and relaxed spacing. The underlying inefficiency of these approaches stems from

the fact that they do not employ local gradient information—they merely sample a new

position of a furniture item by applying a shift move to the current position.

Feng et al. (2016) optimized mid-scale layouts by stochastically optimizing an objective

function derived from agent-based simulation. Fisher et al. (2012) generated small, local

layouts of objects in a scene, guided by exemplars—e.g., the layout of items on a desk.

Layouts are generated by sampling probabilistically from an occurrence model distribution.

17

Additionally, the authors report that since the layout generation is probabilistic, it cannot

handle hard constraints such as rigid grid layouts or exact alignment relationships.

Peng et al. (2014) introduced a method that creates a layout out of deformable templates,

which differs from prior work that assumed the objects were rigid. They incorporated a

continuous method in their approach, but use it only to deform objects, whereas we use ours

for positioning objects.

Layout research has also focused on domains other than interior design. Majerowicz et al.

(2014) focused on adding objects to shelves in a 2D setting. Bao et al. (2013) use a combined

stochastic and numerical optimization approach to explore and refine building layouts. Zhu

et al. (2012) synthesized layouts of mechanical components to control the motion of a toy.

Cao et al. (2012, 2014) synthesized manga layouts. Reinert et al. (2013) introduced an

interactive layout generation method for arranging shapes according to aesthetic attributes,

such as color and size. In this thesis, we confine ourselves to interior design layouts, but our

method generalizes to other domains as well.

18

CHAPTER 3

Review of Position-Based Dynamics

Traditional physics-based simulation approaches in computer graphics are force-based. In-

ternal and external forces are accumulated, from which accelerations are computed based

on Newton’s second law of motion. A time integration method is then used to update the

velocities, and finally the positions of the object.

By contrast, position-based approaches do not explicitly compute physical quantities

such as forces. Rather, these methods directly compute the positions of the objects based on

predefined positional constraints. Simulating a scenario based on these positional constraints

leads to an approximate solution, which is not always physically accurate. However, the

advantage of position-based approaches is that they provide a high level of control and are

stable even for simple time integration schemes. Due to their simplicity, robustness and

speed, these approaches have recently become popular in computer graphics, particularly

in the interactive environments of computer games where accurate physical simulations are

typically unnecessary.

The remainder of this chapter overviews Position-Based Dynamics (PBD).

3.1 Fundamentals

Position-based dynamics simulates a scenario by directly modifying the positions of the

objects themselves. The simulation objects are represented by a set of points and a set of

constraints between these points. For example, a rope can be subdivided to multiple points

with distance constraints imposed between the points (Figure 3.1).

These constraints are defined by a constraint function (Baraff and Witkin, 1998; Teschner

19

Figure 3.1: A rope represented by points with distance constraints between them.

et al., 2004). Instead of computing forces as the derivative of a constraint function energy, as

in traditional approaches, PBD directly solves for the equilibrium configuration and projects

positions.

Many constraints are possible in the PBD framework. In this chapter, we discuss the

distance constraint and its derivation. Unless otherwise stated in the following chapters,

other PBD constraints are out of the scope of this thesis (refer to (Bender et al., 2014b) for

a complete survey). A distance constraint preserves a distance between two points during a

simulation timestep. These points might have moved because of external forces, collisions,

or other physics-based effects. Given a distance constraint C(x) that is violated, we want to

find a positional correction so that C(x + ∆x) = 0.

PBD enforces the positional correction ∆x to be in the direction of the gradient of the

constraint:

C(x + ∆x) ≈ C(x) +∇xC(x) ·∆x = 0. (3.1)

20

The correction is restricted to be in the direction of the gradient:

∆x = λ∇xC(x), (3.2)

where λ is a scaler for which the equality holds. Defining s = −λ, substituting (3.2) into

(3.1), and solving for s, yields

s =
C(x)

||∇xC(x)||2
,

and consequently

∆x = − C(x)

||∇xC(x)||2
∇xC(x). (3.3)

This generalizes for constraints with n points, so that

s =
C(x1, . . . ,xn)∑

i ||∇xi
C(x1, . . . ,xn)||2

;

∆xi =− C(x1, . . . ,xn)∑
i ||∇xi

C(x1, . . . ,xn)||2
∇xi

C(x1, . . . ,xn).

In case each point xi has a different mass mi, we weight the corrections ∆x by the inverse

masses wi =
1

m
. Replacing (3.2) by

∆xi = −swi∇xi
C(x), . (3.4)

And the scaling factor becomes

s =
C(x1, . . . ,xn)∑

iwi||∇xi
C(x1, . . . ,xn)||2

∇xi
C(x1, . . . ,xn). (3.5)

We now illustrate the derived corrections on a distance constraint between 2 points: C(x1,x2) =

21

Figure 3.2: Two point p1 and p2, constrained to be at a distance d, which is satisfied by the
positional corrections of ∆p1 and ∆p2.

|x1 − x2| − d = 0. The derivatives with respect to the points are

∇x1C(x1,x2) =
x1 − x2

|x1 − x2|

∇x2C(x1,x2) =−∇x1C(x1,x2),

and the scaling factor is

s =
|||x1 − x2|| − d|

w1 + w2

,

so that the positional corrections are

∆x1 =sw1∇x1C(x1,x2) =
x1 − x2

|x1 − x2|
|||x1 − x2|| − d|

w1 + w2

∆x2 =sw2∇x2C(x1,x2) = − x1 − x2

|x1 − x2|
|||x1 − x2|| − d|

w1 + w2

.

These corrections are illustrated in Figure 3.2:

While the above positional corrections fully solve the constraint, there are particular

simulation scenarios in which that is not desirable; e.g., in the case of elastic material that

does not immediately return back to its former shape. To that end, PBD simulates elasticity

by incorporating a stiffness parameter k ∈ [0, 1], which multiples the positional correction

in (3.4), such that xi = −skwi∇xi
C(x). Then, since there may be numerous iterations

in a PBD timestep, k is adjusted: k = 1 − (1− k)

1

ns . Note that this adjustment has a

22

Algorithm 1 General PBD Solver

1: for all point i do
2: Update velocity vn+1

i ← vn
i + ∆tfext(xi)

3: Update predicted position x∗i ← xn
i + ∆tvn+1

i

4: end for
5: while iteration count< max iterations do
6: for all point i do
7: compute position correction ∆xi

8: x∗i ← x∗i + ∆xi

9: end for
10: end while
11: for all point i do
12: vn+1

i ← (x∗i − xn
i)/∆t

13: xn+1
i ← x∗i

14: end for

non-trivial affect on the stiffness of the constraint, and requires tuning according to the

scenario simulated and the number of solver iterations. Luckily, real-time environments

have a fixed number of solver iterations per time time step, so this dependency and tuning

is not problematic. Recently, a different type of PBD scaler was proposed that allows for

the stiffness not to depend on the number of iterations (Macklin et al., 2016). However, we

shall not discuss this further, since this thesis does not consider methods for the simulation

of elastic and other similar materials. We use PBD stiffness in a manner similar to weights

in a multi-objective optimization problem.

3.2 Iterative Solver

Given a set of points x, constraint functions acting on these points, and a time step ∆t, we

want to compute the positions of these points in the next time step (Algorithm 1).

xn
i is the known position of point i at the beginning of the n-th timestep, and xn+1

i is

the point’s unknown position in the next timestep. In each timestep, we first calculate the

velocity of a point vn+1
i considering external forces fext (line 2). vn

i is the point’s initial

velocity, without the affect of these forces. Then, we update the points predicted position

x∗i . This is the point’s predicted position before any of the constraint functions are taken into

23

account. In the main solver loop (lines 5-10), we compute the affects of these constraints on

the points predicted position x∗i . If point i is constrained, the constraint function contributes

a positional correction. In case there are n constraints acting on point i, each constraint

function contributes a correction that is then averaged: ∆xi =
1

n

∑n
j=1 ∆xji . However, in

some cases this averaging is too aggressive and the number of iterations required to reach a

solution increases. To address this, a global user-defined parameter w can be introduced to

control the rate of successive over-relaxation (SOR) (Golub and Varga, 1961):

∆xi =
ω

n

n∑
j=1

∆xji , (3.6)

where 1 ≤ ω ≤ 2 is preferred by PBD researchers. Macklin et al. (2014b) propose ω = 1.2,

and we use the same in Chapter 4, but this choice my vary by the scene being simulated.

After calculating the position correction, the predicted position of point i is updated (Line 8).

The loop continues till we reach the maximum number of iterations (Line 7. Finally, the

velocity of point i in the current timestep is updated based on the current predicted position

(Line 12), and the initial position in the next time step is set to the current predicted position

(line 13).

Since all the constraints are solved independently, the process is easily parallelizable.

This solver is known as a Jacobi-style constraint solver. There are alternative approaches,

however. One approach, for example, is to have each constraint update the current predicted

position, and then have this updated predicted position visible to the next constraint acting

on the same point. This is known as a Gauss-Seidel iteration. Fratarcangeli and Pellacini

(2015) proposed a graph coloring approach, where the graph is modified such that it produces

a desired number of k colors by splitting high valence points. These points are solved using

the Jacobi approach. Another hybrid approach is to solve the first k − 1 colors using k − 1

Gauss-Seidel passes and then solve the remaining constraints with one Jacobi pass.

24

CHAPTER 4

Crowd Simulation

Exploiting the efficiency and stability of Position-Based Dynamics (PBD), we develop in

this chapter a novel crowd simulation method that runs at interactive rates for hundreds

of thousands of agents. Our method enables the detailed modeling of per-agent behavior

in a Lagrangian formulation. We model short-range and long-range collision avoidance to

simulate both sparse and dense crowds. On the particles representing agents, we formulate a

set of positional constraints that can be readily integrated into a standard PBD solver. We

augment the tentative particle motions with planning velocities to determine the preferred

velocities of agents, and project the positions onto the constraint manifold to eliminate

colliding configurations. The local short-range interaction is represented with collision and

frictional contact between agents, as in the discrete simulation of granular materials. We

incorporate a cohesion model for modeling collective behaviors and propose a new constraint

for dealing with potential future collisions.

Section 4.1 overviews our algorithmic approach, and Section 4.2 discusses the algorithmic

details and details the design of constraints.

4.1 Algorithm Overview

Our simulation loop per time step is similar to that for PBD, with several modifications. We

outline our procedure in Algorithm 2 and highlight the different steps.

Assume that we have N agents. Each agent i, where i = 1, 2, . . . , N , is represented

with a fixed-sized particle with position xi ∈ R2 and velocity vi ∈ R2. For multi-species

considerations, we treat each particle as a circle with radius ri and mass mi. When we are

25

Algorithm 2 Position-based crowd simulation loop.

1: for all agent i do . §4.2.1
2: calculate vp

i from a velocity planner
3: calculate a blending velocity vb

i from vp
i and vn

i

4: x∗i ← xn
i + ∆tvb

i

5: end for
6: for all agent i do
7: find neighboring agents Si = {si1, si2, . . . , sim}
8: end for
9: while iteration count< max stability iterations do
10: for all agent i do
11: compute position correction ∆xi . §4.2.2
12: xn

i ← xn
i + ∆xi

13: x∗i ← x∗i + ∆xi

14: end for
15: end while
16: while iteration count< max iterations do
17: for all agent i do
18: compute position correction ∆xi . §4.2.2, §4.2.4, §4.2.5
19: x∗i ← x∗i + ∆xi

20: end for
21: end while
22: for all agent i do
23: vn+1

i ← (x∗i − xn
i)/∆t

24: Add XSPH viscosity to vn+1
i . §4.2.3

25: Clamp vn+1
i . §4.2.6

26: xn+1
i ← x∗i

27: end for

stepping from time n to time n+ 1 in a traditional PBD simulation loop for passive physical

simulations, a forward Euler position prediction is first performed as x∗i = xn
i + ∆t(vn

i +

∆tfext(x
n
i)), where fext represents external forces such as gravity. In position-based crowds,

x∗i needs to be computed differently to take into account the velocity planning of each agent.

In particular, we compute x∗i based on a blending scheme between a preferred velocity and

the current velocity vn
i (see Section 4.2.1). It is apparent that the predicted x∗i for a particle

completely ignores the existence of any other particles and just passively advects in the

velocity field. To resolve this, PBD defines constraint functions on the desired location of the

particles. Both equality and inequality constraints are supported, and they can be expressed

as Ck(x1,x2, . . . ,xN) = 0 and Ck(x1,x2, . . . ,xN) ≥ 0 respectively. Hence, the task is to

26

search for a correction ∆xi such that xn+1
i = x∗i + ∆xi satisfies the constraints. Once the

new positions are computed, agent velocities can be updated as vn+1
i = (xn+1

i − xn
i)/∆t.

This update guarantees stable agent velocities as long as the constraint projection is stable.

4.2 Details of the Algorithm

Our position-based formulation includes several modifications to the standard PBD scheme

as well as additional constraints for short-range and long-range collision avoidance between

agents.

4.2.1 Velocity Blending

Agent level roadmap velocity planning describes high-level agent behaviors. Local behavior

may be influenced by factors such as social or cognitive goals, while global behavior may be

specified by a particular walking path. We note that the roadmap planning is an orthogonal

component to our constraint-based scheme.

In the physics-based simulation of solids and fluids, particles generally retain their existing

velocities. In particular, as demonstrated by Bouaziz et al. (2014a), the implicit Euler

time integration of a physical system can be formulated as an minimization problem that

balances the ‘momentum potential’ ‖M 1/2(x − (xn + ∆tvn))‖2F/2∆t2 and other potential

energies, where M is the mass matrix. In a multi-agent crowd simulation, it is similarly more

desirable to include the inertia effect before predicting an agent’s desired velocity. Denoting

the preferred velocity given the planner with vp
i , we calculate the agent velocity vb

i as a linear

blending between vp
i and the current velocity vn

i , as follows:

vb
i = (1− α)vn

i + αvp
i , (4.1)

where α ∈ [0, 1]. We set α = 0.0385 in all our simulations. A more adaptive choice, such

as the density-based blending factor as in (Narain et al., 2009), can also be used in our

framework.

27

4.2.2 Frictional Contact

We model local particle contacts with an inequality distance constraint as in standard

position-based methods:

C(xi,xj) = ‖xi − xj‖ − (ri + rj) ≥ 0, (4.2)

where ri and rj are the radii of agents i and j. To model frictional behavior between

neighboring agents, we further adopt kinematic frictions as described by Macklin et al.

(2014a).

4.2.3 Cohesion

To encourage more coherent agent motions, we add the artificial XSPH viscosity (Schechter

and Bridson, 2012; Macklin and Müller, 2013) to the updated agent velocities. Specifically,

vi ← vi + c
∑
j

(vi − vj)W (xi − xj, h), (4.3)

where W (r, h) is the Poly6 kernel for SPH (Macklin and Müller, 2013). For our simulations,

with particles with radius 1, we use h = 7 and c = 217.

4.2.4 Long Range Collision

Karamouzas et al. (2014) describe an explicit force-based scheme for modeling crowds. We

design a similar scheme as a position-based constraint. As in their power law setting, the

leading term is the time to collision τ, defined as the time when two disks representing

particles i and j touch each other in the future. As in (Karamouzas et al., 2014), it can be

shown that

τ =
b−
√
b2 − ac
a

, (4.4)

28

Figure 4.1: Avoidance model for predictive collision avoidance. (a) Starting with particles in
current positions xn

i and xn
j , PBD estimates their positions x∗i and x∗j at the next time step.

To further predict behaviors in the future, we estimate a discrete time to collision τ̂ using
their trajectories. This results in x̂i,j = xn

i,j + τ̂vi,j. When further advanced in time by ∆t,
particles collide at x̃i and x̃j. (b) Projecting these collision constraints resolves the collision
between x̃i and x̃j. (c) We compute the relative displacement d from time τ̂ to τ̃. (d) d is
decomposed into contact normal (dn) and tangential (dt) components. (e) The tangential
contribution of the relative displacement is distributed to x∗i and x∗j , which results in an
avoidance resolution of future contacts.

where

a =
1

∆t2
‖x∗i − x∗j‖2, (4.5)

b = − 1

∆t
(xi − xj) · (x∗i − x∗j), (4.6)

c = ‖xi − xj‖2 − (ri + rj)
2. (4.7)

No potential energies associated with forces are required in our framework. To facilitate

collision-free states in the future, we directly apply a collision-free constraint on future po-

sitions. Recall that in our simulation loop, the predicted position of particles i and j in the

next time step are

x∗i,j = xn
i,j + ∆tvi,j, (4.8)

where vb
i,j is defined in (4.1) , and we use the i, j subscripts to denote that the above is

defined exclusively in the context of i or j.

We estimate a future collision state between i and j using τ. We first compute the exact

time to collision using (4.4). Valid cases are those with τ > 0 and τ < τ0, where τ0 is a

fixed constant. We used τ0 = 20 in all our experiments. After pruning out invalid cases, we

process the remaining colliding pairs in parallel (Section 6.1.1). We define τ̂ = ∆t ∗ bτ/∆tc,
29

where b·c denotes the floor operator. This is simply clamping τ to find a discrete time spot

slightly before the predicted contact. With τ̂, we have

x̂i,j = xn
i,j + τ̂vi,j. (4.9)

Note x̂i,j are similar to xn
i,j in the traditional collision constraint case (4.2) and are still in

a collision free state. Stepping forward will cause the actual penetration. We define the

colliding positions with

x̃i,j = xn
i,j + τ̃vi,j, (4.10)

where τ̃ = ∆t + τ̂. We enforce a collision free constraint on x̃i and x̃j. Note that x̃i,j is a

function of x∗i,j; therefore, it is still essentially a constraint on x∗i,j. Due to its anticipatory

nature, high stiffness on this constraint is not necessary. To prevent over-stiff behaviors,

instead of using the overlap between the predicted particle locations, we define the stiffness

to be k exp(−τ̂2/τ0), where k is a user-specified constant.

4.2.5 Avoidance Model

We further present a novel avoidance model for crowd collision. The long-range collision

constraint from Section 4.2.4 will cause agents to slow down due to motion along the contact

normal from the collision resolve, which is often not desirable in dense scenarios (Figure 1.6).

However, we observe that the tangential component of that collision response is often desired,

effectively causing the agents to simply slide in response to the predicted collision. Hence,

we preserve only the tangential movement in such collisions. We calculate the total relative

displacement as

d = (x̃i − x̂i)− (x̃j − x̂j), (4.11)

which can be decomposed into contact normal and tangential components as follows:

dn = (d · n)n, (4.12)

dt = d− dn, (4.13)

30

Figure 4.2: Two groups of agents passing through each other using our long range collision
avoidance.

where n = (x̃i − x̃j)/‖x̃i − x̃j‖ is the contact normal. To this end, we preserve only the

tangential component in the positional correction to x∗i,j. This provides an avoidance behav-

ior and prevents agents from being pushed back in a dense flow. Figure 4.1 illustrates this

process.

4.2.6 Maximum Speed and Acceleration Limiting

After the constraint solve, we further clamp the maximum speed and acceleration of the

agents to better approximate real human capabilities.

4.2.7 Walls and Obstacles

Agents can interact with walls and other static obstacles in the environment. We prevent

agents locomoting into walls and other static obstacles by a traditional collision response

(4.2), between the agent’s predicted position and the nearest point on the obstacle. The

obstacle’s collision point is assigned infinite mass.

31

Figure 4.3: Groups passing each other using the avoidance model. Left: Groups of agents
organize into a boundary front in preparation for collision avoidance. Middle: Agents huddle
together in noticeable thick lanes. Right: Agents successfully pass each other.

32

CHAPTER 5

Layout Synthesis

The arrangement of objects into a layout can be challenging for non-experts, hence the ex-

istence of interior design professionals. Recent research into the automation of this task

has yielded methods that can synthesize layouts of objects respecting aesthetic and func-

tional constraints that are non-linear and competing. These methods usually adopt a purely

stochastic scheme, which samples from different layout configurations, a process that is slow

and inefficient. In this chapter, we develop an alternative physics-based, continuous layout

synthesis technique, which results in a significant gain in speed and is readily scalable.

Section 5.1 presents an overview of our synthesis approach, including the energy we use

to track the quality of the layout. Section 5.2 presents the details and setup for our synthesis,

including how to describe layout objects in a position-based framework, and the synthesis

algorithm. We also formulate the different layout constraints used, their derivatives, and

discuss their rationale in interior design.

5.1 Algorithm Overview

Our method explores the set of different layout arrangements by iteratively solving an input

set of layout constraints. Starting from a uniformly distributed random initial position for

each layout item, our method solves each constraint independently. Each constraint is associ-

ated with a spring-like stiffness, which determines the magnitude of the positional correction

for satisfying the constraint. The positional corrections are either processed sequentially, or

averaged in a batch (details in Section 5.2.3). To track the quality of the layout, we incor-

porate a Multidimensional scaling (MDS) (Cox and Cox, 2000) stress-like energy function:

33

E =

(∑
j

wj ‖Cj(p1, . . . , pn, θ1, . . . , θn)‖2
) 1

2

, (5.1)

where Cj denotes the constraint, wj is its corresponding weight, pi denotes the layout object’s

position, and θi denotes the object’s orientation.

5.2 Details of the Algorithm

5.2.1 Algorithm Setup

A layout is represented by a set of N oriented particles and M constraints. Each particle i,

which determines the center of a corresponding 3D object mesh, has three attributes:

• a position pi,

• an orientation θi, and

• a mass mi, and corresponding inverse mass wi = 1
mi

.

A constraint consists of

• the number n of participating particles,

• a scalar constraint function C,

• a stiffness parameter k, where 0 ≤ k ≤ 1, and

• a type, either unilateral or bilateral.

Constraints are restrictions on the layout item’s positions and orientations in the form

of either equality of inequality. Equality and inequality are referred to as bilateral and

unilateral constraints, respectively. A bilateral constraint is defined by the function

C(p1, . . . , pn, θ1, . . . , θn) = 0,

34

Algorithm 3 Constraint Solver

1: for Object i do
2: Initialize pi = p0i
3: Initialize θi = θ0i
4: end for
5: while solverIteration j < times do
6: projectConstraints(C1, . . . , CN)
7: for Object i do
8: generateCollisionConstraints()
9: end for
10: projectCollisionConstraints()
11: end while

where the arguments denote the particle positions and orientations involved in the constraint.

By contrast, a unilateral constraint is defined by a function

C(p1, . . . , pn, θ1, . . . , θn) ≥ 0.

Both types of constraints depend on either the position, or the orientation, or both, of the

layout objects.

5.2.2 Layout Synthesis

Algorithm 3 overviews our method. Lines 2–3 initialize object i to a random location p0i and

orientation θ0i . In each iteration of the main loop, starting at Line 5, each constraint Ci is

calculated and immediately projected, so that the next constraint uses the updated result

(details in Section 5.2.5). The constraints C1, . . . , CN (details in Section 5.2.5.8) are fixed.

Collision constraints require special treatment, since they may change in each iteration, and

are generated in Line 8 using a spatial hash (details in Section 5.2.5.8).

Each constraint Ci has an associated stiffness parameter ki. In each iteration, the stiffness

either decreases, increases or remains constant, depending on the constraint type. For exam-

ple, the pairwise distance constraint decreases over time, the collision constraint increases,

and for hard constraints, like the layout boundary, the stiffness is constant. This is a type

of numerical continuation method (Algower and Georg, 2003). Increasing the number of

35

Order 1 2 3 4 5 6

Wall - - l - - l
Others - l - l - l
Collision l l l l l l

Table 5.1: Constraint projection order and frequency. In each iteration, a constraint is
enforced depending on the above. Furthermore, our method resolves constraints partially,
using an elasticity-inspired stiffness associated with each constraint. This combination allows
the synthesized layout layout to satisfy conflicting constraints.

iterations results in more physically-plausible solutions. In addition, since some constraints

are conflicting, we evaluate them at different orders, by interleaving them, similar to Stam’s

proposal (Stam, 2009). Table 5.1 depicts the order we used for all scenarios.

5.2.3 Constraint Projection

Position-Based Dynamics (PBD) satisfies a system of non-linear positional constraints by

solving each constraint independently. Given a constraint C and a particle i which is involved

in the constraint, we derive a positional correction ∆pi is applied to particle i. According

to Müller et al. (2007), this correction is derived by approximating each constraint function

using

C(pi + ∆pi) ≈ C(pi) +∇C(pi) ·∆pi. (5.2)

We employ PBD’s mechanism for solving a layout’s positional constraints via approximation,

with two different approaches for satisfying constraints. Each constraint is either solved

independently and projected, the new position immediately visible to other constraints, or

it is solved in a batch with other constraints, which we then average and project. In the

batched case, we average the positional correction by the number of constraints affecting the

layout item, with a delta averaging coefficient of 1.2, as suggested by Macklin et al. (2014b).

For constraint C, the positional correction for particle i is

∆pi = −skwi∇piC(p1, . . . , pN), (5.3)

36

with scaling factor

s =
C(p1, . . . , pN)∑

iwi ‖∇piC(p1, .., pN)‖2
, (5.4)

and stiffness parameter k that is adjusted at each iteration. The stiffness of each constraint

determines the importance of that constraint during a solve; i.e., a lower stiffness leads to less

positional correction. We modified the original stiffness formula suggested by Müller et al.

(2007) to k′ = 1− (1− k)M/ns , where ns is the iteration number and M ≥ 1. Parameter M

determines the rate by which the constraint C approaches 0.

The orientation constraints are treated as a separate case. For these type of constraints,

we find the shortest rotational correction to satisfy the constraint, and then apply this

correction to the corresponding layout object’s orientation. See Section 5.2.5.10 and Sec-

tion 5.2.5.11 for more details.

5.2.4 Constraint Setup

Our method focuses on synthesizing layouts that conform to furniture arrangement con-

straints. We note that deciding the type and number of pieces of furniture to place is an

orthogonal component to our constraint-based scheme. A user can select the type and num-

ber of objects for the layout and assign them to groups. Each group can be further assigned

aesthetic or functional layout constraints, and a fixed zone of the layout space. Groups are

reusable for defining other layout groups, and are also easily modifiable both in terms of

number of participating layout objects, and in editing the group’s layout constraints. Hard

constraints such as observing layout boundaries and preventing collisions between layout

objects are enabled by default. Complimentary to this selection step, the total number of

objects and their relationship to their corresponding groups can also be sampled probabilis-

tically from a predefined distribution; e.g., from realistic scene datasets (Silberman et al.,

2012; Hua et al., 2016; Dai et al., 2017). This is similar to applying factor graphs (Yeh et al.,

2012), but with a significant speed-up.

37

(a) Distance from vector (b) Distance (c) Focal point distance (d) Focal point symmetry

Figure 5.1: Different positional layout constraints. Note that in (d), C denotes the center
of mass of particles j1 and j2. vproj denotes the projection of C onto the vector starting at
focal point i.

5.2.5 Layout Constraint Types

We formulate our constraint framework by adapting PBD to layouts and interior design

standards (DeChiara et al., 2001). The following sections discuss the different constraints

employed, how they apply to layouts, and how they are projected.

5.2.5.1 Pairwise Distance

In interior design, two furniture items i and j (e.g., a chair and a table) are required to

be at a certain distance from each other in order for the layout to be deemed comfortable.

We utilize the bilateral stretching constraint from the PBD framework to represent such a

distance constraint between particles i and j that represent the two objects (Figure 5.1(b)):

C(pi, pj) = ‖pi − pj‖ − d, (5.5)

where d is the desired distance between them. As explained by Müller et al. (2007), the

positional corrections for particles pi and pj are

∆pi = − wi

wi + wj

(‖pi − pj‖ − d)
pi − pj
‖pi − pj‖

(5.6)

and

∆pj =
wj

wi + wj

(‖pi − pj‖ − d)
pi − pj
‖pi − pj‖

, (5.7)

where wi and wj are the inverse masses of particles i and j.

38

5.2.5.2 Heat Point

For an object or a group of objects, the heat point is the position at which the group’s

center of mass is required to be. For example, a laptop should be located at the middle near

the front side of a table for easy access. We define a bilateral constraint over all particles

representing the objects using the center of mass concept:

C(p1, p2, . . . , pn) =

∥∥∥∥∥
∑n

j=1 pjmj∑n
j=1mj

− p̂

∥∥∥∥∥
2

, (5.8)

where p̂ is the position of the heat point in the layout, and is manually defined by the user.

When the corresponding parented layout surface moves, the heat point moves with the same

correction.

5.2.5.3 Traffic Lanes

Objects should be arranged in a layout that accommodates traffic lanes (Jones and Allen,

2014; Deasy and Lasswell, 1990). Traffic lanes introduce space between objects to allow easy

access to, e.g., different seating tiers. To this end, we define a clearance between a vector

projected from an object at an angle towards another object. This clearance is implemented

as a unilateral distance constraint between position pj of particle j and the vector starting

from the position pi of particle i and going in its orientation θ (Figure 5.1(a)):

C(pi, pj) =
∥∥pvproj − pj∥∥− d, (5.9)

where pvproj is the point on vector v that is closest to pj, and d > 0 is the desired distance

from vector v. Note that pvproj depends both on the pi and pj, and is recalculated if pi or

pj change. We consider pvproj a ghost particle that is rigidly attached to pi. Hence, any

positional correction that impacts pvproj is applied to pi. This constraint creates the effect of

pathways; e.g., in the theater example of Figure 1.8. Note that if we do not want particle i

to correct its position as a result of this constraint, we set wi = 0.

39

5.2.5.4 Focal Point Symmetry

An object or a large piece of furniture can be deemed as a focal point for a group of items; e.g.,

the stage in a theater or a TV in a living-room (Jones and Allen, 2014; Deasy and Lasswell,

1990). We constrain a group of objects to be symmetric around a vector projected from the

group’s focal point—e.g., two chairs to be symmetric around the television’s orientation—by

calculating the center of mass of the surrounding particles jk and projecting it onto the vector

starting at the desired focal point and going in its orientation towards point pvproj . Then, we

apply a bilateral constraint between pvproj and the group’s center of mass (Figure 5.1(d)):

C(pi, pj1 , . . . , pjn) =

∥∥∥∥∥
∑n

j=1 pjmj∑n
j=1mj

− pvproj

∥∥∥∥∥
2

. (5.10)

The positional corrections follow Section 5.2.5.2.

5.2.5.5 Focal Point Distance

A group of objects might be constrained to be at a distance d from another object; e.g.,

a seating tier from a stage. We enforce such constraints by adding a bilateral distance

constraint between the particle representing the focal point object i and the surrounding

objects represented by particles j1, . . . , jn (Figure 5.1(c)). The constraint is implemented via

the bilateral distance constraint (Section 5.2.5.1) in a pairwise fashion, for each pair C(i, jk),

for k = 1, . . . , n. It is also possible to prevent the focal point object from correcting its

position in the manner shown in Section 5.2.5.3.

5.2.5.6 Layout Boundaries and Distance to Wall

Large furnishings usually work best when placed near a wall (Jones and Allen, 2014). For

example, we usually do not want a bookshelf to be placed in the center of a room. Also, in

a realistic use case, furnishings should not collide with the wall. Finally, all layout objects

are constrained to the layout boundaries.

40

Accessible space

Figure 5.2: Left: adik denotes the accessibility distance of the respective accessibility center
aik. Right: Wall distance and orientation constraint. pi denotes the center of object i and
bi denotes the bounding box radius.

Since the wall cannot be represented by a particle that can change its location, the wall

acts like an external force on the constraint system. We define both unilateral and bilateral

constraints for a object i constrained to be near a wall with distance di (Figure 5.2):

C(pi) = ‖pi − pwall‖ − di, (5.11)

where pwall is the nearest wall point, and pi is the position of the particle representing object

i. In case of multiple possible wall points, we break the tie by picking the first point found.

The positional corrections follow 5.2.5.1; however, note that since pwall corresponds to a

particle with infinite mass whose position cannot be modified, all positional corrections are

applied to particle i.

5.2.5.7 Accessibility

Clearance between furniture items is essential for human comfort (Jones and Allen, 2014).

For instance, a coffee table should be close, but not too close, to a sofa in a living-room. We

propose a modified accessibility constraint, adapted from (Yu et al., 2011). Every object j

is associated with a bounding box, where the faces of the bounding box that are orthogo-

nal to the ground plane are identified with accessibility centers ajk, where k ∈ {1, 2, 3, 4}

corresponds to the back, left, front, and right faces, respectively.

Our accessibility constraint is defined as a unilateral distance constraint d between the

41

accessibility center k of object j to the center of object i (Figure 5.2):

C(pi, pj) = ‖pi − ajk‖ − d, (5.12)

where pi is the position of the particle representing object i, d = bi + adjk, such that bi is

the diagonal of the bounding box for object i, and adjk is the diagonal of the respective

accessibility center of object j. Note that our accessibility constraint is only activated if the

respective cuboids defined by the accessibility distances intersect. The positional correction

for particle j is applied as if accessibility point ajk is rigidly attached.

5.2.5.8 Collision

The collision constraint is complementary to the accessibility constraint. Simply put, we

want to enforce that the respective bounding cuboids of the layout objects do not collide,

ensuring a realistic layout. To that end, we check for a collision between objects and, if so,

we resolve the collision by approximation via a unilateral distance constraint between the

bounding spheres (Figure 5.3b).

In a separate case, if during the constraint projection objects i and j are colliding, and

both are constrained to be next to a wall (Section 5.2.5.6), we do an additional collision

constraint projection between the respective two closest wall points wi and wj (Figure 5.3a)

in order to satisfy both constraints, where wi and wj are ghost particles rigidly attached to

the layout object’s position, pi and pj. If there are multiple possible candidate wall points,

we break the tie following Section 5.2.5.6.

The stiffness parameter of the accessibility constraint is constant. Since checking for all

pairwise object collisions is computationally expensive, we employ a spatial hash (Teschner

et al., 2003) in order to reduce the number of collision checks.

42

(a) (b)

Figure 5.3: (a) Additional collision constraint between two layout items i and j that are also
constrained to be next to the wall. (b) Our method resolves collisions between layout item’s
by resolving collisions between the respective bounding spheres.

(a) (b)

Figure 5.4: (a) Visual balance: layout object’s center of mass and room centroid. (b)
Stacking constraint: h denotes the vertical distance between the centers of objects i and j.

43

T
he
at
er

(o
ve
rh
ea
d)

T
he
at
er

(f
ro
n
ta
l)

P
ic
n
ic

L
iv
in
g-
R
oo
m

D
es
k

(a) Initial Layout (b) Intermediate State (c) Final Layout

Figure 5.5: Various synthesized layouts.

44

5.2.5.9 Visual Balance

To create a sense of equilibrium in a room, we want to arrange the furnishings such that the

mean of the visual weights is close to the center of the room (Jones and Allen, 2014; Lok

et al., 2004). For example, placing all the furnishings at one end of the room would create an

imbalanced, inharmonious feeling. Since larger objects carry more visual weight, we define

the visual weight of an object in accordance to its dimensions and simplify by evaluating the

projection of the object’s visual weight onto the ground plane.

Merrell et al. (2011) describe a visual balance constraint. Our method implements the

visual balance as a bilateral constraint between the room’s centroid and the center of mass

of all the particles j, which represents the mean of the visual weights (Figure 5.4(a)):

C(p1, p2, . . . , pn) =

∥∥∥∥∥
∑n

j=1 pjmj∑n
j=1mj

− p̂

∥∥∥∥∥
2

, (5.13)

where p̂ denotes the center of the room. Since the room’s centroid is static, the particle

corresponding to p̂ is modeled to have infinite mass. The positional corrections are equivalent

to those in Section 5.2.5.2.

5.2.5.10 Pairwise Orientation

In layout design, the orientation of an object to another object in the same furnishing group

can induce more intimacy or improve functionality (Talbott et al., 1999). For example, a

sofa should face a TV, a coffee table should be parallel to a sofa, and a seat in a theater

should face the stage.

Yu et al. (2011) propose a pairwise orientation constraint between interacting layout

objects. Similarly, We define a bilateral orientation constraint between interacting particles

i and j. Let θi and θ′i be the current and desired orientation of particle i towards particle j,

and let θj and θ′j be the current and desired orientation of particle j toward particle i. Then

45

the pairwise orientation constraint is defined by:

Ci(θi, θ
′
i) = |θi − θ′i|; Cj(θj, θ

′
j) = |θj − θ′j|, (5.14)

where we calculate the shortest rotational distance ∆θi between the current and desired

orientation for particle i, and similarly for particle j. This rotational correction is then

applied to the particles with the corresponding stiffness k. For particle i, the corrected

orientation is θi + k∆θi, and θj + k∆θj for particle j. Note that the above orientation

constraint does not change the particle positions pi and pj.

5.2.5.11 Orientation to Wall

Furnishings aligned to a wall leave the center of the room empty. Furthermore, some fur-

nishings work best when placed parallel to the wall (e.g., a table or TV shelf (Jones and

Allen, 2014)). Following the proposal of Yu et al. (2011), we formulate the orientation to

wall constraint as a bilateral constraint between particle i to the nearest wall:

C(θi) = |θi − θwall|, (5.15)

where θi is the object’s orientation in respect to the closest wall point, and θwall is the desired

orientation to the wall. To satisfy this constraint, we calculate the direction and the shortest

rotational difference between the desired θwall and the object’s current orientation θi, and

project it with the respective stiffness parameter, as in Section 5.2.5.10. In case of multiple

possible wall points, we break the tie following Section 5.2.5.6.

5.2.5.12 Vertical Stacking

In layout design, accessories serve either a functional or decorative purpose (Jones and Allen,

2014). Vertical stacking is one common way to arrange accessories. For example, books may

be stacked in order to conserve space.

A user can predefine the objects to be stacked. If object j is to be stacked on object

46

i, the vertical distance between the particles representing these objects should be equal to

half the sum of the respective objects’ vertical lengths h = (hi + hj)/2. We formulate the

constraint as

C(pi, pj) = pjz − (piz + h), (5.16)

where z refers to the normal direction of the ground place. Hence, particle j should be placed

above particle i (Figure 5.4(b)). Additionally, we constrain the other axial coordinates of

particle j to be equal to those of particle i:

C(pi, pj) = |pjy − piy |; C(pi, pj) = |pjx − pix|, (5.17)

where x and y refer to the directions of the axes of the ground plane.

5.2.6 Differentiation of the Layout Constraints

Below we list the differentiation formulas we use in our method for the layout constraints

developed in Section 5.2.5. For the sake of clarity, we repeat some of the constraint defini-

tions.

5.2.6.1 Pairwise Distance

Let pi, pj be the positions of particles i, j, and d is the user-defined distance to be preserved.

Then the derivatives for the pairwise distance constraint are:

∇piC =
pi − pj
‖pi − pj‖

, (5.18)

∇pjC = −∇piC. (5.19)

47

5.2.6.2 Heat point

Let p1, p2, . . . , pn be the positions of the particles participating in the constraint, and let mi

be the corresponding masses. Then, the heat point constraint is:

C(p1, p2, . . . , pn) =

∥∥∥∥∥
∑n

j=1 pjmj∑n
j=1mj

− p̂

∥∥∥∥∥
2

, (5.20)

where p̂ is the user-defined heat point. The differentiation for particle i is:

∇piC =
mi∑n
j=1mj

l, (5.21)

where l = (1, 1)T .

5.2.6.3 Traffic Lanes

Let pi, pj be the positions of particles i, j. We calculate pvproj as the closest point on the

unit vector v starting from the position pi of particle i and going in its orientation: where

pij = pj − pi. We define pvproj as a ghost particle that is the rigid extension of pi. Therefore,

any positional correction that affects pvproj affects pi, and pvproj has the same mass has particle

i. The differentiation is:

∇piC =
pvproj − pi∥∥pvproj − pi∥∥ , (5.22)

∇pjC = −∇piC, (5.23)

which is similar to the pairwise distance constraint.

5.2.6.4 Focal Point Symmetry

Let particle i represent the focal point object, and let pj1 , . . . , pjn be positions of the particles

constrained to be around the focal point, so that the center of mass of these particles is:∑n
k=1 pjmjk/

∑n
k=1mjk .

48

Following 5.2.6.3, We calculate pvproj to be the closest point between the unit vector v

starting from the position pi of particle i and going in its orientation.

The constraint differentiation follows 5.2.6.2 for particle jk:

∇pjk
C =

mjk∑n
k=1mjk

l, (5.24)

where l = (1, 1)T .

5.2.6.5 Focal Point Distance

Similar to the Pairwise Distance constraint.

5.2.6.6 Layout Boundaries and Distance to Wall

Let pi be the position of particle i, and let pwall be the closest wall point. Then the dif-

ferentiation constraint follows the pairwise distance constraint (replace pj with pwall). Note

that since the wall is static, we assign infinite mass to pwall. In case of multiple possible wall

points, we break the tie by picking the first point found.

5.2.6.7 Collision

Let pi, pj be the positions of particles i, j that represent their corresponding layout objects,

and let ri and rj be the respective bounding spheres (Figure 5.3b). The unilateral collision

constraint is:

C(pi, pj) = ‖pi − pj‖ − (ri + rj). (5.25)

The differentiation follows 5.2.6.1.

49

5.2.6.8 Accessibility

Let pi, pj be the positions of particles i, j that represent their corresponding layout objects,

and let ajk be the accessibility center k of object j. We enforce an accessibility distance

constraint between particles i and j:

C(pi, pj) = ‖pi − ajk‖ − d, (5.26)

where d = bi +adjk, such that bi is the diagonal of the bounding box for object i, and adjk is

the diagonal of the respective accessibility center of object j. We define point ajk as a ghost

point that is rigidly attached to pj, so that any positional correction that affects ajk, affects

pj. The constraint differentiation is:

∇piC =
pi − ajk
‖pi − ajk‖

, (5.27)

∇pjC = −∇piC. (5.28)

5.2.6.9 Visual Balance

Let p̂ be the center of the room, p1, p2, . . . , pn be the positions of the participating particles

and let mi be the corresponding mass of particle i. Then, the constraint differentiation

follows 5.2.6.2.

50

CHAPTER 6

Experiments and Results

Section 6.1 presents experiments and results with our crowd simulation method, demon-

strating that it is suitable for use in interactive games. In short, we provide examples of our

method across different crowds scenarios typically found in games and visual effects, together

with baseline benchmarks used to evaluate crowd simulation methods, such as bottleneck

and evacuation benchmarks. We also show real-time performance in all of these settings, for

both sparse and dense crowds involving up to 100,000 agents.

Section 6.2 demonstrates our layout synthesis method on a diverse set of examples and

shows that it achieves results similar to conventional layout synthesis based on a Markov

chain Monte Carlo (McMC) state-search, but is faster by at least an order of magnitude

and can handle layouts of unprecedented size. Compared to our method that employs local

gradient information for quick collision resolve, McMC-driven layout synthesis methods do

not incorporate gradient information, and cannot easily resolve collisions between layout

objects in tight spaces. Results involving tight synthesis spaces are presented.

6.1 Crowd Simulation

6.1.1 Setup and Parameter Settings

We implemented our crowd simulation framework in CUDA, using an NVIDIA GeForce GT

750M. We set ∆t = 1/48 sec for all the experiments (2 substeps per frame). We solve each

constraint group in parallel, employing a Jacobi solver, with a delta averaging coefficient of

1.2. To find neighboring agents, we use two hash-grids, for short and long range collisions.

This is more efficient than using one grid for both, since the long range grid covers a bigger

51

agents LR A ms/frame

Sparse passing 1,600 On - 11.27
Sparse passing 1,600 - On 11.61
Dense, low count 1,600 On - 12.03
Dense, low count 1,600 - On 11.34
Dense, high count 10,032 On - 14.06
Dense, high count 10,032 - On 13.63
Bears and Rabbits 1,152 - On 11.86
Dense Ellipsoid 1,920 - On 10.06
Proximal Behavior 50 On - 10.12
Proximal Behavior 50 - On 10.13
Target Locomotion 192 On - 10.42
Bottleneck 480 - - 11.99
Bottleneck 3,600 - - 17.76
Bottleneck 100,048 - - 43.66

Table 6.1: Timings. LR: long range collision constraint; A: avoidance model constraint. All
experiments use ∆t = 1/48, with 6 iterations per time step. These timings do not include
rendering times.

collision radius. Each grid is constructed efficiently and in parallel. See (Green, 2008; Macklin

et al., 2014a) for additional details.

In our simulations, we use 1 stability iteration to resolve contact constraints possibly re-

maining from the previous time step, and 6 iterations in the constraint solve loop. Additional

iterations can increase stability and smoothness, but at increased computational cost.

For agent rendering and locomotion synthesis, we used Unreal Engine 4.15. For smooth

locomotion, we clamped the agent’s skeletal positional acceleration and rotational velocity.

Additionally, we applied a uniform motion scaling of about 30. We rendered the motion at

about 5 times the simulation rate.

We demonstrated the robustness of our position-based framework in a variety of scenarios.

To simplify the experiment setup and unless otherwise stated, we modeled all agents using

a disk with radius 0.5, and use the same width for our humanoid agents in the rendering

stage. For smoother motion, we allow an expansion of the agent’s disk radius by 5% during

collision checks. For each benchmark, we used a simple preferred velocity planner, where

the preferred velocity of each agent points to the closest user-scripted goal. We also slightly

varied the preferred velocity of each agent around a mean of 1.4, to achieve a more realistic

simulation. Table 6.1 presents timing information.

52

6.1.2 Benchmarks and Analysis

6.1.2.1 Sparse Passing (Low Count, Long Range Collision)

We experimented with two groups of agents locomoting in opposite directions (Figure 4.2).

The agents in each group are positioned in a loose grid formation with an initial separation

distance. To avoid collisions, the agents use the constraint of Section 4.2.4. In this scenario,

the agents organize into narrow lanes, and pass each other easily.

6.1.2.2 Sparse Passing (Low Count, Avoidance)

This scenario is identical to 6.1.2.1, but the agents employ the constraint of Section 4.2.5 to

avoid collisions. In this scenario, the agents form thicker lanes (Figure 4.3), which accumulate

into different groups.

6.1.2.3 Dense Passing (Low Count, Long Range Collision)

A total of 1,600 agents are split into two groups, with a separating distance of 2.5 (Figure 6.1).

We used a higher and denser crowd of agents. To avoid collision, the agents employ the

constraint of Section 4.2.5. Because of the dense agent setting, the two agent groups do not

easily pass each other, and some bottleneck groups are formed. Eventually, the agents pass,

avoiding unrealistic collisions.

6.1.2.4 Dense Passing (Low Count, Avoidance)

This experimental setup is identical to 6.1.2.3. To avoid collision, the agents employ the

constraint of Section 4.2.5. In this scenario, the agents form thicker lanes, which form into

different groups (Figure 6.1).

53

Figure 6.1: High density agent simulation. Top: Long range collision. Bottom: Avoidance
model.

54

Figure 6.2: High density and high agent count. Top Row: Agent groups avoid each other
using Long Range Collision. Bottom Row: Using the Avoidance model.

6.1.2.5 Dense Passing (High Count, Long Range Collision)

A total of 10,032 agents are split into two groups (Figure 6.2) with a separating distance of

3.5. This experiment setup is identical to 6.1.2.5.

6.1.2.6 Dense Passing (High Count, Avoidance)

This experiment setup is identical to 6.1.2.5. To avoid collision, the agents employ the

constraint of Section 4.2.5. In this scenario, the agents form thicker lanes, which form into

different groups.

6.1.2.7 Bears and Rabbits

In this experiment, we showcased how a Lagrangian PBD scheme may be employed to model

agents of different sizes (Figure 6.3). We modeled a group of rabbits passing through a group

of bears, totaling 1,152 agents. The rabbits had size 1.0, while the bears had a size ranging

from 2.5 to 4.0. To simulate that bears are less prone to change their path than rabbits, we

assigned the bears a mass that is approximately 30 times greater than that of the rabbits.

55

Figure 6.3: A group of smaller agents (rabbits) passing through a group of larger ones
(bears).

Figure 6.4: A small ellipsoid shaped group passing through a larger group.

56

Figure 6.5: Proxemic group behavior. Left: Initial state. Center: Agents avoid each other
using the long-range collision model, while creating lanes. Right: Agents avoid each other
using the avoidance model.

Figure 6.6: A group of agents passing through a narrow corridor. Left: Agents huddle on
approaching corridor’s entrance. Middle: A semi-circular arch forms as agents enter a narrow
corridor. Right: Agents successfully exit.

6.1.2.8 Dense Ellipsoid

This simulation comprises 1,920 agents. To reach their goals, an ellipsoid-shaped group of

agents (Figure 6.4), with an initial separation distance of 3.3, must locomote through a

larger, rectangular group of agents, with a separation distance of 3.0. Throughout the entire

simulation, the small group retains its shape and successfully passes the larger group.

6.1.2.9 Proximal Behavior, Avoidance Model

Two groups of 50 agents start in tightly packed formations, and must pass each other in a

narrow hallway with limited collision avoidance space (Figure 6.5). This benchmark demon-

strates that our novel avoidance model creates proxemic behavior in agent groups (He et al.,

2016).

57

6.1.2.10 Proximal Behavior, Long Range Collision

Here, we used the same setting as 6.1.2.9. We observed lane formation and splitting of the

original group.

6.1.2.11 Target Locomotion, Long Range Collision

192 agents start in a uniform random grid setting at a separation distance of 5.5. The

locomotion targets are in a similar, but in a translated grid pattern, randomly perturbed

with additive uniformly distributed random noise. The objective of this benchmark was to

show that agents are able to reach their respective goal with minimal interference.

6.1.2.12 Bottleneck

We demonstrated our method on a bottleneck scenario with varying number of agents.

Agents must pass through a narrow corridor to reach their goal (Figure 6.6). In this scenario,

we observed jamming and arching near the corridor’s entrance, as well as the formation of

pockets, a phenomena observed in realistic crowds, which was also reported in (Golas et al.,

2014; Guy et al., 2010a).

6.1.3 Comparison

The method described by Karamouzas et al. (2014) is considered the state-of-the-art model

for explicit force-based modeling of pedestrian behavior, and it has been validated against

human behavior. We implemented this method based on code obtained from the authors.

For the comparison, we chose the same parameter settings and timestep as in our method

(Section 6.1.1). Using 1,344 agents, we preformed experiments in the two following settings

(Figure 6.7):

58

Figure 6.7: Explicit force-based power law (Karamouzas et al., 2014). Left: In a sparse
setting, the agents successfully avoid collisions. Right: In a dense setting, the agents collide,
overlap, and are not able to pass smoothly.

6.1.3.1 Crowd Passing (Sparse)

For the sparse setting, we used a separating distance of approximately 4.5 between agents.

Agents preformed well and avoided collisions, managing to pass with minimal interference

to the opposing group. Lane patterns emerged.

6.1.3.2 Crowd Passing (Dense)

In the dense setting, we used a separation distance of approximately 3.3. In this setting,

the agents were not able to maintain their trajectory or avoid collisions with the opposing

group. Some of these collisions were not resolved, leading to an unrealistic state for almost

half of the simulation. Our supplemental video offers additional details.

6.1.4 Discussion

Our crowd simulation method demonstrated interesting group interactions, such as groups

passing each other seamlessly, as well as the formation of traffic lanes and subgroups with

minimal interference. We demonstrated our novel PBD method on groups of agents of

various sizes, arranged in varying densities, using different mixtures of PBD constraints.

59

We presented novel long range collision constraints with adaptive stiffness, which serve as

a realistic preconditioner for the actual collision from frictional contact, with a sufficient

stiffness that enforces non penetration. Our solution is flexible and produces interesting

patterns and emergent behavior. Compared to existing methods, the advantages of PBD

are large time steps, guaranteed stability, and ease of control. In addition, our approach

allows simple integration into a preexisting PBD framework. By adding new constraints,

our robust, parallel framework can easily incorporate more complex crowd behaviors with

minimal run time cost.

From the above experiments, we noticed that the power law method does not provide a

collision-free model for dense crowds. Nevertheless, careful parameter tuning or increasingly

small time steps may help, albeit at the expense of efficiency and ease of use.

6.2 Layout Synthesis

We used Python and Cython to implement our layout synthesis technique. We ran our

experiments on a 2.5 GHz Intel i7 Macintosh system.

Our experimental scenarios are shown in Figure 5.5. For all our demos, we used a

uniformly sampled random initial guess as shown in the first frames of the figures illustrating

our examples. The initial object locations and orientations in each experiment were set

randomly. This corresponds to Line 2–3 of the main loop in Algorithm 3. Accessibility and

collision constraints apply and are generated in all experiments. We then ran our method

with the constraints described below. As weights for the layout’s energy function (5.1), we

chose 20.0 for the wall constraints, 150.0 for collision and accessibility constraints, and 1.0

for all the rest, since the wall, collision and accessibility constraints are treated as hard

constraint. We determined these weights experimentally, by the order of importance of the

constraint type. The method terminates the iterative procedure when there has been no

improvement to the minimum layout energy for the past 50 iterations. The experiments in

Section 6.2.1 run for about 150–300 iterations.

Table 6.2 reports run-times of our experiments. The bottleneck of our algorithm is in

60

Objects Our Method(sec) McMC-SA(sec)

Theater 201 39.50 5852
Picnic 77 4.77 253
TP Picnic 53 2.42 109.43
Desk 21 0.69 37.06
TP Bedroom 12 0.67 22.31
Living-Room 10 0.62 26.78

Table 6.2: Comparing the run-time of our method versus baseline McMC-SA method. TP
denotes Tightly-packed. The timings are the mean of 10 runs, where both our method and
McMC have the same starting conditions.

solving the accessibility and collision constraints, as shown in Figure 6.8. The supplemen-

tary document provides the additional details of the constraints used in each of the above

scenarios.

6.2.1 3D Layout Synthesis

In this section, we describe the experimental scenarios of Figure 5.5.

6.2.1.1 Theater

We demonstrated the efficacy of our method by running our algorithm in a theater scene with

200 seats and a stage. For symmetry, we set the initial location of the stage to be halfway

across the theater’s width. The seats are divided into groups, with each seat belonging to a

different seating tier. We employed a focal point constraint between each seating tier and the

stage. All seats were influenced by the traffic lane constraint for stage pathways. We further

tested the scalability of our algorithm by running more experiments in which we modified

the number of seats. Figure 6.9 plots the resulting run-times. Note that the chairs assigned

to each seating tier do not have a specified distance constraint within the tier. Instead, the

distances are enforced through the accessibility and collision constraints. Even without such

distance constraint, the chairs are able to maintain an almost regular distance with other

chairs in the tier.

61

Experiments timings
Ti

m
e

(s
ec

)

10

100

Theater Picnic TP Picnic Desk TP Bedroom Living Room

Accessibility constraint Total optimization time

Figure 6.8: Run-times. TP denotes Tightly-packed. The major computational costs stems
from resolving the accessibility and collision constraints, especially when increasing the num-
ber of layout objects.

Ti
m

e
(s

ec
)

0

350

700

1050

1400

Layout Objects
100 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700 740 780

Figure 6.9: Run-time vs an increasing number of theater seats.

62

Figure 6.10: Optimized living room layout satisfying criteria such as distance, viewing angle,
focal point grouping, and visual balance, starting from the initial random layout shown
beneath.

6.2.1.2 Picnic

The picnic scene consists of 14 tables, 48 chairs, 8 trash cans, 6 BBQ grills, and a carousel.

The main constraints are focal point constraint between each group of chairs and the respec-

tive table, distances between tables, distances between chairs around tables, and heat point

constraint to determine the locations of BBQ grills, trash cans, and picnic tables.

63

6.2.1.3 Living-room

The living-room layout (Figure 6.10) contains 2 chairs, 2 indoor plants, a sofa, a coat rack,

a door, an office desk, an office chair, and a TV. The main constraints are focal point

constraints between the TV, sofa, and chairs, as well as wall constraints on the big furniture

objects and plants.

6.2.1.4 Desk

We also demonstrated the performance of our algorithm on a tightly packed desk with small

objects, including 12 books, 3 pencils, a food plate, a binder, a photo frame, a potted plant,

a laptop computer, and a mug. The main constraints are focal point constraints between

certain objects, heat point constraints on different desk parts, and a stacking constraint for

the books.

6.2.2 Layout Synthesis in Tightly-Packed Scenarios

Our method can also cope with highly constrained and tightly-packed settings.

6.2.2.1 Tightly-packed bedroom

The tightly packed bedroom contains multiple beds and pieces of furniture. The beds,

bookcase and table are constrained to be next to the wall. The coat rack is constrained

to be at a certain distance from the bookcase. We demonstrate that using different initial

conditions results in different suggested layouts. Even though the space is tight, our method

successfully synthesizes different layout suggestions (Figure 6.11).

6.2.2.2 Tightly-Packed Picnic

This tightly-packed setting demonstrates our method’s ability to synthesize diverse layouts

with different numbers and types of furniture objects. We synthesize a tightly-packed picnic

scenario in two stages. In the first stage, we randomly vary the number of layout objects of

64

Figure 6.11: Our method produces different layout suggestions (top) by initializing from
different random initial conditions (bottom).

(a) (b)

Figure 6.12: (a) A baseline McMC-SA approach struggles with tightly-packed bedroom. In
McMC-SA, layout objects correct their position using probabilistically sampled shift moves.
This results in configurations where objects are “locked” in configurations that are proba-
bilistically hard to escape from, although a different initialization or more cleverly designed
moves might help. (b) Our method does not.

each type, similar to Yeh et al. (2012). The available layout objects are a superset of the

previous picnic scenario, with an additional rectangular picnic table. For a more uniform

layout, we rigidly attached 4 chairs to each round picnic table. In the second stage of the

synthesis, we run our method for 270 iterations. Figure 6.13 shows these synthesized layouts.

6.2.3 Application: Layout Synthesis from Real-World Images

We have applied our layout synthesis technique to bridge the gap between the physical

and virtual worlds: Given an input image of an interior or exterior space, and a general

user specification of the desired furnishings and layout constraints, we have implemented a

65

Figure 6.13: Diverse tightly-packed picnic layouts synthesized by our algorithm. Each syn-
thesized layout has a different number and types of objects.

(a) (b)

Figure 6.14: (a) Image of a vacant living room. (b) Image augmented with a layout synthe-
sized by our method.

system that can automatically furnish the scene with a realistic arrangement and display it

to the user by augmenting the original image (Figure 6.14 and Figure 6.15). Our system can

deal with varying layouts and target arrangements at interactive rates, which affords the user

a sense of collaboration with the design program, enabling the rapid visual assessment of

various layout designs, a process which would typically be time consuming if done manually.

Our method is suitable for smartphones and other camera-enabled mobile devices.

Appendix C describes our system in detail.

6.2.4 Comparison

We compared the performance of our method to a baseline layout synthesis approach based

on simulated annealing with a Metropolis-Hastings McMC state-search step, which we denote

66

(a) (b) (c)

Figure 6.15: Outdoor Yard layout. (a) Random initial state; chairs are colliding unrealis-
tically. (b) Intermediate state of the optimization; not all chairs are facing their respective
tables. (c) Final optimized layout; all chairs are in their correct positions and orientations.

McMC-SA. Our implementation is based on code obtained from the authors of (Yu et al.,

2011). In this implementation, the proposal function shifts an attribute of one layout object

in each state-search step. We employed the same energy function to track the quality of the

synthesized layouts, and ran the comparison several times, with different conditions, such as

different temperature changes to the annealing algorithm and differing constraint weights.

For all experiments, we used a linear and evenly spaced annealing schedule, for about 20,000

iterations, with the additional stopping condition in case the energy function value did not

improve by more than 0.1% during the last 1500 iterations.

Experimentally, we noticed that a baseline McMC-SA approach has trouble accommo-

dating tightly-packed and constrained layouts, like in the tightly-packed bedroom and picnic

scenarios described in the previous section. One of the possible explanations is that this

approach does not directly use local constraint gradient information for shifts between lay-

out configurations, but rather a global energy function which is limited in scope. Initially,

the synthesized layout looks satisfactory. However, upon closer inspection, the layout had

unresolved collisions (Figure 6.12). This is illustrated by Figure 6.16, which plots the energy

functions of both methods for the Tightly-Packed Picnic scenario.

Nevertheless, McMC-SA has a theoretic probabilistic chance to escape these collisions

by choosing different parameter settings, using more complex hand-crafted McMC-SA shifts

moves, as well as tuning of the energy weights of different constraints. Unfortunately, neither

67

Figure 6.16: Energy plot (linear scale) for tightly packed picnic layout, running a McMC-SA
implementation, compared to our method. Total run-time for McMC-SA is approximately
163 seconds, versus 4.7 seconds for our method. Within 220 iterations, our method immedi-
ately converges to a suitable layout, while in terms of energy, McMC-SA converges to a less
satisfactory layout around 9500 iterations.

of the settings we experimented with provided a collision-free layout suggestion in a tightly-

packed setting.

Computationally, we observed that McMC-SA is slower by at least an order of magnitude

compared to our method (Table 6.2). The computational cost increases dramatically with

the number of objects to be synthesized. Hence, our method is more suitable for interactive

applications.

6.2.5 Discussion

This work is the first to demonstrate that certain principled, continuous simulation meth-

ods popular in physics-based animation can produce satisfactory layout synthesis results at

extremely low computational cost. Layout synthesis objectives are represented by a set of

positional constraints, each having an associated spring-like stiffness. Our method solves the

conflicting set of constraints by exploiting the efficiency and speed of PBD. It yields fast

layout synthesis with quality similar or better to that provided by previous probabilistic,

McMC-based alternatives.

68

Comparison to McMC-SA. Previous work in layout synthesis does not incorporate con-

straint gradient information, and instead uses manually crafted McMC moves that augment

a layout configuration. While this type of method provides an easier mechanism to explore

different layout variations, we achieve the same effect by different initializations.

As observed in our comparison, the run-times of the baseline McMC-SA method increases

significantly with the number of layout objects involved. In these approaches, a user can

define a more relaxed set of constraints, which at least in principle could lead to a desired

layout, but at a much greater computational cost. In practice, we observed that these

methods preforms poorly in tightly-packed layouts, leading to unrealistic collisions between

layout items. By contrast, our method is dramatically faster due to its continuous nature.

Notably, our method requires only a few seconds of run-time for dozens of objects and it

naturally scales to hundreds of objects with only moderately increasing computational cost.

Global Optimization Solvers. Since layout synthesis is a nonlinear and nonconvex prob-

lem, it is difficult – and fortunately unnecessary – to find the global optimum. We ex-

perimented with different non-linear global optimization solvers (NLopt (Johnson, 2011)).

Unfortunately, the results were either poor in quality (i.e., unrealistic layouts with many

colliding layout items), or the run-times of these methods were intractable. In contrast to

these solvers, our method does not directly try to minimize the global energy, but rather

satisfies local constraints. Satisfying constraints locally and sequently, results in positional

corrections to layout items, that propagate throughout the layout, transforming the layout

from an initially deformed state to a converged, satisfactory layout. As in the work of Yu

et al. (2011) and Merrell et al. (2011), our approach generates layouts from local minima that

satisfy the design constraints, resulting in satisfactory layouts. We use the global energy to

evaluate the layout, and for comparing to previous work.

Layout Variety. The intended workflow of layout synthesis methods is that the automated

approach generates a variety of viable layouts, from which the user can select the one they

most prefer. Our method supports this same workflow. Our method can generate a variety of

69

layouts by repeatedly running our continuous approach starting from different random initial

conditions (Figure 6.11). Different initializations lead to different layout configurations.

Additionally, the quality of such a configuration is subjective matter. Hence, at least from

the user’s perspective, a collision-free global optimum is not definite.

Limitations. Our results are sensitive to initialization, and we need multiple different

initialization for an acceptable result. A different initial guess can lead to a different final

solution, especially if there are numerous ill defined and conflicting constraints. Experimen-

tally, we found that 5 different initializations is sufficient for most test cases. Additionally,

this can also be remedied by adjusting the stiffness of the conflicting constraints, or by

defining new constraints that capture a better solution.

We observed that solving constraints sequentially, where the new positions are immedi-

ately visible to other constraints, makes quick progress at first, but then the convergence rate

slowly decreases as the iterations progress. This method may not converge in the traditional

optimization sense; however, our termination criterion is based on the satisfaction of most

of the constraints, which is ultimately what matters. For example, in the living-room exper-

iment, the first few iterations yield a layout that is visually similar to the final one, whereas

later iterations produce smaller refinements of the layout and resolve cuboid accessibility

area intersections. Nevertheless, in practice, we never observed outcomes that failed to sat-

isfy the layout objectives. Like McMC-SA, our energy can increase from one iteration to the

next, and gives our method the ability to escape suboptimal local minima. In practice, most

starting seeds lead to a satisfactory layout, and all of them lead to a collision free layout.

Hence, even though our method is conceptually simple, it yields powerful results.

70

CHAPTER 7

Conclusion

7.1 Summary

This thesis has proposed a position-based dynamics (PBD) framework for crowd simulation

and layout synthesis. Both the agents in crowds and the objects in layouts can be represented

as particles and involved in a scenario characterized by general optimization objectives—

safely locomoting towards a goal in the case of crowd simulation, or finding a realistic and

satisfactory arraignment in the case of layout synthesis. In our framework, the machinery for

these goals is provided by different position-based constraints, and the numerical combination

of these constraints.

First, we proposed a position-based crowd simulation method that augments position-

based dynamics with new positional constraints for simulating agents. These include short

and long-range collision avoidance constraints between agents, as well as a modification of

existing positional constraints used in the physics-based simulation of effects like friction

and cohesion for granular material and fluids. A friction-type constraint between agents

allows the formation of pockets and slows down colliding agents, while cohesion allows more

uniformity between nearby agents. Each constraint provides positional corrections for the

agents. The constraints are combined numerically to compute an agent’s position in the

next time step. Compared to existing methods, the advantages of a position-based crowd

simulation framework are large time steps, guaranteed stability, speed, and ease of control.

Second, we introduced a position-based optimization framework for layout synthesis via

positional layout constraints. These layout constraints are geometric and follow well-known

interior design guidelines. The optimization starts from a random initialization of layout ob-

71

jects, and ends when the layout objects are in a non-colliding state satisfying the geometric

interior design constraints. We demonstrated our method by synthesizing several layouts,

including in sparse and tightly packed settings, from layouts containing several objects to

hundreds of objects. Compared to previous work, we were able to synthesize layouts with

similar visual quality, but faster by about an order of magnitude. This enabled the fast syn-

thesis of large layouts, which were previously intractable. The main advantage of our method

over previous layout synthesis work is speed and scalability, which enables the synthesis of

larger and denser layouts than was previously possible.

Our position-based constraint framework allows ease of use and computational efficiency

over prior related work. These highly desirable qualities are well-suited to industrial and

consumer-facing applications, especially in domains ranging from computer games and vi-

sual effects, to computer assisted design software, thus enabling the development of new

consumer-oriented products and services in these domains.

7.2 Future Work

7.2.1 Crowd Simulation

Our crowd simulation approach has some limitations. We do not pretend to simulate real

pedestrians (cf. (Shao and Terzopoulos, 2007; Yu and Terzopoulos, 2007)). Designing metrics

to evaluate such realism is a problem in and of itself, and it is outside the scope of our present

work, but we will investigate this topic in future work, including further quantitative analysis

of time-to-collision and other anticipatory position analysis. Even though PBD is a simple

and stable framework, it requires a certain amount of parameter tuning. We also plan to

explore other constraints, such as clamping the magnitude of turning and backward motion

of agents. We believe that such a constraint will lead to more realistic results. Finally,

experimenting with other online locomotion synthesis methods such as motion fields (Lee

et al., 2010) can lead to more interesting agent interactions.

Our position-based framework currently considers only the agent’s position and future

72

Figure 7.1: Two agents navigating through a complex dynamic environment (Kapadia et al.,
2013).

velocity when adjusting the agent’s position in the next timestep. Furthermore, the agents

are similar in appearance and behavior in everything other than speed and locomotion goals.

However, when considering heterogeneous crowds, there are many other appearance and

locomotion factors, such as height, size, gait, path, locomotion styles, and other agent-specific

parameters, that influence the agent’s behavior (Pelechano et al., 2016). Heterogeneous

agents of different sizes and gait have different locomotion capabilities, which need to be

taken into account (Vaughan and OMalley, 2005). In the future, we would like to design

such frameworks for generating more realistic simulation models for heterogeneous crowds.

These will be useful in realistic scenarios, as well as for developing future robots that will

locomote and work alongside people.

Regarding velocity and acceleration clamping, our current framework depends only on

the magnitude of these vectors. This might suffice for simple disc-like Roomba agents, but

for human-like agents, velocity and acceleration changes are based not only on the current

position (Kwon and Shin, 2007; Zhang et al., 2009). For example, researchers have shown

that there are limitations to the curvature of a virtual biped agent’s path (Lockwood and

Singh, 2011).

Currently, our method employs a simple navigational scheme for planning the agents

velocity in the next time step, in which the agents locomote directly to their target. This

scheme fails to pass obstacles efficiently, and also fails to consider situations where an agent

might prefer taking a longer path that might otherwise be shorter in time (Figure 7.1).

Replacing this navigational component with a more realistic dynamical path planning scheme

would lead to more realistic simulation results (Kallmann and Kapadia, 2016).

73

Figure 7.2: Simulating schools of fish avoiding predators (Satoi et al., 2016).

We compared our method to the explicit force-based technique proposed by Karamouzas

et al. (2014). In the future, we would like to compare to other popular frameworks such

as the social force (Helbing et al., 2007), RVO (Van Den Berg et al., 2011), as well as

other recent and concurrent work such as simulating crowds as fluids (Narain et al., 2009),

optimization-based approach for crowd simulation and other frameworks (Karamouzas et al.,

2017; Wolinski et al., 2016; Dutra et al., 2017).

Our framework provides a collision avoidance mechanism on the 2D plane for bipedal

agents. However, extending our framework to 3D will enable the simulation of animals not

bound to planar domains, such as fish and birds (Figure 7.2). This is similar to the work

demonstrated by Reynolds (1987), however more useful to those who wish to incorporate

our method into their already existing PBD simulation software that is commonly used in

the visual effects production and game development industries.

In recent years, crowd simulation researchers have designed metrics to evaluate simu-

lation quality, such as the number of colliding agents, evacuation times (or measuring the

74

effectiveness of the locomotion by the time it takes for agents to get to their locomotion

goals), density, entropy, etc. Some crowd simulation methods rely exclusively on these met-

rics for an agent’s navigational and collision avoidance behavior (Narang et al., 2015; Guy

et al., 2010b) For completeness, it would be valuable to measure these metrics on scenes

simulated with our method.

Finally, since there is little data on the movement of crowds containing more than 10,000

agents (except perhaps evacuations and limited social gatherings), it would also be desirable

to design new metrics to asses the quality of a crowd simulation across different settings.

Designing such metrics would be also beneficial to the future design of crowd simulation

algorithms.

7.2.2 Layout Synthesis

In the present study, we did not encode all the constraints that might be relevant in layout

design. However, our method can be easily extended to a broader set of layout constraints

in future work. Incorporating GPU parallelization can further speed up the procedure, as

could a hierarchical approach, where the layout synthesis problem is broken into stages. It

will also be interesting to adjust the stiffness factors in ways that are not merely decreasing

or increasing uniformly, in an effort to converge to better global solutions.

As discussed in Section 5.1, an interior layout synthesis is typically nonconvex, which

means there is no global minimum solution to be computed straightforwardly. However,

there may be a mixed discrete/continuous formulation that might yield more powerful results,

similar to a mixed integer-linear programming approach that has recently been proposed for

floor plan synthesis (Wu et al., 2018). This is because most furniture arrangements are

similar, and they can be defined using graphs and other patterns (Fisher et al., 2011; Xu

et al., 2014).

Due to the psuedo-elastic local projection nature of PBD, sometimes there are oscillations

and collisions between objects. For example, when there is a collision between the accessibil-

ity areas of two objects, the constraint may be partially resolved by projecting one of these

75

Figure 7.3: Simulating use cases in hospitals using multi-agent narratives (Schaumann et al.,
2017). The simulation provides insight into how to better position facilities and rooms for
easy access.

objects into a collision with a third object. In future work, we plan to design automatic

schemes for detecting and resolving these conditions.

Our current synthesis framework does not allow interactive layout editing and refinement

on a large scale. In future work, we would be interested in incorporating a GUI with a touch

interface that could support such capabilities, similar to the framework proposed by Yu et al.

(2016). Rather than directly editing the layout, a query-based system might be even more

helpful to novice users.

Currently, layout constraints must be added manually before the synthesis stage. It would

be interesting to automatically infer layout constraints, either from data, or from previous

user interactions. Recent work in machine learning and crowd-sourced learning algorithms

might provide new insight into these layout constraints, together with an augmented reality

layout visualization as described in Appendix C. Most importantly, these constraints might

be dynamic and subject to change (Figure 7.3). Hence, combining layout simulation with

multiple agents promises to be helpful in assessing the effectiveness of the designed layout

(Feng et al., 2016). Finally, our ultimate goal is to design an end-to-end system to synthesize

layouts with minimal user intervention.

76

APPENDIX A

Details of the Constraints Setup

Here in detail are the constraints we used in our experiments.

A.1 Theater Constraints

• Wall distance — stage

• Distance — between each seat and the stage. Each seat is grouped into seating tiers,

and each seat receives the corresponding distance constraint of the tier to which it is

allocated

• Traffic Lanes — between all the seats and two vectors projected at a symmetric angle

form the front face of the stage.

• Orientation — between each seat and the stage. Each seat should face the stage

• Focal point — for each seat in a seating tier. For all seats in a seating tier, the center

of mass of that group of chairs should be on the vector projected from the stage’s front

face.

A.2 Picnic Constraints

• Focal point — Each table is a focal point for a group of 4 chairs

• Distance — between each chair in an associated group

• Distance — the BBQ grills are linked together

• Distance — between each pair of trash cans

• Heat point — between each group of trash cans and a location in the picnic layout

77

• Heat point — on each table to a different layout area

• Heat point — on the Carousel to the top-middle corner of the layout

• Orientation — between chairs and respective table

A.3 Living-Room Constraints

• Focal point — couch as focal point to table

• Focal point — TV as focal point to couch, sofa chairs

• Focal point — Table as focal point to office chair

• Wall distance and orientation — TV, book case, coat rack, door, indoor plants

• Visual balance

• Orientation — between objects and their respective focal points

A.4 Desk Constraints

• Stacking — between books, divided into two groups

• Heat point — on laptop, to be located near the front middle of the desk.

• Heat point — on notepad to front right of desk

• Heat point — on Rubik’s cube to front left of desk

• Distance — between potted plant and book stack

• Distance — between book stack and desk binder

• Distance — between binder and photo frame

• Distance — between photo frame and mug

• Distance — between pencils

• Focal point — laptop as focal point to fruit plate

• Focal point — Rubik’s cube as focal point to pencil group

• Focal point — Rubik’s cube as a focal point to stack of books

• Wall distance — on one stack of books

78

A.5 Tightly-Packed Bedroom

• Focal point — Each table is a focal point for a group of 4 chairs

• Distance — between floor lamp, table and chair

• Distance — between chair and table

• Distance — between bookcase and coat rack

• Orientation — between chair and table

• Wall distance — for beds, bookcase and table

A.6 Tightly-Packed Picnic

• Distance — the BBQ grills are linked together

• Distance — between each pair of trash cans

• Heat point — between each group of trash cans and a location in the picnic layout

• Heat point — on the Carousel to the top-middle corner of the layout

79

APPENDIX B

Simulated Annealing Comparison

This appendix presents all the energy plots from our comparison in the tightly-packed picnic

scenario (Figure B.1 and Figure B.2). In each benchmark, the starting positions and orien-

tations are similar, and both simulated annealing and our method use the same optimization

parameters.

80

B
en

ch
m
ar
k
1

B
en

ch
m
ar
k
2

B
en

ch
m
ar
k
3

B
en

ch
m
ar
k
4

Figure B.1: Energy plots for tightly-packed picnic.

81

B
en

ch
m
ar
k
5

B
en

ch
m
ar
k
6

B
en

ch
m
ar
k
7

B
en

ch
m
ar
k
8

Figure B.2: Energy plots for tightly-packed picnic.

82

APPENDIX C

Automated Layout Synthesis From Real-World Images

This appendix reproduces the content of our publication (Weiss et al., 2017b).

C.1 Introduction

The arrangement of objects into a layout is an everyday problem. The problem is involved,

because a desirable arrangement may vary greatly according to different use cases, individ-

ual styles, and other considerations, while various constraints, such as space bounds, the

relationships between different objects, as well as comfort and other functional and aes-

thetic criteria must be enforced. Layout design is far from trivial for people lacking domain

experience, as evidenced by the existence of interior design professionals.

Using broadly available smartphones and other camera-enabled mobile devices, it is easy

to share photos of indoor or outdoor spaces and receive suggestions from friends or hired pro-

fessionals on how to organize and furnish the spaces. Popular consumer mobile applications

(e.g., by Amazon) provide limited visualizations of selected furnishings using augmented

reality. However, prior work has not addressed important aspects of visualizing spaces of

interest that incorporate automatically synthesized suggested layouts. A typical use case

would be to provide a computerized alternative to the time-consuming process of manually

staging a property for sale or lease through the pleasing layout of furniture and other visible

accessory items, which can dramatically influence the perceived property value.

Mathematically, layout synthesis yields a challenging non-linear optimization problem.

The main goal of our work is to develop a fast, automated system that, given limited user

input consisting of a single image of a vacant indoor or outdoor space, visualizes the space

83

furnished with optimal synthesized layouts. Our approach works well with both interior

and certain exterior spaces. It is suitable for implementation as a mobile device application

constrained by limited computational resources.

The remainder of this appendix is organized as follows: Section C.2 surveys relevant

prior work on layout synthesis as well as on scene understanding from images. Section C.3

overviews our algorithmic approach. Section C.4 presents our results. There follows in Sec-

tion C.5 a discussion of the limitations of our approach. Section C.6 presents our conclusions

and discusses future work.

C.2 Related Work

C.2.1 Layout Synthesis

Layout problems arise in a number of domains. Researchers have applied domain-specific

optimization approaches to various layouts, from VLSI layouts (Sarrafzadeh and Lee, 1993)

to architectural floor plans (Harada et al., 1995; Merrell et al., 2010). Layout synthesis

also appears in the context of generating virtual worlds for computer games, databases for

computer vision algorithm testing, and even virtual reality (Smelik et al., 2014; Jiang et al.,

2017).

Numerous methods have been proposed for synthesizing layouts. Procedural modeling

employs grammars (Müller et al., 2006; Parish and Müller, 2001). However, these methods

require a user to manually encode grammatical rules, a complicated task that is similar to

implementing a script for a professional modeling package. Graphical user interfaces help

simplify this task (Lipp et al., 2008). Additionally, modeling grammars may be augmented

to interact with external constraints in the form of guidance shapes, user input, or from

other models (Beneš et al., 2011; Št’ava et al., 2010; Talton et al., 2011).

Optimization-based methods are used to achieve layout goals under a set of predefined

constraints. These methods are usually stochastic in nature, sampling layout arrangements

from an unknown probability distribution (Vanegas et al., 2012; Merrell et al., 2011; Yu et al.,

84

2011; Yeh et al., 2012). However, stochastic methods are usually slow when optimizing a

layout with dozens of items. Recent work achieves faster running times by combining or

using only a continuous, numerical optimization approach (Weiss et al., 2018; Wu et al.,

2018; Bao et al., 2013).

On the consumer side, there exist various software packages and toolkits for designing

and visualizing residential layouts (Autodesk, 2011; Reif, 1993). However, these tools require

significant manual editing and interior design domain knowledge to achieve satisfactory re-

sults.

C.2.2 Understanding Environments

Before augmenting the environment, ideally one must understand the spatial layout and

dimensions (Hedau et al., 2009; Gupta et al., 2010), the arrangement of objects within the

environment (Jiang et al., 2012a,b; Choi et al., 2015; Jiang et al., 2016), the human influence

on these arrangements (Jiang and Saxena, 2013), and where the objects should be placed,

from small functional objects (Jiang et al., 2012b) to evaluating the physical quantities of a

layout (Zhu et al., 2016).

To understand a scene directly from an image, Ramalingam and Brand (2013) proposed

a method for deriving the orientation of indoor and outdoor scenes from a single image,

combining vanishing points and an optimization procedure that considers all plausible con-

nectivity constraints between lines. In concurrent work, Izadinia et al. (2017) propose a

system that, given an image, reconstructs an approximate virtual replica of the original

scene using a database of CAD models and a deep learning framework. Zhang et al. (2016)

presented a system for visualizing an augmented indoor scene using a specialized Project

Tango tablet, although it does not automatically generate suggestions and requires manual

editing.

85

Algorithm 4 Automatic Layout Method

1: I ← Get input layout image
2: O ← Get user layout items and objectives . C.3.3
3: S ← Segment scene (I) . C.3.1
4: S ← Estimate 3D Scene (I) . C.3.2
5: S∗ ← Generate Layout Suggestions (S,O)
6: I∗ ← Visualize Augmented Scene (S∗, I) . C.3.3

C.2.3 Pixel-Wise Semantic Segmentation

Deep learning research has grown dramatically in recent years thanks to algorithmic advances

combined with efficient and powerful implementations on GPUs. Most recent results are

based on the Visual Geometry Group (VGG) network proposed by Simonyan and Zisserman

(2014), a very deep network that has produced state of art accuracy in image classification

tasks, with various modifications. FCN (Long et al., 2015), DeepLab (Chen et al., 2016),

and Dilated Convolutions (Yu and Koltun, 2016) perform pixel-wise semantic segmentation

and have yielded good accuracy for such segmentation problems. The benchmark for se-

mantic segmentation algorithms is the Pascal dataset, which contains images from various

domains. Recently, another pixel-wise semantic segmentation algorithm was proposed by

Badrinarayanan et al. (2015), which also employed a VGG net architecture. In addition

to the newly proposed techniques, the network was trained on both a road dataset and an

indoor scene dataset provided by SUN-RGBD (Xiao et al., 2010).

C.3 Algorithm

The initial input to our method is an ordinary image of an indoor or outdoor environment.

First, we semantically segment the scene depicted in the image, separating the floor/ground

from other objects in the scene. Second, we detect the boundary of the floor and other

significant edge features. Third, we measure the scale and orientation of the scene by using

a checkerboard calibration marker. Finally, we generate an optimal layout with user-selected

layout items. Algorithm 4 provides an overview of our approach, indicating the sections in

which the details of each step are presented.

86

C.3.1 Semantic Segmentation of the Scene

We use a pixel-wise semantic segmentation algorithm to extract the floor/ground. There exist

various algorithmic approaches for this pixel-wise segmentation. We chose to use SegNet

(Badrinarayanan et al., 2015), whose model is trained with a SUN-RGBD dataset (Xiao

et al., 2010), mainly because this dataset contains only indoor scene objects while most

other datasets have a mix of images from various other categories. Badrinarayanan et al.

(2015) trained their network with 37 categories, including common layout objects, such as

walls, chairs, tables, and the floors of indoor scenes.

For synthesizing layouts, we first must estimate the ground area available. To that end,

we need to segment the floor and remove irrelevant objects from the scene. Thus, our task is

a binary segmentation problem rather than a multi-label segmentation one. To achieve this

segmentation, we add one more layer after the softmax layer of VGG net. This layer takes its

output from the softmax layer and produces binary class labels for the floor and other parts

of the image. This output is represented by a simple conditional statement where the ’floor’

class from the softmax layer produces ’floor’, and all of the other labels become ’others’.

Subsequent to the pixel-wise segmentation, we use the approach suggested in GrabCut

(Rother et al., 2004) to retain the floor and remove other components of the scene. Figure C.1

shows the result of this segmentation process. Thus, we detect the location and boundary

of the floor or ground, which is necessary in order to establish a layout plane upon which we

will synthesize layout items.

C.3.2 Inferring a 3D Estimate of the Scene

To estimate the size of the room, we ask users to place a checkerboard calibration marker in

the scene. The scale of the room is estimated by comparing the known size of the checker-

board to the segmented floor in the scene. The details of this process are as follows:

1. Detect the checkerboard in the scene using Harris corner detection, and compute the

room’s width, height, and center in pixel coordinates.

87

(a) (b) (c)

Figure C.1: The results of our segmentation and edge detection. (a) Original images. (b)
Segmented floors/ground. (c) Edge maps.

88

(a) (b) (c)

Figure C.2: Synthesized game-room layout. (a) random initial state. (b) Intermediate state
of the optimization; layout items are too close for the layout to be deemed comfortable. (c)
Final suggested layout with relaxed spacing.

2. Define an origin at the center of the checkerboard on the x and y axes of the plane

to the horizontal and vertical directions, respectively. The z axis is determined as the

cross product of the x and y axes.

3. Employ the checkerboard to calibrate the camera and set up the internal parameters.

The camera pose is estimated based on the distance and orientation from the origin.

This step is necessary to estimate the position of the virtual camera when rendering

the final layout containing the virtual 3D furniture.

4. Traverse the floor geometry from the origin along the x and y axes to compute the

distance from the origin to the edge of the floor in pixel coordinates. Since we know

the ratio between the size of the checkerboard in pixel coordinates and its real size, we

can compute the length of the floor in a scene by scaling its length in pixel coordinates

by the ratio obtained from the checkerboard.

5. Apply the Holistically-Nested Edge Detection algorithm (Xie and Tu, 2015) to detect

the edges of the scene (Figure C.1(c)). This deep-learning-based edge detector results

in better edge detection for our indoor scene images than traditional edge detectors,

such as the Canny edge detector. We search for edges that are aligned to the z axis,

by selecting edge vectors l whose cosine distance to z,

cos(z, l) =
z · l
||z|| ||l||

, (C.1)

89

is greater than threshold t = 0.9. We use the longest edge as the height of the space.

C.3.3 Layout Synthesis and Visualization

Our layout synthesis scheme is based on a continuous numerical approach to layout synthesis,

which was inspired by Position-Based Dynamics (Müller et al., 2007) and by a stochastic

McMC scheme for optimizing indoor layouts (Yu et al., 2011).

Given a layout, the user specifies the furniture items to arrange, and the objectives of that

arrangement. The objectives are annotated in terms of geometric constraints, similar to those

described in recent work (Yu et al., 2011; Merrell et al., 2011). Among other constraints, our

method supports pairwise distance, distance to wall, pairwise and wall rotational constraints,

and visual balance, and it can easily be extended with additional constraints. In a typical

use case, a user can define the distance between layout items in the same group, together

with distance and orientation to the nearest wall. Collisions between competing layout items

are automatically resolved. We refer the reader to the above cited papers for the details.

While Weiss et al. (2018), Yu et al. (2011), and Merrell et al. (2011) generate suggestions

on a per-object level of detail, we speed up layout generation in some cases by employing a

rule-based approach in which each object encompasses a group of layout items. For example,

a dining table (Figure C.2) is usually accompanied by a set of matching chairs at prescribed

distances and orientations. This is most apparent when furnishing an empty layout. In the

common use case, a user who is interested in furnishing an interior layout travels to a nearby

retail store and buys furniture items in combinations, as suggested by the retail catalog or

displays on site; e.g., a collection that includes sofas, adjoining sofa chairs, and a coffee table.

After obtaining the input layout area, input layout items, and constraints between these

items, our method synthesizes the layout, which results in a 3D scene. Given the estimated

camera pose, the 3D representation of the layout is rendered into the original image I, to

yield the augmented image I∗. For rendering, we use Blender Cycles with the same settings

for every scene, except for varying the exposure setting to produce a more realistic result by

matching the illumination in I.

90

(a) (b) (c)

Figure C.3: (a) A vacant bedroom. (b) Intermediate layout. (c) Synthesized bedroom.

(a) (b) (c)

Figure C.4: Living Room. Our method provides different layout suggestions (a)–(c) for the
same collection of furniture items and layout constraints.

C.4 Results

Our framework is composed of two main components. The semantic segmentation and edge

detection component is implemented in Python on an Ubuntu machine with a 3.4 GHz

Intel Core i7 and Nvidia Titan X GPU. We use Caffe (Jia et al., 2014), one of the most

common libraries for deep learning in computer vision, for both image processing tasks.

Semantic segmentation and edge detection take on average approximately 0.1 seconds and

0.5 seconds, respectively. The layout synthesis component is implemented in Python and

Cython. Each layout suggestion is synthesized in no more than 4 seconds. Rendering the

final result takes approximately 3 seconds.

We briefly summarize our experiments next:

Hosting Room: (Figure 6.14) We used a set of 5 dining tables, a clothes rack, and a

floor lamp. We did not impose any strict distance constraints in this setting, except for the

floor lamp to be close to the wall.

91

Outdoor Yard: (Figure 6.15) In this scenario, we assigned two patio-style tables with

chairs, where the chairs are constrained to be around the tables. We also added a BBQ grill

and a trash can. The grill is constrained to be at a greater than minimal distance from the

other layout items.

Game Room: (Figure C.2) This scenario includes a sofa, floor lamp, two table tennis

tables, and two dining tables for socializing. The sofa is constrained to be near the wall, and

the tennis tables close to each other. The sofa is positioned in a slightly rotated position

relative to the room’s wall for a more comfortable interaction.

Bedroom: (Figure C.3) The bedroom setting included a bed, closet, clothes rack, office

table, chair, and a floor lamp. The bed and closet were constrained to be near the wall, and

the floor lamp near the table.

Living Room: (Figure C.4) We experimented with a typical living room layout, con-

sisting of a TV, sofa, sofa chairs, and coffee table. We also added an extra table and office

chair, and plants. In this setting, we constrained the TV to be the focal point of the furniture

groups, consisting of the sofa, sofa chairs, and coffee table. Our system generated 3 different

layout suggestions for the same layout items and constraints.

C.5 Discussion

We have demonstrated the efficacy of our method by augmenting various input scenes, both

indoor and outdoor. However, our method has some limitations. An incorrect semantic

segmentation of the scene is possible. This typically happens when the input image is not

clean; e.g., it contains a large cast shadow, is under-exposed or over-exposed, or the floor has

a non-uniform pattern. Fortunately, these are unlikely occurrences for our target use case;

i.e., real estate staging, since the sellers of a property tend to capture high-quality images.

In the present study, we did not train our network on outdoor scenes. Therefore, we

expect these scenes to be more challenging. Nevertheless, we also tested our method on

outdoor scenes (Figure 6.15), obtaining some adequate results. We observed that outdoor

92

scenes where similar to indoor scenes with respect to the surface layouts and other segmen-

tation features of the latter. In general, however, our method will not be reliable on outdoor

images.

We used a checkerboard to determine the scale of the scene, calibrate the camera, and

appropriately set the virtual camera used to render the completed layout. This calibration

worked well when the space is approximately rectangular, but it is not accurate in cases

where the space has a non-standard shape. Moreover, placing a marker in a scene is not

always convenient.

A user of our method must manually assign constraints for the layout synthesis step.

Assigning these constraints is straightforward, albeit not automatic. This step can easily be

interchanged with a user-friendly set of questions regarding the user’s layout preferences.

C.6 Conclusion and Future Work

To our knowledge, our system is the first complete, interactive system for augmenting images

of indoor or outdoor spaces with the highly automated synthesis of furnished layouts. Users

of our system can range from ordinary consumers who are looking for a new residence

or are interested in remodeling an existing residence, to interior designers and real-estate

professionals.

In future work, we plan to improve our system by training it on a more diverse set of

images; e.g., by collecting various images, including outdoor scenes and more complex or

cluttered interior scenes from the several commonly available datasets (Everingham et al.,

2015; Song et al., 2015; Silberman et al., 2012; Jiang et al., 2017). Additionally, to further

improve the accuracy of our system, we plan to implement a better scene layout understand-

ing algorithm, such as the one by Ramalingam and Brand (2013) that estimates a layout

using vanishing lines, or the one by Ren et al. (2016a) that proposes FCN-based scene layout

estimation. We also plan to combine holistically-nested edge detection (Xie and Tu, 2015) to

improve the accuracy of our layout detection, which should provide us better 3D scene un-

derstanding. Better scene understanding would enable an extended version of our system to

93

handle images of spaces containing existing furniture, which would help people who want to

add new pieces of furniture or otherwise augment their spaces. Finally, we are interested in

improving visual quality by incorporating an effective approach for estimating the lightning

conditions in the original image (Karsch et al., 2011), so as to more realistically illuminate

the synthesized layouts.

94

REFERENCES

Algower, E. L. and Georg, K. (2003). Introduction to Numerical Continuation Methods,
volume 45 of SIAM Classics in Applied Mathematics. SIAM. 35

Arvin, S. A. and House, D. H. (2002). Modeling architectural design objectives in physi-
cally based space planning. Automation in Construction, 11(2):213–225. 14

Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M., and Khan, A.
(2009). Physics-based generative design. In CAAD Futures Conf., pages 231–244. 14

Autodesk (2011). Homestyler. http://www.homestyler.com. 85

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2015). Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561.
86, 87

Bao, F., Yan, D.-M., Mitra, N. J., and Wonka, P. (2013). Generating and exploring good
building layouts. ACM Trans. Graph., 32(4). 18, 85

Baraff, D. and Witkin, A. (1998). Large steps in cloth simulation. In Proc. SIGGRAPH,
SIGGRAPH ’98, pages 43–54. 19

Bender, J., Koschier, D., Charrier, P., and Weber, D. (2014a). Position-based simulation
of continuous materials. Comp. Graph., 44:1–10. 15

Bender, J., Müller, M., Otaduy, M., Teschner, M., and Macklin, M. (2014b). A sur-
vey on position-based simulation methods in computer graphics. Comp. Graph. Forum.,
33(6):228–251. 15, 20

Beneš, B., Št’ava, O., Měch, R., and Miller, G. (2011). Guided procedural modeling.
Comp. Graph. Forum., 30(2):325–334. 84

Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. (2014a). Projective dynamics:
Fusing constraint projections for fast simulation. ACM Trans. Graph., 33(4):154:1–154:11.
15, 27

Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. (2014b). Projective dynamics:
Fusing constraint projections for fast simulation. ACM Trans. Graph., 33(4):154. 15

Bruneau, J. and Pettré, J. (2015). Energy-efficient mid-term strategies for collision avoid-
ance in crowd simulation. In Symp. Comp. Anim., pages 119–127. 17

Cao, Y., Chan, A. B., and Lau, R. W. (2012). Automatic stylistic manga layout. ACM
Trans. Graph., 31(6):141. 18

Cao, Y., Lau, R. W., and Chan, A. B. (2014). Look over here: Attention-directing
composition of manga elements. ACM Trans. Graph., 33(4):94. 18

95

http://www.homestyler.com

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2016). Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. arXiv Preprint arXiv:1606.00915. 86

Chib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings algorithm.
The American Statistician, 49(4):327–335. 3, 10

Choi, W., Chao, Y.-W., Pantofaru, C., and Savarese, S. (2015). Indoor scene understand-
ing with geometric and semantic contexts. Int. J. Comp. Vis. (IJCV), pages 204–220.
85

Cox, T. and Cox, M. (2000). Multidimensional Scaling, Second Edition. Chapman &
Hall/CRC Monographs on Statistics & Applied Probability. CRC Press. 33

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner, M. (2017).
Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Comp. Vis. and Pat.
Recognition (CVPR). IEEE. 37

Deasy, C. and Lasswell, T. E. (1990). Designing Places for People. Whitney. 39, 40

DeChiara, J., Panero, J., and Zelnik, M. (2001). Time-Saver Standards for Interior Design
and Space Planning. Time-Saver Standards. McGraw-Hill Education. 38

Desbrun, M., Schröder, P., and Barr, A. (1999). Interactive animation of structured
deformable objects. In Proc. of Graph. Interface, pages 1–8. 14

Dutra, T. B., Marques, R., Cavalcante-Neto, J. B., Vidal, C. A., and Pettré, J. (2017).
Gradient-based steering for vision-based crowd simulation algorithms. Comp. Graph. Fo-
rum., 36(2):337–348. 74

Everingham, M., Eslami, S. A., Van Gool, L., Williams, C. K., Winn, J., and Zisserman,
A. (2015). The Pascal visual object classes challenge: A retrospective. Int. J. Comp. Vis.
(IJCV), 111(1):98–136. 93

Feng, T., Yu, L.-F., Yeung, S.-K., Yin, K., and Zhou, K. (2016). Crowd-driven mid-scale
layout design. ACM Trans. Graph., 35(4). 17, 76

Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., and Hanrahan, P. (2012). Example-
based synthesis of 3D object arrangements. ACM Trans. Graph., 31(6):135. 17

Fisher, M., Savva, M., and Hanrahan, P. (2011). Characterizing structural relationships
in scenes using graph kernels. ACM Trans. Graph., 30(4):34. 75

Fratarcangeli, M. and Pellacini, F. (2015). Scalable partitioning for parallel position based
dynamics. Comp. Graph. Forum., 34(2):405–413. 24

Golas, A., Narain, R., and Lin, M. (2013). hybrid long-range collision avoidance for crowd
simulation. In Symp. I3D Graph. Games, I3D ’13, pages 29–36. 16

96

Golas, A., Narain, R., and Lin, M. (2014). Continuum modeling of crowd turbulence.
Phys Rev E, 90:042816. 16, 58

Golub, G. H. and Varga, R. S. (1961). Chebyshev semi-iterative methods, successive over-
relaxation iterative methods, and second order richardson iterative methods. Numerische
Mathematik, 3(1):157–168. 24

Green, S. (2008). Cuda particles. NVIDIA Whitepaper, 2(3.2). 52

Grosso, P. B. (1985). Computer Simulations of Genetic Adaptation: Parallel Subcompo-
nent Interaction in a Multilocus Model. PhD thesis, University of Michigan, Ann Arbor,
MI, USA. 3

Gupta, A., Hebert, M., Kanade, T., and Blei, D. M. (2010). Estimating spatial layout of
rooms using volumetric reasoning about objects and surfaces. In Adv. Neural Info. Proc.
Sys. (NIPS), pages 1288–1296. 85

Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M., and Manocha, D. (2010a). Pledes-
trians: A least-effort approach to crowd simulation. In Symp. Comp. Anim., SCA ’10,
pages 119–128. 17, 58

Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., and Dubey, P. (2009).
Clearpath: Highly parallel collision avoidance for multi-agent simulation. In Symp. Comp.
Anim., SCA ’09, pages 177–187. 16

Guy, S. J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., and Manocha, D. (2010b).
Pledestrians: a least-effort approach to crowd simulation. In Symp. Comp. Anim., SCA
’10, pages 119–128. Eurographics Association. 75

Harada, M., Witkin, A., and Baraff, D. (1995). Interactive physically-based manipulation
of discrete/continuous models. ACM Trans. Graph., pages 199–208. 14, 84

He, L., Pan, J., Narang, S., and Manocha, D. (2016). Dynamic group behaviors for
interactive crowd simulation. In Symp. Comp. Anim., pages 139–147. 17, 57

Hedau, V., Hoiem, D., and Forsyth, D. (2009). Recovering the spatial layout of cluttered
rooms. In Proc. Int. Conf. on Comp. Vis. (ICCV). 85

Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating dynamical features of escape
panic. Nature, 407(6803):487–490. 15, 16

Helbing, D., Johansson, A., and Al-Abideen, H. (2007). Dynamics of crowd disasters: An
empirical study. Phys Rev E, 75(4):046109. 15, 16, 74

Helbing, D. and Molnar, P. (1995). Social force model for pedestrian dynamics. Phys Rev
E, 51(5):4282. 7

Hua, B.-S., Pham, Q.-H., Nguyen, D. T., Tran, M.-K., Yu, L.-F., and Yeung, S.-K. (2016).
Scenenn: A scene meshes dataset with annotations. In 3D Vision (3DV), pages 92–101.
IEEE. 37

97

Izadinia, H., Shan, Q., and Seitz, S. M. (2017). IM2CAD. In IEEE Conf. Comp. Vis.
Pat. Rec. (CVPR). 85

James, D. L. and Pai, D. K. (1999). Artdefo: accurate real time deformable objects. In
Proc. of Comp. Graph. and Interactive Techniques, pages 65–72. ACM Press/Addison-
Wesley Publishing Co. 14

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,
and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In
Proc. ACM Int. Conf. Multimedia, pages 675–678. 91

Jiang, C., Zhu, Y., Qi, S., Huang, S., Lin, J., Guo, X., Yu, L.-F., Terzopoulos, D.,
and Zhu, S.-C. (2017). Configurable, Photorealistic Image Rendering and Ground Truth
Synthesis by Sampling Stochastic Grammars Representing Indoor Scenes. arXiv Preprint
arXiv:1704.00112. 84, 93

Jiang, H., Xu, W., Mao, T., Li, C., Xia, S., and Wang, Z. (2010). Continuum crowd
simulation in complex environments. Comp. Graph., 34(5):537 – 544. 16

Jiang, Y., Koppula, H. S., and Saxena, A. (2016). Modeling 3D environments through
hidden human context. IEEE Trans. Pat. Analysis and Machine Intelligence, pages 2040–
2053. 85

Jiang, Y., Lim, M., and Saxena, A. (2012a). Learning object arrangements in 3D scenes
using human context. In Proc. Int. Conf. on Machine Learning, USA. 85

Jiang, Y., Lim, M., Zheng, C., and Saxena, A. (2012b). Learning to place new objects in
a scene. Int. J. Robotics Research, 31(9):1021–1043. 85

Jiang, Y. and Saxena, A. (2013). Infinite latent conditional random fields for modeling
environments through humans. In Robotics: Science and Systems, pages 1–8. 85

Johnson, S. G. (2011). The NLopt nonlinear-optimization package. 69

Jones, L. M. and Allen, P. S. (2014). Beginnings of Interior Environments. Pearson. 39,
40, 41, 45, 46

Kallmann, M. and Kapadia, M. (2016). Geometric and discrete path planning for in-
teractive virtual worlds. Synthesis Lectures on Visual Computing: Computer Graphics,
Animation, Computational Photography, and Imaging, 8(1):1–201. 73

Kapadia, M., Beacco, A., Garcia, F., Reddy, V., Pelechano, N., and Badler, N. I. (2013).
Multi-domain real-time planning in dynamic environments. In Symp. Comp. Anim., pages
115–124. ACM. 73

Karamouzas, I., Skinner, B., and Guy, S. (2014). Universal power law governing pedestrian
interactions. Phys Rev Lett, 113:238701. 7, 15, 16, 28, 58, 59, 74

Karamouzas, I., Sohre, N., Narain, R., and Guy, S. (2017). Implicit crowds: Optimization
integrator for robust crowd simulation. ACM Trans. Graph., 36(4). 16, 74

98

Karsch, K., Hedau, V., Forsyth, D., and Hoiem, D. (2011). Rendering synthetic objects
into legacy photographs. ACM Trans. Graph., 30(6):157. 94

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. J.
Statistical Phys., 34(5-6):975–986. 3

Kwon, T. and Shin, S. Y. (2007). A steering model for on-line locomotion synthesis.
Computer Animation and Virtual Worlds, 18:463–472. 73

Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popović, Z. (2010). Motion fields
for interactive character locomotion. ACM Trans. Graph., 29(6):138. 72

Lipp, M., Wonka, P., and Wimmer, M. (2008). Interactive visual editing of grammars for
procedural architecture. ACM Trans. Graph., 27(3). 84

Liu, T., Bargteil, A., O’Brien, J., and Kavan, L. (2013). Fast simulation of mass-spring
systems. ACM Trans. Graph., 32(6):209:1–7. 15

Lockwood, N. and Singh, K. (2011). Biomechanically-inspired motion path editing. In
Symp. Comp. Anim., pages 267–276. ACM. 73

Lok, S., Feiner, S., and Ngai, G. (2004). Evaluation of visual balance for automated
layout. In Proc. of the 9th Int. Conf. on Intelligent user interfaces, pages 101–108. ACM.
45

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic
segmentation. In IEEE Conf. Comp. Vis. Pat. Rec. (CVPR), pages 3431–3440. 86

Macklin, M. and Müller, M. (2013). Position based fluids. ACM Trans. Graph.,
32(4):104:1–104:12. 28

Macklin, M., Müller, M., and Chentanez, N. (2016). Xpbd: Position-based simulation of
compliant constrained dynamics. In Motion in Games, MIG ’16, pages 49–54. 15, 23

Macklin, M., Müller, M., Chentanez, N., and Kim, T. (2014a). Unified particle physics
for real-time applications. ACM Trans. Graph., 33(4):153:1–153:12. 15, 16, 28, 52

Macklin, M., Müller, M., Chentanez, N., and Kim, T. (2014b). Unified particle physics
for real-time applications. ACM Trans. Graph., 33(4):104. 24, 36

Majerowicz, L., Shamir, A., Sheffer, A., and Hoos, H. H. (2014). Filling your shelves:
Synthesizing diverse style-preserving artifact arrangements. IEEE Trans. Vis. Comp.
Graph., 20(11):1507–1518. 18

Manteaux, P.-L., Wojtan, C., Narain, R., Redon, S., Faure, F., and Cani, M.-P. (2016).
Adaptive physically based models in computer graphics. In Comp. Graph. Forum. Wiley
Online Library. 14

Merrell, P., Schkufza, E., and Koltun, V. (2010). Computer-generated residential building
layouts. In ACM Trans. Graph., volume 29, page 181. ACM. 84

99

Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. (2011). Interactive furni-
ture layout using interior design guidelines. ACM Trans. Graph., 30(4):87. 10, 17, 45, 69,
84, 90

Müller, M., Chentanez, N., Kim, T.-Y., and Macklin, M. (2014). Strain based dynamics.
In Symp. Comp. Anim., pages 149–157. 15

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. (2007). Position based dynamics.
Virtual Reality Interactions and Physical Simulations (VRIPHYS), 18(2):109–118. 4, 14,
36, 37, 38

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. (2007). Position based dynamics.
J Vis Comm Imag Repre, 18(2):109–118. 90

Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L. (2006). Procedural
modeling of buildings. ACM Trans. Graph., 25(3). 84

Narain, R., Golas, A., Curtis, S., and Lin, M. (2009). Aggregate dynamics for dense crowd
simulation. ACM Trans. Graph., 28(5):122:1–122:8. 16, 27, 74

Narain, R., Overby, M., and Brown, G. E. (2016). Admm ⊇ projective dynamics: Fast
simulation of general constitutive models. In Symp. Comp. Anim., pages 21–28. Euro-
graphics Association. 15

Narang, S., Best, A., Curtis, S., and Manocha, D. (2015). Generating pedestrian trajec-
tories consistent with the fundamental diagram based on physiological and psychological
factors. PLoS one, 10(4):e0117856. 75

O’brien, J. F. and Hodgins, J. K. (1999). Graphical modeling and animation of brittle
fracture. In Proc. of Comp. Graph. and Interactive Techniques, pages 137–146. ACM
Press/Addison-Wesley Publishing Co. 14

Parish, Y. I. H. and Müller, P. (2001). Procedural modeling of cities. In Proc. SIGGRAPH,
pages 301–308. 84

Pelechano, N., Allbeck, J. M., Kapadia, M., and Badler, N. I. (2016). Simulating hetero-
geneous crowds with interactive behaviors. CRC Press. 73

Peng, C.-H., Yang, Y.-L., and Wonka, P. (2014). Computing layouts with deformable
templates. ACM Trans. Graph., 33(4):99. 18

Qin, H. and Terzopoulos, D. (1996). D-nurbs: a physics-based framework for geometric
design. IEEE Trans. Vis. Comp. Graph., 2(1):85–96. 14

Ramalingam, S. and Brand, M. (2013). Lifting 3D Manhattan lines from a single image.
In Proc. Int. Conf. on Comp. Vis. (ICCV), pages 497–504. 85, 93

Reif, D. (1993). Home Quick Planner: Reusable, Peel & Stick Furniture & Architectural
Symbols. Gardeners’ Guide. 85

100

Reinert, B., Ritschel, T., and Seidel, H.-P. (2013). Interactive by-example design of artistic
packing layouts. ACM Trans. Graph., 32(6):218. 18

Ren, Y., Chen, C., Li, S., and Kuo, C.-C. J. (2016a). A coarse-to-fine indoor layout
estimation (CFILE) method. arXiv Preprint arXiv:1607.00598. 93

Ren, Z., Charalambous, P., Bruneau, J., Peng, Q., and Pettré, J. (2016b). Group model-
ing: A unified velocity-based approach. In Comp. Graph. Forum. Wiley Online Library.
17

Reynolds, C. (1987). Flocks, herds and schools: A distributed behavioral model. Comp.
Graph., 21(4):25–34. 16, 74

Reynolds, C. (1999). Steering behaviors for autonomous characters. In Game Dev Conf,
volume 1999, pages 763–782. 6, 16

Rother, C., Kolmogorov, V., and Blake, A. (2004). Grabcut: Interactive foreground
extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309–314. 87

Sarrafzadeh, M. and Lee, D.-T. (1993). Algorithmic Aspects of VLSI Layout, volume 2.
World Scientific. 84

Satoi, D., Hagiwara, M., Uemoto, A., Nakadai, H., and Hoshino, J. (2016). Unified motion
planner for fishes with various swimming styles. ACM Trans. Graph., 35(4). 74

Schaumann, D., Breslav, S., Goldstein, R., Khan, A., and Kalay, Y. E. (2017). Simulat-
ing use scenarios in hospitals using multi-agent narratives. J. of Building Performance
Simulation, 10(5-6):636–652. 76

Schechter, H. and Bridson, R. (2012). Ghost sph for animating water. ACM Trans.
Graph., 31(4):61:1–61:8. 28

Shao, W. and Terzopoulos, D. (2007). Autonomous pedestrians. Graph Models, 69(5-
6):246–274. 15, 72

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and
support inference from rgbd images. European Conf. on Comp. Vis. (ECCV), pages 746–
760. 37, 93

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv Preprint arXiv:1409.1556. 86

Smelik, R. M., Tutenel, T., Bidarra, R., and Benes, B. (2014). A survey on procedural
modelling for virtual worlds. Comp. Graph. Forum., 33(6):31–50. 9, 84

Song, S., Lichtenberg, S. P., and Xiao, J. (2015). Sun RGB-D: A RGB-D scene under-
standing benchmark suite. In IEEE Conf. Comp. Vis. Pat. Rec. (CVPR), pages 567–576.
93

101

Stam, J. (2009). Nucleus: Towards a unified dynamics solver for computer graphics. In
Comp Design Comp Graph., pages 1–11. IEEE. 4, 14, 36

Št’ava, O., Beneš, B., Měch, R., Aliaga, D. G., and Krǐstof, P. (2010). Inverse procedural
modeling by automatic generation of L-systems. Comp. Graph. Forum., 29(2). 84

Talbott, C., Matthews, M., and Cosentino, C. (1999). Decorating for Good: A Step-by-step
Guide to Rearranging what You Already Own. C. Potter. 45

Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. (2011). Metropolis
procedural modeling. ACM Trans. Graph., 30(2). 84

Teran, J., Blemker, S., Hing, V., and Fedkiw, R. (2003). Finite volume methods for the
simulation of skeletal muscle. In Symp. Comp. Anim., SCA ’03, pages 68–74. Eurographics
Association. 14

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically deformable
models. ACM Trans. Graph., 21(4):205–214. 14

Teschner, M., Heidelberger, B., Muller, M., and Gross, M. (2004). A versatile and robust
model for geometrically complex deformable solids. In Proc. of Comp. Graph. Interna-
tional, pages 312–319. IEEE. 19

Teschner, M., Heidelberger, B., Müller, M., Pomerantes, D., and Gross, M. H. (2003).
Optimized spatial hashing for collision detection of deformable objects. In VMV, volume 3,
pages 47–54. 42

Thalmann, D., Grillon, H., Maim, J., and Yersin, B. (2009). Challenges in crowd simula-
tion. In Int Conf on CyberWorlds, pages 1–12. IEEE. 5

Tonge, R., Benevolenski, F., and Voroshilov, A. (2012). Mass splitting for jitter-free
parallel rigid body simulation. ACM Trans. Graph., 31(4):105. 15

Treuille, A., Cooper, S., and Popović, Z. (2006). Continuum crowds. ACM Trans. Graph.,
25(3):1160–1168. 16

Van Den Berg, J., Guy, S. J., Lin, M., and Manocha, D. (2011). Reciprocal n-body
collision avoidance. In Robotics research, pages 3–19. Springer. 74

Van den Berg, J., Lin, M., and Manocha, D. (2008). Reciprocal velocity obstacles for
real-time multi-agent navigation. In ICRA, pages 1928–1935. IEEE. 16

Vanegas, C. A., Garcia-Dorado, I., Aliaga, D. G., Benes, B., and Waddell, P. (2012).
Inverse design of urban procedural models. ACM Trans. Graph., 31(6). 84

Vaughan, C. L. and OMalley, M. J. (2005). Froude and the contribution of naval ar-
chitecture to our understanding of bipedal locomotion. Gait & posture, 21(3):350–362.
73

102

Wang, H. (2015). A chebyshev semi-iterative approach for accelerating projective and
position-based dynamics. ACM Trans. Graph., 34(6):246:1–246:9. 15

Weiss, T., Litteneker, A., Duncan, N., Jiang, C., Yu, L.-F., and Terzopoulos, D. (2018).
Fast, scalable layout synthesis. IEEE Trans. Vis. Comp. Graph. Under review. 5, 85, 90

Weiss, T., Litteneker, A., Jiang, C., and Terzopoulos, D. (2017a). Position-based multi-
agent dynamics for real-time crowd simulation. In Motion in Games, MIG ’17, pages
10:1–10:8, New York, NY, USA. ACM. 5

Weiss, T., Nakada, M., and Terzopoulos, D. (2017b). Automated layout synthesis and
visualization from images of interior or exterior spaces. In Comp. Vis. and Pat. Recognition
workshop on Vis. Meets Cognition (CVPR), pages 41–47. IEEE. 5, 83

Witkin, A., Fleischer, K., and Barr, A. (1987). Energy constraints on parameterized
models. In Proc. SIGGRAPH, SIGGRAPH ’87, pages 225–232, New York, NY, USA.
ACM. 3

Witkin, A. and Kass, M. (1988). Spacetime constraints. Proc. SIGGRAPH, 22(4):159–
168. 3

Wolinski, D., Lin, M. C., and Pettré, J. (2016). Warpdriver: context-aware probabilistic
motion prediction for crowd simulation. ACM Trans. Graph., 35(6):164. 74

Wu, W., Fan, L., Liu, L., and Wonka, P. (2018). Miqp-based layout design for building
interiors. In Comp. Graph. Forum. Wiley Online Library. 75, 85

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). Sun database:
Large-scale scene recognition from abbey to zoo. In Comp. Vis. and Pat. Recognition
(CVPR), pages 3485–3492. IEEE. 86, 87

Xie, S. and Tu, Z. (2015). Holistically-nested edge detection. In Proc. of the Int. Conf.
on Comp. Vis. (ICCV), pages 1395–1403. IEEE. 89, 93

Xu, K., Ma, R., Zhang, H., Zhu, C., Shamir, A., Cohen-Or, D., and Huang, H. (2014).
Organizing heterogeneous scene collections through contextual focal points. ACM Trans.
Graph., 33(4):35. 75

Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. (2012). Synthe-
sizing open worlds with constraints using locally annealed reversible jump mcmc. ACM
Trans. Graph., 31(4):56. 10, 17, 37, 65, 85

Yu, F. and Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions.
In Int. Conf. on Learning Representations. 86

Yu, L.-F., Yeung, S. K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. (2011).
Make it home: Automatic optimization of furniture arrangement. ACM Trans. Graph.,
30(4):86. 9, 10, 17, 41, 45, 46, 67, 69, 84, 90

103

Yu, L.-F., Yeung, S.-K., and Terzopoulos, D. (2016). The clutterpalette: An interactive
tool for detailing indoor scenes. IEEE Trans. Vis. Comp. Graph., 22(2):1138–1148. 76

Yu, Q. and Terzopoulos, D. (2007). A decision network framework for the behavioral
animation of virtual humans. In Symp. Comp. Anim., SCA ’07, pages 119–128. 15, 72

Zhang, E., Cohen, M. F., and Curless, B. (2016). Emptying, refurnishing, and relighting
indoor spaces. ACM Trans. Graph., 35(6). 85

Zhang, Y., Pettré, J., Peng, Q., and Donikian, S. (2009). Data based steering of virtual
human using a velocity-space approach. In Motion in Games, pages 170–181. Springer.
73

Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. (2012). Motion-guided
mechanical toy modeling. ACM Trans. Graph., 31(6):127. 18

Zhu, Y., Jiang, C., Zhao, Y., Terzopoulos, D., and Zhu, S.-C. (2016). Inferring forces
and learning human utilities from videos. In IEEE Conf. Comp. Vis. Pat. Rec. (CVPR),
pages 3823–3833. 85

104

	1 Introduction
	1.1 Contributions of the Thesis
	1.1.1 Position-Based Multi-Agent Dynamics for Real-Time Crowd Simulation
	1.1.2 Fast, Scalable Layout Synthesis

	1.2 Thesis Organization

	2 Review of Related Work
	2.1 Physics-Based Modeling
	2.2 Position-Based Methods
	2.3 Crowd Simulation
	2.4 Layout Synthesis

	3 Review of Position-Based Dynamics
	3.1 Fundamentals
	3.2 Iterative Solver

	4 Crowd Simulation
	4.1 Algorithm Overview
	4.2 Details of the Algorithm
	4.2.1 Velocity Blending
	4.2.2 Frictional Contact
	4.2.3 Cohesion
	4.2.4 Long Range Collision
	4.2.5 Avoidance Model
	4.2.6 Maximum Speed and Acceleration Limiting
	4.2.7 Walls and Obstacles

	5 Layout Synthesis
	5.1 Algorithm Overview
	5.2 Details of the Algorithm
	5.2.1 Algorithm Setup
	5.2.2 Layout Synthesis
	5.2.3 Constraint Projection
	5.2.4 Constraint Setup
	5.2.5 Layout Constraint Types
	5.2.6 Differentiation of the Layout Constraints

	6 Experiments and Results
	6.1 Crowd Simulation
	6.1.1 Setup and Parameter Settings
	6.1.2 Benchmarks and Analysis
	6.1.3 Comparison
	6.1.4 Discussion

	6.2 Layout Synthesis
	6.2.1 3D Layout Synthesis
	6.2.2 Layout Synthesis in Tightly-Packed Scenarios
	6.2.3 Application: Layout Synthesis from Real-World Images
	6.2.4 Comparison
	6.2.5 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Future Work
	7.2.1 Crowd Simulation
	7.2.2 Layout Synthesis

	A Details of the Constraints Setup
	A.1 Theater Constraints
	A.2 Picnic Constraints
	A.3 Living-Room Constraints
	A.4 Desk Constraints
	A.5 Tightly-Packed Bedroom
	A.6 Tightly-Packed Picnic

	B Simulated Annealing Comparison
	C Automated Layout Synthesis From Real-World Images
	C.1 Introduction
	C.2 Related Work
	C.2.1 Layout Synthesis
	C.2.2 Understanding Environments
	C.2.3 Pixel-Wise Semantic Segmentation

	C.3 Algorithm
	C.3.1 Semantic Segmentation of the Scene
	C.3.2 Inferring a 3D Estimate of the Scene
	C.3.3 Layout Synthesis and Visualization

	C.4 Results
	C.5 Discussion
	C.6 Conclusion and Future Work

	References

