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Abstractions are fundamental to human intelligence, extending far beyond pattern recog-

nition. They enable the distillation and organization of complex information into struc-

tured knowledge, facilitate the succinct communication of intricate ideas, and empower

us to navigate complex decision-making scenarios with consistent value prediction. The

ability to abstract is particularly fascinating because abstractions are not inherently

present in raw data — they are latent variables underlying our observations. Despite

the recent phenomenal advances in modeling data distributions, Generative Artificial In-

telligence (GenAI) systems still lack robust principles for the autonomous emergence of

latent abstractions.

This dissertation studies the problem of unsupervised latent abstraction learning,

focusing on developing modeling, learning, and inference methods for latent-variable gen-

erative models across diverse high-dimensional data modalities. The core premise is that

by incorporating algebraic, geometric, and statistical structures into the latent space and

generator, we can cultivate representations of latent variables that explain observed data

in alignment with human understanding.

The dissertation consists of four parts. The first three explore the generative con-

structs of latent abstractions for Category, Object, and Decision, respectively. Part I

examines the basic structure of categories, emphasizing their symbol-vector duality. We

ii



develop a latent-variable text model with a coupling of symbols and vectors in its repre-

sentations. We investigate another representation that is both discrete and continuous —

iconic symbols — in a visual communication game. Part II enriches the abstract structure

by shifting focus to object-centric abstractions in visual data. We introduce a generative

model that disentangles objects from backgrounds in the latent space. We then rethink

the algebraic structures of object abstractions and propose a novel metric that measures

compositionality as a more generic form than disentanglement. Part III incorporates

situational context by introducing a sequential decision-making aspect with trajectory

data. Here, latent abstractions manifest as actions and plans. We bridge the theories of

decision-making and generative modeling, proving that the inference of latent decisions

enhances consistency with the model’s understanding while optimizing intrinsic values.

Whereas these three parts adopt the paradigm of directly learning from raw data, Part IV

introduces a dialectic discussion with an alternative paradigm, Knowledge Distillation.

We demonstrate how to distill from and accelerate the state-of-the-art massive-scale data-

space models by re-purposing our methods and techniques for latent-variable generative

modeling.

Together, the contributions of this dissertation enable GenAI systems to overcome the

critical bottlenecks of alignment, efficiency, and consistency in representation, inference,

and decision-making.
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CHAPTER 1

Introduction

Abstractions play a fundamental role in human intelligence. They enable us to create

mental models that capture the essential patterns of objects, ideas, or situations while

filtering out irrelevant details. This cognitive ability enhances our capacity to make pre-

dictions and decisions across diverse domains, ultimately allowing us to understand and

navigate the world more efficiently. Situated at the intersection of the fields of machine

learning, cognitive science, developmental psychology, and neuroscience, a fundamental

challenge for the development of artificial intelligence is abstraction learning and infer-

ence that supports the autonomous organization of complex information into knowledge

that aligns with human understanding.

The study of information patterns from a generative perspective has a rich history

across various disciplines. Among them, Grenander’s pattern theory (Grenander, 1970;

Grenander and Miller, 2007) is a unifying framework in which patterns are represented

through probabilistic models on random variables with algebraic structures. This mathe-

matical approach encompasses most modern probabilistic generative models, which have

driven the impressive advancements in Generative AI (Brown et al., 2020; Team et al.,

2023; Touvron et al., 2023; Ramesh et al., 2021; Saharia et al., 2022; Brooks et al., 2024).

However, most of these recent successes model the probability distributions of observed

data. To date, we still lack robust methodologies for extending pattern theoretic princi-

ples to model abstractions latent within the data.
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1.1 Research Objective

The objective of the research presented in this dissertation is to develop abstraction

learning and inference methods for latent-variable generative models. In particular, we

study the key methodological aspects of latent abstractions:

• Modeling: How does one build generic priors into latent-variable models for the

algebraic structures of various abstractions across diverse data modalities?

• Learning: What are the effective objectives for unsupervised latent abstraction

learning in generative modeling, and how are they related?

• Inference: What are the advantages of explicit inference over latent abstractions in

learning and decision-making, and how can it be implemented?

These aspects are concretely investigated in the generative constructs of three latent

abstractions: Category, Object and Decision. Depending on the structures of the ab-

stractions, each individual case study may focus on different aspects. This dissertation

provides multifaceted answers to the above questions that open avenues of future research

on unsupervised latent abstraction learning and inference in generative modeling.

1.2 Dissertation Overview

This dissertation consists of four parts. The first three are dedicated to developing the

pattern theoretic approach in case studies of core abstractions in human cognition: Cate-

gory, Object, and Decision. These topics are inspired by how developmental psychologists

study the human learning of abstract concepts (Carey, 2000). In the final part, we show

how these methods and techniques can be applied to an alternative paradigm that is

currently attracting much interest the research community.
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1.2.1 Category

Category is the most fundamental abstraction in human knowledge. The development

of categorization abilities in humans begins in infancy (0–2 years of age) (Bloom, 2002).

While the structures between categories (independent or correlated, hierarchical or com-

positional) are the usual perspectives for studying this abstraction, we are more interested

in the (discrete) symbol versus (continuous) vector duality of its representation. This

is inspired the well-known duality between particles and waves in physics, which can be

interpreted as the impossibility of a strict discretization and the existence of a contin-

uum where all categories reside. Part I of this dissertation investigates the emergence

of symbol-vector representations for categories. It consists of the following two chapters,

which provide distinctive views to the symbol-vector duality:

Chapter 2 is primarily based on our publication (Yu et al., 2022b) wherein we intro-

duce a generative model with coupled vector and symbolic latent variables. This model

is learned with Maximum Likelihood Estimation, augmented by an Information Bottle-

neck (IB). We further introduce geometric structures into the vector representation to

encourage latent clustering. We show that with a dedicated design that introduces multi-

ple levels of noises to the latent space to facilitate Markov Chain Monte Carlo (MCMC)

sampling, this latent variable model with a specially structured prior can match the

distribution of the observed text data, and create categorically interpretable latent ab-

stractions in the meantime. This chapter demonstrates how to design latent abstraction

models with the language and tools from generative modeling.

Chapter 3 is primarily based on our publication (Qiu et al., 2022) wherein we in-

troduce a visual communication game resembling a repeated version of pictionary. The

communication between the sender and the receiver is a metaphor for the encoder-decoder

architecture of representation learning. Uniquely to this game, the representation of the

latent abstractions is sequentially generated with a Markov Decision Process (MDP). By

developing a novel learning algorithm with techniques from Reinforcement Learning (Sut-

ton and Barto, 2018), we show how the modeling of this MDP implements the IB in a way
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that is distinct from the conventional framework of generative modeling, as in Chapter 2.

We demonstrate how we can define metrics for symbolicity, iconicity, and semanticity to

assess the representational structure of the emergent abstractions for the symbol-vector

duality. We discover some intriguing phenomena suggestive of the advantages of this

sequentially modeled latent abstraction in alignment and generalization.

1.2.2 Object

Object is another core abstraction in human cognition. Experiments show that both

adults and infants form latent abstractions of objects, which are usually referred to as

’object files’ in psychology (Kahneman et al., 1992). To learn an object-centric abstraction

bears overloaded meanings in computer vision and cognitive science, which may include

acquiring structured representations of texture, shape, part-whole structure, functionality,

etc. At the start of this doctoral study, there already existed abundant prior literature

on this topic. Nevertheless, the following two chapters, which comprise Part II of the

dissertation, are relevant and significant because one demonstrates a holistic prototype

that answers all the above questions and the other evaluates and challenges existing

models.

Chapter 4 is primarily based on our publication (Yu et al., 2021) wherein we introduce

a specially structured Latent Energy-Based Model whose inference realizes a latent ab-

straction variant of the seminal image segmentation method, Region Competition (Zhu

and Yuille, 1996). We show how to build generic statistical inductive biases in both

the prior and the generator to encourage structures in the latent space. We apply the

EM algorithm (Dempster et al., 1977) as a universal framework to achieve Maximum

Likelihood Estimation. We further demonstrate the advantage of iterative inference over

latent abstraction, following the Bayesian principles, with state-of-the-art performance

and out-of-distribution generalization in natural image foreground disentanglement tasks.

Chapter 5 is primarily based on our publication (Xie et al., 2022) wherein we introduce

a new metric to measure compositionality, an algebraic structure for object abstraction
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that is more general than disentanglement. We demonstrate how to form a minimal

hypothesis for representations that preserves the equivariance of object compositionality

and how to realize it as a statistical test. By measure existing models against this metric,

we reveal insights that were obscure in previous disentanglement or segmentation metrics.

Surprisingly, existing models seem to lack an understanding of the absence or the unique

identity of an object, which are intuitive properties of object abstractions.

1.2.3 Decision

Decision is the abstraction that underpins the core cognition of agency. A decision dif-

ferentiates itself from a passive transition because there is an associated value that this

decision is expected to optimize. The study of Heider and Simmel (1944) is one of the

most well-known experiments that illustrate the latent decisions that humans can infer

from videos of geometric shapes moving around. While the conventional modeling for

sequential decision-making is based upon the optimization of the expected cumulative re-

turns over a Markov Decision Process, we challenge it with the outlook of non-Markovian

context induced by partial observability and the validity of extrinsic, human-crafted,

step-wise rewards. In Part III, of the dissertation, comprising the following two chapters,

we introduce new formalizations of decision-making with the language of generative se-

quence modeling to bypass the limitation of Temporal Difference (TD) learning (Sutton

and Barto, 2018):

Chapter 6 is primarily based on our publication (Qin et al., 2023) wherein we design

a generative model, Latent-action non-Markov Decision Process (LanMDP), for learning

from demonstrations (state-only sequences). We start by developing Maximum Likeli-

hood learning and associated inference algorithms from a purely generative standpoint

and then derive an interpretation from the decision-making perspective. The connection

is built by constructing a non-Markovian reward that instantiates a Bellman fixed point

for the Maximum Likelihood Estimate. This constructive proof justifies the equivalence

of a non-Markovian decision-making objective that maximizes the intrinsic value and the
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autoregressive sequence modeling objective over the demonstrations. This equivalence

provides profound insights for the consistency between the understanding of an agent’s

prior experience and the agent’s intrinsic value.

Chapter 7 is primarily based on our publication (Kong et al., 2024) wherein we ex-

tend the investigation of latent generative modeling for decision-making into the data

of trajectory-return pairs. The introduction of the extrinsic returns provides flexibility

for task specification without involving human interventions into the intricate credit as-

signment task. We design a new generative model, Latent Plan Transformer, in which

we introduce a temporal abstraction of plans. We show that the inference of this la-

tent abstraction during training enforces temporal consistency, potentially resolving the

breakdown of the equivalence in Chapter 6 when the Maximum Likelihood Estimation

has not been optimized to consistency. We also develop a principled implementation for

the exploration-exploitation trade-off with the inference of the latent plan. Thus, we offer

an affirmative answer to the advantages of latent abstraction inference in both learning

and planning. Due to the architectural similarity between LPT’s trajectory generator

and state-of-the-art Large Language Models (Brown et al., 2020; Team et al., 2023), this

answer can be further generalized to modern GenAI systems for real-world reasoning and

decision-making.

1.2.4 Knowledge Distillation

While all the abstraction learning methods that we introduce in the previous three parts

of this dissertation directly deal with raw data, it is debatable whether such a learning-

from-scratch paradigm is efficient, especially given the currently popular research trend

focusing on foundational generative models (Bommasani et al., 2021). In the final part

of the dissertation, we provide a dialectic discussion with knowledge distillation as an

alternative paradigm that fits better with the ongoing research efforts.

Chapter 8 is primarily based on our publication (Xie et al., 2024) wherein we intro-

duce an algorithm, EM Distillation, that distills knowledge from data-space generative
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models to latent-variable models. Despite of the paradigmic shift, we demonstrate how

the Maximum Likelihood learning and MCMC-based inference techniques developed in

the earlier chapters can be seamlessly applied to promote empirical success at signifi-

cantly larger scales. This success validates the generality of the methodological research

independent from the learning paradigm, opening up new avenues for future research

into unsupervised abstraction learning.

7



Part I

Category
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CHAPTER 2

Learning Symbol-Vector Latent Space in Generative

Text Modeling

2.1 Introduction

Categories are arguably the most fundamental abstractions in human cognition. Their

external manifestations — symbols such as nouns, verbs, and adjectives — are universal

across human languages. As the building blocks of human knowledge, these symbols

have fueled modernization. However, an intriguing phenomenon associated with this

powerful cognitive faculty is the frustration that often accompanies the joy of organizing

things into categories, stemming from the inevitable ambiguity inherent in the thought

process of categorization. Franz Kafka masterfully captured this subtle tension in his

surrealist novels, The Trial and The Castle. This duality prompts us to question the

origins of symbols and whether they are the sole representational form for categories. In

this opening chapter of the technical body of the dissertation, we explore a generative

model that not only learns the latent abstraction of categories, but also produces a

representation that couples the dual forms of discrete symbols and continuous vectors.

To ensure interpretability, we focus our initial investigation on text data.

Text modeling has achieved impressive progress with the fast development of neural

generative models (Serban et al., 2016; Li et al., 2017a; Zhao et al., 2017; Gupta et al.,

2018; Zhao et al., 2018a). It allows near human-level text generation quality and also

leads to a wide range of real-world applications such as dialog system (Young et al.,

2013) and machine translation (Brown et al., 1993). Although the quality of generation

(e.g., fluency and diversity) is the primary concern of most work, interpretability of the
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generation process has drawn much attention recently. Among the existing frameworks,

the Deep Latent Variable Model (DLVM) is especially suitable for the task, as the learned

latent space can capture high-level structures with semantic meanings like topics (Wang

et al., 2019) and dialog actions (Zhao et al., 2018b); such a latent space can further enable

more interpretable text modeling, featuring unsupervised text attributes discovery (Wen

et al., 2017), conditional and controllable text generation (Fang et al., 2019; Shi et al.,

2020), and semi-supervised text classification (Pang and Wu, 2021).

In essence, the DLVM summarizes the observed sample (e.g., a piece of text) into

inferred latent variables. Earlier text-modeling methods with the DLVM mostly follow

the formulation of the Variational Auto-Encoder (VAE) (Kingma and Welling, 2014a;

Rezende et al., 2014; Bowman et al., 2016), which assumes a continuous latent space.

More recently, Zhao et al. (2018b) explore the possibility of using a discrete latent space

to capture dialog actions, andShi et al. (2020) propose to use the VAE with the mixture

of Gaussians as the prior, demonstrating promising interpretability of dialog utterance

generation. To further improve the expressivity of the latent space, Pang and Wu (2021)

leverage the flexibility of energy-based priors (Pang et al., 2020a) and learn a structured

latent space for interpretable text generation and classification. Specifically, they pro-

pose a symbol-vector coupling prior model. The continuous latent variables are coupled

with discrete one-hot symbol variables, allowing better discrete structure induction with-

out sacrificing the generation quality offered by the continuous latent space. However,

similar to learning an Energy-Based Model (EBM) in data space, the learning of energy-

based priors requires Markov Chain Monte Carlo (MCMC) sampling, whose quality can

degenerate in practice (Grathwohl et al., 2019; Nijkamp et al., 2019, 2020a; Gao et al.,

2020), especially on data with complex latent structures; it often leads to instability

during training. As we demonstrate empirically in Section 2.4.1, this phenomenon is

particularly concerning when adopting the variational learning scheme to update model

parameters.

To remedy this MCMC sampling issue, we may take a look at the endeavor of EBM

learning in general. Among the recent efforts, methods drawing inspiration from diffusion
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probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song and Ermon, 2020;

Song et al., 2020b) have demonstrated superior results. In particular, Gao et al. (2020)

propose a diffusion recovery likelihood method to learn and sample from a sequence of

EBMs defined on increasingly noisy versions of a dataset and the models are trained by

optimizing conditional likelihoods, which are more tractable than the marginal likelihood.

This greatly mitigates the burden of sampling during training. A natural question thus

emerges: Can we leverage the methodology of diffusion models to address the learning

issue of energy-based priors?

In this chapter, we make the first attempt to address the learning issue of energy-based

priors by leveraging diffusion models in the latent space, with a focus on interpretable

text modeling. We first unveil the non-trivial symbiosis between latent-space EBMs

and diffusion models. Specifically, we focus on the symbol-vector coupling prior and we

construct a flexible process that restores the hidden structure in text data by noise-level-

aware sampling from a learned sequence of conditional EBMs in the latent space. A

variational learning framework is then derived from it. We further employ a geometric

clustering-based regularization that complements the symbol-inducing information bot-

tleneck to improve the quality of learned latent space. We refer to the resulting model as

the Latent Diffusion Energy-Based Model (LDEBM). Compared to Gao et al. (2020) who

deal with EBMs in the data space, the LDEBM is directly applicable to text data with

or without labels; it extracts interpretable latent structures that benefit potential down-

stream tasks such as semi-supervised classification. Although there are methods that

use diffusion models in the latent space, some of which have achieved very impressive

image generation results (e.g., (Vahdat et al., 2021)), few of them to our knowledge have

explored (unsupervised) symbol induction in the latent space, especially on text data.

In addition, our method can be trained from scratch and forms a well-structured latent

space without pretraining, as required by concurrent work on image modeling, such as

(Vahdat et al., 2021) and (Nie et al., 2021). In our experiments on generative modeling

and interpretable text modeling, the LDEBM largely outperforms strong counterparts in

terms of both the generation quality and interpretability of the learned latent space.
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Contributions (1) We introduce a novel symbiosis of the latent space EBM and

diffusion model in a variational learning framework; the model can be trained from

scratch, is directly applicable to text data with or without labels, and shows superior

sampling quality. (2) We develop a geometric clustering-based regularization jointly

with the information bottleneck that tackles the mode-collapse problem in variational

learning of the latent space EBM. (3) Our experiments demonstrate that the proposed

model learns a well-structured latent space and delivers strong results on interpretable

text modeling.

2.2 Preliminaries: Symbol-Vector Coupling EBM

We assume that for an observed high-dimensional sample x ∈ R
D, there exists z ∈ R

d

as its compact continuous latent variables. We assume that y is the symbolic one-hot

vector indicating one of K categories that z belongs to. The complete-data distribution

is pθ(y, z, x) = pα(y, z)pβ(x|z), where pα(y, z) is the joint prior model with parameters

α, and pβ(x|z) is the top-down generation model with parameters β; henceforth, we use

θ = (α,β) to summarize the parameters. Given z, y and x are independent; i.e., z is

sufficient for y in this model.

Pang and Wu (2021) propose to formulate the joint prior model

pα(y, z) =
1

Zα

exp(〈y, fα(z)〉)p0(z), (2.1)

as an EBM, where p0(z) is a reference distribution, assumed to be the non-informative

prior (e.g., isotropic Gaussian or uniform) of the conventional generation model, fα(z) ∈
R
K is parameterized by a small multi-layer perceptron, and Zα is the normalizing con-

stant or partition function. The energy term 〈y, fα(z)〉 in (2.1) forms an associative

memory that couples the symbol y and the dense vector z. Given z,

pα(y|z) ∝ exp(〈y, fα(z)〉) (2.2)
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becomes a softmax classifier, where fα(z) provides the logit scores for the K categories.

Marginally, we have

pα(z) =
1

Zα

exp(Fα(z))p0(z), (2.3)

where the marginal energy term is in a log-sum-exponential form, Fα(z) = log
∑

y exp(〈y, fα(z)〉).
It is shown that the coupling between z and y enables a symbol-aware continuous vec-

tor computation during prior and posterior sampling, which helps to induce a struc-

tural latent space (Pang and Wu, 2021). Finally, the prior model pα(y, z) stands on a

generator pβ(x|z). In text modeling, let x = (x(t), t = 1, . . . , T ) be a sentence, where

x(t) is the t-th token. pβ(x|z) can be defined as a conditional autoregressive model,

pβ(x|z) =
∏T

t=1 pβ(x(t)|x(1), . . . , x(t−1), z). The complete model pθ(y, z, x) with the energy-

based prior pα(y, z) and the generation model pβ(x|z) is termed as Symbol-Vector Cou-

pling Energy-Based Model (SVEBM).

In principle, a SVEBM can be learned through maximizing the log-likelihood function,

where the learning gradient is ∇θ log pθ(x) = Epθ(z|x)[∇θ(log pα(z) + log pβ(x|z))]. To

estimate the expectation, one may sample from the prior pα(z) and the posterior pθ(z|x)
with Langevin dynamics (Welling and Teh, 2011). Since fα is a small network, prior

sampling is particularly affordable. In comparison, the posterior sampling can be more

expensive as it requires back-propagating through the generation network. One promising

solution is to follow the variational learning scheme (Kingma and Welling, 2014a) that

amortizes the posterior sampling from pθ(z|x) by an inference network qϕ(z|x); MCMC-

based sampling can be used for prior samples.

2.3 Latent Diffusion Energy-Based Model

2.3.1 A Symbiosis Between SVEBM and Diffusion Model

Contrasting to the vanilla sampling process of the latent variables in SVEBM, LDEBM

follows the philosophy of diffusion probabilistic models (Sohl-Dickstein et al., 2015); it

assumes a sequence of perturbed samples, z0, z1, . . . , zT , to construct a flexible process

13



that restores the structure in data. First, we define the forward diffusion process that sys-

tematically and gradually destroys structure in a data distribution: z0 ∼ qϕ(z0|x); zt+1 =
√
1− σ2

t+1zt + σt+1ϵt+1, where t = 0, 1, . . . , T − 1 and ϵt is the zero-mean standard

Gaussian noise. The scaling factor
√

1− σ2
t+1 ensures that the sequence is a spherical

interpolation between the posterior sample and the Gaussian white noise. The forward

trajectory and the Markov transition between each perturbed samples z1, . . . , zT are thus

qϕ(z0:T |x) = qϕ(z0|x)
T−1∏

t=0

q(zt+1|zt);

q(zt+1|zt) = N (zt+1;
√

1− σ2
t+1zt, σ2

t+1I).

(2.4)

Our goal is to learn the generative distribution that describes the same trajectory

but in reverse. Inspired by Gao et al. (2020), we start by constructing a sequence of

marginal EBMs at each diffusion step in the latent space. The conditional EBMs aiming

at recovering z0 from noisy inputs then follows as (see the derivation in Section A.1.1):

pα(z̃t|zt+1) =
1

Z̃α,t(zt+1)
exp

(

Fα(z̃t, t)−
1

2σ2
t+1

||z̃t − zt+1||2
)

, (2.5)

where t = 0, 1, . . . , T − 2. We denote z̃t =
√

1− σ2
t+1zt for brevity. Fα(z̃t, t) is the neural

network that parameterizes the energy function at each diffusion step, and Z̃α,t(zt+1) =
∫
exp (Fα(z̃t, t)− 1

2σ2
t+1
||z̃t − zt+1||2)dz̃t is the partition function of each conditional EBM.

For t = T − 1, pα(z̃t|zt+1) =
1

Z̃α,t
exp (Fα(z̃t, t)− 1

2σ2
t+1
||z̃t||2) since the diffused samples at

time step T should be close to Gaussian white noise; the distribution of z̃T−1 can thus

be exponentially tilting of a zero-mean Gaussian distribution.

(2.5) shares the idea of denoising generative modeling (Bengio et al., 2013), where

a denoising autoencoder is trained by maximizing the conditional probabilities of the

observed samples given their noisy versions. Compared to the vanilla definition (see (2.3)),

the noise-level-aware quadratic term constrains the energy landscape to be localized

around the noisy sample; this makes the latent space much less multi-modal and easier

to sample from. To be specific, Gao et al. (2020) show that pα(z̃t|zt+1) is approximately
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a single-mode Gaussian distribution when σ is sufficiently small; it greatly reduces the

burden of MCMC sampling. After sampling z̃t from the model, we can easily obtain

zt = z̃t/
√

1− σ2
t+1.

Next, we show that the forward and reverse process in the latent space can be naturally

integrated into the variational learning scheme to amortize the time-consuming posterior

sampling. Similar to VAE, the ELBO in SVEBM is

ELBOθ,ϕ = log pθ(x)−DKL(qϕ(z|x)‖pθ(z|x))

= Eqφ(z|x)[log pβ(x|z)]−DKL(qϕ(z|x)‖pα(z)),
(2.6)

where DKL denotes the Kullback-Leibler divergence. Since we now consider the full

trajectory of the perturbed samples, in LDEBM we may optimize

ELBODiff,θ,ϕ = Eqφ(z0|x) [log pβ(x|z0)− log qϕ(z0|x)] + Eqφ(z0|x),q(z1:T |z0)

[

log pα(z0:T )
q(z1:T |z0)

]

,

(2.7)

which is a valid ELBO by applying Jensen’s inequality to (2.6). The joint training of

inference, prior and generation models can be largely reduced to finding the agreement

of the forward and reverse Markov transitions defined by qϕ and pθ, respectively. Refer

to Section A.1.2 for more detailed derivations and discussions.

Finally, we show how to introduce the symbolic one-hot vector y into our formu-

lation. We assume a complete data distribution that considers the full trajectory of

the perturbed latent variables, pθ(y, z0:T , x). Among several possibilities for coupling

the symbolic vector y with the latent variables, two major options arise: We can cou-

ple the symbol with the whole trajectory, i.e., pθ(y, z0:T , x) = pα(y, z0:T )pβ(x|z0:T ); or
we can couple the symbol with only the clean posterior sample z0, i.e., pθ(y, z0:T , x) =

p(zT )pα(y, z0|z1)
∏T−1

t=1 pα(zt|zt+1)pβ(x|z0). We prefer the latter one, since it is sufficient

to model the reverse Markovian transition, while enabling a simpler and more efficient

training scheme following Ho et al. (2020) (see Section 2.3.4). Of note, coupling only

z0 to y means that we condition only the final reverse diffusion step [z0|z1] on y when

performing controllable generation. This could be a bit counter-intuitive as no label in-
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x z0 zt zt+1

y

q(zt+1|zt)

pα(zt|zt+1)

pα(y, z0|z1)

qϕ(z0|x)

pβ(x|z0)
t = 1, . . . , T − 1

Figure 2.1: Diagram of the latent diffusion process. We construct the forward and reverse
diffusion processes in the latent space. The symbolic one-hot vector is coupled with the
initial latent vector z0. The latent and diffused latent variables are highlighted by the
red and blue plates, respectively. The cyan arrows indicate that z0 is connected with
only z1. We learn a sequence of EBMs to model the reverse diffusion process pα(zt|zt+1).

formation is injected in previous reverse steps. Theoretically, y and z1:T are independent

given z0 in our formulation; however, we empirically observe that y and zt for t > 0

are nearly independent even marginally, after we integrating out z0:t−1 in our model. In

other words, pα(y|zt), t > 0 are in general non-informative since adding noise in the

latent space could be much more corrupting than adding noise in the data space. The

model learns to enjoy the less multi-modal energy landscape in previous reverse steps;

it then seeks the given mode only in the most informative final reverse step. Specifi-

cally, we achieve this coupling by similarly defining pα(y, z0|z1) as in (2.1) and using the

log-sum-exponential form for learning as in (2.3).

Refer to Figure 2.1 for a diagram of our model and to Section A.1.3 and Section A.2.3

for more details and discussions.

2.3.2 Information Bottleneck

To learn the symbolic vector y, we may consider adopting the Information Bottleneck (IB)

principle (Tishby et al., 2000), an appealing approach for inducing symbolic representa-

tions. In this section, we re-interpret the above ELBO as a cooperative learning objec-

tive, defined as the divergence between two joint distributions; we then show how this

formulation helps to incorporate the IB-based regularization into LDEBM in a principled

manner.
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As shown by Han et al. (2019), the variational learning scheme can be regarded as per-

forming alternating projection between two joint distributions, Qϕ and Pθ. In our model-

ing, we have: Qϕ(x, z0:T ) = qdata(x)qϕ(z0:T |x), and Pθ(x, z0:T ) = p(zT )
∏T−1

t=0 pα(zt|zt+1)pβ(x|z0);
we use qdata(x) to denote the data distribution of x for notation consistency. Maximizing

Eqdata(x)[ELBODiff,θ,ϕ(x)] over (θ,ϕ) is equivalent to minimizing the following divergence:

DKL(Qϕ‖Pθ) = DKL(qdata(x)‖pθ(x)) + Eqdata(x) [DKL(qϕ(z0:T |x)‖pθ(z0:T |x))], (2.8)

since H(x) = −Eqdata(x)[log qdata(x)], i.e., the entropy of data distribution is fixed. Mini-

mizing the KL-divergence minθ minϕDKL(Qϕ‖Pθ) defines a cooperative game, with the

dynamics that qϕ and pθ run towards each other.

Since the initial posterior sample z0 is coupled with the symbolic vector y, it should be

the most informative latent variable for inducing the discrete symbol. We can therefore

plug in (2.8) with a mutual information term between z0 and y: I(z0, y) = H(y) −
H(y|z0), which essentially incorporates the IB as we show below. Given the distribution

Qϕ(x, z0:T ), we can first define the marginal distribution of z0 as the aggregated posterior

by integrating out z1:T : qϕ(z0) = Eqdata(x)[qϕ(z0|x)]. The entropy of z0 and conditional

entropy of z0 on x then follow as H(z0) and H(z0|x), respectively. Taken together, the

KL-Divergence with λ I(z0, y) can therefore be parsed as

L = DKL(Qϕ‖Pθ)− λ I(z0, y) = C + LRC + LEBM + LIB, (2.9)

where C = −H(x) +∑T−1
t=0 H(zt+1|zt) does not involve learnable parameters, LRC =

−EQφ
[log pβ(x|z0)] is the reconstruction loss, LEBM = DKL(qϕ(z0)‖pα(z0:T )) corresponds

with learning latent space models, and LIB = I(x, z0) − λ I(z0, y) is the IB, where

I(x, z0) = H(z0)−H(z0|x) is the mutual information between x and z0 under Qϕ; λ ≥ 0

controls the expressivity of z0 to y. Refer to Section A.1.4 for more details.
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2.3.3 Geometric Clustering Anchors the Modes

As shown in the previous subsection, IB provides an elegant solution for inducing the

symbolic vector y. In this section, we further introduce an approach that facilitates the

emergence of y from a geometric perspective. To induce a latent space with interpretable

structures, ideally, the location of data points in the latent space encodes their semantic

meaning, i.e., it indicates the semantic class; semantically similar points should be placed

closer and produce the same symbolic vector y. This resembles geometric clustering algo-

rithms: Labels of data points are assigned based on their geometric (typically Euclidean)

distance from each other. Below, we show how to realize this intuition in LDEBM.

Let us consider the joint distribution pθ(x, y). We can decompose its log-likelihood

into log pθ(x, y) = log pθ(x)+ log pθ(y|x) as in Grathwohl et al. (2019), where log pθ(x) is

substituted with the ELBO derived in Section 2.3.1. pθ(y|x) is the classification model

in the latent space: pθ(y|x) ≈ Eqφ(z0|x)[pα(y|z0)]. pα(y|z0) is the softmax classifier of y

based on z0 similarly as in (2.2), detailed in Section A.1.3. Therefore, we can encode

the semantic information from the label y into z0 through learning the classifier pα(y|z0).
In case there is full or partial access to the ground-truth semantic class labels, we could

directly utilize these labels to supervise the classifier, jointly with the existing ELBO

objective. When no label is provided, we generate pseudo label ŷ by clustering z0, which

optimizes Ey log pθ(x, y) instead; Ey is defined by the clustering algorithm. It is akin to

the EM algorithm, where geometric clustering serves as a hard-decision E-step to help

induce y. In practice, we employ K-means to cluster z0. In Section 2.4.1, we empirically

show that this strategy learns a better latent space and significantly alleviates the mode-

collapse problem.
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2.3.4 Algorithms and Implementation

Training and Sampling Algorithms For learning the prior model, we have for

each t = 0, 1, . . . , T − 1,

∇α ELBOt = Eqφ(z̃t,z0|x)[∇αFα(z̃t, t)]− Eqφ(zt+1,z0|x),pα(z̃t|zt+1)[∇αFα(z̃t, t)]. (2.10)

Let ψ = {β,ϕ} collect the parameters of the inference (encoder) and generation (decoder)

models:
∇ψ ELBO = ∇ψ Eqφ(z0|x)[log pβ(x|z0)− log qϕ(z0|x)]

−∇ϕ Eqφ(z0:T |x)

[

log p(zT ) +
T−1∑

t=0

log pα(zt|zt+1)

]

.
(2.11)

Recall that we denote z̃t =
√
1− σ2

t+1zt. Epα(z̃t|zt+1) is approximated by MCMC

samples from the prior. Eqφ(z0|x) is approximated by samples from the inference network.

We also add the gradient from I(z0, y), denoted as ∇I, to (2.10) and (2.11) during

training to incorporate IB. See Section A.1.5 for the detailed derivations.

Note that the expectation in (2.10) requires MCMC sampling (e.g., Langevin dy-

namics (Welling and Teh, 2011)) of the prior model. For a target distribution π(z̃), the

dynamics iterates z̃k+1 = z̃k + s2

2
∇z̃ log π(z̃k) + sϵk, where k indexes the iteration of the

dynamics, s is a small step size, and ϵk ∼ N (0, I) is the Gaussian noise. In this chapter,

we follow the heuristics in (Gao et al., 2020) and set the step size st = bσtct, where b < 1

is a tuned hyperparameter, and ct =
√
∏t

i=1 σi/σ1 is a scaling factor. Let t indexes the

diffusion step; K steps of Langevin dynamics thus iterates

z̃k+1
t = z̃kt +

b2σ2
t c

2
t

2

(

∇z̃Fα(z̃kt , t)−
1

σ2
t

(z̃kt − zt+1)

)

+ bσtctϵ
k. (2.12)

In principle, training the model amounts to minimizing the ELBO in (2.7), which

requires a summation over all the diffusion steps; it involves sampling a full forward

trajectory. To make the training simpler and more efficient, following Ho et al. (2020),

we randomly choose one diffusion step from the summation to optimize at each training
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Algorithm 1 Learning algorithm of LDEBM
input: initial parameters (α,β,ϕ), learning rate η, observed unlabeled examples {x(i)}Mi=1,
observed labeled examples {(x(i), y(i))}M+N

i=M+1 (alternative, needed in controllable generation
or semi-supervised learning).
repeat

posterior sampling: For each x(i), sample z(i)0 ∼ qϕ(z0|x(i)) using inference network.
prior sampling: For each z(i)0 , sample diffusion step t from Unif({0, . . . , T − 1}), and the
perturbed pair (z̃(i)t , z(i)t+1) following (2.4). Set z̃(i)t as the positive sample z̃(i)+t . Initialize
the MCMC using z(i)t+1 and update by (2.12) for K steps to obtain z̃(i)−t .
learning prior model: Update α with η(

∑

i[∇αFα(z̃(i)+t , t)−∇αFα(z̃(i)−t , t)]−∇α I).
learning inference and generation models: Update β and ϕ with (2.11) and ∇ϕ I.
if labeled data (x(i), y(i)) is available then

update γ = (α,ϕ) using y(i): Learning gradient η
∑

i∇γ log pαt(y(i)|z(i)0 ) is provided
by ground-truth label.

else if only unlabeled data is available then
update γ = (α,ϕ) using pseudo-label ŷ(i): Geometric clustering generates ŷ(i) for
each x(i). η

∑

i∇γ log pαt(ŷ(i)|z(i)0 ), i.e., the gradient comes from pseudo-label generated
by geometric clustering.

end if
until converged.

iteration. After training, we initialize the reverse trajectory from Gaussian white noise.

The synthesized sample at each step serves to initialize an MCMC that samples from the

model of the previous step.

The learning and synthesizing algorithms are summarized in Algorithm 1 and Algo-

rithm 2, respectively.

Implementation For the K-means algorithm, we use the implementation of John-

son et al. (2019), which explicitly deals with the empty clusters and trivial parameter-

Algorithm 2 Synthesizing algorithm for LDEBM
input: zT ∼ N (0, I)
output: z0
for t = T − 1 to t = 0 do

Initialize z̃t = zt+1.
for k = 1 to K do

Update z̃t using (2.12).
end for
zt = z̃t/

√

1− σ2
t+1

end for
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ization problems. To emphasize that the proposed model shows better capability of

modeling latent space, we use the same encoder and decoder as Pang and Wu (2021) for

all the experiments. We use a shared network Fα(z̃t, t) for each t = 0, 1, . . . , T −1; T = 6;

t is encoded by sinusoidal position embedding as in (Ho et al., 2020), and we set σ2
t to

increase linearly. For Langevin dynamics, we use K = 50 and b2 = 0.002 throughout the

experiments. See Section A.2.1 for network architecture and further training details.

2.4 Experiments

Through a series of experiments, we empirically examine the capability of LDEBM for

generative modeling and interpretability on text modeling tasks. Refer to Section A.2.2

for additional experimental settings and baselines.

2.4.1 Generative Modeling

2D Synthetic Data We first perform experiments of our model on 2D synthetic

datasets as a sanity check to validate our assumptions; results are displayed in Figure 2.2.

The gap between LDEBM and SVEBM is very clear. As mentioned in Section 2.1, for

more complex datasets (e.g., datasets with more modes or more complex data structure),

SVEBM struggles to capture regularities in the data; the model is prone to collapse,

which features an exploding KL-term and poor performance on generation. We provide

more results that show the full evolution of these models during training with more

discussions in Section A.2.3. In contrast, LDEBM without geometric clustering already

overcomes this problem, performing relatively well in terms of modeling both posterior x

and prior x. Although LDEBM without geometric clustering faithfully reconstructs the

data and shows significant improvement on generation quality, the generated distribution

can be slightly distorted, and some modes are missing. The problem is clearer in the

latent space: Mode-collapse occurs in the prior z distribution, where the latent structure

is broken. LDEBM with geometric clustering maintains the number of modes as in the

data distribution and induces a highly-structural latent space, echoing our intuition in
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Figure 2.2: Evaluation on 2D synthetic data. A mixture of 16 Gaussians (upper panel)
and a 10-arm pinwheel-shaped distribution (lower panel). In each panel, the top, middle,
and bottom row display densities learned by SVEBM-IB, our model w/o geometric clus-
tering, and our full model, respectively. In each row, from left to right, it displays the
data distribution and the Kernel Density Estimations (KDEs) of: x generated by amor-
tized posterior z samples, x by MCMC sampled prior z samples, posterior z samples, and
prior z samples.

22



gaussian x gaussian z pinwheel x pinwheel z

Figure 2.3: Visualization of color-coded data points. We visualize data points and the
corresponding inferred latent variables of two 2D synthetic datasets (gaussian and pin-
wheel). Data points with different labels are assigned with different colors.

Section 2.3.3. Figure 2.3 shows the structural similarity between the data distribution

and the learned latent distribution.

Language Generation Following previous state-of-the-art competitors (Zhao et al.,

2018b; Shi et al., 2020; Pang and Wu, 2021), we evaluate the quality of generation on

a real-world text dataset, Penn Treebanks (PTB) (Marcus et al., 1993) as pre-processed

by Mikolov et al. (2010). We report four metrics of the generation performance: Reverse

Perplexity (rPPL) (Zhao et al., 2018a), BELU (Papineni et al., 2002), Word-Level KL

Divergence (wKL), and Negative Log-Likelihood (NLL); Table 2.1 summarizes results.

The proposed model, either w/ or w/o geometric clustering, demonstrates the best

performance on reconstruction (highest BLEU) and fitting capacity (lowest NLL) than all

baseline models. Moreover, the higher expressivity of our models enables the generation

of high-quality sentences. The lowest rPPL indicates that our models can further improve

over these strong baselines on fluency and diversity of generated text; the lowest wKL

indicates that the word distribution of the generated sentences is the most consistent

with that of the original data.

Sentence Completion Further, we show that the trained model enables text com-

pletion on a masked JerichoWorld dataset (Ammanabrolu and Riedl, 2021). We perform

conditional sampling in the latent space to complete the masked sentences; see additional

details in Section A.2.3 and Table 2.2.
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Model rPPL↓ BLEU↑ wKL↓ NLL↓

Test Set - 100.0 0.14 -

RNN-LM - - - 101.21

AE 730.81 10.88 0.58 -
VAE 686.18 3.12 0.50 100.85

DAE 797.17 3.93 0.58 -
DVAE 744.07 1.56 0.55 101.07
DI-VAE 310.29 4.53 0.24 108.90

semi-VAE 494.52 2.71 0.43 100.67
semi-VAE + I 260.28 5.08 0.20 107.30
GM-VAE 983.50 2.34 0.72 99.44
GM-VAE + I 287.07 6.26 0.25 103.16
DGM-VAE 257.68 8.17 0.19 104.26
DGM-VAE + I 247.37 8.67 0.18 105.73
SVEBM 180.71 9.54 0.17 95.02
SVEBM-IB 177.59 9.47 0.16 94.68

Ours w/o GC 168.32 11.12 0.07 79.84
Ours 164.57 11.16 0.06 82.38

Table 2.1: Results of language generation on PTB dataset. The best and second-best
performances are marked in bold numbers and underlines, respectively; tables henceforth
follows this format.

Input

... A bathroom lies to the south, while a door
to the east leads to the living room. On the bed
are a driver’s license, some keys and a wallet
On the end table is a telephone.

Pred.

... A bathroom lies to the south, while a door
to the east leads to the living room. On the bed
is a wallet. On the end table are a telephone
and some keys.

Input
... All around you the crowd is in a state of
pandemonium. The paths of least resistance
are up, down and west.

Pred.
... All around you the crowd is in a state of
pandemonium. The paths of least resistance
are down and east.

Table 2.2: Sentence completion on JerichoWorld dataset. The gray words in the input
sentences are masked with <unk> token.
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Model MI↑ BLEU↑ Act.↑ Emo.↑

DI-VAE 1.20 3.05 0.18 0.09

semi-VAE 0.03 4.06 0.02 0.08
semi-VAE + I 1.21 3.69 0.21 0.14
GM-VAE 0.00 2.03 0.08 0.02
GM-VAE + I 1.41 2.96 0.19 0.09
DGM-VAE 0.53 7.63 0.11 0.09
DGM-VAE + I 1.32 7.39 0.23 0.16
SVEBM 0.01 11.16 0.03 0.01
SVEBM-IB 2.42 10.04 0.59 0.56

Ours w/o GC 2.44 16.72 0.65 0.63
Ours 3.94 28.75 0.74 0.74

Table 2.3: Results of interpretable text modeling on Daily Dialog (DD). We use mutual
information (MI), BLEU, and homogeneity with actions and emotions for evaluation.

2.4.2 Interpretable Text Modeling

In this section, we move on to evaluate our model on the interpretability of text modeling.

Unsupervised Text Attributes Discovery First, we examine the efficacy of our

model on the unsupervised text attributes discovery task. We assess the model on the

DD dataset (Li et al., 2017b), a chat-oriented dataset of 13,118 daily conversations with

human-annotated dialog action and emotion labels for the utterances. The interpretabil-

ity is evaluated through the ability to unsupervisedly capture the utterance attributes

of DD. We flatten the dialogues for text modeling and use pθ(y|x) to infer the utter-

ance label. In particular, we take the argmax of the classification head as the inferred

label. Following Zhao et al. (2018b), we recruit homogeneity to evaluate the consistency

between ground-truth action and emotion labels and those inferred from our model. Ta-

ble 2.3 displays the results of our model and baselines. It shows that the proposed model

outperform other baselines in reconstruction by a large margin and give a much bet-

ter homogeneity on both the dialog action and emotion. The superior performance of

LDEBM equipped with latent space geometric clustering again verifies our intuition in

Section 2.3.3.
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Data Model BLEU↑ Avg.↑ Extr.↑ Grdy.↑

DI-VAE 7.06 76.17 43.98 60.92
DGM + I 10.16 78.93 48.14 64.87
SVE-IB 12.01 80.88 51.35 67.12
w/o GC 11.44 80.16 51.26 66.51

Stanford Multi-Domain Dialog (SMD)

Ours 11.51 80.88 51.57 67.13

DGM + I 2.19 74.73 45.85 64.28
SVE-IB 2.23 77.37 43.32 63.99DD
Ours 3.72 78.89 46.19 65.87

Table 2.4: Dialog evaluation results on SMD and DD. Models are assessed using four
metrics: BLEU, average, extrema, and greedy word embedding based similarity.

Action Request-weather

Utterance

I need to know if it is going to be foggy
in Fresno today and tomorrow car.
Manhattan, please.
Will it be cloudy on Monday?
I need current weather data about
New York, specifically information
about the temperature.

Action Request-city

Utterance

In what city are you interested?
What city would you like to know
the weather about?
Okay, what city should I look in?

Table 2.5: Samples of unsupervisedly discovered action categories and corresponding
utterances on SMD.
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SMD

Ctx. User: What gas stations are here?
Sys: There is a Chevron.

Ref. That’s good! Please pick the quickest
route to get there and avoid all heavy traffic!

Pred. (Req.-address) What is the address?
(Req.-route) Please set the quickest route to go.

DD

Ctx.

A: Hi. Have you got a personal computer?
B: Certainly. What ’ s the matter?
A: I wonder if you often trade with others
on the internet.

Ref. Sure. I often buy things or do business through
it without going out to the physical stores.

Pred. Yes, but I think it is a little different way.

Table 2.6: Dialog cases generated by LDEBM given the context. On SMD, we provide
the same context but with different y values to generate each response; actions indicated
by y are listed in parentheses. On DD, LDEBM can well capture the dialog topic; we
provide the ground-truth response in each case for reference.

Conditional Response Generation Next, we evaluate our model on dialog gen-

eration with SMD (Eric et al., 2017) and DD datasets. We evaluate the quality of gen-

erated responses using BELU and three word-embedding-based topic similarity metrics

(Shi et al., 2020): embedding average (Mitchell and Lapata, 2008), embedding extrema

(Forgues et al., 2014), and embedding greedy (Rus and Lintean, 2012). Table 2.4 shows

that LDEBM has competitive performance compared with SVEBM-IB on SMD and out-

performs the strong baselines on all metrics on DD; see qualitative examples in Table 2.5

and Table 2.6.

Sentence Sentiment Control Finally, we inspect the capability of our model for

controllable generation on Yelp reviews, pre-processed by (Li et al., 2018). The Yelp

dataset is of larger scale, containing 180,000 negative reviews and 270,000 positive ones.

For a controllable generation process, the symbolic vector y is provided to guide the

sampling in latent space; see details in Section A.2.3. Following Pang and Wu (2021),

we train the model with sentiment supervision and use the same pre-trained classifier
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Model Overall↑ Positive↑ Negative↑

DGM-VAE + I 64.7% 95.3% 34.0%
CGAN 76.8% 94.9% 58.6%
SVEBM-IB 90.1% 95.1% 85.2%

Ours 99.0% 98.8% 99.1%

Table 2.7: Accuracy of sentence attribute control on Yelp

Positive

The food here was very tasty and
our server was very attentive.
I was very satisfied for my birthday party!
Definitely the best Philly Cheesesteaks
I’ve ever been.
They are the best customer service ever!

Negative

Ugh the staff is so incompetent and rude.
It just can’t make it worse.
Avoid this company at all costs.
Just ruined the experience with a horrible
attitude on it.

Table 2.8: Generated positive and negative reviews on Yelp

to determine the sentiment of the generated sentence. The pre-trained classifier has an

accuracy of 98.5% on the testing data and thus can accurately evaluate the sentiment of

given sentences. The quantitative and qualitative results are summarized in Table 2.7

and Table 2.8, respectively. LDEBM generates positive and negative reviews with a

nearly saturate accuracy, significantly outperforming all the baselines.

2.4.3 Semi-Supervised Classification

In this experiment, we switch from neural sequence models used in previous experiments

to neural document models (Miao et al., 2016; Card et al., 2018); we show our model

can be similarly extended to semi-supervised settings as in (Pang and Wu, 2021) and

benefit from the better learned latent space. Our model is evaluated on AGNews (Zhang

et al., 2015), a popular benchmark for text classification with 127,600 documents from 4
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Model 200 500 2500 10000
Glove-ID 70.4 78.0 84.1 87.1
Glove-OD 68.8 78.8 85.3 88.0
VAMPIRE 82.9 84.5 85.8 87.7
Hard EM 83.9 84.6 85.1 86.9
CatVAE 84.6 85.7 86.3 87.5
SVEBM 84.5 84.7 86.0 88.1
SVEBM-IB 86.4 87.4 87.9 88.6
Ours 87.4 88.1 89.2 90.1

Table 2.9: Accuracy on AGNews

classes. Table 2.9 shows that LDEBM performs the best when having only partial access

to ground-truth data labels; it further validates the proposed formation for learning a

well-structured latent space.

2.5 Discussion and Related Work

Text Modeling VAE has been one of the most prominent latent variable models for

generative modeling (Kingma and Welling, 2014a; Rezende et al., 2014). It is first applied

to text modeling by Bowman et al. (2016), followed by a wide range of work attacking

challenging text generation problems using the shared framework of VAE (Serban et al.,

2016, 2017; Wen et al., 2017; Zhao et al., 2017, 2018b; Fang et al., 2019; Zhang et al.,

2016; Li et al., 2017a; Gupta et al., 2018). In parallel, extensive efforts have been made

to address issues like posterior collapse (Bowman et al., 2016; Higgins et al., 2016; Zhao

et al., 2017, 2018a; He et al., 2018; Li et al., 2019a; Fu et al., 2019) and mode-collapse

(Shi et al., 2020) in training VAE to further improve the language modeling performance

and text generation quality.

The interpretability of the generation process is naturally brought up as the generation

quality achieves impressive progress. Recently, Zhao et al. (2018b), Shi et al. (2020),

and Pang and Wu (2021) have explored interpretable text generation with deliberately

designed latent spaces. Zhao et al. (2018b) use a discrete latent space to capture dialog
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actions; Shi et al. (2020) adopt a mixture of Gaussians as the VAE prior. To further

improve the expressivity of latent space, Pang and Wu (2021) propose a symbol-vector

coupling energy-based prior to learn a structured latent space. Our formulation inherits

the advantages from (Pang and Wu, 2021) by choosing an appropriate symbol-vector

coupling scheme and principally incorporating the IB. We further develop a geometric

clustering-based regularization that complements the IB; it alleviates the mode-collapse

problem in variational learning of the latent space model.

Energy-Based Model EBMs (Xie et al., 2016; Nijkamp et al., 2019, 2020a; Han

et al., 2020) have drawn growing interest in generative modeling. As an interesting

branch, Pang et al. (2020a) learn an EBM in the latent space as a prior model for con-

tinuous latent variables; it greatly improves the expressivity over non-informative priors

and demonstrates strong performance on downstream tasks, e.g., image segmentation,

molecule generation, and trajectory prediction (Yu et al., 2021; Pang et al., 2020b, 2021;

Jing et al., 2019). However, both EBM and latent space EBM require MCMC sampling

to learn the model. The degenerate sampling quality in practice can lead to poor gen-

eration quality and instability in training (Grathwohl et al., 2019; Du et al., 2021). We

leverage diffusion models as a cure for the vanilla latent space EBM in this chapter; the

proposed model shows reliable sampling quality in practice.

Diffusion Model Diffusion models (Ho et al., 2020; Gao et al., 2020), introduced by

Sohl-Dickstein et al. (2015), learn from a sequence of noise-perturbed versions of the data.

From such perturbed data, one can learn the conditional model to invert the diffusion

process and generate high-quality samples given noisy inputs. On another front, Song

and Ermon (2019, 2020) and Song et al. (2020b) extend the denoising score matching

method (Vincent, 2011), modeling the diffusion process with continuous time step. Our

formulation moves the model to the latent space in a variational framework with two

benefits: (a) learning in a lower-dimensional space enables faster sampling and better

convergence, and (b) learning the diffusion model in a continuous latent space avoids the

discreteness of text data, which hinders the direct application of vanilla diffusion models

to text modeling (Austin et al., 2021).
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Similar to our work, Wehenkel and Louppe (2021), Sinha et al. (2021), Nie et al.

(2021), and Vahdat et al. (2021) have proposed to learn a diffusion model in the latent

space. Specifically, Wehenkel and Louppe (2021) empirically demonstrate that a diffusion

prior can perform better than the non-informative Gaussian prior when jointly trained

with a VAE. Sinha et al. (2021) combine contrastive learning with diffusion models in

the latent space of VAEs for controllable generation. Nie et al. (2021) and Vahdat et al.

(2021) extend the idea of Song et al. (2020b) in the latent space: Nie et al. (2021) perform

controllable image generation by training a latent energy-based attribute classifier on a

pre-trained generator; Vahdat et al. (2021) train score-based denoising diffusion models

in the latent space of a powerful VAE (Vahdat and Kautz, 2020). Both methods have

achieved very impressive image generation results. However, the listed methods are

generally limited to image generation with tailored or pre-trained encoders and decoders.

In contrast, our method is a general improvement for the sampling quality of latent space

EBM; it is not restricted to a certain data type. Moreover, the proposed model can be

trained from scratch to form a well-structured latent space, in contrast to those of Vahdat

et al. (2021) and Nie et al. (2021), which require a pre-learned latent space.

2.6 Summary

In this chapter, we presented the LDEBM, a latent variable generative model that couples

symbol and vector representations in the latent space. As a novel symbiosis between

EBM and a diffusion model, the LDEBM achieves reliable generation quality. More

importantly, it learns from scratch a structured latent space that aligns categorically

well with human understanding. It prototypes the duality between symbolic and vector

representations for latent abstractions. Although the architecture of the generator in the

LDEBM is relatively naive, the empirical success of the principled learning and inference

methods for latent attraction inspires our later attempts in latent-variable autoregressive

models, which we will introduce in Chapter 7.
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CHAPTER 3

Emerging Iconic Symbols in a Visual

Communication Game

3.1 Introduction

Building upon the prototypical latent-variable model for the symbol-vector duality in

categorization introduced in the previous chapter, we now expand our investigation to

address the limitations imposed by the naive one-hot representation of symbols. This

chapter explores a more sophisticated approach inspired by pictorial sign systems: em-

ploying sequentially generated sketches as an alternative form for representing the same

duality. The unique nature of these sketches allows us to examine how the principles

of the Information Bottleneck (Tishby et al., 2000) can be flexibly incorporated into a

sequence generative model over the latent variables. We also extend from latent-variable

generative modeling into the general representation learning problem within an encoding-

decoding architecture. Metaphorically, this setup can be viewed as a communication

problem between a sender and a receiver.

The communication problem naturally arises when traveling in a foreign country

where one does not speak the native language, which necessitates exploring non-linguistic

means of communication, such as drawings. Due to its iconic nature (i.e., perceptual

resemblance to, or natural association with, the referent), drawings serve as a powerful

tool to communicate concepts transcending language barriers (Fay et al., 2014). In

fact, humans started to use drawings to convey messages dating back 40,000–60,000

years (Hoffmann et al., 2018; Hawkins et al., 2019). Some cognitive science studies

hypothesize a transition from sketch-based communication before the formation of sign
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Round I Round II Round III

？ � ！

Figure 3.1: An example of the visual communication game. In an iterative sketch com-
munication game (Hawkins et al., 2019), players first need to ground sketches to referents.
The drawer (Alice) gradually simplifies the drawing but keeps the most salient parts of
the target concept (rooster crown). This evolution process enables the viewer (Bob) to
promptly distinguish the target (rooster) from distractors (bird, cup, rabbit, and sheep).

systems and provide evidence that iconic signs can gradually become symbolic through

repeated communication (Fay et al., 2014). In contrast to icons, symbols are special forms

bearing arbitrary relations to the referents. Figure 3.1 describes a typical scenario of such

phenomena: Alice (in green) uses a sketch to communicate the concept “rooster” to Bob

(in yellow). Initially, they need to ground the sketch to the referent. Later, details of

the visual concept, such as strokes of the head and body, are gradually abstracted away,

leaving only the most salient part, the crown. The iconicity in the communicated sketch

drops while the symbolicity rises.

While models of emerging communication protocols have attracted attention (Lazari-

dou et al., 2017; Cao et al., 2018; Evtimova et al., 2018; Havrylov and Titov, 2017;

Lazaridou et al., 2018; Lazaridou and Baroni, 2020; Mordatch and Abbeel, 2018; Ren

et al., 2020; Eccles et al., 2019; Graesser et al., 2019), the initial and primary communica-

tion medium is presumed and limited to be symbolic rather than iconic. By simulating

a multi-agent referential game, prior work seeks the environmental driving forces behind

the emergence of effective communications. In a typical setup of referential games, two

agents play similar roles as in the above Alice-Bob example but share a primitive set of ar-

bitrary tokens (i.e., the vocabulary). Using these tokens, an agent (the sender) attempts

to communicate a message to another agent (the receiver). A communication convention

emerges when two agents successfully communicate by associating visual concepts in the

images with tokens in the pre-selected vocabulary. Though this line of work has probed
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into certain linguistic properties of the established communication conventions (Lazari-

dou et al., 2017, 2018; Ren et al., 2020), some intriguing questions remain open: How do

agents make a trade-off between iconicity and symbolicity to emerge iconic symbols?

In this chapter, we present the very first step of modeling and simulating the evolution

process of graphical conventions (Hawkins et al., 2019), a two-participant communication

convention whose medium is drawings in an abstract form. Specifically, our contributions

are threefold:

First, we model a multi-agent visual communication game and propose a learning

framework wherein the sender and the receiver evolve jointly. This visual communi-

cation game is an alternating sequential decision-making process, in which the sender

generates a sequence of strokes step by step, terminated by the receiver. In contrast to

discretized tokens in prior work, strokes can be continuously parametrized (Ha and Eck,

2018; Huang et al., 2019) such that the derivatives of learning objectives can be more

effectively back-propagated through communication channels (Foerster et al., 2016). We

further derive a novel training surrogate for multi-agent reinforcement learning based on

a joint value function and the eligibility trace method (Sutton and Barto, 2018). This

differs from the REINFORCE-based surrogate in prior work on early-terminable sequen-

tial communication (Cao et al., 2018; Evtimova et al., 2018) and the TD learning method

in the literature of multi-agent turn-taking games, wherein each agent has its own value

function and has to model the value of others (Wen et al., 2019). In experiments, we

empirically demonstrate that our integration of function approximation and Monte Carlo

sampling facilitates the agents’ awareness of the correlation between complex and simple

sketches, thereby enabling a smooth abstraction process.

Second, we define essential properties in studying evolved sketches. Specifically, we

define iconicity (Fay et al., 2014) as the drawings exhibiting high visual resemblance to

the corresponding images, such that they are proximal to the latter when measured on the

high-level embedding of a general-purpose visual system; we define symbolicity (Fay et al.,

2018) as these drawings being consistently separable in the high-level visual embedding,

which facilitates new communication participants to easily distinguish between categories
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without grounding them to referents; and we define semanticity (Harispe et al., 2015)

as the topography of the high-level embedding space of the drawings being strongly

correlated to that of images, such that semantically similar instances and categories lie

close to each other in the embedding space.

Third, we present a suite of quantitative and qualitative methods to evaluate the

emergent graphical conventions based on the above carefully defined iconicity, symbol-

icity, and semanticity. This is necessary because a high communication rate does not

imply good representations (Bouchacourt and Baroni, 2018). The graphical nature of

the communication medium mandates us to repurpose representation learning metrics

rather than adopt linguistic metrics in emergent symbolic communication. We evaluate

the contribution of different environmental drivers, early decision, sender’s update, and

sequential communication, to the three properties of the emergent conventions. Criti-

cally, the empirical results assessed on our metrics align well with our prediction based

on the findings of human graphical conventions (Fay et al., 2010; Hawkins et al., 2019),

which justifies our environment, model, and evaluation. One of these setups emerges

conventions where the three properties are consistent with our expectation of a sign

system. Particularly, we find two inspiring phenomena: (i) Evolved sketches from seman-

tically similar classes are perceptually more similar to each other than those falling into

different superclasses. (ii) To communicate concepts not included in their established con-

ventions, evolved agents can return to more iconic communications than humans. These

phenomena reveal the potential of more sophisticated probabilistic models over latent

abstractions of categories.

3.2 Related Work

Learning to Sketch Ha and Eck (2018) begin the endeavor of teaching modern

neural models to sketch stroke by stroke. However, generating meaningful stroke se-

quences directly from various categories of natural images is still in the early phase

(Song et al., 2018; Wang et al., 2021; Zou et al., 2018). To assure the interestingness of
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the category-level sketch communication, we design a stage-wise agent that transfers a

natural image into a pixel-level sketch (Kampelmuhler and Pinz, 2020) and draws the

sketch on the canvas stroke by stroke with a policy (Huang et al., 2019). To pre-train

our neural agents to sketch, we select Sketchy (Sangkloy et al., 2016) from many datasets

(Yu et al., 2016; Ha and Eck, 2018; Eitz et al., 2012; Sangkloy et al., 2016) for its fine-

grained photo-sketch correspondence, rich stroke-level annotations, and well-organized

categorization structures.

Communication Games While learning to sketch is formulated as a single-agent

task with explicit supervision, our focus is on how sketches would evolve when utilized as

the communication medium between two cooperative agents. Their cooperation is always

formulated as a communication game, recently adopted to study phenomena in human-

robot teaming (Yuan et al., 2022) and natural languages, such as symbolic language ac-

quisition (Graesser et al., 2019) and the emergence of compositionality (Ren et al., 2020).

Some notable works (Lazaridou et al., 2017, 2018; Evtimova et al., 2018; Havrylov and

Titov, 2017) have devised interesting metrics, such as purity (Lazaridou et al., 2017) and

topographic similarity (Lazaridou et al., 2018). In comparison, our work is unique due to

the distinctive communication medium, continuously parametrized sketches. Although a

concurrent work (Mihai and Hare, 2021) also enables the agents to sketch in a communi-

cation game, it focuses primarily on drawing interpretable sketches without abstracting

them into graphical symbols along the communication. We position our work as an alter-

native to emergent symbolic communication, since the emergent graphical symbols may

better represent the continuum of semantics, as encoded in the vector representation of

tokens (Mikolov et al., 2013a). Methodologically, we devise new evaluation metrics for

sketch modality, assessing iconicity, symbolicity, and semanticity in the evolved sketches.

Emergent Graphical Conventions Evolving from sketches to graphical conven-

tions / symbols is an active field in cognitive science under the banner of “emergent

sign systems.” Fay et al. (2010) show that pair interaction can form their local conven-

tions when they play the Pictionary game. Using natural images instead of texts as the

prompt, Hawkins et al. (2019) show that visual properties of the images also influence
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the formed graphical conventions besides partners’ shared interaction history; i.e., the

evolved sketches highlight visually salient parts. Nevertheless, only a few computational

models exist apart from these human behavior studies. Fan et al. (2020) describe a model

for selecting complex or simple sketches considering the communication context. Bhunia

et al. (2020) and Muhammad et al. (2018) consider stroke selection and reordering to

simplify the sketch. In contrast to sketch or stroke selection, we model embodied agents

who can draw and recognize sketches.

3.3 The Visual Communication Game

Our visual communication game is formulated as a tuple

(I, C,AS,AR, G, r, γ),

where I is the image set to be presented to the sender S and the receiver R. These images

contain a single object in the foreground, and hence the image space I can be partitioned

into N classes according to the object categories. In each game round, the sender is

presented with one image IS, and the receiver is presented with M images {I1R, . . . , IMR }.
Prior work shows that category-level context can force the agent to coordinate on more

abstract properties and help draw sketches to be more recognizable as the type of object

(Lazaridou et al., 2017; Mihai and Hare, 2021). We make the observations of S and R

disjoint (i.e., IS /∈ {I1R, . . . , IMR }) but with a target image I∗R in the same class as IS. We

refer to the M images that the receiver can see as the context. Neither the receiver or

the sender would see the image(s) presented to their partner; they can only communicate

this information by drawing sketches on the canvas space C, observable to both players.

As shown in Figure 3.2, C0 is initialized to be blank at the beginning of each round.

Only the sender can draw on the canvas with actions chosen from AS. The action at

each time step consists of 5 strokes, which are continuous vectors in R
6. We constrain

each dimension to be in (0, 1) due to the limited space of the canvas. The canvas is

updated from Ct to Ct+1 by the renderer G after each step of the sender’s sketching. The
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receiver, after observing the updated canvas, would choose among the M images or wait

for the next step from the sender; these M + 1 possible actions constitute AR. A game

round terminates when the receiver gives up waiting and chooses one from the images.

After the termination, the sender and the receiver will receive a shared reward or penalty,

depending on if the receiver makes the right choice:

r : I × I → {−1, 1}.

This reward/penalty is temporally decayed with a decay factor γ. That is, if the receiver

decides to choose from the images at step t, this cooperating pair will receive either

γt or −γt. Hence, even though the players do not receive an explicit penalty for long

conversations, there is an implicit penalty/reward for delayed positive/negative answers.

No reward will be assigned if the receiver chooses to wait. The next round starts after

the reward/penalty assignment.

3.4 Agents

The two agents involved in the visual communication game are modeled with two decision

policies, πS and πR, for the sender and the receiver, respectively. These policies are

stochastic mapping from the agents’ observation space to the action space:

πS : I × C → P(AS), πR : IM × C → P(AR), (3.1)

where P(A) is a distribution over the support set A. As shown in Figure 3.2, at each time

step t ∈ {0, . . . , T}, the sender first emits the stroke parameters for the next five strokes

aSt ∼ πS(IS,Ct). These strokes are applied to the canvas by a differentiable renderer,

Ct+1 = G(Ct, aSt). Next, the updated canvas is transmitted to the receiver. The receiver

decides whether to terminate the game by making its prediction (i.e., aRt ∈ {1, . . . ,M})
or wait for another round (i.e., aRt = M + 1); its decision is sampled from πR. If a

prediction is made, it is used to select the image IaR
R from {I1R, . . . , IMR } and score this
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Sender

Receiver

Figure 3.2: Communication process. In our visual communication game, a sender S and
a receiver R only share the observation of the canvas C. The sender converts the natural
image IS to a pixel-level sketch ÎS. At each step, the sender first draws five strokes aS
through the renderer G, which updates the canvas to Ct+1. Next, the receiver uses the
updated canvas Ct+1 to query from the context images {I1R, . . . , IMR } and the last canvas
Ct, deciding the action aR at this step. The game continues if the receiver chooses to
wait.

game with r(IS, IaR
R ). Otherwise, this routine repeats in the next step t← t+ 1.

3.4.1 Sender

Prior to playing the visual communication game, the sender should be able to (i) extract

edges from natural images (Xie and Tu, 2015) and (ii) draw sketches that closely resemble

the configurations of salient edges (Li et al., 2019b), just as humans do (Sayim and

Cavanagh, 2011). To endow the sender with these capabilities, we design a stage-wise

architecture hS = gS ◦ fS. Specifically, IS is first converted to a target sketch ÎS using a

visual module fS (Kampelmuhler and Pinz, 2020), capturing the salient edge information

in the natural image; we directly adopt the pre-trained model from the referred work.

Next, ÎS is concatenated with the current canvas Ct and fed to the sketching module gS,

whose architecture is built upon the one by Huang et al. (2019). This sketching module

outputs five vectors in the form (x0, y0, x1, y1, x2, y2), which parametrizes the curve of one

stroke. The policy is parametrized as a Gaussian distribution during training:

πS = N (µt,σ
2), µt = hS(IS,Ct), σ2 = c · I, (3.2)

39



where I is the identity matrix, and c is a constant hyperparameter. During the testing,

we set c = 0.

These stroke parameters aSt are fed into a pre-trained renderer G (Huang et al., 2019)

to update the canvas, Ct+1 = G(Ct, aSt). This renderer is fully differentiable, enabling

end-to-end model-based training (Hafner et al., 2019) of the sketching module gS. We

pre-train gS on Sketchy (Sangkloy et al., 2016); refer to the supplementary video for the

results.

3.4.2 Receiver

The receiver, similar to the sender, should also carry some rudimentary visual capability

to this game. Unlike the low-level vision needed for the sender, the requirement for

the receiver is high-level visual recognition. Therefore, we adopt a pre-trained VGG16

(Simonyan and Zisserman, 2015) as the visual module fR : I → R
4096 of the receiver,

following a similar practice in recent literature (Lazaridou et al., 2017; Havrylov and

Titov, 2017). The output of this visual module is a vector, and further transformed by

two separate linear layers, gKR and gQR , into visual embeddings, hKR (I) and h
Q
R(I). That is,

hKR = gKR ◦ fR, hQR = g
Q
R ◦ fR.

When observing both the context {I1R, . . . , IMR } and the canvas Ct, the receiver first

embeds each of them with hR. Next, it makes the decision based on the similarity between

the current canvas and each option in the context. The decision module is thus realized

by a Boltzmann distribution based on resemblance:

πR(aRt|I1R, . . . , IMR ,Ct−1,Ct) =
exp(hQR(Ct) · hKR (IaRt

R ))
M+1∑

m=1

exp(hQR(Ct) · hKR (ImR ))
, (3.3)

where IM+1
R = Ct−1. Of note, although a similar policy was proposed before (Lazaridou

et al., 2018; Havrylov and Titov, 2017), our πR is distinct as it is endowed with an external

memory of Ct−1. Intuitively, if the receiver finds the current canvas Ct closer to the last

canvas Ct−1 in the embedding space than all M options in the context, it will choose to
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emit aRt =M +1 and delay the decision to the next step; a prediction can only be made

when the receiver finds the current canvas is informative enough. As a result, the sender

would draw informative strokes as early as possible to avoid the implicit penalty in the

decayed reward.

3.5 Learning to Communicate

Policies of the sender and the receiver are trained jointly to maximize the objective

π∗
S, π

∗
R = argmax

πS ,πR

Eτ∼(πS ,πR)

[∑

t
γtrt

]

, (3.4)

where τ = {C0, aS0,C1, aR1, aS1, . . . } is the simulated episodic trajectory. As well known

in reinforcement learning, the analytical expectation in (3.4) is intractable to calculate

along the trajectory τ . We devise value functions V(Xt) and Vλ(Xt) for an optimization

surrogate:

V(Xt) = EπS(aSt|IS ,Ct−1),πR(aRt|X̂t)
[(rt + γδ(aRt)Vλ(Xt+1)] , (3.5)

where δ(aRt) is the Dirac delta function that returns 1 when the action is wait and

0 otherwise. Xt = cat([IS], X̂t), where X̂t = [I1R, . . . , IMR ,Ct−1,Ct]. The expectation

EπS(aSt|IS ,Ct−1)[·] is approximated with the point estimate, as in the reparametrization

in VAE (Kingma and Welling, 2014b). The expectation EπR(aRt|X̂t)
[·] can be calculated

analytically because πRt is a categorical distribution. The connection between EπS and

EπR is one of our contributions. Specifically, Ct in ˆrmX t in πRt(aRt|X̂t) is generated by

the differentiable renderer G with the actions aSt from the sender policy πS(aSt|IS,Ct−1).

Hence, we can have both ∂V/∂πRt and ∂V/∂πSt based on (3.5). This results in a novel

multi-agent variant of the general policy gradient (Sutton et al., 2000; Silver et al., 2014).

Vλ(Xt) in (3.5) is an eligibility trace approximation (Sutton and Barto, 2018) of the

ground-truth value function. Intuitively, a value estimate with eligibility trace Vλ mixes

the bootstrapped Monte Carlo estimate V k
N(Xt) = EπS ,πR [

∑h−1
n=t γ

n−trn+γ
h−tδ(aRh)υϕ(Xh)]

at different roll-out lengths k, with h = min(t + k, Tchoice) being the maximal timestep.
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Algorithm 3 Training Algorithm
1: Input: Initialize neural network parameters θ, ρ, ϕ for πS , πR, and vϕ, respectively.
2: for game round l = 1, . . . , L do
3: for time step t = 0, . . . , T do
4: aSt ∼ πS(aSt|Ct, IS), Ct+1 = G(Ct, aSt), aRt+1 ∼ πR(aRt+1|Ct,Ct+1, I1R, . . . , IMR )
5: if aRt+1 is not wait then
6: Tchoice = t

7: end if
8: end for
9: Compute {Vλ(Xt)}Tt=1 via (3.6)

10: Compute {V(Xt)}Tt=1 via (3.5)
11: Update θ ← θ +αS∇θ

∑

t V(Xt)
12: Update ρ← ρ+αR∇ρ

∑

t V(Xt)
13: Update ϕ← ϕ−αv∇ϕ

∑

t
1
2 ||vϕ(Xt)− Vλ(Xt)||2

14: end for

Tchoice is the timestamp when the receiver stops waiting. The articulation of such termi-

nation also makes our eligibility trace deviate from the general derivation with infinite

horizon. We derive an episodic version as

Vλ(Xt) =







(1− λ)
H−1∑

n=1

λn−1V n
N (Xt) + λH−1V H

N (Xt) if t ≤ Tchoice

vϕ(Xt) otherwise,
(3.6)

where H = Tchoice − t+ 1. Refer to Section B.3 for a detailed derivation. Finally, vϕ(Xt)

is trained by regressing the value returns:

ϕ∗ = argmax
ϕ

EπS ,πR

[
∑

t

1

2
‖vϕ(Xt)− Vλ(Xt)‖2

]

. (3.7)

Algorithm 3 summarizes the training algorithm.

3.6 Experiments

3.6.1 Settings

Images We used the Sketchy dataset (Sangkloy et al., 2016) as the image source.

Due to the limited performance of the sketching module on open-domain image-to-sketch
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Game Settings Communication Accuracy (%) ± SD (avg. step)
early update max/one setting unseen unseen

decision sender step description names seen instance class
yes yes max our experimental setting complete 98.07 ± 0.01 (1.03) 70.37 ± 0.04 (2.36) 39.40 ± 0.05 (3.76)
no yes max control setting for early decision max-step 86.27 ± 0.03 (7.00) 67.93 ± 0.02 (7.00) 38.40 ± 0.04 (7.00)
yes no max control setting for evolving sender sender-fixed 99.60 ± 0.01 (2.41) 71.80 ± 0.02 (3.83) 45.40 ± 0.02 (4.75)
yes yes one control setting for sequential game one-step 22.87 ± 0.23 (1.00) 14.07 ± 0.15 (1.00) 9.60 ± 0.09 (1.00)
no no max baseline for all settings above retrieve 99.47 ± 0.01 (7.00) 76.80 ± 0.02 (7.00) 48.00 ± 0.02 (7.00)

Table 3.1: Game settings and results. The first three columns represent the configurations
of the environmental drivers. Setting names and descriptions specify our purposes for
intervention. The last three columns show success rates and conversation length in testing
games. Games marked with “seen” are validation games with the same image set as
training. Games marked with “unseen” are testing games with unseen images.

sequential generation, we select 40 categories (10 images per category, see Section B.1)

with satisfactory sketching behaviors.

Environmental Drivers With the visual communication game and the learning

agents at hand, we investigate the factors in emergent graphical conventions with con-

trolled experiments. Table 3.1 lists all designed settings. Specifically, we consider the

following:

• Can receiver make early decisions? The hypothesis is that the receiver’s decision

before exhausting the allowed communication steps may inform the sender of the

marginal benefit of each stroke and incentivize it to prioritize the most informative

strokes. The corresponding control setting is max-step, wherein the receiver can

only make the choice after the sender finishes its drawing at the maximum step.

This factor is on in other settings.

• Can the sender change its way of drawing? The hypothesis is that the mutual

adaptation of the sender and the receiver may lead to better abstraction in the

evolved sketches. Particularly, the sender may develop new ways of drawing in the

evolution. The corresponding control setting is sender-fixed, wherein we freeze the

parameters of the sender such that the receiver has to adapt to its partner. This

factor is on in other settings.

• Is the game sequential, and can the receiver observe more complex drawings? The

hypothesis is that the modeling of a sequential decision-making game and the evolu-
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tion from more complex sketches may regularize the arbitrariness, which is unique

for graphical conventions. The corresponding control setting is one-step: There

only exists one step of sketching, thus no sequential decision-making at all. This

factor is on in other settings.

Training, Validation, and Generalization We train the sender/receiver with

batched forward and back-propagation, with a batch size of 64 and maximum roll-out

step T = 7. We update using Adam (Kingma and Ba, 2015) with the learning rate 0.0001

for a total of 30k iterations. We train each model on a single Nvidia RTX A6000; one

experiment takes 20 hours. Except for the sender-fixed setting, there is a warm-up phase

in the first 2000 iterations for the sender where we linearly increase the learning rate to

0.0001. After the warm-up phase, the learning rate of both agents will be decreased

exponentially by 0.99
i−2000
1000 , where i is the number of training iterations. In all settings,

we set M = 3, γ = 0.85. Between iterations, we randomly sample another 10 batches

for validation. We use 30 categories (10 images per category) for training and held out

10 images per category for the unseen-instance test; another 10 categories are for the

unseen-class test. Each image is communicated as the target, resulting in 300+100 pairs

in the test set. At each iteration, the categories and instances are sampled randomly to

constitute the context. Results henceforth are statistics of 5 random seeds.

3.6.2 Results

3.6.2.1 Communication Efficacy and Sketch Abstraction

We record both the success rate and the communication steps over the training iterations.

The communication is considered successful when the receiver makes the correct predic-

tion at the end of the game. In Figure 3.3, agents in all settings except one-step converge

to a success rate above 80%. Among them, the communicating pairs in the complete

setting and the sender-fixed setting evolve to achieve a comparable success rate with the

retrieve baseline. Interestingly, these two pairs also emerge a phenomenon resembling the

natural observation in human studies, named systematic reduction (Lewis, 1969): The
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Figure 3.3: The validation accuracy of different game settings and the ablation baseline.

Figure 3.4: The average communication steps under different settings and ablation base-
lines. γ is 0.85 by default, and 0.95 in complete95 and cumulative95.

average steps first increase and then gradually decrease as in Figure 3.4. Contrasting

complete and sender-fixed, we can see: (i) The emergent conventions in the former is

much simpler than the latter (less steps in Figure 3.4), which implies the contribution of

mutual adaptation in sketch abstraction. (ii) The success rate in Figure 3.3 in the for-

mer converges a bit more slowly, which is reasonable since the senders can explore and

change the way of drawing. In comparison, if the receiver cannot make early decisions,

it has no intention to relate sketches (i.e., Ct−1 and Ct) at consecutive timesteps. The

sender is thus unaware of each stroke’s marginal information gain, which in return makes

their learning harder. This might explain the relatively low success rate in the max-step

setting. The failure of the one-step pairs reveals the irreplaceable roles of sequential

decision-making and observing complex sketches in emergent graphical communication.

To further inspect how our proposed modeling and learning on sequential decision-
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Figure 3.5: The prediction accuracy when receivers are presented with sketches drawn
by corresponding senders at 1, 3, 5, and 7 steps, respectively.

making facilitate the desired evolution in the sketches, we conduct an ablation study by

comparing our proposed learning surrogate (3.5) and a vanilla policy gradient baseline,

REINFORCE (Williams, 1992) with Monte Carlo cumulative rewards

EπS ,πR

[
∑

t

[

∇ log πR(aRt|X̂t)
T∑

n=t

γn−trn

]]

.

Our comparison spans three axes. First, the REINFORCE baseline converges much

more slowly than the proposed surrogate; see cumulative vs complete in Figure 3.3. Sec-

ond, we check the robustness under the variation of decay factor γ. As shown in Figure 3.4,

while the proposed method shows stable convergence in the communication steps under

γ = 0.85 and 0.95, the REINFORCE baseline exhibits high-variance behavior under cer-

tain setup (γ = 0.95). Third, we check if agents’ early terminations are caused by their

awareness of the indistinguishable performance in longer and shorter episodes. Given a

precondition that the longer the episodes are, the earlier the success rate increases, it

should be the increase in the average performance of shorter episodes that causes the

average timesteps to decrease. Taking 1-step and 3-step communication for example, in

the complete setting, we shall see the success rate of the 3-step to achieve high earlier,

which is then caught up but not exceeded by the 1-step. The not exceeding condition

is a crucial cue to validate that the communicating partners were actively pursuing the

Pareto front (Kim and De Weck, 2005) / efficiency bound (Zaslavsky et al., 2018) of
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accuracy and complexity. This is exactly what our proposed method emerges as shown

in Figure 3.5. In contrast, in the REINFORCE baseline, under the same decay factor,

the performance of 1-step surpasses 3-step communication. It seems as if the incapability

of learning long episodes caused the agents to avoid them.

Together, all our results on success rate and communication steps are consistent

with predictions based on our hypotheses, which justifies our environments and models.

However, a high success rate does not necessarily imply high convention quality. Another

essential property for conventions is stability (Lewis, 1969): There should exist common

patterns in the repeated usage of conventions to convey similar concepts. We take the

viewpoint of representation learning and concretize the vague stability with three formally

defined properties: iconicity, symbolicity, and semanticity. Below, we introduce our

experiments to measure these properties systematically.

3.6.2.2 Iconicity: Generalizing to Unseen Images

We define iconicity as the drawings exhibiting a high visual resemblance with the cor-

responding images, such that they are proximal to the latter when measured on the

high-level embedding of a general-purpose visual system. To quantitatively measure the

visual similarities, we need to compute the distance between the sketch and image in the

visual embedding space (e.g., with cosine similarity). However, since we do not know

how the embeddings distribute in their space, this unnormalized measure is prone to

model-specific biases. Fortunately, the receiver’s policy takes the form of a softmax of

the cosine similarity between the embedding of the sketch and a context set with a target

image and some randomly sampled distractors, which naturally approximates the nor-

malization we want. Therefore, communication accuracy can serve as a visual similarity

measure, and its generalizability to unseen images can pinpoint the emergent preserva-

tion of iconicity. Intuitively, in open-domain communication, agents would see novel

scenes with known or unknown concepts —unseen instances of seen classes and unseen

classes, respectively. They should still be able to communicate with established conven-
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tions or with unconventionalized iconic drawings. A successful generalization to unseen

classes (i.e., zero-shot generalization) is more difficult than unseen instances; partners

may increase the conversation length and communicate with more complex sketches.

Table 3.1 reports the success rates and average timesteps in our generalization tests.

The retrieve setting is the baseline since there is no evolution at all and the sketches

should resemble the original images the most (i.e., possessing the highest iconicity). Un-

surprisingly, its generalization performance upper-bounds all other settings. Among the

experimental and controlled settings, the complete, the max-step, and the sender-fixed

agents generalize relatively well in unseen instances (70.37±0.04, 67.93±0.02, 71.80±0.02)
and generalize above chance (39.40 ± 0.05, 38.40 ± 0.04, 45.40 ± 0.02 >25.00) in unseen

classes. Interestingly, complete and sender-fixed communicating partners intelligently

turn to longer episodes for better generalization, better than the max-step agents. This

finding implies the partners may turn to more iconic communication when there is no

established conventions/symbols, just as we humans do. Strikingly, the max-step con-

ventions seem to loose more iconicity, possibly due to confusion on marginal information

gains. The one-step drawings seem to lack iconicity.

3.6.2.3 Symbolicity: Separating Evolved Sketches

Next, we measure symbolicity to evaluate the graphical conventionalization. We define

symbolicity as the drawings being consistently separable in the high-level visual embed-

ding, which facilitates new communication partners to easily distinguish between cate-

gories without grounding them to referents. Based on this definition, a more symbolic

drawing should be more easily separable into their corresponding categories. To mea-

sure such separability, we use a pre-trained VGG16 as the new learner and finetune the

last fully connected layer to classify evolved sketches into the 30 categories. Technically,

we first get the 300 final canvases from the communication game, 10 for each category.

Among them, we use 70% for training and 30% for testing.

The bar plot in Figure 3.6 shows the classification results. Since agents in the one-
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Figure 3.6: Testing results of classifiers trained with sketches evolved under different
settings. img denotes images, and retrieve denotes unevolved sketches.

step setting do not play the game successfully, they may not form a consistent way to

communicate. Agents in the complete setting achieve the highest accuracy, higher even

compared with the result of the original images. This finding indicates that agents in

the complete setting agree on a graphical convention that consistently highlights some

features across all training instances in each category, which are also distinguishable

between categories. Comparing the max-step with the complete setting, we know that

early decision is a crucial factor for more symbolic conventions. Comparison between the

sender-fixed setting and the complete setting suggests that the sender’s evolution also

contributes to high symbolicity.

3.6.2.4 Semanticity: Correlating Category Embedding

The last desired property is that the evolved sketches can preserve the perceptual metric

in images (Zhang et al., 2018). We define semanticity as the topography of the high-

level visual embedding space of drawings being strongly correlated to that of images,

such that semantically similar instances and categories lie close to each other in the

embedding space. To examine such topographic correlation, we project category names

to the feature space using word2vec (Mikolov et al., 2013a) as featureA, and project the

evolved sketches to the feature space using the trained VGG in Section 3.6.2.3 as featureB.

We compute the correlation of the distances between all the possible pairs of featureB and

the corresponding pairs of featureA as the semanticity measure. The results in Table 3.2

show that semanticity can be better retained in the complete setting compared with the
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setting correlation
complete 0.43 ± 0.02
max-step 0.41 ± 0.13

sender-fixed 0.36 ± 0.06
one-step 0.31 ± 0.08
retrieve 0.55 ± 0.00

Table 3.2: Semantic correlation between the word vector space of the communicated
target and the feature vector space of the trained VGG.

Figure 3.7: t-SNE of visual embedding of the original images (left), unevolved sketches
in the retrieve setting (middle), and evolved sketches in the complete setting (right).

retrieve baseline. We further visualize the embeddings of the sketches in a 2D space via t-

SNE (Van der Maaten and Hinton, 2008). Figure 3.7 show the visualization of the original

images and the sketches in the retrieve and complete settings; refer to Section B.2 for

results of other settings. Images/drawings from the same category are marked in the same

color. As shown, boundaries between categories are clearer in the evolved drawings in the

complete setting than in retrieve or original images; but semantically similar categories

are still close to each other. For example, cow, deer, horse, and camel are proximal to

each other, while burger and apple are far from them. These results highlight another

uniqueness of visual communication over its symbolic counterpart: The similarity in the

visual cues in the conventions may hint the semantic correlation between the referents.

3.6.2.5 Visualizing Sketch Evolution

To better understand the nature of the emerged conventions, we inspect the intermedi-

ate sketches in the evolution processes. Specifically, we visualize the process under the
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Figure 3.8: Sketch evolution of rabbit and giraffe.

complete setting. Figure 3.8 shows three instances in two categories. For each example,

drawings from the left to the right show the change of the final-step canvas. Sketches’

complexity gradually decreases after an initial increase, echoing the trend of reduction de-

scribed in Section 3.6.2.1. For rabbits, in the beginning, the strokes may depict instances

from different perspectives; through iterations, they converge to highlight the rabbit’s

long ear. As for the giraffe, the agents gradually learn to emphasize the long neck. In

the third example, although the giraffe lowers its head, we can still see an exaggerated

vertical stroke for the neck, similar to the first example where the giraffe’s head is raised.

These examples show how the sender gradually unifies drawings of the same category:

After evolution, the sender is inclined to use the first several strokes to depict the most

salient parts of visual concepts.

3.7 Limitation

The key limitation of this work is the two-stage pre-trained senders, for an ideal sender

would not need to convert the images to pixel-level sketches before it starts sketching.

Additionally, the learned sketches may align better with human understanding with an

improved pre-trained sketching module.
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3.8 Summary

In this chapter, we studied a sequence generative model over sketches as a latent repre-

sentation for categories. This generative model was presented as a visual communication

game whose repetition drives the evolution of graphical conventions and achieves repre-

sentation learning. The sender and the receiver of this game are the encoder and the

decoder of the learned representations. The learning objective of the encoder results in a

sequence distribution over latent variables. We defined three properties, iconicity, sym-

bolicty, and semanticity to measure the abstract structures of categories. Our controlled

ablation studies justify the necessity of the components and other design choices. Notably,

during out-of-distribution generalization, this model also manifests an understanding of

uncertainty with the variation in the sequence lengths.

As a closing remark for Part I, the models we introduced for Category in these two

chapters demonstrate how to employ different methods in generative modeling to learn

latent abstractions whose representations are interpretable as symbols, interpolatable as

vectors, generalizable in distribution shifts, and aligned with human intuitions.
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Part II

Object
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CHAPTER 4

Disentangling Objects From Background With Deep

Region Competition

4.1 Introduction

In Part I, we explored the abstraction of Category — a broad, abstract classification that

groups similar items based on shared characteristics or properties. However, numerous

scenarios exist where the concept of a specific instance plays a more crucial role. In

these circumstances, we turn to the abstraction of Object. Object-Oriented Programming

(OOP) provides the most prominent example of such abstraction, where objects serve

as fundamental units that encapsulate attributes and behaviors. In this chapter, we

consider the problem setup of foreground extraction. We will delve into a latent-variable

generative model that realizes this concept of “object encapsulation” in a statistical and

computational context.

Foreground extraction, being a special case of generic image segmentation, aims for a

binary partition of the given image with specific semantic meaning; i.e., a foreground that

typically contains identifiable objects and the possibly less structural remaining regions

as the background. There is a rich literature on explicitly modeling and representing a

given image as foreground and background (or more general visual regions), such that a

generic inference algorithm can produce plausible segmentations ideally for any images

without or with little supervision (Zhu and Yuille, 1996; Shi and Malik, 2000; Tu and

Zhu, 2002; Boykov and Jolly, 2001; Rother et al., 2004; Cheng et al., 2014; Jiang et al.,

2013; Zhu et al., 2014). However, such methods are essentially pixel-space modeling since

they rely on low-level visual features (e.g., edges, color, and texture).
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There exists a rich literature on latent-variable models (Greff et al., 2016; Eslami

et al., 2016; Greff et al., 2017; van Steenkiste et al., 2018; Burgess et al., 2019; Greff

et al., 2019; Locatello et al., 2020; Engelcke et al., 2020; Lin et al., 2020) that treat

the background as a “virtual object” and disentangle it along with all foreground objects

through independence-inducing slots. Such independence is modeled with a permutation-

invariant encoder, or a fully factorized prior of the latent slot variables and their shared

generators. Although these methods exhibit strong performance on synthetic multi-object

datasets with simple backgrounds and foreground shapes, they may fail on complex real-

world data or even synthetic datasets with more challenging backgrounds (Greff et al.,

2019; Locatello et al., 2020). In addition, few unsupervised learning methods have pro-

vided explicit identification of foreground objects and background regions. While they

can generate valid segmentation masks, most of these methods do not specify which out-

put corresponds to the foreground objects. These deficiencies necessitate rethinking the

problem of unsupervised foreground extraction. We propose to confront the challenges in

formulating (1) a generic inductive bias for modeling foreground and background regions

that can be baked into neural generators, and (2) an effective inference algorithm based

on a principled criterion for foreground-background partition.

Inspired by Region Competition (Zhu and Yuille, 1996), a seminal approach that com-

bines optimization-based inference (Kass et al., 1988; Cohen, 1991; Adams and Bischof,

1994) and probabilistic visual modeling (Zhu et al., 1998; Guo et al., 2007) by mini-

mizing a generalized Bayes criterion (Leclerc, 1989), we propose to solve the foreground

extraction problem by reconciling the energy-based prior (Pang et al., 2020a) with gen-

erative image modeling in the form of Mixture of Experts (MoE) (Jacobs et al., 1991;

Jordan and Jacobs, 1994). To generically describe background regions, we further in-

troduce the learned pixel re-assignment as the essential inductive bias to capture their

regularities. Enabled by our modeling, we propose to find the foreground-background

partition through Expectation-Maximization (EM). Our algorithm effectively exploits

the interaction between the mixture components during the partitioning process, echo-

ing the intuition described in Region Competition (Zhu and Yuille, 1996). We therefore
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coin our method Deep Region Competition (DRC).

In summary, our contributions as follows:

1. We provide a latent-variable model that reconciles energy-based prior with gener-

ative image modeling in the form of MoE. With this modeling, the foreground-

background partition, as well as their latent abstraction process, can naturally be

produced through EM. We further introduce an inductive bias, pixel re-assignment,

to facilitate foreground-background disentanglement.

2. In experiments, we demonstrate that DRC exhibits more competitive performance

on complex real-world data and challenging multi-object scenes compared to prior

methods. Furthermore, we empirically show that using learned pixel re-assignment

as the inductive bias helps to provide explicit identification of foreground and back-

ground regions.

3. We find that DRC can potentially generalize to novel foreground objects even from

categories unseen during training, which may provide some inspiration for the study

of out-of-distribution (OOD) generalization in more general unsupervised disentan-

glement.

4.2 Related Work

A typical line of methods frames unsupervised or weakly supervised foreground segmen-

tation within a generative modeling context. Several methods build upon generative

adversarial networks (GAN) (Goodfellow et al., 2014) to perform foreground segmenta-

tion. LR-GAN (Yang et al., 2017) learns to generate background regions and foreground

objects separately and recursively, which simultaneously produces the foreground objects

mask. ReDO (ReDrawing of Objects) (Chen et al., 2019a) proposes a GAN-based object

segmentation model, based on the assumption that replacing the foreground object in

the image with a generated one does not alter the distribution of the training data, given

that the foreground object is correctly discovered. Similarly, SEIGAN (Ostyakov et al.,
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2018) learns to extract foreground objects by recombining the foreground objects with

the generated background regions. FineGAN (Singh et al., 2019) hierarchically generates

images (i.e., first specifying the object shape and then the object texture) to disentangle

the background and foreground object. Benny and Wolf (2020) further hypothesize that

a method solving an ensemble of unsupervised tasks altogether improves the model per-

formance compared with the one that solves each individually. Therefore, they train a

complex GAN-based model (OneGAN) to solve several tasks simultaneously, including

foreground segmentation. Although LR-GAN and FineGAN do produce masks as part

of their generative process, they cannot segment a given image. Despite SEIGAN and

OneGAN achieving decent performance on foreground-background segmentation, these

methods require a set of clean background images as additional inputs for weak supervi-

sion. ReDO captures the foreground objectness with possibly oversimplified assumptions,

limiting its application to datasets with diverse object shapes.

On another front, disentangling latent-variable models (Greff et al., 2016; Eslami

et al., 2016; Greff et al., 2017; van Steenkiste et al., 2018; Burgess et al., 2019; Greff

et al., 2019; Locatello et al., 2020; Engelcke et al., 2020; Lin et al., 2020), sharing the

idea of scene decomposition stemming from DRAW (Gregor et al., 2015), learn to repre-

sent foreground objects and background regions in terms of a collection of latent variables

with the same representational format. These methods typically exploit the spatial mix-

ture model for generative modeling. Specifically, IODINE (Greff et al., 2019) proposes

a slot-based object representation method and models the latent space using iterative

amortized inference (Marino et al., 2018). Slot-Attention (Locatello et al., 2020), as a

step forward, effectively incorporates the attention mechanism into the slot-based object

representation for flexible foreground object binding. Both methods use fully shared

parameters among individual mixture components to entail permutation invariance of

the learned multi-object representation. Alternative models such as MONet (Burgess

et al., 2019) and GENESIS (Engelcke et al., 2020) use multiple encode-decode steps for

scene decomposition and foreground object extraction. Although these methods exhibit

strong performance on synthetic multi-object datasets with simple background and fore-
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ground shapes, they may fail when dealing with complex real-world data or even synthetic

datasets with more challenging background (Greff et al., 2019; Locatello et al., 2020).

More closely related to the classical methods, another line of work focuses on utilizing

image features extracted by deep neural networks or designing energy functions based on

data-driven methods to define the desired property of foreground objects. Pham et al.

(2018) and Silberman et al. (2012) obtain impressive results when depth images are ac-

cessible in addition to conventional RGB images, while such methods are not directly

applicable for data with RGB images alone. W-Net (Xia and Kulis, 2017) extracts image

features via a deep auto-encoder jointly trained by minimizing reconstruction error and

normalized cut. The learned features are further processed by CRF smoothing to perform

hierarchical segmentation. Kanezaki (2018) proposes to employ a neural network as part

of the partitioning criterion (inspired by Ulyanov et al. (2020)) to minimize the chosen

intra-region pixel distance for segmentation directly. Ji et al. (2019) propose to use In-

variant Information Clustering as the objective for segmentation, where the network is

trained to be part of the learned distance. As an interesting extension, one may also

consider adapting methods that automatically discover object structures (Lorenz et al.,

2019) to foreground extraction. Though being pioneering work in image segmentation,

the aforementioned methods are generally bottle-necked by the selected post-processing

segmentation algorithm or require extra transformations to produce meaningful fore-

ground segmentation masks. In their seminal work, Yang et al. (2019, 2021) propose an

information-theoretical principle and adversarial contextual model for unsupervised seg-

mentation and detection by partitioning images into maximally independent sets, with

the objective of minimizing the predictability of one set by the other sets. Additional

efforts have also been devoted to weakly supervised foreground segmentation using image

classification labels (Papandreou et al., 2015; Pathak et al., 2015; Huang et al., 2018),

bounding boxes (Dai et al., 2015; Khoreva et al., 2017), or saliency maps (Oh et al., 2017;

Zeng et al., 2019; Voynov et al., 2021).

58



4.3 Method

Foreground extraction performs a binary partition for the image I to extract the fore-

ground region. Without explicit supervision, we propose to use learned pixel re-assignment

as a generic inductive bias for background modeling, upon which we derive an EM-like

partitioning algorithm. Compared with prior methods, our algorithm can handle images

with more complex foreground shapes and background patterns, while providing explicit

identification of foreground and background regions.

4.3.1 Preliminaries

Adopting the language of EM algorithm, we assume that for the observed sample x ∈ R
D,

there exists z ∈ R
d as its latent variables. The complete-data distribution is

pθ(z, x) = pα(z)pβ(x|z), (4.1)

where pα(z) is the prior model with parameters α, pβ(x|z) is the top-down generative

model with parameters β, and θ = (α,β).

The prior model pα(z) can be formulated as an energy-based model, which we refer

to as the Latent-space Energy-Based Model (LEBM) (Pang et al., 2020a) throughout the

chapter:

pα(z) =
1

Zα

exp (fα(z)) p0(z), (4.2)

where fα(z) can be parameterized by a neural network, Zα is the partition function, and

p0(z) is a reference distribution, assumed to be isotropic Gaussian prior commonly used

for the generative model. The prior model in (4.2) can be interpreted as an energy-based

correction or exponential tilting of the original prior distribution p0.

The LEBM can be learned by Maximum Likelihood Estimation (MLE). Given a

training sample x, the learning gradient for α is derived as (Pang et al., 2020a)

δα(x) = Epθ(z|x) [∇αfα(z)]− Epα(z) [∇αfα(z)] . (4.3)
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In practice, the above expectations can be approximated by Monte-Carlo average,

which requires sampling from pθ(z|x) and pα(z). This step can be done with stochastic

gradient-based methods, such as Langevin dynamics (Welling and Teh, 2011) or Hamil-

tonian Monte Carlo (Brooks et al., 2011).

An extension to LEBM is to further couple the vector representation z with a symbolic

representation y (Pang and Wu, 2021). Formally, y is a K-dimensional one-hot vector,

where K is the number of possible z categories. Such symbol-vector duality can provide

extra entries for auxiliary supervision; we will detail it in Section 4.3.4.

4.3.2 Generative Image Modeling

Mixture of Experts for Image Generation Inspired by the regional homogenity

assumption proposed by Zhu and Yuille (1996), we use separate priors and generative

models for foreground and background regions, indexed as αk and βk, k = 1, 2, respec-

tively; see Figure 4.1. This design leads to the form of MoE (Jacobs et al., 1991; Jordan

and Jacobs, 1994) for image modeling, as shown below.

Let us start by considering only the i-th pixel of the observed image x, denoted as xi.

We use a binary one-hot random variable wi to indicate whether the i-th pixel belongs to

the foreground region. Formally, we have wi = [wi1, wi2], wik ∈ {0, 1} and
∑2

k=1wik = 1.

Let wi1 = 1 indicate that the i-th pixel xi belongs to the foreground, and wi2 = 1 indicate

the opposite.

We assume that the distribution of wi is prior-dependent. Specifically, the mixture pa-

rameter πik, k = 1, 2, is defined as the output of a gating function πik = pβ(wik = 1|z) =
Softmax(lik); lik = hβk

(zk), k = 1, 2 are the logit scores given by the foreground and

background generative models respectively; β = {β1,β2}, z = {z1, z2}. Taken together,

the joint distribution of wi is

pβ(wi|z) =
2∏

k=1

πwik

ik . (4.4)
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Figure 4.1: Schematic illustration of Deep Region Competition. (a) The model generates
foreground and background regions using sampled latent variables z = {z1, z2}. pβk

, k =
1, 2 represents the generator for each region. Of note, the pixel re-assignment function
is absorbed in the background generator; see Section 4.3.2 for details. (b) DRC samples
the latent variables z in an iterative manner. Let x denote the observed image; we
use x̂t, t = 0, 1, . . . to represent the image generated by pβ(x|z) at the t-th sampling
step. DRC has a two-step workflow for learning unsupervised foreground extractors that
resembles the E- and M-step in the classic EM algorithm. In the E-step, it employs
gradient-based MCMC sampling to infer the latent variables z as shown in (b). Of
note, only the latent variables z are updated in this step. In the M-step, the sampled
latent variables z are fed into the model for image generation as shown in (a), where the
generators are updated to minimize the reconstruction error.

The learned distribution of foreground and background contents are

pβ(xi|wik = 1, zk) = pβk
(xi|zk) ∼ N (gβk

(zk), σ2I), k = 1, 2, (4.5)

where we assume that the generative model for region content, pβk
(xi|zk), k = 1, 2,

follows a Gaussian distribution parameterized by the generator network gβk
. As in VAE,

σ takes an assumed value. We follow the common practice and use a shared generator

for parameterizing πik and pβk
(xi|zk). We use separate branches only at the output layer

to generate logits and contents.

Generating xi based on wi’s distribution involves two steps: (1) sample wi from the

distribution pβ(wi|z), and (2) choose either the foreground model (i.e., pβ1(xi|z1)) or the
background model (i.e., pβ2(xi|z2)) to generate xi based on the sampled wi. As such, this
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distribution of xi is a MoE,

pβ(xi|z) =
2∑

k=1

pβ(wik = 1|z)pβ(xi|wik = 1, zk) =
2∑

k=1

πikpβk
(xi|zk), (4.6)

wherein the posterior responsibility of wik is

γik = p(wik = 1|xi, z) =
πikpβk

(xi|zk)
∑2

m=1 πimpβm
(xi|zm)

, k = 1, 2. (4.7)

Using a fully-factorized joint distribution of x, we have pβ(x|z) =
∏D

i=1

∑2
k=1 πikpβk

(xi|zk)
as the generative modeling of x ∈ R

D.

Learning Pixel Reassignment for Background Modeling We use pixel re-

assignment in the background generative model as the essential inductive bias for mod-

eling the background region. This is partially inspired by the concepts of “texture” and

“texton” by Julez (Guo et al., 2007; Julesz, 1981), where the textural part of an image

may contain fewer structural elements in preattentive vision, which coincides with our

intuitive observation of the background regions.

We use a separate pair of energy-based prior model αpix and generative model βpix

to learn the re-assignment. For simplicity, we absorb αpix and βpix in the models for

background modeling, i.e., α2 and β2, respectively. In practice, the re-assignment follows

the output of βpix, a shufÒing grid with the same size of the image x. Its values indicate

the re-assigned pixel coordinates; see Figure 4.2. We find that shufÒing the background

pixels using the learned re-assignment facilitates the model to capture the regularities

of the background regions. Specifically, the proposed model with this essential induc-

tive bias learns to constantly give the correct mask assignment, whereas most previous

fully unsupervised methods do not provide explicit identification of the foreground and

background regions; see discussion in Section 4.4.1 for more details.
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Figure 4.2: Schematic illustration of pixel re-assignment. The output of βp can be viewed
as a learned re-assignment of the original background pixels that follows the mapped grid
Pαp,βp

(z, C). Note that the re-assignment function Pαp,βp
(z, ·)might not be injective. The

final background image is generated via grid sampling.

4.3.3 Deep Region Competition: From Generative Modeling to Foreground

Extraction

The complete-data distribution from the image modeling is

pθ(x, z,w) = pβ(x|w, z)pβ(w|z)pα(z)

=

(
D∏

i=1

2∏

k=1

pβk
(xi|zk)wik

)(
D∏

i=1

2∏

k=1

πwik

ik

)

pα(z)

= pα(z)
D∏

i=1

2∏

k=1

(πikpβk
(xi|zk))wik ,

(4.8)

where pα(z) = pα1(z1)pα2(z2) is the prior model given by LEBMs. α = {α1,α2}, and
θ = {α,β}. w is the vector of (wi), i = 1, . . . , D, whose joint distribution is assumed to

be fully-factorized.

Next, we derive the complete-data log-likelihood as our learning objective:

L(θ) = log pθ(x, z,w) = log pα(z) +
D∑

i=1

2∑

k=1

wik (log πik + log pβk
(xi|zk)) . (4.9)
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Of note, w and z are unobserved variables in the modeling, which makes it impossible

to learn the model directly through MLE. To calculate the gradients of θ, we instead

optimize Ez∼p(z|x),w∼p(w|x,z)[L(θ)] based on the fact that underlies the EM algorithm:

∇θ log pθ(x) =
∫

z
pθ(z|x)dz

∫

w
pθ(w|z, x)∇θ log pθ(x, z,w)dw

= Ez∼pθ(z|x),w∼pθ(w|x,z)[∇θ log pθ(x, z,w)].

(4.10)

Therefore, the derived surrogate learning objective becomes

max
θ

Ez∼pθ(z|x) [J (θ)] , s.t. ∀i,
2∑

k=1

πik = 1, (4.11)

J (θ) = log pα(z)
︸ ︷︷ ︸

objective for LEBM

+
D∑

i=1

2∑

k=1

γik log πik
︸ ︷︷ ︸

foreground-background partitioning

+
D∑

i=1

2∑

k=1

γik log pθk(xi|zk)
︸ ︷︷ ︸

objective for image generation

,

(4.12)

where J (θ) = Ew∼pθ(w|x,z) [L(θ)] is the conditional expectation of w, which can be calcu-

lated in closed form; see the supplementary material for additional details.

(4.11) has an intuitive interpretation. We can decompose the learning objective into

three components as in (4.12). In particular, the second term
∑D

i=1

∑2
k=1 γik log πik

has a similar form to the cross-entropy loss commonly used for supervised segmentation

task, where the posterior responsibility γik serves as the target distribution. It is as if

the foreground and background generative models compete with each other to fit the

distribution of each pixel xi. If the pixel value at xi fits better to the distribution of

foreground, pβ1(xi|z1), than to that of background, pβ2(xi|z2), the model tends to assign

that pixel to the foreground region (see (4.7)), and vice versa. This mechanism is similar

to the process derived by Zhu and Yuille (1996), which is the reason why we coin our

method Deep Region Competition (DRC).

Prior to our proposal, several methods (Zhu and Yuille, 1996; Greff et al., 2019; Lo-

catello et al., 2020) also employ mixture models and competition among the components
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to perform unsupervised foreground or image segmentation. The original Region Compe-

tition (Zhu and Yuille, 1996) combines several families of image modeling with Bayesian

inference but is limited by the expressiveness of the pre-specified probability distribu-

tions. More recent methods, including IODINE (Greff et al., 2019) and Slot-attention

(Locatello et al., 2020), learn amortized inference networks for latent variables and induce

the independence of foreground and background representations using an identical gener-

ator. Our method combines the best of the two worlds, reconciling the expressiveness of

learned generators with the regularity of generic texture modeling under the framework

of LEBM.

To optimize the learning objective in (4.11), we approximate the expectation by

sampling from the prior pα(z) and posterior model pθ(z|x) ∝ pα(z)pβ(x|z), followed by

calculating the Monte Carlo average. We use Langevin dynamics (Welling and Teh, 2011)

to draw persistent MCMC samples, which iterates

zt+1 = zt + s∇z logQ(zt) +
√
2sϵt, (4.13)

where t is the Langevin dynamics’s time step, s the step size, and ϵt the Gaussian noise.

Q(z) is the target distribution, being either pα(z) or pθ(z|x). ∇z logQ(zt) is efficiently

computed via automatic differentiation in modern learning libraries (Paszke et al., 2019).

We summarize the above process in Algorithm 4.

During inference, we initialize the latent variables z for MCMC sampling from Gaus-

sian white noise and run only the posterior sampling step to obtain z+. The inferred

mask and region images are then given by the outputs of generative models pβk
(w|z+)

and pβk
(x|z+), k = 1, 2, respectively.

4.3.4 Technical Details

Pseudo Label for Additional Regularization Although the proposed DRC ex-

plicitly models the interaction between the regions, it is still possible that the model

converges to a trivial extractor, which treats the entire image as the foreground or back-
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Algorithm 4 Learning models of DRC via EM.

Require: Learning iterations T , initial parameters for LEBMs α(0) = {α(0)
1 ,α

(0)
2 } and

generators β(0) = {β(0)
1 ,β

(0)
2 }, θ(0) = {α(0),β(0)}, learning rate ηα for LEBMs, ηβ for

foreground and background generators, observed examples {x(i)}Ni=1, batch size M ,
and initial latent variables {z(i)− = {z(i)1−, z

(i)
2−} ∼ p0(z)}Ni=1 and {z(i)+ = {z(i)1+, z

(i)
2+} ∼

p0(z)}Ni=1.
Ensure: θ(T ) = {α(T )

1 ,β
(T )
1 ,α

(T )
2 ,β

(T )
2 }.

1: for t = 0 to T − 1 do
2: Sample a minibatch of data {x(i)}Mi=1

3: Prior sampling for learning LEBMs: For each x(i), update z(i)− using (4.13),
with target distribution π(z) = pα(t)(z)

4: Posterior sampling for foreground and background generation: For each
x(i), update z(i)+ using (4.13), with target distribution Q(z) = pθ(t)(z|x)

5: Update LEBMs: α(t+1) = α(t) + ηα
1
m

∑m

i=1[∇αfα(t)(z(i)+ )−∇αfα(t)(z(i)− )]
6: Update foreground and background generators: β(t+1) = β(t) +

ηβ
1
m

∑m

i=1∇β log pβ(t)(x(i)|z(i)+ )
7: end for

ground region, leaving the other region null. We exploit the symbolic vector y emitted

by the LEBM (see Section 4.3.1) for additional regularization. The strategy is similar

to the mutual information maximization used in InfoGAN (Chen et al., 2016). Specifi-

cally, we use the symbolic vector y inferred from z as the pseudo-class label for z and

train an auxiliary classifier jointly with the above models; it ensures that the generated

regions xk contain similar symbolic information for zk. Intuitively, this loss prevents the

regions from converging to null since the symbolic representation yk would never be well

retrieved if that did happen.

Implementation We adopt a similar architecture for the generator as in DCGAN

(Radford et al., 2016) throughout the experiments and only change the dimension of the

latent variables z for different datasets. The generator consists of a fully connected layer

followed by five stacked upsample-conv-norm layers. We replace the batch-norm layers

(Ioffe and Szegedy, 2015) with instance-norm (Ulyanov et al., 2016) in the architecture.

The energy-term in LEBM is parameterized by a 3-layered MLP. We adopt orthogonal

initialization (Saxe et al., 2014) commonly used in generative models to initialize the

networks and orthogonal regularization (Brock et al., 2016) to facilitate training. In ad-
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dition, we observe performance improvement when adding Total-Variation norm (Rudin

et al., 1992) for the background generative model. More details, along with specifics of

the implementation used in our experiments, are provided in the supplementary material.

4.4 Experiments

We design experiments to answer three questions: (1) How does the proposed method

compare to previous state-of-the-art competitors? (2) How do the proposed components

contribute to the model performance? (3) Does the proposed method exhibit general-

ization on images containing unseen instances (i.e., same category but not the same

instance) and even objects from novel categories?

To answer these questions, we evaluate our method on five challenging datasets in

two groups: (1) Caltech-UCSD Birds-200-2011 (Birds) (Welinder et al., 2010), Stanford

Dogs (Dogs) (Khosla et al., 2011), and Stanford Cars (Cars) (Krause et al., 2013) datasets;

(2) CLEVR6 (Johnson et al., 2017) and Textured Multi-dSprites (TM-dSprites) (Matthey

et al., 2017) datasets. The first group of datasets covers complex real-world domains,

whereas the second group features environments of the multi-object foreground with

challenging spatial configurations or confounding backgrounds. As to be shown, the

proposed method is generic to various kinds of input and produces more competitive

foreground-background partition results than prior methods.

4.4.1 Results on Foreground Extraction

Single Object in the Wild In the first group of datasets, there is typically a single

object in the foreground, varying in shapes, texture, and lighting conditions. Unsuper-

vised foreground extraction on these datasets requires much more sophisticated visual

cues than colors and shapes. Birds dataset consists of 11,788 images of 200 classes of

birds annotated with high-quality segmentation masks, Dogs dataset consists of 20,580

images of 120 classes annotated with bounding boxes, and Cars dataset consists of 16,185

images of 196 classes. The latter two datasets are primarily made for fine-grained cat-
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Single Object Multi-Object
Model Birds Dogs Cars CLEVR6 TM-dSprites

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice
W-Net∗ 24.8 38.9 47.7 62.1 52.8 67.6 - - - -
GrabCut 30.2 42.7 58.3 70.9 61.3 73.1 19.0 30.5 61.9 71.0
ReDO§ 46.5 60.2 55.7 70.3 52.5 68.6 18.6 31.0 9.4 17.2
OneGAN∗† 55.5 69.2 71.0 81.7 71.2 82.6 - - - -
IODINE§ 30.9 44.6 54.4 67.0 51.7 67.3 19.9 32.4 7.3 12.8
Slot-Attn.§ 35.6 51.5 38.6 55.3 41.3 58.3 83.6 90.7 7.3 13.5
Ours 56.4 70.9 71.7 83.2 72.4 83.7 84.7 91.5 78.8 87.5

Table 4.1: Foreground extraction results on training data measured in IoU and Dice.
Higher is better in all scores. *Results of W-Net and OneGAN are provided by Benny
and Wolf (2020). Of note, results of these two models on Dogs and Cars datasets may
not be directly comparable to other listed methods, as the data used for training and
evaluation could be different. We include these results as a rough reference since no
official implementation or pretrained model are publicly available. § indicates unfair
baseline results obtained using extra ground-truth information, i.e., we choose the best-
matching scores from the permutation of foreground and background masks. †OneGAN
is a strong weakly supervised baseline, which requires clean background images to
provide additional supervision. We include this model as a potential upper bound of the
fully unsupervised methods.

egorization. To evaluate foreground extraction, we follow the practice in (Benny and

Wolf, 2020), and approximate ground-truth masks for the images with Mask R-CNN (He

et al., 2017), pre-trained on the MS COCO (Lin et al., 2014) dataset with a ResNet-101

(He et al., 2016) backend. The pre-trained model is acquired from the detectron2 toolkit

(Wu et al., 2019). This results in 5,024 dog images and 12,322 car images with a clear

foreground-background setup and corresponding masks.

On datasets featuring a single foreground object, we use the 2-slot version of IODINE

and Slot-attention. Since ReDO, IODINE, and Slot-Attention do not distinguish fore-

ground and background in output regions, we choose the best-matching scores from the

permutation of foreground and background masks as in (Chen et al., 2019a). We observe

that the proposed method and Grabcut are the only two methods that provide explicit

identification of foreground objects and background regions. While the Grabcut algo-

rithm actually requires a predefined bounding box as input that specifies the foreground
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Figure 4.3: Foreground extraction results for each dataset; zoom in for better visibility.
From top to bottom: (i) observed images, (ii) generated images, (iii) masked generated
foregrounds, (iv) generated backgrounds, (v) ground-truth foreground masks, and (vi)
inferred foreground masks. More samples and results of baselines can be found in the
supplementary material.

region, our method, thanks to the learned pixel re-assignment (see Section 4.3.2), can

achieve this in a fully unsupervised manner. Results in Table 4.1 show that our method

outperforms all the unsupervised baselines by a large margin, exhibiting comparable per-

formance even to the weakly supervised baseline that requires additional background

information as inputs (Benny and Wolf, 2020). We provide samples of foreground extrac-

tion results as well as generated background and foreground regions in Figure 4.3. Note

that our final goal is not to synthesize appealing images but to learn foreground extrac-

tors in a fully unsupervised manner. As the limitation of our method, DRC generates

foreground and background regions less realistic than those generated by state-of-the-art

GANs, which hints a possible direction for future work. More detailed discussions of the

limitation can be found in supplementary material.

Multi-Object Scenes The second group of datasets contains images with possi-

bly simpler foreground objects but more challenging scene configurations or background

parts. Visual scenes in the CLEVR6 dataset contain various objects and often with

partial occlusions and truncations. Following the evaluation protocol in IODINE and

Slot-attention, we use the first 70K samples from CLEVR (Johnson et al., 2017) and

filter the samples for scenes with at most 6 objects for training and evaluation, i.e.,

CLEVR6. The TM-dSprites dataset is a variant of Multi-dSprites (Matthey et al., 2017)
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but has strongly confounding backgrounds borrowed from Textured MNIST (Greff et al.,

2016). We generate 20K samples for the experiments. Like Greff et al. (2019) and Lo-

catello et al. (2020), we evaluate on a subset containing 1K samples for testing. Note

that IODINE and Slot-attention are designed for segmenting complex multi-object scenes

using slot-based object representations. Ideally, the output of these models consists of

masks for each individual object, while the background is viewed as a virtual “object”

as well. In practice, however, it is possible that the model distributes the background

over all the slots as mentioned in (Locatello et al., 2020). We therefore propose two cor-

responding approaches (see the supplementary material for more details) to convert the

output object masks into a foreground-background partition and report the best results

of these two options for IODINE and Slot-attention in Table 4.1.

On the CLEVR6 dataset, we use the publicly available pretrained model for IODINE,

which achieves a reasonable ARI (excluding background pixels) of 94.4 on the testing data,

close to the testing results in (Greff et al., 2019). We observe that IODINE distributes the

background over all the slots for some of the testing samples, resulting in much lower IoU

and Dice scores. We re-train the Slot-attention model using the official implementation

on CLEVR6, as no pretrained model is publicly available. The re-trained model achieves

a foreground ARI of 98.0 on the 1K testing samples, which we consider as a sign of

valid re-implementation. Results in Table 4.1 demonstrate that the proposed method

can effectively process images of challenging multi-object scenes. To be specific, our

method demonstrates competitive performance on the CLEVR6 dataset compared with

the SOTA object discovery method. Moreover, as shown empirically in Figure 4.3, the

proposed method can handle the strongly confounding background introduced by Greff

et al. (2016), whereas previous methods are distracted by the background and mostly fail

to capture the foreground objects.
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Model IoU Dice
amortized inference∗ - -
w/o pix. re-assign. 21.8 35.3
w/o pseudo label 48.7 64.2
w/o TV-norm reg. 53.0 68.1
w/o ortho. reg. 54.3 69.2
short-run chain† 52.5 67.7
Full model 56.4 70.9

Table 4.2: Ablation study on Birds. *We replace the LEBM with encoders to perform
amortized inference for the latent variables z within a variational framework as in VAE
(Kingma and Welling, 2014a). †We explore the possibility of using short-run MCMC
(Nijkamp et al., 2019) instead of persistent chain sampling.

4.4.2 Ablation Study

We provide ablation studies on the Birds dataset to inspect the contribution of each

proposed component in our model. As shown in Table 4.2, we observe that replacing

the LEBMs in the foreground and background models with amortized inference networks

significantly harms the performance of the proposed method. In particular, the modified

model fails to generate any meaningful results (indicated as “-” in Table 4.2). We con-

jecture that LEBM benefits from the low-dimensionality of the latent space (Pang et al.,

2020a) and therefore enjoys more efficient learning. However, the inference networks need

to learn an extra mapping from the high-dimensional image space to the latent space and

require more elaborate architecture and tuning for convergence. Furthermore, we observe

that the model that does not learn pixel re-assignment for background can still generate

meaningful images but only vaguely captures masks for foreground extraction.

4.4.3 Generalizable Foreground Extraction

Extracting Novel Foreground Objects From Training Categories We show

results on generalizing to novel objects from the training classes. To evaluate our method,

we split the Birds dataset following Chen et al. (2019a), resulting in 10K training images

and 1K testing images. On Dogs and Cars datasets, we split the dataset based on

the original train-test split (Khosla et al., 2011; Krause et al., 2013). This split gives

71



Birds Dogs Cars
Model IoU Dice IoU Dice IoU Dice

Tr.|Te. Tr.|Te. Tr.|Te. Tr.|Te. Tr.|Te. Tr.|Te.
GrabCut∗ 30.2|30.3 42.7|42.8 58.3|57.9 70.8|70.5 60.9|61.6 72.7|73.5
ReDO 46.8|47.1 61.4|61.7 54.3|52.8 69.2|67.9 52.6|52.5 68.7|68.6
Ours 54.8|54.6 69.5|69.4 71.6|72.3 83.2|83.6 71.9|70.8 83.3|82.5

Table 4.3: Performance of DRC on training and held-out testing data. *Note that Grab-
Cut is a deterministic method that does not require training. We report the results of
GrabCut (Rother et al., 2004) on these splits only for reference. Tr. indicates the perfor-
mance on training data, and Te. indicates the performance on testing data.

Test Train GrabCut ReDO Ours
IoU Dice IoU Dice IoU Dice

Birds* 47.1 61.7 54.6 69.4
Birds Dogs 30.3 42.8 22.2 35.3 41.3 57.4

Cars 16.4 27.7 39.2 55.3
Dogs* 52.8 67.9 72.3 83.6

Dogs Cars 57.9 70.5 44.5 61.2 67.8 80.4
Birds 44.0 60.3 53.6 69.1
Cars* 52.5 68.6 70.8 82.5

Cars Dogs 61.6 73.5 51.6 67.1 68.6 81.0
Birds 41.8 58.6 45.1 61.7

Table 4.4: Performance of DRC on unseen testing categories. *We include the testing
results of models trained with data from the same categories for reference.

3,286 dog images and 6,218 car images for training, and 1,738 dog images and 6,104 car

images for testing, respectively. As summarized in Table 4.3, our method shows superior

performances compared with baselines; the performance gap between training and testing

is constantly small over all datasets.

Extracting Novel Foreground Objects From Unseen Categories To investi-

gate how well our method generalizes to categories unseen during training, we evaluate

the models trained in real-world single object datasets on the held-out testing data from

different categories. We use the same training and testing splits on these datasets as in

the previous experiments. Table 4.4 shows that our method outperforms the baselines on
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the Birds dataset when the model has trained on Dogs or Cars dataset, which have quite

different distributions in foreground object shapes. Competitors like ReDO also exhibit

such out-of-distribution generalization but only to a limited extent. Similar results are

observed when using Dogs or Cars as the testing set. We can see that when the model is

trained on Dogs and evaluated on Cars or vice versa, it still maintains comparable perfor-

mances w.r.t those are trained&tested on the same class. We hypothesize that these two

datasets have similar distributions in foreground objects and background regions. In the

light of this, we can further entail that the distribution of Dogs is most similar to that of

Cars and less similar to that of Birds according to the results, which is consistent with

our intuitive observation of the data. We provide a preliminary analysis of the statistics

of these datasets in the supplementary material.

4.5 Summary

In this chapter, we presented DRC, a latent variable generative model that is specially

structured for disentangling and abstracting objects from backgrounds. We identified the

lack of independence and symmetry between objects and backgrounds and introduced

learned pixel re-assignment as an inductive bias to capture the background regularities.

Experiments demonstrate that DRC exhibits more competitive performance on complex

real-world data and challenging multi-object scenes. We also showed empirically that

learned pixel re-assignment helps to provide explicit identification for foreground and

background regions. Moreover, we found that DRC can potentially generalize to novel

foreground objects even from categories unseen during training. Extending the conclu-

sion of Part I in terms of the advantage of latent abstraction inference, this chapter

demonstrated the representational and inferential benefits of additional generic statisti-

cal modeling in latent-variable models.
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CHAPTER 5

Measuring Object Compositionality in Latent

Representations

5.1 Introduction

The previous chapter examined latent object abstraction in images featuring a single

iconic object; however, a universal observation about objects is that they rarely exist

in isolation — shoes typically appear in pairs and a table often accompanies a chair.

Consequently, the assumption of independence between latent object slots, although

principled, does not align with human intuition. In this chapter, we shift our focus from

the statistical structure to the algebraic structure of object abstractions. Specifically,

we expand our scope from the single-object foreground extraction problem to a multi-

object scene understanding problem. This transition allows us to explore the intricate

relationships and dependencies between objects in complex environments.

Much work in representation learning has recently focused on the property of “ob-

jectness”, where the goal is to form abstract, low dimensional representations z ∈ R
D of

input scenes x ∈ R
N (D << N) that parse the scene into its constituent objects such that

these object primitives can be recomposed together to parse entirely novel scenes(Burgess

et al., 2019; Bapst et al., 2019; Goyal et al., 2020; Greff et al., 2019, 2020; Kosiorek et al.,

2018; Singh et al., 2021; van Steenkiste et al., 2018; Eslami et al., 2016; Huang and Mur-

phy, 2015). Such representations can support reasoning and higher level tasks such as

counting (Chattopadhyay et al., 2017; Antol et al., 2015), abstraction (Higgins et al.,

2016; Vedantam et al., 2021), puzzle solving (Barrett et al., 2018), and reinforcement

learning (Bapst et al., 2019). More generally, objectness is a promising inductive bias for
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generalization to out-of-distribution scenes (Locatello et al., 2020; Chattopadhyay et al.,

2017).

One can formalize the notion of object-centric representations or abstractions from

the viewpoint of compositionality (Mikolov et al., 2013b) or disentanglement (Higgins

et al., 2016). For compositionality, we aim to learn representations featuring low-level

primitives that can be composed via simple vector operations to represent more com-

plex inputs. Critically, such a representation should be learnable from a small set of

primitive combinations and should enable those vector operations to generalize to any

combination of primitives (Lake and Baroni, 2018; Radford et al., 2016; Mitchell and

Lapata, 2008). Disentanglement takes a stricter view in which we not only aim to infer

and compose different factors of variation, but also require that these factors are parti-

tioned into distinct dimensions zi or K “slots”, namely, zk ∈ R
D
K of the representation

space Z, in order to recover ground-truth, statistically independent factors of variation

that generate the observations. However, representations may be compositional without

being disentangled. For example, applying a change of basis through a rotation to a

disentangled representation will yield a representation that is still compositional but no

longer disentangled. Nevertheless, the goal of uncovering true factors of variation in a

data driven manner remains conceptually appealing, and there has been a lot of inter-

est in learning disentangled, object-centric representations (Locatello et al., 2020; Greff

et al., 2019; Singh et al., 2021).

Slot-Based Approaches Slot-based approaches to objectness aim to disentangle

K statistically independent sub-spaces or slots (Greff et al., 2019; Locatello et al., 2020)

zk ∈ R
D
K such that each slot specializes to capture all relevant ground truth properties

of one of the objects in the observed scene. Evaluation of such models is typically done

using clustering-based metrics by decoding each of the slots back to the pixel space with

a generator.

Slot-Free approaches Although slot-based approaches to measuring objectness

are relatively simple to define and evaluate, the strict requirement of slot-based delin-

eation in the representations limits its applicability to architectures without slots. This
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Figure 5.1: An illustration of the parallelogram in COAT. The transformation from scene
A to scene B is to add two blue rubber cubes, so is the one from C to D. Hence in the
representation space, we would expect the translation vector zB − zA to be identical to
zD − zC . Further, we would expect the parallelogram not to hold for A,B,C and hard
negative D′. Here D′ is the pixel-level hard negative, resulted from B − A + C in the
pixel space.

downside is particularly relevant as most commonly utilized models for visual recognition

such as residual networks (He et al., 2016) or newer models such as vision transformers

(Dosovitskiy, 2020) lack such slot-based structure. This challenge has led to a gap be-

tween the generic architectures used for visual recognition and slot-based approaches used

for learning object-centric representations. In this chapter, we bridge this gap by mea-

suring compositionality in the emergent representations, providing a unified treatment

of slot-based and slot-free approaches. We propose a new metric, the Compositional Ob-

ject Algebra Test (COAT), and associated testing corpus based on the CLEVR (Johnson

et al., 2017) domain for measuring object-centric compositionality.

If a representation is compositional with respect to objects, we would expect that the

change in a scene’s representation when the same input space transformation is applied

is consistent across scenes. For example, consider four images A, B, C, and D, where

A:B::C:D (Figure 5.1). If two blue objects are added to A to yield B and the same

blue objects are added to C (at the same locations) to yield D, then we would expect

some analogical structure to be present in the corresponding representations as well.

Taking a geometric perspective, if this is true, we would expect −→AB to be parallel to −−→CD.

76



B A C D’ D− + = ≈

(a) Weakly Occluded Scene

B A C D’ D− + = ≠

(b) Strongly Occluded Scene

Figure 5.2: An illustration of trivial compositionality vs object compositionality and the
importance of occlusion for measuring the latter. In (a), compositionality is trivial since
an algebra B−A+C in the pixel representation can obtain a D′ that is almost the same
as the D resulted from the transformation in the semantic space. In (b), compositionality
is non-trivial and requires object-centric abstraction. An algebra B −A+C in the pixel
space results in a D′ that is obviously different from the ground-truth D.

Equivalently, if one can compose D from A, B, and C through translation operations

in the latent space, to check their equivariance, it should form a parallelogram. Such

emergent properties have previously been studied in the context of word representations

(and have indeed emerged without any explicit slot-like structure or specific inductive bias

in some cases (Mikolov et al., 2013b)). We demonstrate that one can evaluate object-

centric representations against similar geometric structures, by showing how to translate

the geometric desiderata into a concretely measurable device.

Interestingly, when measuring transformations across closely related scenes, even a

representation such as q(x) = x can be trivially compositional. For example, Figure 5.2a

portrays a situation in which compositionality is trivially achieved in the pixel space rep-

resentation. This occurs because there is very little occlusion in this scene and, as such,

the representation of objects in pixel-space is inherently independent since the pixels
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corresponding to each object are non-overlapping. Thus, when constructing a metric for

compositionality, one needs to carefully measure to what extent an approach captures

more abstract, non-trivial compositionality. We do so by populating the testing corpus

with images like Figure 5.2b with stronger occlusion such that the representations of

objects is intertwined even in pixel space, and use q(x) = x as a null, trivially composi-

tional representation to contextualize our metric. Any learned representation, in order

to exhibit non-trivial compositionality, has to be able to reject the null hypothesis that

it is no better than the trivial model in order to receive a COAT score.

In terms of the metric itself, our key technical challenges are centered around how to

best measure the extent to which a representation shows an (approximate) parallelogram

structure. For instance, some representations might be very closely concentrated in some

part of the output feature space, while others may be more spread out. Any compar-

isons of parallelogram structure must take such global statistics into account in order to

be relevant over the course of training a particular model and across different models

spanning different design choices ( e.g., generative vs.contrastive, slot-based vs.slot free,

etc.). Moreover, a representation may short-circuit the parallelogram test by discarding

information or not forming object abstraction at all. We address these desiderata by nor-

malizing our metric, correcting for chance and a careful design of hard negative examples

to capture compositionality in object-centric representations.

Overall, our contributions are as follows:

• We propose a novel measure, COAT for evaluating compositionality in emergent

representations (see Section 5.3.3 for a discussion of the benefits of measuring com-

positionality over disentanglement).

• We demonstrate the importance of comparing to pixel-space as a null representation

when evaluating compositionality (Section 5.4).

• We evaluate a suite of emergent representations, spanning models with various

assumptions and inductive biases (Section 5.5).
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• As an intriguing negative result, we demonstrate that representations learned by

state-of-the-art models for disentangling objects are not as compositional as one

might expect, especially with respect to pixel-space compositionality, hinting at the

need for further modeling improvements (Table 5.1).

5.2 Related Work

5.2.1 Generative Models of Multi-Object Scenes

Generative modeling of multi-object scenes is a long-standing problem in computer vi-

sion (Zhu and Yuille, 1996; Tu and Zhu, 2002). While the previous work focuses on

segmenting the pixel space to match the ground-truth, more recent interest has shifted

to representation learning — hypothesizing that structural constraints in the representa-

tions will facilitate transfer to various visual reasoning (Barrett et al., 2018) or planning

tasks (Schölkopf et al., 2021). MONet (Burgess et al., 2019), IODINE (Greff et al., 2019)

and Slot Attention (Locatello et al., 2020), among other recent works (Greff et al., 2017;

Kim and Mnih, 2018; Engelcke et al., 2020), demonstrate that one can learn disentan-

gled, object-specific slots in latent representations on perceptually simple datasets like

CLEVR (Johnson et al., 2017), although progress needs to be made to generalize to

more perceptually challenging domains proposed by Karazija et al. (2021). In contrast,

our focus is not on perceptual difficulty, but in simply measuring the extent to which

compositionality is captured by existing CLEVR-domain models1.

5.2.2 Disentanglement Metrics

Most of the slot-based object-centric models discussed above decode the slots back to the

pixel space, and utilize clustering based approaches for comparing segmentations, such

as the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) for evaluation. ARI aims

to measure the similarity between the pixel mask for an object predicted by a generative

1With a minor modification, namely that we allow different colors for the background
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model given a slot with the ground truth mask for that object in the original image, and

has a number of desirable properties: it is bounded, normalized and corrected for chance,

but it only indirectly measures the representations because a mapping back to the image

space is always needed (Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020). In

contrast, our metric is decoder-free, does not assume a slot-based structure and measures

compositionality instead of disentanglement, broadening its applicability to a much wider

range of models and settings. We anticipate this to facilitate more modeling avenues for

research on object-centric representation learning.

As opposed to objects, there is another line of work which focuses on disentanglement

at the attribute level, and which typically models scenes with single objects (though not

always). To evaluate how well factors of variation such as pose, size, shape etc.are uncov-

ered, these works adopt approaches like fitting a linear classifier or performing majority

vote classifiers on each latent dimension (Higgins et al., 2016; Kim and Mnih, 2018; Chen

et al., 2019b), the mean distance between the classification errors of the two latent dimen-

sions that are most predictable (Kumar et al., 2018), mutual information between the

representation and the ground truth (Chen et al., 2016), and a dimension-wise entropy

reflecting the usefulness of the dimension to predict a single factor to variation (Eastwood

and Williams, 2018). In contrast to these methods, our metric does not need a generative

model, nor a partitioning of the latent space in terms of individual factors of variation in

the latent space2, nor annotations of all the ground truth factors of variation. Moreover,

previous work focuses on attribute-level disentanglement while we are concerned with

object-centric, compositional representation learning.

5.2.3 Qualitative Analogical Structures

Our metric comes with an analogy test corpus which is inspired by the pioneering work

of Mikolov et al. (2013b); Radford et al. (2016), where they show the learned word

embeddings enable simple linear algebra for analogical reasoning. Such a paradigm was

2Note this is more challenging for slots in object-centric learning, as opposed to attribute disentan-
glement where the size of a slot is usually one.
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later adopted by Eslami et al. (2018), Ha and Eck (2018) and Achlioptas et al. (2018)

for static images, sketches, and 3D point clouds respectively. While these works largely

provide qualitative analysis/ visualizations of representations, we aim to quantify the

extent to which there exists such an analogical structure in the representations.

5.2.4 Quantifying Compositionality

Andreas (2019) propose a learning based method to identify the extent of compositional

structure in any generic, emergent representation, by learning an approximated compo-

sition function. While their approach is very generic and broadly applicable compared

to ours, our work makes a number of more specific innovations to appropriately measure

compositional structure for object-centric representations. Firstly, we note that the met-

ric proposed by Andreas (2019) does not account for pixel-level hard negatives, which

is a potential shortcut test constructed by applying the compositional operator in the

raw input space as opposed to the latent representation space (which was not a concern

for their applications). Further, our metric corrects for representation collapse and by

adjusting for chance, which the metric of Andreas (2019) does not account for. That met-

ric may give a high score to a collapsed representation, say q(x) = 0. Finally, Keysers

et al. (2019) measure compositional generalization in sequence to sequence tasks by con-

structing various evaluation tasks with different difficulties for evaluation. In contrast,

our evaluation is towards objectness in learned, continuous valued representations rather

than the difficulty in compositional generalization entailed by a sequence to sequence

task.

5.3 Background

In this section, we make connections between disentanglement representation learning

(Locatello et al., 2020; Greff et al., 2019), causal representation learning (Schölkopf

et al., 2021), compositionality (Lake and Baroni, 2018), and equivariance (Jayaraman

and Grauman, 2015) — notions which underpin both the models we evaluate, as well as
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the properties we choose to measure in our COAT metric.

5.3.1 Disentanglement

Attribute-level disentanglement. For attribute-level disentanglement approaches

(Higgins et al., 2016), the goal is to recover the ground truth factors of variation used to

generate the dataset ( e.g., the size, color orientation and shape of 2-D shapes (Higgins

et al., 2016)). This is achieved by learning representations using variational autoencoders

with a factorized prior p(z) =
∏

i p(zi) (Higgins et al., 2016) which indirectly encourages

the aggregate posterior
∫

x q(z|x)p(x)dx that generates the representations to be factorized

as well (Hoffmann et al., 2018) or by encouraging such behavior more explicitly (Chen

et al., 2019b).

Object-Centric disentanglement A parallel line of work focuses on object-centric

disentanglement (Greff et al., 2019; Locatello et al., 2020), where instead of attempting

to fit all the information corresponding to an entire object into a single, independent latent

dimension, one attempts to learnK independent sub-spaces or ‘slots’, i.e.z = [z0, · · · , zK ],
with the hope of specializing each object to a slot in the input scene. In addition to this

independence assumption used in the latent space, such work also often utilizes functional

constraints, which are inspired by the independent causal mechanism (ICM) principle

(Schölkopf et al., 2021). Essentially, they start with (1) a pixel-space representation

ui ∈ R
N to disentangle each object separately in the pixel observations x ∈ R

N and (2)

a vector of latent abstract causal variables zi ∈ R
D
K , with a functional constraint on the

decoder, namely that ui = fi(zi, ϵ), where ϵ is a source of noise. The ui are then combined

with a function g which is often hand-coded to be a mixture of gaussians (Burgess et al.,

2019; Greff et al., 2019; Locatello et al., 2020) (where the weight of each gaussian is a pixel-

level mask, and the predicted means are the pixel values) or a more complex generative

process (Eslami et al., 2018; Huang and Murphy, 2015). Learning often proceeds by

fitting g, f and an image encoder q jointly, where q maps input images x to latent

representations z. Intuitively, the functional constraint means that the mechanics of
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image formation are the same, regardless of the object in question. In addition, the

popular Slot Attention (Locatello et al., 2020) also has a strong inductive bias based on

self-attention on the encoder which aids emergence of effective slot representations.

Object- vs.Attribute- disentanglement Conceptually, popular attribute-level disen-

tanglement models such as β-VAE (Higgins et al., 2016) or β-TC-VAE (Kim and Mnih,

2018) can be thought of as learning statistically independent slots of size 1, with a re-

laxation of the functional constraint that “object-level” disentanglement models have.

As such, it is not a priori obvious that so called “attribute-level” disentanglement mod-

els would fail when trained on multi-object scenes to uncover object-centric representa-

tions. To our knowledge, our work provides the first evaluation to quantitatively measure

objectness in such “attribute-level” models, along with an extensive study of the extent

to which “object-level” disentanglement models are compositional.

5.3.2 Compositionality

Compositional representations of scenes that enable the flexible addition or removal of

objects to/from a scene and the ability to reason with these objects are potentially use-

ful for a large number of applications including counting (Chattopadhyay et al., 2017),

reasoning (Barratt and Sharma, 2018), and out of distribution generalization (Lake and

Baroni, 2018; Gordon et al., 2019). Beyond these benefits, a compositional representa-

tion is conceptually easier to measure, compared to a disentangled representation which

often needs access to the ground truth factors of variation, which are not always available

in a lot of real world applications. Finally, compositional representations can also aid

interpretability (Andreas, 2019).

Disentanglement implies (approximate) compositionality. Moreover, disentan-

glement is closely related to compositionality. Consider a continuous valued disentan-

gled representation z where each scalar zi represents a factor of variation. Let zA be

the representation of image A and zC be the representation of image C. Let z0 be the

dimension in the disentangled feature that corresponds to the size of an object, for in-
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stance. Increasing z0 by a value ϵ should increase the size of the object for both image A

as well as C, yielding images B and D respectively. Thus, a translation by ϵ in this case

gives us compositionality in terms of size in the input domain. Strictly speaking, one

might have to translate by a different amount ϵ and say, δ to obtain the same increase

in shape for A and C, in general but the resultant difference vectors are still parallel to

each other (Figure 5.1). In our work, we measure both notions of compositionality, by

checking for an exact parallelogram structure as well as simply checking if the vectors are

parallel (Section 5.4). While we explain attribute level disentanglement for ease of expla-

nation, a similar argument can be made for “slot” based disentanglement with functional

constraints (see Section D.1.1 for an informal proof). Moreover, any full rank linear trans-

formation of a disentangled representation (such as a rotation) will still be compositional

(while retaining all the information in the original representation) but not disentangled

(see Section D.2.1). Thus, exact disentanglement implies perfect compositionality with

respect to the ground-truth factors of variation.

Connection to Equivariance. The notion of compositionality we discuss here is

an instantiation of group equivariance which has been well studied in the representation

learning literature (Jayaraman and Grauman, 2015; Gordon et al., 2019). Specifically,

our measure of compositionality is more formally expressed as to translation equivariance

in the representation space. Since a slot-based, disentangled representation is composi-

tional with repsect to translations (as discussed above), we measure compositionality

with respect to the same translation operation for slot-free models, essentially testing

to what extent a slot-free model behaves compositionally as a slot-based model ideally

would. However, in principle, one could evaluate with other operations in the latent space

or even learn them (Andreas, 2019). Nevertheless, we believe our contributions such as

choice of hard negatives, proper normalization etc.will prove to be useful regardless of

these orthogonal design choices.
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5.3.3 Benefits of Measuring Compositionality Over Disentanglement

Overall, measuring compositionality instead of disentanglement for object-centric repre-

sentation learning has the following benefits:

• Directly evaluates representations (which is what will be used for downstream tasks)

without requiring a decoder that maps the representations back to pixel space.

• Allows one to evaluate objectness in representations when slot-based structure is

not present.

• Related to the above, one can potentially handle scenes with highly variable num-

bers of objects in a distributed representation since one does not need to pre-specify

the number of object-specific slots.

• While evaluation of slot-based disentanglement requires annotation of all the ob-

jects in the scene and their properties, measuring compositionality only requires

us to know the relationship between two scenes which is much easier to annotate

or obtain from say, videos. More specifically, annotating changes in scenes (in

videos) is easier than densely annotating all objects (in images), and temporally

close frames could be useful hard negatives.

5.4 Method

Desiderata. While measuring equivariance is necessary for a useful compositional rep-

resentation, it is not sufficient in practice. We impose the following additional desiderata

to identify useful, compositional representations:

1. Avoiding Shortcuts: It is possible to “shortcut”, for example the analogy test

in Figure 5.1 by ignoring the color of the blue objects being added and simply

learning a translation operator for “adding two objects” instead of “adding two

blue objects”. Such a representation would still be compositional, but potentially
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not useful for downstream tasks. As discussed in Section 5.1, another shortcut is

when one performs no better than say a null model q(x) = x in terms of capturing

abstract compositional structure. If the model exhibits parallelogram structure,

but doesn’t capture the relevant information regarding the scene, our metric should

penalize the model.

2. Consistent Blank Slots: When evaluating a model with say K slots, it is impor-

tant to have a consistent representation of scenes with any number k < K objects.

Specifically, for a scene with k slots, there are K−k “blank slots”. One would desire

a consistent representation of such slots across different input scenes, otherwise it

would be hard to preserve the consistency in the consequence of applying the same

vector operation.

3. Calibration: Finally, it is a non-trivial question in cases where the parallelogram

structure is not exactly followed (which will almost always be the case in practice)

how to quantify the degree to which A, B, C, D (Figure 5.1) follow the parallel-

ogram structure in order to obtain a measure that is calibrated to give sensible

measurements both across training checkpoints and across models.

5.4.1 COAT Measure

The COAT measure comprises three parts: 1) A corpus with carefully designed analogy

tests, 2) A binary pass/fail hypothesis test to detect shortcuts to compositionality, 3) a

normalized measure reported for the cases where a model passes step 2. We discuss each

of these elements below.

Analogy Test. We create a corpus with a set of 1600 analogy / compositionality tests3,

each containing images A, B, C, D (Figure 5.1). Following the observations in Sec-

tion 5.1 we utilize images with sufficient occlusion (Figure 5.2) where the null represen-

3These 1600 test cases are obtained by rejection sampling from 100,000 scenes under a strong occlusion
criterion. Moreover, in progressively increasing the test volume n, we find that the COAT score as well
as hard-negative tests appear to be stable with respect to the number of samples (n) used to compute
them at n = 1000.
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tation q(x) = x is not sufficient to capture compositionality. Finally, in our analogy

test we assume that B is related to A, and D is related to C via a given transformation

add(obj0, obj1, obj2, . . . ) (without loss of generality) which adds, for example, two blue ob-

jects to a base scene A and C respectively (Figure 5.1). Denoting zA as the representation

for scene A, we would like the corresponding representations to satisfy zB−zA+zC = zD.

The degree to which this is satisfied is measured through a loss function L(zA, zB, zC , zD).
We either measure approximate parallelogram structure or the degree to which −→BA and
−−→
DC are parallel. For the former, we use L(zA, zB, zC , zD) = ||zB− zA+ zC− zD||2; for the
latter we use L(zA, zB, zC , zD) = acos(zB − zA, zD − zC). Check Section D.2 for example

test cases.

Shortcut Detection. As discussed above, a model might appear equivariant but

not be compositional in a manner useful for downstream tasks. To test for this, we

employ hard negatives (denoted D′ 6= D), and compute the losses L(zA, zB, zC , zD)
and L(zA, zB, zC , zD′) for a one-sample proportion hypothesis test. Our null hypothe-

sis H0 is that there is no difference between the two values, i.e., Pr[L(zA, zB, zC , zD) <
L(zA, zB, zC , zD′)] = 0.5, with the alternative hypothesis being that the hard negatives

incur a higher loss, namely, Pr[L(zA, zB, zC , zD) < L(zA, zB, zC , zD′)] > 0.5. We use the

standard test statistic for the one-sample proportion test with a significance level=0.005

to reject or fail to reject the null hypothesis.

Concretely, we utilize the following hard negatives (D′):

• Object-level: in D′ there is one object different from or dropped from D. This tests

that the representation captures properties of all objects in the scene, and not just

say a subset of objects that are used for the transofrmation Figure 5.1.

• Attribute-level: D′ has one object with one attribute (color, material, shape or size)

different from D. This tests that the representation is sensitive to the properties

of the object, and not just the location (for example).

• Pixel-level: D′ = B − A + C in the pixel space. This validates that the evaluated

representation is better than a trivial representation q(x) = x.
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If a model fails these tests, COAT will not provide an accurate evaluation of the

model’s compositionality. Therefore, we only apply the COAT metric to models which

can pass the above test. Empirically, we find the hard negative tests for attributes like

shape, material and pixel-level representations are most difficult to pass.

Normalization and Correction for Chance.

When comparing across different models, we need to calibrate the metric to ensure

that model-specific biases such as differences in the concentration of features do not

confound our estimates of whether the structure we desire approximately exists. Denoting

by D̂ a random image from the minibatch of examples, we use the following normalization

and chance correction:

COAT = 1− L(zA, zB, zC , zD)
ED̂ [L(zA, zB, zC , zD̂]

. (5.1)

The key idea being that we compute the average loss incurred by a random datapoint to

calibrate the extent to which one claims that the desired structure is present. In practice,

we use the minibatch size of 64 for calculating ED̂ [·]. In terms of the two concrete losses

for “perfectness”, L2−COAT and for “parallelness”, acos−COAT, we hypothesize for

downstream tasks such as counting “perfectness” might be more important (since mag-

nitude of vectors is important) but in other reasoning tasks relaxing it to “parallelness”

might be sufficient.

5.4.2 Sanity Checks and Baselines

As a sanity check, we apply the COAT metric to (1) a disentangled vector representation

that concatenates the symbolic attributes of all objects and (2) the vector representation

of a random full-rank linear projection from (1). Note that (1) is a disentangled repre-

sentation while (2) is entangled, but they are both compositional by our definition (see

Section D.2.1), so they should both obtain a perfect score of 1.0 in our metric. Indeed,

this is validated by our experiments. In contrast, disentanglement metric such as training

a linear regressor along with a Hungarian matching towards the set of object attribute

vectors (Locatello et al., 2020) would rate (1) highly, but not (2), despite the presence
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of compositional structure in a different basis set.

We next provide a baseline in terms of the COAT score for the trivial representation

q(x) = x ( e.g., taking pixel-space as our representation). Overall the score for the

baseline is 75.47% in terms of L2 and 36.28% for acos, demonstrating that pixel-space is

already somewhat compositional. Note that here we do not use the pixel-baseline image

as a hard negative for a hypothesis test, but as a trivial representation to compare COAT

scores for models against.

5.5 Experiments

Our goal is to identify key modeling choices for object-centric compositionality (Sec-

tion 5.3) and evaluate them in a unified manner (Section 5.4). From a conceptual stand-

point, several factors of variation across models stand out:

1. Whether one has a “slot structure” in the representation in conjunction with func-

tional independence in the decoder (Slot Struct)

2. Whether there is an independence prior on the latents or some other mechanism

to enforce disentangling via a factorized aggregate posterior distribution ( e.g., β-

TC-VAE (Chen et al., 2019b)) (Factorized Prior)

3. Whether the model is generative or contrastive to isolate if one requires the use of a

generative model for learning object-centric representations (Training Paradigm)

4. Whether we train the models on an IID dataset or a highly correlated training

dataset (Train Set) (see Section D.3 for more details).

Table 5.1 (left side) breaks down several models of interest along these axes, i.e.β-TC-

VAE (Chen et al., 2019b), vanilla Auto-Encoder (Kramer, 1991) which we implement as

a β-TC-VAE with β = 0, Slot Attention (Locatello et al., 2020), IODINE (Greff et al.,

2019), and MoCo v2 (He et al., 2020; Karazija et al., 2021) in a matrix of these factors. All
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Slot Factorized Training Train ARI HN L2-COAT HN acos-COAT
Struct Prior Paradigm Set (%) L2 (%) acos (%)

Pixel baseline (w/ occlusion) N/A N/A N/A N/A N/A N/A 75.47 N/A 36.28

Pixel baseline (w/o occlusion) N/A N/A N/A N/A N/A N/A 97.18 N/A 73.17

Auto-encoder(w/ occlusion) No No Gen IID N/A Fail - Fail -
β-TC-VAE (w/ occlusion) No Yes Gen IID N/A Fail - Fail -
Slot attn (w/ occlusion) Yes No Gen IID 95.53± 1.84 Pass 48.55± 14.11 Pass 21.53± 10.73

Slot attn* (w/ occlusion) Yes No Gen IID 95.53± 1.84 Pass 60.70± 15.55 Pass 31.18± 8.01

Slot attn*†(w/ occlusion) Yes No Gen IID 95.53± 1.84 Pass 77.07± 0.72 Pass 43.12± 0.78

Slot attn*†(w/o occlusion) Yes No Gen IID 95.53± 1.84 Pass 83.84± 6.23 Pass 47.45± 4.34

Slot attn*†(w/ occlusion) Yes No Gen CORR 69.12± 9.34 Pass 64.82± 9.20 Pass 31.95± 7.21

IODINE (w/ occlusion) Yes Yes Gen IID 92.21± 0.15 Pass 47.52± 0.29 Pass 16.33± 0.33

IODINE (w/ occlusion) Yes Yes Gen CORR 40.08± 8.90 Fail - Pass 9.16± 1.08

MoCo v2 (w/ occlusion) No N/A Con IID N/A Fail - Pass 14.05± 1.25

Table 5.1: Models, their inductive biases, their training paradigms, their training sets,
and their performance on ARI and COAT. “HN” is the Hard Negative Test; models need
to pass all hard negative tests to obtain a COAT score, otherwise it is indicated with
“-”. Since representations directly obtained from slot attention do not perform well on
the COAT metric, we also tried some post-processing: * indicates duplication removal,
†indicates removing “invisible slots” with zero mask weights. (w/o occlusion) and (w/
occlusion) indicate non-occluded (Figure 5.2a) and strongly occluded (Figure 5.2b) test
cases. Statistics are Mean and SEM summarized over 5 random seeds.

models are trained with the default architectures and hyperparameters except that in β-

TC-VAE we use latent dimension 256, and use the same encoder for MoCo. We modified

CLEVR to include multiple background colors, which forces models to represent the

background explicitly for compositional evaluation (see Section D.3 for some examples

and an ablation study against the COAT measure).

5.5.1 Autoencoder and Beta-TC-VAE

We generally found that a β-TCVAE as well as a vanilla autoencoder (β = 0) fail to

learn object-centric representations. We sweep over β ∈ {0, 1, 2, 3} and generally found a

trend that with β = 1, 2 the models performs the best on the most challenging pixel-level

hard negative test, albeit not passing it. Thus, without the “slot” structure or functional

independence assumptions it appears that vanilla autoencoders and β-TC-VAE style

models do not achieve object-centric compositionality.

A reasonable causal prediction for the vanilla autoencoder is that it neither forms

abstraction of objects nor represents them compositionally due to the absence of any
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inductive bias. In particular, we may expect its performance to be upper-bounded by

the pixel representation. In our experiment, we found an interesting phenomenon that

although their L2/acos metric does not generally surpasses the pixel representation, it is

relatively high in the first several epochs (Figure D.5a). But the model certainly does not

form object-centric abstraction because it fails the pixel-level hard negative test — the

model regards the result of B−A+C as a nearer neighbor than D in the representation

space.

Is a regularization of posteriors towards a factorized prior sufficient for reversing the

failure of object-centric abstraction? We apply our metric to β-TC-VAEs, a variant of

β-VAE that decompose the KL regularizer to isolate the control of a total Correlation

term, with β ∈ {1.0, 2.0, 3.0, 4.0}. As shown in app, even though these models still fail

the pixel-level hard negative test, they show strong inclination towards passing it with

larger β. But it is also worth noticing that this inclination can be easily invalidated by

the failures on attribute-level hard negative test when β > 3.0.

Figure 5.3 shows how the learned decoders reconstruct the observation of A,B,C,D

and how they generate D̄ from zB − zA+ zC . Comparing D̄ against D, we can see lots of

artifacts, which qualitatively illustrate the failure of forming object-centric abstractions

and compositional representations.

5.5.2 Slot Attention

Next, we study the slot attention model that has a slot structure in the latent space,

functional independence in the decoder and a strong inductive bias on the encoder q

which infers the slots. This model in previous evaluations using ARI has achieved really

strong results and thus given that it is likely “disentangled” one would expect it to also

be “compositional” (Section 5.3).

Is slot attention compositional? We align the slots for the same objects across A, B

and C, D respectively to facilitate the application of the COAT metric, we perform greedy

matching (see Section D.4 for more details). Overall, while slot attention passes the hard-
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Figure 5.3: Visualization of Object Algebra for Autoencoder and VAEs. Odd columns are
obserations A,B,C,D and pixel-level hard negative D′. Even columns are reconstructed
A,B,C,D and decoded D̄ from zB − zA + zC . Interestingly, when β = 0, the decoded
zB − zA + zC looks similar to the pixel-level hard negatives, while β > 0 gives more
natural images in the decoded zB − zA + zC .

negative statistical test (Table 5.1), in terms of the COAT score, the vanilla representation

from slot-attention does not outperform the trivial pixel-level representation, achieving

an L2-COAT score of 48.55 ± 14.11 as opposed to a pixel-level score of 75.47.

What causes the poor performance of slot-attention? One of the key bottlenecks

is that slot attention often assigns two different slots to the same object (Figure 5.4). This

redundancy in the latent representation causes difficulties with a proper compositional

structure emerging in the latent space. We hypothesize this redundancy is caused by

the lack of a sparsity prior on the latent space (Locatello et al., 2020) compared to other

models such as (Greff et al., 2019). To account for this when computing COAT, we detect
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Figure 5.4: Duplicated slots in Slot Attention. Visualization of Slot Attention’s observa-
tion, combined reconstruction, masked reconstruction and reconstruction of each slot by
columns and A,B,C,D by rows. These are after a greedy matching. White captions are
index and the cosine similarity to the nearest slots. Black captions are the mask mass.

duplicates by measuring the cosine similarity between different pairs of slots zi ∈ R
D
K and

zj ∈ R
D
K and replacing all duplicates with the mean of all other slots. This improves the

L2-COAT score to 60.70 ± 15.15 (Table 5.1), which is still worse than the pixel baseline.

This result also indicates that the ARI metric (Locatello et al., 2020) is not sensitive to

redundancy in the representations. In essence, it measures recall but not precision of the

latent factors, while COAT tests for precision as well as recall.

Another issue is that slot attention does not have a consistent representation of “blank

slots” which contain no objects, but instead has a more general notion of “invisible slots”

which do not contribute to the reconstruction / generation because they are masked out,

but still have some content in them (Figure 5.5). This makes blank slots difficult to

detect and standardize without access to masks from the generative decoder. However,

utilizing the decoder in this manner does elicit performance on the L2-COAT metric

that surpasses the pixel level baseline (77.02 ± 0.72 vs.75.47). Figure 5.6 provides a

visualization of the matching, where we can see the imperfect score may be caused by

missing objects. This indicates that on it’s own, the slot attention model does not exhibit

object-centric compositionality without access to the weights of the particular decoder

that has been learned in a model run. While this is not an issue for generative modeling,

these redundancies and external dependency on the generator might hurt performance

of on downstream transfer learning or out-of-distribution generalization tasks where one
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Figure 5.5: Invisible slots in Slot Attention. Visualization of Slot Attention’s observa-
tion, combined reconstruction, masked reconstruction and reconstruction of each slot by
columns and A,B,C,D, decoded zA− zB + zC by rows. These are greedy matching after
removing duplicated. White captions are index and cosine similarity to the nearest slots.
Black captions are the mask mass. Red boxes highlight “invisible slots”, whose mask
weights are zero, but apparently have different unmasked reconstructions. This inconsis-
tency may cause the matching to fail. Green boxes highlight “pseudo blank slots”, which
are designed to be consistent.
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Figure 5.6: Greedy matching to remove invisible slots in Slot Attention. Visualization
of Slot Attention’s observation, combined reconstruction, masked reconstruction and
reconstruction of each slot by columns and A,B,C,D, decoded zA − zB + zC by rows.
These are greedy matching after removing duplicated and invisible slots. White captions
are index and cosine similarity to the nearest slots. Black captions are the mask mass.
The matching is almost perfect, but we can still see the discrepency between 4th and 5th
row due to (1) missing a yellow cube (2) uncertainty about the occluded green cylinder
in A.
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usually does not have privileged access to a generator. Together, our results demon-

strate that despite the strong inductive biases present in slot attention models, they do

not exhibit improved object-centric compositionality relative to the raw pixel represen-

tation, demonstrating both the importance of comparison with the raw pixel baseline

for contextualizing compositionality measures and highlighting potential for modeling

improvements.

Slot attention is an encoding architecture that iteratively assigns pixels to slots with

self-attention. It has gained popularity shortly after its debut, possibly due to its simplic-

ity in inference and success in segmenting the pixel space. If disentanglement is about

each subspace being registered with at most one object, the learned representation is cer-

tainly disentangled. Then, intuitively, we would also expect them to be compositional

by our definition. We apply our metric to slot attention to see if this prediction is true.

One technical issue we have to resolve before we apply our metric is that subspaces are

permutation invariant, so we would want to obtain a permutation with the best matching

of slots. To this end, we implement a greedy matching that minimizes ||zB−zA+zC−zD||2
by greedily picking one slot from each image per step without replacement. Here L2

distance is a natural fit for this greedy matching because it can be computed slot by slot.

Surprisingly, the representation in slot attention obtains a score no higher than the

pixel representations, see Table 5.1. A visualization of the reconstruction and masked

reconstruction of each slot (Figure 5.4) shows that duplicated slots seem to be the main

bottleneck. To better assist slot attention to acquire compositionality by our definition,

we implement a post hoc deduplication on its slot representation. Specifically, we use

cosine similarity between slots to detect duplicated slots, randomly select one from the

duplicates to keep, and replace the others with the mean of all slots as a pseudo “blank

slot”. Feature similarity is picked over attention similarity because (1) the former is

more model-agnostic and (2) the latter correlates poorly with generated masks from our

observation.

However, even if we removed duplicated slots, the model still cannot surpass the
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pixel representation. After a deeper look into the reconstruction of each slot Figure 5.5,

we found this model cannot consistently represent “blank slots”. Specifically, there are

some emergent “blank slots” with zero-weight masks from the mixture decoder. These

slots contain information about arbitrary objects represented in other slots, which are

often different in different images. They are not duplicates of others because their cosine

similarity to the nearest slots is indistinguishable from the cosine similarity between

visible slots. From now on we refer to them as “invisible slots” to (1) highlight their

nature of not being “blank” but only “invisible” and (2) differentiate from the pseudo

“blank slots” that we manually select. The arbitrary nature of these “invisible slots”

make them difficult to detect solely from the latent representation. This indicates that

compositional transformations are invalidated due to the lack of consistency in “blank

slots”.

To causally test if these “invisible slots” are the bottleneck of slot attention’s per-

formance on our metric, we turn to the decoded masks to detect visibility. Note that

the use of mask information should be regarded as cheating in our metric because we

aim to directly inspect the latent representation. Here we only leverage this extra infor-

mation as a certain form of oracle since these masks are independently evaluated to be

of high quality according to ARI. After the removal of invisible slots, the slot attention

model finally surpasses the pixel representation baseline (Table 5.1). A reasonable claim

from this experiment is that it is not that the latent representation in slot attention has

non-decodable information of visibility, but rather that the representation of this infor-

mation does not meet our structural requirements. Figure 5.6 shows the reconstruction

of A,B,C,D and the generation of D′ from zA−zB+zC . We can see that the generation

is reasonable, but still not perfect due to some incorrect inference in occluded scenes.

Such a failure can be expected because i.i.d. training set does not contain many samples

with such strong occlusion.
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Figure 5.7: Visualization of IODINE’s observation, combined reconstruction, masked
reconstruction and reconstruction of each slot by columns and A,B,C,D, decoded zA −
zB+zC by rows. The emergent “blank slots” are consistent — they are almost white in the
unmasked reconstructions — so the matching is good in general. However, the objectness
in slots is not consistent. It seems every slot has some background content in the masked
reconstruction. Some occluded objects are not disentangled. Some objects are over-
segmented into multiple slots and these slots cannot be detected with cosine similarity
as duplicates. All these lead to the discrepency between D and decoded zA − zB + zC ,
which may explain the unsatisfying performance of IODINE on our metric.

5.5.3 IODINE

In contrast to slot attention, IODINE (Greff et al., 2019) is a full Bayesian generative

model with not only independence constraints in the variational encoder and decoder but

also a factorized prior (key difference from slot attention being that the inductive bias

in the encoder for computing the slots is more explicitly designed in IODINE instead

of using a generic self-attention mechanism). Given the explicit prior, we found that

IODINE more consistently represents “blank slots” (Figure 5.7); however, while it passes

all hard-negative tests (Table 5.1), it is not able to disentangle foreground objects from

background properly (as also noted in the original paper (Greff et al., 2019) and a more

recent work (Yu et al., 2021)), which sets it back in terms of the L2-COAT score (47.52

± 0.29). This is more or less equivalent to the vanilla slot attention model 48.55 ± 14.11

and again substantially lower than the pixel baseline of 75.47.
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5.5.4 Visualization of IODINE

Given the large efforts required to make slot attention compositional on our metric, we

would expect prior modeling as in IODINE can help resolve the issue of “duplicated

slots” and “blank slots”. However, it is also worth noticing that in the original paper,

the authors mentioned two flaws of IODINE: (1) it segments images without identifying

backgrounds, (2) it cannot handle gray-scale images. So in our experiments, we also want

to test the prediction that our colored background can help it identify background slots.

As shown in Table 5.1, IODINE does not obtain high score even when the foreground

ARI is sufficiently high. Figure 5.7 shows that for some random seeds the model can

indeed get the whole background out reasonably well. But these “background slots”

often contain a foreground object. There are also random seeds with which each slot

still has an arbitrary segments of background. In spite of this failure, we can also see

the model does learn consistent “blank slots”, thanks to the prior modeling. And as

expected, the learned representation can pass all our hard negative tests, among which

shape and material seem to be the hardest.

5.5.5 MoCo v2 With ConvNet

Next, we evaluate the MoCo v2 (He et al., 2020) self-supervised learning model trained

on our IID set using the same architecture used for the β-TC-VAE. Over the course of

training, the model appears to pass the hard-negative test in terms of the acos-COAT

score (Table 5.1) (which the β-TC-VAE models failed to do) – indicating some initial

promise. However, the model is still substantially worse than the corresponding raw pixel

baseline (14.05 ± 1.25 vs.36.28).

We modify the data augmentation scheme in the original MoCo v2 by (1) removing

the jittering in hue and saturation because we don’t want the color attribute to collapse

in the representation, (2) removing the random horizontal flip and setting the lower

bound of random crop ratio to 0.5, this ensures that the two images being compared

have almost the same set of objects with identical layout. We train the model to achieve
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70%+ accuracy in instance discrimination.

In contrast to autoencoder where the model generally always fails the pixel hard

negative test, the self-supervised training signal can encourage the model to form object-

centric abstraction gradually. In the acos metric, the model finally passes the pixel

hard negative test. Unfortunately, at the time the model passes the pixel hard negative

test, it normalized metric also drops to relatively low. This leaves an open question if

self-supervised learning may acquire representations with object-centric abstractions and

object-level compositionality.

5.5.6 Influence of the Correlated Training Set

Next, we induce correlations between objects in a given scene, to understand how pat-

terns in the data impact different models’ ability to learn object-centric compositional

representations. Specifically, we generate a set of training images with extremely corre-

lated and cluttered objects that have the same color and material (see Section D.3.2).

For slot-attention, even when we utilize the generative model to detect “invisible slots”,

we still observe a drop in the performance (64.82 ± 9.20 vs.77.07 ± 0.72), indicating that

the model is not as robust as one might have hoped. However, slot attention is still better

than IODINE which fails the pixel-level hard negative test in this setting.4 This again

indicates that the inductive bias used in slot attention based on positional embeddings

and self-attention is more robust than those in the encoder of IODINE.

5.6 Summary

In this chapter we presented a new metric, COAT, for measuring object-level compo-

sitionality in latent representations. Our metric comprises two parts: (1) a hypothesis

that examines the null hypothesis that the evaluated representations do not capture more

compositionality than carefully crafted, trivial baselines (e.g., pixel representation), and

4Locatello et al. (2020) show a similar comparison to IODINE using the ARI metric in grayscale
images.
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(2) a quantitative measure that assesses the degree of object compositionality present in

the representations with respect to translations in the vector space. We applied COAT

to a diverse range of latent object abstraction learning models, encompassing a broad

spectrum of modeling assumptions. Somewhat surprisingly, the results showed that

state-of-the-art approaches for object-centric disentanglement demonstrated significant

limitations. Specifically, these models showed a lack of understanding in the concept of

object absence and the unique identity of individual objects. These findings highlight

important gaps in current object abstraction learning approaches, suggesting directions

for future research.
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CHAPTER 6

Learning Latent Non-Markovian Decisions From

State-Only Sequences

6.1 Introduction

Having explored the symbol-vector duality for Category in Part I and the statistical and

algebraic structures for Object in Part II, we are now well-equipped to investigate the

latent abstraction of Decision — the fundamental concept underlying the core cognition

of agency. While the statistical and algebraic structures of decisions have been extensively

studied under the formalization of Markov Decision Process (MDP) and Bellman fixed

points, this chapter calls for a re-examination within the context of latent abstractions.

Specifically, we pose the following question: If we formalize “understanding” as learning

a generative model that is (1) consistent with observations in the data space, and (2)

aligned with human intuition in the latent space, how would this concept of understanding

relate to the notion of “value” in decision-making? By the end of this chapter, we

will arrive at an answer that reveals a fundamental connection between the theories of

generative modeling and decision-making. To begin with, let’s consider the problem

setup of imitation from demonstrations.

Imitation of others is a prevalent phenomenon in humans and many other animals,

where individuals learn by observing and mimicking the actions of others. An intriguing

aspect of this process is the brain’s ability to extract motor signals from sensory input.

This remarkable capability is facilitated by mirror neurons (Di Pellegrino et al., 1992;

Rizzolatti et al., 2001), which respond to observations as if the imitator is performing

the actions themselves. In conventional imitation learning (Hayes and Demiris, 1994;
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Ziebart et al., 2008) and ofÒine reinforcement learning (Levine et al., 2020), action labels

have served as proxies for mirror neurons. But it is important to recognize that they are

actually productions of human interventions. Given the recent advancements in AI, this

is an opportune time to explore imitation learning in a more naturalistic setting.

While the setting of state-only demonstrations is not common, there are certain ex-

ceptions. For example, Inverse Reinforcement Learning (IRL) initially formulated the

problem as state visitation matching (Ng and Russell, 2000), where demonstrations con-

sist solely of state sequences. Subsequently, this state-only setting was rebranded as

Imitation Learning from Observations (ILfO), which introduced the generalized formu-

lation of matching marginal state distributions (Torabi et al., 2018b; Sun et al., 2019).

These methods typically rely on Temporal Difference (TD) learning techniques (Sutton

and Barto, 2018) under the Markov assumption, and may degrade arbitrarily without

the assumption (Singh et al., 1994). One consequence of this assumption, previously

believed to be advantageous, is that sequences with different state orders are treated as

equivalent. However, the success of general sequence modeling (Brown et al., 2020) has

challenged this belief, leading to deep reflections. Notable progress since then includes

an analysis of the expressivity of Markov rewards (Abel et al., 2021) and a series of se-

quence models tailored for decision-making problems (Janner et al., 2021; Chen et al.,

2021; Janner et al., 2022; Ajay et al., 2023). Aligning with this evolving trend, we extend

the state-only imitation learning problem to encompass non-Markovian domains.

In this chapter, we propose a generative model based on the non-Markov Decision

Process (nMDP), in which states are fully observable and actions are latent. Unlike

existing monolithic sequence models, we factorize the joint state-action distribution into

policy and causal transition according to the standard MDP. To further extend to

the non-Markovian domain, we condition the policy on sequential contexts. The density

families of policy and transition are consistent with conventional IRL (Ziebart et al., 2008).

We refer to this model as the Latent-action non-Markov Decision Process (LanMDP).

Because the actions are latent variables following Boltzmann distribution, the present

model is closely related to the LEBM (Pang et al., 2020a). To learn the latent policy by

103



MLE, we need to sample from the prior and the posterior. We sample the prior using

short-run MCMC (Nijkamp et al., 2019), and the posterior using importance sampling.

Specifically, the proposed importance sampling sidesteps back-propagation through time

in posterior MCMC with a single-step lookahead of the Markov transition. The transition

is learned from self-interaction.

Once the LanMDP is learned, it can be used for policy execution and planning through

prior and posterior sampling, or in other words, policy as prior, planning as posterior

inference (Attias, 2003; Botvinick and Toussaint, 2012). In our analysis, we derive an

objective of the non-Markovian decision-making problem induced from the MLE. We

show that the prior sampling at each step can indeed lead to optimal expected returns.

Almost surprisingly, we find that the entire family of maximum entropy reinforcement

learning (Ziebart et al., 2008; Ziebart, 2010; Fox et al., 2016; Haarnoja et al., 2017,

2018; Levine, 2018) naturally emerges from the algebraic structures in the MLE of latent

policies. This formulation avoids the peculiarities of maximizing state transition entropy

in prior arts (Ziebart, 2010; Levine, 2018). We also show that when a target goal state is

in-distribution, the posterior sampling is optimizing a conditional variant of the objective,

realizing model-based planning.

In our experiments, we validate the necessity and efficacy of our model in learning to

sequentially plan cubic curves, and illustrate an over-imitation phenomenon (Horner and

Whiten, 2005; Lyons et al., 2007) when the learned model is repurposed for goal-reaching.

We also test the proposed modeling, learning, and computing method in MuJoCo, a do-

main with higher-dimensional state and action spaces, and achieve performance compet-

itive to existing methods, even those that learn with action labels.

6.2 Non-Markov Decision Process

The most well-known sequence model of a decision-making process is Markov Decision

Process. A MDP is a tuple M = 〈S,A, Tr,R, ρ, T 〉 that contains a set S of states, a set

A of actions, a transition Tr : S×A 7→ Π(S) that returns for every state st and action at
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a distribution over the next state st+1; a reward function R : S×A 7→ R that specifies the

real-valued reward received by the agent when taking action at in state st; an initial state

distribution ρ : Π(S); and a horizon H that is the maximum number of actions/steps

the agent can execute in one episode. A solution to an MDP is a policy that maps states

to actions, π : S 7→ Π(A). The value of policy π, V π(s) = ET,π[
∑H

t=0R(st)|s0 = s] is the

expected cumulative reward (i.e. return) when executing with this policy starting from

state s. The state-action value of policy π is Qπ(st, at) = R(st, at)+ETr(st+1|st,at)[V
π(st+1)].

The optimal policy π∗ can maximize either Eρ(s0)[V π(s0)], or the same objective plus the

policy entropy (Todorov, 2006; Ziebart et al., 2008; Haarnoja et al., 2017). The Markovian

assumption supports the convergence of a series of TD-learning methods (Sutton and

Barto, 2018), whose reliability in non-Markovian domains is still an open problem (Allen

et al., 2024).

A non-Markov Decision Process is also a tuple M = 〈S,A, Tr,R, ρ, T 〉. It generalizes
MDP by allowing for non-Markovian transitions and rewards (Brafman and De Giacomo,

2019). Notably, assuming Markovian transition and non-Markovian reward is usually

sufficient since a state space with non-Markovian transition can be represented with its

Markov abstraction (Ronca et al., 2022). Markov abstraction can be done either by

treating the original space as observations generated from the latent belief state in a

Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998), or

by projecting historic contexts into an embedding space for sequence pattern detection

(Hutter, 2009; Toro Icarte et al., 2019; Brafman and De Giacomo, 2019). Presumably, it

is statistically more interesting in deep learning to focus our attention on non-Markovian

domains where the temporal dependencies in transition and reward differ. Therefore,

without loss of generality, we assume that the state transition is Markovian Tr : S×A 7→
Π(S), while the reward is not (Icarte et al., 2018; Abel et al., 2021), i.e. R : S+ 7→ R,

with S+ denotes the set of all finite non-empty state sequences with length smaller than

T . Obviously, the policy should also be non-Markovian π : S+ 7→ Π(A). See Figure 6.1

for a probabilistic graphical model of the generation process of state sequences from a

policy.
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Figure 6.1: Graphical model of policy and transition in standard Markov Decision Process
and non-Markov Decision Process.

6.3 Learning and Sampling

6.3.1 Latent-Action nMDP

A complete trajectory is denoted by

τ = {s0, a0, s1, a1, · · · , aT−1, sT}. (6.1)

The joint distribution of state and action sequences can be factorized according to the

causal assumptions in nMDP:

pθ(τ ) = p(s0)pα(a0|s0)pβ(s1|s0, a0) · · · pα(aT−1|s0:T−1)pβ(sT |sT−1, aT−1)

= p(s0)
∏T−1

t=0
pα(at|s0:t)pβ(st+1|st, at),

(6.2)

where pα(at|s0:t−1) is the policy model with parameter α, pβ(st|st−1, at−1) is the transition

model with parameter β, both of which are parameterized with neural networks, θ =

(α,β). p(s0) is the initial state distribution, which can be sampled as a black box.

The density families of policy and transition are consistent with the conventional set-

ting of IRL (Ziebart et al., 2008), where the transition describes the predictable change

in state as a single-mode Gaussian, st+1 ∼ N (gβ(st, at), σ2), and the policy accounts for

bounded rationality as a Boltzmann distribution with state-action value as the unnor-

malized energy

pα(at|s0:t) =
1

Z(α, s0:t)
exp (fα(at; s0:t)), (6.3)
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where fα(at; s0:t) is the negative energy, Z(α, s0:t) =
∫
exp(fα(at; s0:t))dat is the normal-

izing constant given the contexts s0:t. We discuss a general push-forward transition in

Section E.1.2.

Since we can only observe state sequences, the aforementioned generative model can

be understood as a sequential variant of LEBM (Pang et al., 2020a), where the transition

serves as the generator and the policy is a history-conditioned latent prior. The marginal

distribution of state sequences and the posterior distribution of action sequences are

pθ(s0:T ) =
∫

pθ(s0:T , a0:T−1)da0:T−1, pθ(a0:T−1|s0:T ) =
pθ(s0:T , a0:T−1)

pθ(s0:T )
. (6.4)

6.3.2 Maximum Likelihood Learning

We need to estimate θ = (α,β). Suppose we observe ofÒine training examples: {ξi}, i =
1, 2, · · · , n, ξi = [si0, si1, . . . , siT ]. The log-likelihood function is

Loff (θ) =
∑n

i=1
log pθ(ξi). (6.5)

Denote posterior distribution of action sequence pθ(a0:T−1|s0:T ) as pθ(A|S) for convenience
where A and S means the complete action and state sequences in a trajectory. The full

derivation of the learning method can be found in Section E.1.1, which results in the

following gradient:

∇θ log pθ(ξ) = Epθ(A|S)[
∑T−1

t=0
(∇α log pα(at|s0:t)
︸ ︷︷ ︸

policy/prior

,∇β log pβ(st+1|st, at)
︸ ︷︷ ︸

transition

)]. (6.6)

Due to the normalizing constant Z(α, s0:t) in the energy-based prior pα, the gradient for

the policy term involves both posterior and prior samples:

δα,t(S) = Epθ(A|S) [∇α log pα(at|s0:t)] = Epθ(A|S) [∇αfα(at; s0:t)]−Epα(at|s0:t) [∇αfα(at; s0:t)] ,

(6.7)
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where δα,t(S) denotes the expected gradient of policy term for time step t. Intuition can

be gained from the perspective of adversarial training (Finn et al., 2016; Ho and Ermon,

2016): On one hand, the model utilizes action samples from the posterior pθ(A|S) as

pseudo-labels to supervise the unnormalized prior at each step. On the other hand, it

discourages action samples directly sampled from the prior. The model converges when

prior samples and posterior samples are indistinguishable.

To ensure the transition model’s validity, it needs to be grounded in real-world dy-

namics Tr when jointly learned with the policy. Otherwise, the latent actions that the

agent discovers may not align with our understanding. Throughout the training process,

we allow the agent to interact with the environment with its actions, periodically collect

on-policy data {(sit, ait, sit+1)}, i = 1, 2, · · · ,m, t = 1, 2, · · · , T with pα(at|s0:t) and update

the transition with a composite likelihood (Varin et al., 2011)

Lcomp(β) = Loff (θ) + Lon(β), Lon(β) =
∑m

i=1

∑T

t=1
log pβ(sit+1|sit, ait). (6.8)

6.3.3 Prior and Posterior Sampling

The maximum likelihood estimation requires samples from the prior and the posterior

distributions of actions. It would not be a problem if the action space is quantized.

However, since we target general latent action learning, we proceed to introduce sampling

techniques for continuous actions.

When sampling from a continuous energy space, short-run Langevin dynamics (Ni-

jkamp et al., 2019) can be an efficient choice. For a target distribution π(a), Langevin

dynamics iterates ak+1 = ak + s∇ak log π(ak) +
√
2sϵk, where k indexes the number of

iteration, s is a small step size, and ϵk is the Gaussian white noise. π(a) can be either

the prior pα(at|s0:t) or the posterior pθ(A|S). One property of Langevin dynamics that

is particularly amenable for EBM is that we can get rid of the normalizing constant. So

for each t the iterative update for prior samples is

at,k+1 = at,k + s∇at,kfα(at,k.s0:t) +
√
2sϵk. (6.9)
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Given a state sequence s0:T from the demonstrations, the posterior samples at each

time step at come from the conditional distribution p(at|s0:T ). Notice that with Markov

transition, we can derive

pθ(a0:T−1|s0:T ) =
∏T−1

t=0
pθ(at|s0:T ) =

∏T−1

t=0
pθ(at|s0:t+1). (6.10)

(6.10) reveals that given the previous and the next subsequent state, the posterior can

be sampled at each step independently. So the posterior iterative update is

at,k+1 = at,k + s∇at,k(log pα(at,k|s0:t)
︸ ︷︷ ︸

policy/prior

+ log pβ(st+1|st, at,k)
︸ ︷︷ ︸

transition

) +
√
2sϵk. (6.11)

Intuitively, action samples at each step are updated by back-propagation from its prior en-

ergy and a single-step lookahead. While gradients from the transition term are analogous

to the inverse dynamics in Behavior Cloning from Observations (BCO) (Torabi et al.,

2018a), it may lead to poor training performance due to non-injectiveness in forward

dynamics (Zhu et al., 2020).

We develop an alternative posterior sampling method with importance sampling to

overcome this challenge. Leveraging the learned transition, we have

pθ(at|s0:t+1) =
pβ(st+1|st, at)

Epα(at|s0:t) [pβ(st+1|st, at)]
pα(at|s0:t). (6.12)

Let c(at; s0:t+1) = Epα(at|s0:t) [pβ(st+1|st, at)], posterior sampling from pθ(a0:T−1|s0:T ) can

be realized by adjusting importance weights of independent samples from the prior

pα(at|s0:t), in which the estimation of weights involves another prior sampling. In this

way, we avoid back-propagating through non-injective dynamics and save some compu-

tation overhead.

To train the policy, (6.7) can now be rewritten as

δα,t(S) = Epα(at|s0:t)

[
pβ(st+1|st, at)
c(at; s0:t+1)

∇αfα(at; s0:t)
]

− Epα(at|s0:t) [∇αfα(at; s0:t)] . (6.13)
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Algorithm 5 LanMDP with importance sampling
Input: Learning iterations N , learning rate for energy-based policy ηα, learning rate
for transition model ηβ, initial parameters θ0 = (α0,β0), expert demonstrations {s0:H},
context length L, batch size m, number of prior sampling steps K and step sizes s.
Output: θN = (αN ,βN).
Reorganize {s0:H} to to state sequenec segments (st−L+1, · · · , st+1) with length L+1.
Use energy-based policy with α0 collect transitions to fill in the replay buffer.
Use transitions in replay buffer to pre-train transition model β0.
for t = 0 to N − 1 do

Demo sampling Sample observed examples (st−L+1, · · · , st+1)
m

i=1.
Prior sampling: Sample {ât}mi=1 using (6.9) with K0 iterations and stepsize s0.
Policy learning: Update αt to αt+1 by (6.13) with learning rate ηα.
Transition learning: Update replay buffer with trajectories from current policy
model αt+1, then update βt to βt+1 by (6.8) with learning rate ηβ.

end for

We present the learning algorithm in Algorithm 5.

6.4 Decision-Making as Inference

In Section 6.3, we present our method within the framework of probabilistic inference,

providing a self-contained description. However, from a decision-making perspective,

the learned policy may appear arbitrary. In this section, we establish a connection

between probabilistic inference and decision-making, contributing a novel analysis that

incorporates the latent action setting, the non-Markovian assumption, and maximum

likelihood learning. This analysis is inspired by, but distinct from, previous studies on

the relationship between these two fields (Todorov, 2008; Ziebart, 2010; Toussaint, 2009;

Kappen et al., 2012; Levine, 2018).

6.4.1 Policy Execution With Prior Sampling

Let the ground-truth distribution of demonstrations be p∗(s0:T ), and the learned marginal

distributions of state sequences be pθ(s0:T ). (6.5) in Section 6.3.2 is an empirical estimate

of

Ep∗(s0:T )[log pθ(s0:T )] = Ep∗(s0)
[
log p∗(s0) + Ep∗(s1:T |s0)[log pθ(s1:T |s0)]

]
. (6.14)
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We can show that a sequential decision-making problem can be constructed to maximize

the same objective. Our main result is summarized as Theorem 1.

Theorem 1. Assuming the Markovian transition pβ∗(st+1|st, at) is known, the ground-

truth conditional state distribution p∗(st+1|s0:t) for demonstration sequences is accessi-

ble, we can construct a sequential decision-making problem, based on a reward func-

tion rα(st+1, s0:t) := log
∫
pα(at|s0:t)pβ∗(st+1|st, at)dat for an arbitrary energy-based policy

pα(at|s0:t). Its objective is

∑T

t=0
Ep∗(s0:t)[V

pα(s0:t)] = Ep∗(s0:T )

[∑T

t=0

∑T

k=t
rα(sk+1; s0:k)

]

,

where V pα(s0:t) := Ep∗(st+1:T |s0:t)[
∑T

k=t rα(sk+1; s0:k)] is the value function for pα. This ob-

jective yields the same optimal policy as the Maximum Likelihood Estimation Ep∗(s0:T )[log pθ(s0:T )].

If we further define a reward function rα(st+1, at, s0:t) := rα(st+1, s0:t) + log pα(at|s0:t)
to construct a Q function for pα

Qpα(at; s0:t) := Ep∗(st+1|s0:t) [rα(st+1, at, s0:t) + V pα(s0:t+1)] .

The expected return of Qpα(at; s0:t) forms an alternative objective

Epα(at|s0:t)[Q
pα(at; s0:t)] = V pα(s0:t)−Hα(at|s0:t)−

∑T−1

k=t+1
Ep∗(st+1:k|s0:t)[Hα(ak|s0:k)]

that yields the same optimal policy, for which the optimal Q∗(at; s0:t) can be the energy

function.

Only under certain conditions, this sequential decision-making problem is solvable

through non-Markovian extensions of the maximum entropy reinforcement learning algo-

rithms.

Proof. See Section E.2.

This theorem offers profound insights. By starting with the hypothesis of latent

actions and MLE, and then considering known transition and accessible ground-truth
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conditional state distribution, we witness the automatic emergence of the entire fam-

ily of maximum entropy (inverse) RL. This includes prominent algorithms such as soft

policy iteration (Ziebart, 2010), soft Q learning (Haarnoja et al., 2017) and soft Actor-

Critic (SAC) (Haarnoja et al., 2018). The theorem demonstrates two crucial points: (1)

A consistent Maximum Likelihood Estimate for auto-regressive generative modeling is

equivalent to a Bellman fixed point of a non-Markov Decision Process. (2) Maximiz-

ing intrinsic value is synonymous with achieving consistent understanding. This result

bridges the gap between generative modeling and decision-making processes, suggesting

a fundamental unity between understanding a behavioral system (through generative

modeling) and optimizing values of actions within it (through reinforcement learning).

6.4.2 Model-Based Planning With Posterior Sampling

Lastly, with the learned model, we can do posterior sampling given any complete or incom-

plete state sequences. The computation involved is analogous to model-based planning.

In Section 6.3.3, we introduce posterior sampling with short-run MCMC and importance

sampling when we have the target next state, which generalizes all cases where the tar-

gets of immediate subsequent states are given. Here we introduce the complementary

case, where the goal state sT is given as the target.

The posterior of actions given the sequential context s0:t and a target goal state sT is

pθ(at:T |s0:t, sT ) ∝ pθ(at:T , sT |s0:t)

=

∫
∏T−t−1

k=0
[pβ(st+k+1|at+k, st+k)pα(at+k|s0:t+k)] pβ(sT |aT−1, sT−1)dst+1:T−1,

(6.15)

in which all Gaussian expectations Epβ [·] can be approximated with the mean (Kingma

andWelling, 2014a). Therefore, at:T can be sampled via short-run MCMCwith∇at:T log pθ(at:T , sT |s0:t)
back propagated through time. The learned prior can be used to initialize these samples

and facilitate the MCMC mixing.
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6.5 Experiments

6.5.1 Cubic Curve Generation

To demonstrate the necessity of non-Markovian value and test the efficacy of the proposed

model, we designed a motivating experiment. Path planning is a prototypical decision-

making problem, in which actions are taken in a 2D space, with the x-y coordinates as

states. To simplify the problem without loss of generality, we can further assume xt to

change with constant speed h, such that the action is ∆yt. Obviously, the transition

model (xt+1, yt+1) = (xt + h, yt +∆yt) is Markovian.

Path planning can have various objectives. Imagining you are a passenger of an

autonomous driving vehicle. You would not only care about whether the vehicle reaches

the goal without collision but also how comfortable you feel. To obtain comforting

smoothness and curvature, consider y is constrained to be a cubic polynomial F (x) =

ax3 + bx2 + cx+ d of x, where (a, b, c, d) are polynomial coefficients. Then the policy for

this decision-making problem is non-Markovian.

To see that, suppose we are at (xt, yt) at this moment, and the next state should be

(xt + h, F (xt + h)). With Taylor expansion, we know F (xt + h) ≈ F (xt) + F ′(xt)h +

F ′′(xt)
2!

h2 + F ′′′(xt)
3!

h3, so we can have a representation for the policy, π(∆yt|xt, yt) =

F ′(xt)h+
F ′′(xt)

2!
h2 + F ′′′(xt)

3!
h3. However, our representation of state only gives us (xt, yt),

so we will need to estimate those derivatives. This can be done with the finite difference

method if we happen to remember the previous states (xt−1, yt−1), …, (xt−3, yt−3). Taking

the highest order derivative for example, F ′′′(xt) = (yt − 3yt−1 + 3yt−2 − yt−3)/h
3. It is

thus apparent that the policy would not be possibly represented if we are Markovian or

don’t remember sufficiently many prior states.

This representation of policy is what models should learn through imitation. How-

ever, they should not know the polynomial structure a priori. Given a sufficient num-

ber of demonstrations with different combinations of polynomial coefficients, models

are expected to discover this rule by themselves. This experiment is a minimum vi-
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able prototype for general non-Markovian decision-making. It can be easily extended to

higher-order and higher-dimensional state sequences.

Setting We employ multi-layer perception (MLP) for this experiment. Demonstra-

tions can be generated by rejection sampling. We constrain the demonstration trajectories

to the (x, y) ∈ (−1, 1)× (−1, 1) area, and randomly select y and y′ at x = −1 and x = 1.

Curves with third-order coefficients less than 1 are rejected. Otherwise, the models may

be confused in learning the cubic characteristics.

Non-Markovian dependency and latent energy-based policy are two prominent fea-

tures of the proposed model. To test the causal role of non-Markovianness, we exper-

iment with context length {1, 2, 4, 6}. Context length refers to how many prior states

the policy is conditioned on. When it is 1, the policy is Markovian. From our analysis

above, we know that context length 4 should be the ground truth, which helps catego-

rize context lengths 2 and 6 into insufficient and excessive expressivity. With these four

context lengths, we also train Behavior Cloning (BC) models as the control group. In

a deterministic environment, there should not be a difference between BC and BCO, as

the latter basically employs inverse dynamics to recover action labels. For our model,

this simple transition can either be learned or implanted. Empirically, we don’t notice a

significant difference.

Performance is evaluated both qualitatively and quantitatively. As a 2D planning

task, a visualization of the planned curves says a thousand words. In our experiment, we

take h = 0.1, so the planned paths are rather discretized. We use mean squared error

to fit a cubic polynomial and use the residual error as a metric. When calculating the

residual error, we exclude those with a third-order coefficient is less than 0.5. Actually,

the acceptance rate itself is also a viable metric. It is the number of accepted trajectories

divided by the total number of testing trajectories. It is complementary to the residual

error because it directly measures the understanding of cubic polynomials.

Results Figure 6.2(a-c) show paths generated with LanMDP after training for 3000

steps. They have context lengths 1, 2, 4 respectively. Compared with demonstrations
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(a) Markovian (b) Context Length 2 (c) Context Length 4 (d) Demonstration

(e) Acceptance Rate (f) Residual Error (g) BC Context Length 2 (h) Goal-reaching Planning

Figure 6.2: Results for cubic curve generation. (a-c) show curves generated at training
step 3000 with context lengths 1, 2, 4. Starting points are randomly selected, and all
following are sampled from the policy model. Only models with context length 4 learn
the cubic characteristic. (d) shows curves from demonstrations. (e) and (f) present the
smoothed acceptance rate and fitting residual of trajectories from policies with context
lengths 1, 2, 4, 6. The x-axis is the training steps. (e)(f) are better to be viewed together
because residual errors will only be calculated if the acceptance rate is above a threshold.
For context length 1, the acceptance rate is always zero for BC, so it is not plotted here.
(g) shows curves planned by BC with context length 2. It can be compared with (b).
Interestingly, LanMDP with context length 2 demonstrates certain cubic characteristics
when trained sufficiently long, while the BC counterpart only plans straight lines. (h) is
the result of goal-reaching planning, where the dashed line comes from a hand-designed
Markov reward, the solid line from the trained LanMDP.

in Figure 6.2(d), only paths from the policy with context length 4 exhibit cubic char-

acteristics. The Markovian policy totally fails this task. But it still generates curves,

rather than straight lines from Markovian BC (see Figure E.1). The policy with context

length 2 can plan cubic-like curves at times. But some of its generated paths are very

different from demonstrations. To investigate this interesting phenomenon, we plot the

training curves in Figure 6.2(e)(f). While LanMDP policies with sufficient and excessive

expressivity achieve high acceptance rates at the very beginning of the training, policies

with Markovian and insufficient expressivity struggle to generate expected curves at the

same time. Remarkably, as training goes by, the policy with context length 2, which

can only approximate the ground-truth action in the first order, gradually improves in
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acceptance rate and residual error. This observation is consistent with Figure 6.2(b).

Continuing our investigation, we plot curves generated by its BC counterparts in

Figure 6.2(g) but only see straight lines like the Markovian BC. Therefore, we conjecture

that the LanMDP policy with length context 2 leverages its energy-based multi-modality

to capture the uncertainty induced by marginalizing part of the necessary contexts. The

second-order error in Taylor expansion is possibly remedied by this, especially after long-

run training. The Markovian LanMDP policy, however, fails to unlock such potential

because it cannot even figure out the first-order derivative.

There are some other note-worthy observations. (i) Excessive expressivity does not

impair performance, it just requires more training. As shown in Figure 6.2(e)(f), at

the end of training, LanMDP policies with context length 6 perform as well as ones

with context length 4. This demonstrates LanMDP’s potential in inducing proper state

abstraction from sequential contexts. TD learning, however, has been shown to be inca-

pable of such abstraction in a prior work (Ferrer-Mestres et al., 2020). (ii) BC policies

with sufficient contexts do not perform as well as LanMDP, as shown in Figure 6.2(e)(f).

We conjecture that this might be attributed to the larger compounding error in BC. To

shield the influence of compounding errors, we design an experiment where we measure

the residual error of the next state after filling the historical contexts in the learned

LanMDP context 4 and BC context 4 with expert states, rather than sampled states.

The errors are both around 0.0004 for LanMDP and BC, closing the gap in Figure 6.2(f).

The implication seems to be LanMDP is more robust to compounding errors than BC.

To verify our analysis in Section 6.4, we visualize the non-Markovian value function

defined in Theorem 1 in Figure 6.3. We train a neural network to approximate the non-

Markovian value function constructed with the learned policy and transition following

Theorem 1, and then visualize the landscape by projecting all history-augmented states

to a 2D space with a top view (left) and a front view (middle). Starting from a random

initial state, decisions are sequentially made according to the learned policy, leaving a

curve in the original state space (right) and a trajectory on the value landscape. It is

evident that the non-Markovian value increases monotonically along the trajectory. The
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Figure 6.3: Mapping a generated curve to a trajectory in the value landscape. We train
a neural network to approximate the non-Markovian value function constructed with the
learned policy and transition following Theorem 1, and then visualize the landscape by
projecting all history-augmented states to a 2D space with a top view (left) and a front
view (middle). Starting from a random initial state, decisions are sequentially made
according to the learned policy, leaving a curve in the original state space (right) and a
trajectory on the value landscape. Non-Markovian value increases monotonically along
the trajectory.

value increases monotonically when the policy generates the cubic curve step by step. In

an animation we included on the project homepage1, we further show that the action

sampling at each state yields the highest value in reachable next states.

At last, we study repurposing the learned sequence model for goal-reaching. This is

inspired by a surprising phenomenon, over-imitation, from psychology. Over-imitation

occurs when imitators copy actions unnecessary for goal-reaching. In a seminal study

(Horner and Whiten, 2005), 3- to 4-year-old children and young chimpanzees were pre-

sented with a puzzle box containing a hidden treat. An experimenter demonstrated a

goal-reaching sequence with both causally necessary and unnecessary actions. When

the box was opaque, both chimpanzees and children tended to copy all actions. How-

ever, when a transparent box was used such that the causal mechanisms became appar-

ent, chimpanzees omitted unnecessary actions, while human children imitated them. As

shown in Figure 6.2(h), planning with the learned non-Markovian value indeed leads to

casually unnecessary states, consistent with the demonstrations. Planning with designed

Markov rewards produces causally shortest paths.

1https://sites.google.com/view/non-markovian-decision-making

117

https://sites.google.com/view/non-markovian-decision-making


6.5.2 MuJoCo Control Tasks

We also report the empirical results of our model and baseline models on MuJoCo control

tasks: Cartpole-v1, Reacher-v2, Swimmer-v3, Hopper-v2 and Walker2d-v2. We train an

expert for each task using PPO (Schulman et al., 2017). They are then used to generate

10 trajectories for each task as demonstrations. Actions are deleted in the state-only

setting.

Setting We conduct a comparative analysis of LanMDP against several established

imitation learning baselines including BC (Ross and Bagnell, 2010), BCO (Torabi et al.,

2018a), GAIL (Ho and Ermon, 2016), GAIFO (Torabi et al., 2018b), and OPOLO (Zhu

et al., 2020). Note that BC and GAIL have access to action labels, positioning them as

the control group. The experimental group includes state-only methods such as LanMDP,

BCO, GAIFO, and OPOLO. The expert is the idealized baseline. For all tasks, we adopt

the MLP architecture for both transition and policy. The input and output dimensions

are adapted to the state and action spaces in different tasks, and so are short-run sampling

steps. Sequential contexts are extracted from stored episodic memory. The number of

neurons in the input and hidden layer in the policy MLP varies according to the context

length. We use replay buffers to store the self-interaction experiences for training the

transition model ofÒine. See Section E.4 for detailed information on network architectures

and hyper-parameters.

Results Results for context length 1 are illustrated through learning curves and a

bar plot in Figure 6.4. These learning curves are the average progress across 5 seeds.

Scores in the bar plot are normalized relative to the expert score. Our model demon-

strates significantly steeper learning curves compared to the state-only GAIFO baselines,

especially in Cartpole and Walker2d. This illustrates the remarkable data efficiency

of model-based methods. Additionally, LanMDP consistently matches or surpasses the

performance of BC and GAIL, despite the latter having access to action labels. In com-

parison to the expert, LanMDP only lags behind in the most complex Walker2d task.

However, it still maintains a noticeable margin over other state-only baselines.
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Figure 6.4: Results in MuJoCo for our LanMDP (red), BC (orange), BCO (green), GAIL
(purple), GAIFO (cyan), OPOLO (gray), expert (blue). The learning curves are obtained
by averaging progress over 5 seeds. We only plot curves for interactive learning methods.
The scores of all other methods are plotted as horizontal lines. LanMDP does not have
performance scores in the first K steps because this data is collected with random policy
to fill the replay buffer, which is then used to train the transition model. K = 0 for
Cartpole, 2e4 for Reacher and Swimmer, 2e5 for Hopper and Walker2d. We include
these steps for fair comparisons. LanMDP outperforms existing state-only methods and
matches BC, the best-performing state-action counterpart. The bar plot presents the
scores from the best-performing policy during the training process, averaged across 5
seeds and normalized with the expert mean. The score in Reacher is offset by a constant
before the division of the expert mean to align with the positive scores in all other tasks.
The expert mean is plotted as a horizontal line. Our model clearly stands out in state-
only methods, while matching and even outperforming those with action labels. Its scores
only lag behind the expert mean in the most complex task. Better viewed in color.
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Task context 3 context 2 context 1 BC

CartPole 500.00±0.00 500.00±0.00 500.00±0.00 474.80±18.87
Reacher -10.91±0.73 -9.70±0.64 -9.00±0.87 -8.76±0.12
Swimmer 42.67±4.66 43.52±4.31 41.22±2.67 38.64±1.76
Hopper 3051.16±111.78 3053.91±176.5 3045.27±240.45 3083.32±156.61
Walker2d 1703.02±228.86 1811.77±369.54 1753.46±193.69 1839.94±376.87

Table 6.1: Comparison between Markovian and non-Markovian policy in MuJoCo. Con-
text length is the number of prior sequential states that the policy depends on, with the
current one included. Recall that these MuJoCo tasks are inherently Markovian, thanks
to highly specified state features. Nevertheless, non-Markovian policies perform on par
with Markovian ones and BC, despite having higher expressivity than sufficient. The
best and the second-best results are highlighted. Results are averaged over 5 random
seeds.

Task a dim s dim Architecture 10 steps 50 steps

Reacher 2 11 MLP(150;4) 0.0108/0.0076/0.0014 0.0480/0.0350/0.0014
Swimmer 2 8 MLP(150;4) 0.0100/0.0071/0.0014 0.0463/0.0340/0.0014
Hopper 3 12 MLP(512;4) 0.0268/0.0170/0.0074 0.1403/0.0836/0.0073
Walker2d 6 18 MLP(512;4) 0.0282/0.0184/0.0077 0.1487/0.0899/0.0076

Table 6.2: Computational overheads for posterior sampling, importance sampling, and
gradient descent (in seconds) in one training step. MLP(n,m) means that we implement
the policy model as an MLP with m layers and n hidden neurons each layer. Results
are averaged over 10 epochs. The number of MCMC steps is set to 10, 50 respectively.
Replacing posterior sampling with importance sampling improves training efficiency.

Results for longer context lengths, i.e. the non-Markovian setting, are reported in

Table 6.1, in which the highest return across the training process is listed. Originally

invented for studying differentiable dynamics, MuJoCo offers state features that are inher-

ently Markovian. Though a MDP is sufficiently expressive, learning a more generalized

nMDP does not impair the performance. Sometimes it can even improve a little bit. Due

to the limit of time, the maximum context length is only 3. Within the investigated

regime, our result is consistent with that reported by Janner et al. (2021). We leave

the experiments with longer memory and more sophisticated neural networks to future

research.

Table 6.2 is a study of the computational overhead for the sampling techniques in-

volved. The short-run MCMC for posterior inference takes longer than a single step of
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gradient descent. Replacing it with the proposed importance sampling improves training

efficiency by a large margin.

6.6 Discussion

Related Work in Imitation Learning Earliest works in imitation learning uti-

lized BC (Hayes and Demiris, 1994; Amit and Matari, 2002). When the training data is

limited, temporal drifting in trajectories (Atkeson and Schaal, 1997; Argall et al., 2009)

may occur, which led to the development of IRL (Ng and Russell, 2000; Abbeel and

Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008; Finn et al., 2016; Ho and Ermon,

2016). In recent years, the availability of abundant sequence/video data is not the pri-

mary concern, but rather the difficulty in obtaining action labels. There has since been

increasing attention in ILfO (Kidambi et al., 2021; Liu et al., 2018; Torabi et al., 2018b;

Zhu et al., 2020; Sun et al., 2019), a setting similar to ours. Distinguished from existing

ILfO solutions, our model probabilistically describes the entire trajectory. In particu-

lar, the energy-based model (Zhu et al., 1998; LeCun et al., 2006) in the latent policy

space (Pang et al., 2020a) has been relatively unexplored. Additionally, the capability

for model-based planning is also a novel contribution.

Limitation and Potential Impact The proposed model factorizes the joint dis-

tribution of state-action sequences into a time-invariant causal transition and a latent

policy modulated by sequential contexts. While this model requires sampling methods,

and can be non-negligible for higher-dimensional actions, it is worth noting that action

quantization, as employed in transformer-based models (Janner et al., 2021; Chen et al.,

2021), has the potential to reduce the computation overhead. In our experiments, a

measure of the diversity of behavior is omitted, similar to other works in the literature

of reinforcement learning. However, it deserves further investigation since multi-modal

density matching is a crucial metric in generative modeling. Importantly, our training

objective and analysis are independent of specific modeling and sampling techniques, as

long as the state transition remains time-invariant. Given the ability of neural networks
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to learn approximate invariance through data augmentation (He et al., 2020; Chen et al.,

2020; Laskin et al., 2020; Sinha et al., 2022), we anticipate that our work will inspire

novel training and inference techniques for monolithic sequential decision-making models

(Janner et al., 2021; Chen et al., 2021; Janner et al., 2022; Ajay et al., 2023).

6.7 Summary

In this chapter, we presented a generative model, LanMDP, in which an auto-regressive

energy-based prior of latent actions functions as a policy that interacts with the state

transition generator. This model learns by EM-style maximum likelihood estimation. To

showcase the problem setup of non-Markovian dependency, we introduced a dedicated

experiment, cubic curve generation. LanMDP successfully discovers the non-Markovian

contexts and decently expresses its uncertainty when its context window isn’t sufficiently

long. It demonstrated the robust performance across the MuJoCo suite. More impor-

tantly, we revealed the algebraic structure of a Bellman fixed point intrinsic to the

presented latent-variable auto-regressive sequence modeling. This finding implies that in

terms of the intrinsic value associated with the Bellman fixed point, the pursuit of consis-

tent understanding in a complex behavioral system naturally leads to optimal decision-

making strategies, and vice versa.
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CHAPTER 7

Planning as Inference of Latent Temporal

Abstractions

7.1 Introduction

In the previous chapter, we derived the connection between non-Markov decision-making

and auto-regressive generative modeling — they are equivalent at the convergence of

their learning objectives. In this chapter, we investigate their relationships without the

consistency assumptions in Maximum Likelihood Estimates and Bellman fixed points.

The latent abstraction that enables us to build up this new connection is a temporal

abstraction of the entire trajectory — a plan. Intuitively, planning becomes essential

in tasks without immediate rewards. While existing methods alleviate this challenge

with hand-crafted step-wise rewards, we will see how the inference of the learned latent

abstractions offers an alternative solution. The problem setup we consider is an extreme

case of ofÒine RL (Levine et al., 2020), which is also a generalization of the learning from

demonstrations problem that we studied in the previous chapter. Let us start with an

introduction of the state-of-the-art generative modeling methods for this problem.

The Decision Transformer (DT) (Chen et al., 2021) and some concurrent work (Jan-

ner et al., 2021) have popularized the research agenda of decision-making via generative

modeling. The general idea is to consider decision-making as a generative process that

takes in a representation of the task objective (e.g., the rewards or returns of a trajectory)

and outputs a representation of the trajectory. Intuitively, a purposeful decision-making

process should shift the trajectory distribution towards regimes with higher returns. In

the classical decision-making literature, this is achieved by two interweaving processes:
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policy evaluation and policy improvement (Sutton and Barto, 2018). Policy evaluation

promotes consistency in the estimated correlations between the trajectories and the re-

turns. In DT, this is realized by the maximum likelihood estimation (MLE) of the joint

distribution of sequences consisting of states, actions, and return-to-gos (RTG). Policy

improvement shifts the distribution to improve the status quo expectation of the returns.

In DT, this is naturally entailed since the policy is a distribution of actions conditioned

on step-wise RTGs.

In this chapter, we are interested in the problem of planning. Among various ways

to identify planning as a special class of decision-making problems, we pay particular

attention to its data specification and inductive biases. As designing step-wise rewards

requires significant effort and domain expertise, we focus on the problem of learning

from trajectory-return pairs, where a trajectory is a sequence of states and actions, and

the return is its total rewards. This design choice forces the agents to predict into the

long-term future and figure out step-wise credits by themselves. A competitive Temporal

Difference (TD) learning baseline, CQL (Kumar et al., 2020), was reported to be fragile

under this data specification (Chen et al., 2021).

Our design of inductive biases reflects our intuition of a plan. While a policy is a

factor of the trajectory distribution, a plan is an abstraction lifted from the space of

trajectories. As a plan is always made in advance of receiving returns, it implies signifi-

cance, persistence, and contingency. An agent should plan for more significant returns. It

should be persistent in its plan even if the return is assigned in hindsight. It should also

be adaptable to the environment’s changes during the execution of the plan. We formu-

late this hierarchy of decision-making with a top-down latent variable model. The latent

variable we introduce is effectively a plan, for it decouples the trajectory generation from

the expected improvement of returns. The autoregressive policy always consults this

temporally extended latent variable to be persistent in the plan. The top-down struc-

ture enables the agent to disentangle the variations in its plan from the environment’s

contingencies.

In this chapter, we introduce the Latent Plan Transformer (LPT), a novel genera-
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tive model featuring a latent vector modeled by a neural transformation of Gaussian

white noise, a Transformer-based policy conditioned on this latent vector and a return

estimation model. LPT is learned by maximum likelihood estimation (MLE). Given an

expected return, posterior inference of the latent vector in LPT is an explicit process

for iterative refinement of the plan. The inferred latent variable replaces RTG in the

conditioning of the auto-regressive policy, providing richer information about the antici-

pated future. We further develop a mode-seeking sampling scheme that strongly enforces

the temporal consistency for long-range planning, which is particularly effective in stitch

trajectory; i.e., to compose parts of sub-optimal trajectories to reach far beyond (Fu

et al., 2020). LPT demonstrates competitive performance in Gym-Mujoco locomotion,

Franka kitchen, goal-reaching tasks in maze2d and antmaze, and a contingent planning

task, Connect Four. These empirical results support that latent variable inference can

enable and improve planning in the absence of step-wise rewards.

7.2 Background

A sequential decision-making problem can be formulated with a decision process 〈S,A, T, Tr, r, ρ〉
that contains a set S of states and a set A of actions. Horizon T is the maximum num-

ber of steps the agent can execute before the termination of the sequence. We further

employ S+ to denote the set of all non-empty state sequences within the horizon and

A+ for action sequences likewise. Tr : S+ × A+ 7→ Π(S) is the transition that returns a

distribution over the next state. r : S+×A+ 7→ R specifies the real-valued reward at each

step. ρ : Π(S) is the initial state distribution that is always uncontrollable to the agent.

The agent’s decisions follow a policy π : S+ × A+ 7→ Π(A). In each episode, the agent

interacts with the transition model to generate a trajectory τ = (s1, a1, s2, a2, . . . , sT , aT ).

The objective of sequential decision-making is typically formulated as the expected tra-

jectory return y =
∑T

t=0 rt, Q = Ep(τ)[y]. Conventional RL algorithms solve for a policy

π(at|st, ∗), where the conditioning ∗ denotes the optimal expected return. DT generalizes

this policy to π(at|s≤t, a<t, RTG≤t), by fitting the joint distribution p(s1, a1, RTG1, . . . , sT , aT , RTGT )
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with a Transformer. RTGt is the return-to-go from step t to the horizon T , RTGt =
∑T

k=t r(s≤k, a≤k). It is a useful indication of future rewards, especially when rewards are

dense and informative.

However, RTG becomes less reliable when rewards are sparse or have non-trivial

relations with the return. Distributing the return to each step is a credit assignment

problem. Consider an example of an ideal credit assignment mechanism: When students

receive partial credits for their incomplete answers, it’s more fair to give points equal to

the full marks minus the expected points for all possible ways to finish the answer, rather

than assuming students have no knowledge of the remaining parts. This credit assignment

mechanism can be formalized as, RTGQ
t =

∑K

k=t r(s≤k, a≤k) + E[Q(s≤K , a≤K)]. Here Q

can be estimated using deep TD learning with multi-step returns. Yamagata et al. (2023)

instantiate a Markovian version and demonstrate improvement in trajectory stiching.

Whatever credit assignment we use, be it RTG or RTGQ, the purpose is to explicitly

model the statistical association between trajectory steps and final returns. This effort

is believed to be necessary because of the exponential complexity of the trajectory space.

This belief, however, can be re-examined given the success of sequence modeling. We ex-

plore an alternative design choice by directly associating the latent vector that generates

the trajectory with the return.

7.3 Latent Plan Transformer

7.3.1 Model

Given a trajectory τ , z ∈ R
d is the latent vector to represent the variable-length trajectory.

y ∈ R is the return of the trajectory. The joint distribution of the trajectory and its return

is defined as p(τ , y).

The latent trajectory variable z, conceptualized as a plan, is posited to decouple the

autoregressive policy and return estimation. From a statistical standpoint, with z given,

we assume that τ and y are conditionally independent, positioning z as the information
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bottleneck. Under this assumption, the Latent Plan Transformer (LPT) can be defined

as,

pθ(τ , y, z) = pα(z)pβ(τ |z)pγ(y|z), (7.1)

where θ = (α,β,γ). LPT approximates the data distribution pdata(τ , y) using the

marginal distribution pθ(τ , y) =
∫
pθ(τ, y, z)dz. It also establishes a generation process,

z ∼ pα(z), [τ |z] ∼ pβ(τ |z), [y|z] ∼ pγ(y|z). (7.2)

The prior model pα(z) is an implicit generator, defined as a learnable neural transfor-

mation of an isotropic Gaussian, z = Uα(z0) and z0 ∼ N (0, Id). Uα(·) is an expressive

neural network, such as the UNet (Ronneberger et al., 2015). This approach is inspired

by, yet contrasts with that of Pang et al. (2020a), wherein the latent space prior is mod-

eled as an Energy-based Model (EBM). While EBM offers explicit unnormalized density,

its sampling process is complex. Conversely, our model provides an implicit density with

simpler sampling.

The trajectory generator pβ(τ |z) is a conditional autoregressive model with finite

context K, pβ(τ |z) =
∏T

t=1 pβ(τ (t)|τ (t−K), . . . , τ (t−1), z) where τ (t) = (st, at). It can be

parameterized by a causal Transformer with parameter β, similar to Decision Transformer

(Chen et al., 2021). Specifically, the latent variable z is included in trajectory generation

using cross-attention, as shown in Figure 7.1 and controls each step of the autoregressive

trajectory generation as pβ(at|st−K:t, at−K:t−1, z). The action is assumed to follow a single-

mode Gaussian distribution, i.e. at ∼ N (gβ(st−K:t, at−K:t−1, z), I|A|).

The return predictor is a non-linear regression on the latent variable z, modeled as

pγ(y|z) = N (rγ(z), σ2). It directly predicts the final return from the latent trajectory

variable. The function rγ(z) is a small multi-layer perceptron (MLP) that estimates y

based on z. The variance σ2, is treated as the hyper-parameter in our setting.
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z

z0

τ y

z = Uα(z0)
pα(z)

pβ(τ |z) pγ(y|z)

Cross-attention

Causal Transformer

×N

z

τ = (s1, a1, s2, a2, . . . , sT , aT )

a1, a2, . . . , · · · , aT

Figure 7.1: Left: Graphical model of the LPT. z ∈ R
d is the latent vector. The prior

distribution of z is a neural transformation of z0, i.e., z = Uα(z0), z0 ∼ N (0, Id). Given
z, τ and y are independent. pβ(τ |z) is the trajectory generator. pγ(y|z) is the return
predictor. Right: Illustration of trajectory generator pβ(τ |z).

7.3.2 OfÒine Learning

With a set of ofÒine training examples {(τ i, yi)}ni=1, we aim to learn Latent Plan Trans-

former (LPT) through maximum likelihood estimation (MLE). The log-likelihood func-

tion is defined as L(θ) =
∑n

i=1 log pθ(τ i, yi). The joint probability of the trajectory and

final return is

pθ(τ , y) =

∫

pβ(τ |z = Uα(z0))pγ(y|z = Uα(z0))p0(z0)dz0, (7.3)

where p0(z0) = N (0, Id). The learning gradient of log-likelihood can be calculated ac-

cording to

∇θ log pθ(τ , y) = Epθ(z0|τ,y)[∇θ log pβ(τ |Uα(z0)) +∇θ log pγ(y|Uα(z0))]. (7.4)

The full derivation of the learning method is in Section F.1. Let δα, δβ, δγ represent the

expected gradients of L(θ) with respect to the model parameters α,β, γ, respectively.

The learning gradients for each component are formulated as follows.

For the prior model pα(z),

δα(τ , y) = Epθ(z0|τ,y)[∇α(log pβ(τ |z = Uα(z0)) +∇α log pγ(y|z = Uα(z0))].
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For the trajectory generator,

δβ(τ , y) = Epθ(z0|τ ,y)[∇β log pβ(τ |z = Uα(z0))],

For the return predictor,

δγ(τ , y) = Epθ(z0|τ ,y)[∇γ log pγ(y|z = Uα(z0))].

Estimating these expectations requires Markov Chain Monte Carlo (MCMC) sam-

pling of the posterior distribution pθ(z0|τ , y). We use the Langevin dynamics (Neal,

2011) for MCMC sampling, iterating as follows for a target distribution π(z):

zk+1 = zk + s∇z log π(zk) +
√
2sϵk, (7.5)

where k indexes the time step of the Langevin dynamics, s is the step size, and ϵk ∼
N (0, Id) is the Gaussian white noise. Here, π(z) is instantiated as the posterior distri-

bution pθ(z0|τ , y). With z = Uα(z0), we have pθ(z0|τ , y) ∝ p0(z0)pγ(y|z)pβ(τ |z) and the

gradient is

∇z0 log pθ(z0|τ , y) = ∇z0 log p0(z0)
︸ ︷︷ ︸

prior

+∇z0 log pγ(y|z)
︸ ︷︷ ︸

return prediction

+
∑T

t=1
∇z0 log pβ(τ (t)|τ (t−K:t−1), z)

︸ ︷︷ ︸

aggregating finite-context sub-trajectories

.

This demonstrates that the posterior inference of z is an explicit process of optimizing

a plan given its likelihood. In the presence of a finite context, pβ(τ |z) defines sub-

trajectories with a maximum length of K. The latent variable z serves as an abstraction

that integrates information from both the final return and K sub-trajectories using gra-

dients.

The sampling process starts by initializing zk=0
0 from a standard normal distribution

N (0, Id). We then apply N steps of Langevin dynamics (e.g., N = 15) to approximate

the posterior distribution, making our learning algorithm an approximate MLE. For a

theoretical understanding of this noise-initialized finite-step MCMC, see (Pang et al.,
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Algorithm 6 OfÒine learning of LPT
Input: Learning iterations T , initial parameters θ0 = (α0,β0,γ0), ofÒine training
samples D = {τ i, yi}ni=1, posterior sampling step size s, the number of steps N , and
the learning rate η0, η1, η2.
Output: θT
for t = 1 to T do

1.Posterior sampling: For each (τ i, yi), sample z0 ∼ pθt(z0|τ i, yi) using (7.5),
where the target distribution π is pθt(z0|τ i, yi).
2.Learn prior model pα(z), trajectory generator pβ(τ |z) and return predictor
pγ(y|z):
αt+1 = αt + η0

1
n

∑

i δα(τi, yi),
βt+1 = βt + η1

1
n

∑

i δβ(τi, yi),
γt+1 = γt + η2

1
n

∑

i δγ(τi, yi) in Section 7.3.2.
end for

2020a; Nijkamp et al., 2020b). However, for large horizons (e.g., T=1000), this method

becomes slow and memory-intensive. To mitigate this, we adopt the persistent Markov

Chain (PMC) (Tieleman, 2008; Han et al., 2017), which amortizes sampling across train-

ing iterations. During training, zk=0
0 is initialized from the previous iteration and the

number of updates is reduced to N = 2 steps. The algorithm for ofÒine learning can be

found in Algorithm 6. See Section F.2 for training and architecture details.

7.3.3 Planning as Inference

The MLE learning of LPT gives us an agent that can plan. During testing, we first infer

the latent z0 given the desired return y using Bayes’ rule,

z0 ∼ pθ(z0|y) ∝ p0(z0)pγ(y|z = Uα(z0)). (7.6)

This posterior sampling is achieved using Langevin dynamics similar to the training

process. Specifically, we replace the target distribution in (7.5) with pθ(z0|y) and run

MCMC for a fixed number of steps. Sampling from pθ(z0|y) eliminates the need for

expensive back-propagation through the trajectory generator pβ(τ |z).

This posterior sampling of p(z0|y) is an explicit process that iteratively refines the la-

tent plan z, increasing its likelihood given the desired final return. It aligns with our intu-
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ition that planning is an inference process. This inferred z, fixed ahead of the policy execu-

tion, effectively serves as a plan. At each step, the agent consults this plan to generate ac-

tions conditioned on the current state and recent history, at ∼ pβ(at|st−K:t−1, at−K:t−1, z =

Uα(z0)).

Once a decision is made, the environment’s (possibly non-Markovian) transition

st+1 ∼ p(st+1|at, st) emits the next state. This sequential decision-making process iterates

the sampling of st and at until termination at the horizon.

Exploitation-Inclined Inference (EI) Inspired by the classifier guidance (CG)

(Dhariwal and Nichol, 2021; Ho and Salimans, 2022) in conditional diffusion models, we

introduce a guidance weight w to the original posterior in (7.6)

p̃θ(z0|y) ∝ p0(z0)pγ(y|z)w, z = Uα(z0), (7.7)

which has the score ∇z0 log p̃θ(z0|y) = ∇z0 log p0(z0) + w∇z0 log pγ(y|z). This guidance

weight w controls the interpolation between exploration and exploitation. When w = 1,

the sampled plans collectively represent the posterior density and account for Bayesian

uncertainty, resulting in a provably efficient exploration scheme (Osband and Van Roy,

2017). When w > 1, the sampled plans are more concentrated around the modes of the

posterior distribution, which are plans more likely to the agent. The larger the value

of w, the more confident the agent becomes, and the stronger the inclination towards

exploitation.

The algorithm for planning as inference can be found in Algorithm 7.

7.4 A Sequential Decision-Making Perspective

We approach the sequential decision-making problem with techniques from generative

modeling. In particular, our data specification of trajectory-return pairs omits step-

wise rewards, based on the belief that the step-wise reward function is only a proxy of

the trajectory return. However, step-wise rewards are indispensable input to classical
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Algorithm 7 Planning as inference in LPT
Input: Expected return y, a trained model on ofÒine dataset θ, posterior sampling
step size s and the number of steps N , Horizon T and an evaluation environment.
Output: τ

//Posterior sampling
if Exploitation-inclined Inference (EI) then

Sample z0 ∼ p̃θ(z0|y) as in (7.7) using (7.5) where the target distribution is replaced
by p̃θ(z0|y) ∝ p0(z0)pγ(y|z = Uα(z0))w and let z = Uα(z0).

else
Sample z0 ∼ pθ(z0|y) as in (7.6) using (7.5) where the target distribution is replaced
by pθ(z0|y) ∝ p0(z0)pγ(y|z = Uα(z0)) and let z = Uα(z0).

end if
//Sample trajectory
while current time step t ≤ T do

Sample at using trajectory generator as at ∼ pβ(at|st−K:t−1, at−K:t−1, z = Uα(z0)).
Once a decision is made, the environment’s (possibly non-Markovian) transition
st+1 ∼ p(st+1|at, st) emits the next state.

end while

decision-making algorithms. Accumulating the rewards from the current step to the

future gives us the RTG, which naturally hints the future progress of the trajectory.

How is temporal consistency enforced in our model without the assistance of the RTGs?

Without loss of generality, consider the trajectory distribution conditioned on a sin-

gle return value y. The MLE objective is equivalent to minimizing the KL divergence

between the data distribution and model distribution, DKL(p
y
D(τ )‖pyθ(τ )). Here, pD

denotes the data distribution and pθ denotes the model distribution. MLE upon autore-

gressive modeling imposes additional inductive biases by transforming the objective to

DKL(p
y
D,AR(τ )‖pyθ,AR(τ )), which is reduced to next-token prediction for behavior cloning

and transition model estimation:

T∑

t=1

DKL(p
y
D(at|s1:t,a1:t−1)‖pyθ(at|s1:t,a1:t−1))

︸ ︷︷ ︸

behavior cloning

+
T∑

t=1

DKL(p
y
D(st+1|s1:t,a1:t)‖pyθ(st+1|s1:t,a1:t))

︸ ︷︷ ︸

transition model estimation

.

However, behavior cloning is believed to suffer from drifting errors since it ignores covari-

ate shifts in future steps (Ross and Bagnell, 2010). This concern is unique to sequential

decision-making, as the agent cannot control the next state from a stochastic environ-
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ment, like generating the next text token.

This temporal consistency issue could be alleviated by additionally modeling the se-

quence of RTG. Denote ρ = (RTG0, RTG1, . . . , RTGT ). Modeling the joint distribution

is to minimize

DKL(p
y
D(τ ,ρ)‖pyθ(τ ,ρ)) = DKL(p

y
D(τ )‖pyθ(τ )) +DKL(p

y
D(ρ|τ )‖pyθ(ρ|τ ))

=DKL(p
y
D,AR(τ )‖pyθ,AR(τ )) + Epy

D
(τ )[
∑T

t=1
DKL(p

y
D(RTGt|τ )‖pyθ(RTGt|τ ))

︸ ︷︷ ︸

RTG prediction

].
(7.8)

Note that the RTG prediction term is conditioned on the entire trajectory, including the

future steps. Minimizing this additional KL divergence correlates predicted RTGs with

hindsight trajectory-to-go.

Our modeling of the latent trajectory variable z provides an alternative solution to

the temporal consistency issue. The gradient in (7.4) is minimizing the KL divergence

DKL(p
y
D(τ , z)‖pyθ(τ , z)) = DKL(p

y
D(τ )‖pyθ(τ )) +DKL(p

y

θ̄
(z|τ )‖pyθ(z|τ ))

=DKL(p
y
D,AR(τ )‖pyθ,AR(τ )) + Epy

D
(τ )[DKL(p

y

θ̄
(z|τ )‖pyθ(z|τ ))

︸ ︷︷ ︸

plan prediction

],
(7.9)

where py
θ̄
(z|τ ) = p

y

θ̄
(τ , z)/py

θ̄
(τ ) and θ̄ = θ highlights these distributions have the same

parameterization as pyθ but are wrapped with stop_grad() operator when calculating

gradients for θ (Han et al., 2017). Comparing (7.8) and (7.9), it is now clear that z

plays a similar role as RTG in promoting temporal consistency in autoregressive models.

Uniquely, py
θ̄
(z|τ ) is the temporal abstraction intrinsic to the model, in contrast to step-

wise rewards. From a sequential decision-making perspective, z is effectively a plan that

the agent is persistent to. From a generative modeling perspective, z from different

trajectory modes would decompose the density py(at|s0:t, a0:t−1), relieving the burden of

learning the autoregressive policy pβ(at|s0:t, a0:t−1, z).

One caveat is that the transition model estimation should not be conditioned on

y. Mixing up more trajectory regimes could provide additional regularization for its
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estimation and generalization. Actually, environment stochasticity is a more concerning

issue for autoregressive behavior cloning, as highlighted by several authors (Yang et al.,

2022; Paster et al., 2022; Štrupl et al., 2022; Brandfonbrener et al., 2022; Villaflor et al.,

2022; Eysenbach et al., 2022). Among them, Yang et al. (2022) pinpoint the issue by

viewing RTGs as deterministic latent trajectory variables, closely related to what we

present here. Uniquely, the latent variable z in our model is inherently multi-modal

(hence very non-deterministic) and ignorant of step-wise rewards. We postulate that the

overfitting issue can be mitigated. This is validated by our empirical study, which was

inspired by the work of Paster et al. (2022).

Although RTG prediction and plan prediction both promote temporal consistency,

they function very differently when mixing trajectories from multiple return-conditioned

regimes. RTG prediction is a supervised learning over the joint distribution pD(τ ,ρ).

Simply mixing trajectories from multiple regimes can’t encourage generalization to tra-

jectories that are stitched with those in the dataset. Yamagata et al. (2023) propose to

resolve this by replacing RTG with RTGQ. Intuitively, this augments the distribution

pD(τ ,ρ) with pD(τ
′,ρQ), where τ ′ denotes trajectories covered by the ofÒine dynamic

programming, such as Q learning, and ρQ = (RTGQ
0 , RTG

Q
1 , . . . , QT ). It significantly im-

proves tasks requiring trajectory stitching. Conversely, plan prediction is an unsupervised

learning as it samples from pD(τ , y)pθ̄(z|τ , y). As z contains more trajectory-related infor-

mation than step-wise RTGs, trajectories lying outside of pD(τ ,ρ)may be in-distribution

for pD(τ , y)pθ̄(z|τ , y). The return prediction training further shapes the representation

of z, which can be benefited from denser coverage of y. With more return values covered,

we may count on neural networks’ strong interpolation capability to shift the trajectory

distribution with y-conditioning.
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7.5 Related Work

7.5.1 Decision-Making via Sequence Modeling

Chen et al. (2021) propose the Decision Transformer (DT), pioneering this paradigm shift.

Concurrently, Janner et al. (2021) explore beam search upon the learned Transformer for

model-based planning and inspired later work that searches over the latent state space

(Zhang et al., 2022). Lee et al. (2022) report DT’s capability in multi-task setting. Zheng

et al. (2022) explore the online extension of DT. Yamagata et al. (2023) augment the

Monte Carlo RTG in DT with a Q function and show improvement in tasks requiring

trajectory stitching. Janner et al. (2022) explore diffusion models (Ho et al., 2020) as an

alternative generative model family for decision-making. Our model differentiates from

all above in data specification and model formulation.

7.5.2 Latent Trajectory Variables in Behavior Cloning

Yang et al. (2022) and Paster et al. (2022) investigate the DT’s overfitting to environment

contingencies and propose latent variable solutions. Our model is closely related to theirs

but unique in an EM-style algorithm for MLE. Ajay et al. (2021) and Lynch et al. (2020)

propose latent variable models to make Markovian policies temporally extended. Their

models are more related to VAE (Kingma and Welling, 2014a).

7.5.3 OfÒine Reinforcement Learning

Since the ofÒine static datasets only partially cover the state transition spaces, efforts

from a conventional RL perspective focus on imposing pessimistic biases to value iteration

(Kumar et al., 2020; Kostrikov et al., 2021; Uehara and Sun, 2021; Xie et al., 2021; Cheng

et al., 2022). Fujimoto and Gu (2021) show that simply augmenting value-based methods

with behavior cloning achieves impressive performance. Emmons et al. (2021) report that

supervised learning on return-conditioned policies is competitive to value-based methods

in ofÒine RL. Our MLE objective is more related to the supervised learning methods. The
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latent variable inference further imposes temporal consistency, acting as a replacement

of value iteration.

7.5.4 Hierarchical RL

Methods like OPAL (Ajay et al., 2021), OPOSM (Freed et al., 2023) address TD-learning’s

limitations in long-range credit assignment using a two-stage approach: discovering skills

from shorter subsequences to reduce the planning horizon, then applying skill-level CQL

or online model-based planning on the reduced horizons. This chapter focuses on com-

paring various methods for long-range credit assignment on the original horizon. Future

work includes first discovering skills and then modeling them with a skill-level LPT to

further extend the effective horizon.

7.6 Experiments

The data specification of trajectory-return pairs distinguishes our empirical study from

most existing works in ofÒine RL. Omitting step-wise rewards naturally increases the

challenges in decision-making.

7.6.1 Overview

Our empirical study adopts the convention from ofÒine RL. We first train our model with

the ofÒine data and then test it as an agent in the corresponding task. More training

details and ablation studies of LPT can be found in Section F.2 and Section F.3.

OpenAI Gym-Mujoco The D4RL ofÒine RL dataset (Fu et al., 2020) features

densely-rewarded locomotion tasks including Halfcheetah, Hopper, and Walker2D. We

test for medium and medium-replay. It also includes Antmaze, a locomotion and goal-

reaching task with extremely sparse reward. The agent will only receive a reward of 1 if

hitting the target location and 0 otherwise. We use its umaze and umaze-diverse variants.

Franka Kitchen Franka Kitchen is a multitask environment where a Franka robot
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with nine degrees of freedom operates within a kitchen setting, interacting with household

objects to achieve specific configurations. Our experiments focus on two datasets of the

environment: mixed, and partial, which consists of non-task-directed demonstrations and

partially task-directed demonstrations respectively.

Maze2D Maze2D is a navigation task in which the agent reaches a fixed goal location

from random starting positions. The agent is rewarded 1 point when it is around the goal.

Experiments are conducted on three layouts: umaze, medium, and large, with increasing

complexity. The training data of the Maze2D task contains only suboptimal trajectories

from and to randomly selected locations.

Connect Four This is a tile-based game, where the agent plays against a stochastic

opponent (Paster et al., 2022), receiving at the end of an episode 1 reward for winning,

0 for a draw, and -1 for losing.

Baselines We compare the performance of LPT with several representative baselines

including CQL (Kumar et al., 2020), DT (Chen et al., 2021) and QDT (Yamagata et al.,

2023). CQL baseline results are obtained from (Kumar et al., 2020). QDT baseline

results are from (Yamagata et al., 2023). The DT results for Gym-Mujoco and Maze2D

tasks are from (Yamagata et al., 2023), Antmaze from (Zheng et al., 2022), and Kitchen

implemented based on the published source code. CQL and DT results in the Connect

Four experiments are from (Paster et al., 2022). The mean and standard deviation of

our model, shown as LPT and LPT-EI, are reported over 5 seeds.

7.6.2 Credit Assignment

When resolving the temporal consistency issue, our model doesn’t have an explicit credit

assignment mechanism that accounts for the actual contribution of each step. It is not

aware of the step-wise rewards either. We are therefore curious about whether the inferred

latent variable z can effectively assign fair credits to resolve compounding errors.

Distributing Sparse Rewards to High-Dimensional Actions The Gym-Mujoco

environment was a standard testbed for high-dimensional continuous control during the
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Dataset Step-wise Reward Final Return
CQL DT QDT CQL DT QDT LPT (Ours) LPT-EI (Ours)

halfcheetah-medium 44.4 42.1 42.3 1.0 42.4 42.4 43.13± 0.38 43.53± 0.08
halfcheetah-medium-replay 46.2 34.1 35.6 7.8 33.0 32.8 39.64± 0.83 40.66± 0.12
hopper-medium 58.0 60.3 66.5 23.3 57.3 50.7 58.52± 1.92 63.83± 1.47
hopper-medium-replay 48.6 63.7 52.1 7.7 50.8 38.7 82.29± 1.26 89.93± 0.61
walker2d-medium 79.2 73.3 67.1 0.0 69.9 63.7 77.85± 3.18 81.15± 0.33
walker2d-medium-replay 26.7 60.2 58.2 3.2 51.6 29.6 72.31± 1.92 75.68± 0.34

kitchen-mixed 51.0 22.3 - - 17.2 - 61.9± 1.22 64.7± 0.51
kitchen-partial 49.8 20.4 - - 10.5 - 61.2± 1.75 65.3± 0.62

Table 7.1: Evaluation results of ofÒine OpenAI Gym MuJoCo tasks. We provide re-
sults for data specification with step-wise reward (left) and final return (right). Bold
highlighting indicates top scores. LPT outperforms all final-return baselines and most
step-wise-reward baselines.

development of modern RL algorithms (Lillicrap et al., 2015). In this environment, step-

wise rewards were believed to be critical for TD learning methods. In the setup of ofÒine

RL, Chen et al. (2021) reported the failure of the competitive CQL baseline when delay-

ing step-wise rewards until the end of the trajectories. DT and QDT are reported to be

robust to this alternation. As shown in Table 7.1, the proposed model, LPT, outperforms

these baselines in the same data specification. Notably, LPT even excels in most of the

control tasks when compared with the baselines with step-wise rewards.

Distributing Delayed Rewards to Long-Range Sequences Maze navigation

tasks with fully delayed rewards align with our intuition of a planning problem, for

it involves decision-making at certain critical states absent of instantaneous feedback.

An ideal planner would take in the expected total return and calculate the sequential

decisions, automatically distributing credits from the extremely sparse and fully delayed

rewards. According to Yamagata et al. (2023), DT fails in these tasks. Our proposed

model LPT outperforms QDT by a large margin in all three variants of the maze task,

as shown in Table 7.2. Table 7.3 reports the performance in a locomotion maze task,

Ant-Maze, where LPT also achieves the highest. These results validate our hypothesis

that the additional plan prediction KL imposes temporal consistency on autoregressive

policies.
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Dataset CQL DT QDT LPT LPT-EI
Maze2D-umaze 5.7 31.0± 21.3 57.3± 8.2 65.43± 2.91 70.57± 1.39
Maze2D-medium 5.0 8.2± 4.4 13.3± 5.6 20.62± 1.81 26.66± 0.74
Maze2D-large 12.5 2.3± 0.9 31.0± 19.8 37.21± 2.05 45.89± 2.98

Table 7.2: Evaluation results of Maze2D tasks. Bold highlighting indicates top scores.

Dataset CQL DT LPT LPT-EI
Antmaze-umaze 74.0 53.3± 5.52 80.8± 4.83 92.4± 0.80
Antmaze-umaze-diverse 84.0 52.5± 5.89 78.5± 1.66 84.4± 1.96

Table 7.3: Evaluation results of Antmaze tasks. Bold highlighting indicates top scores.

7.6.3 Trajectory Stitching

In addition to credit assignment, the setup of ofÒine RL further presents a challenge,

trajectory stitching (Fu et al., 2020), which articulates the problem of shifting the trajec-

tory distribution towards sparsely covered regimes with higher returns. In the Franka

Kitchen environment, both the mixed, and partial datasets contain undirected data where

the robot executes subtasks that do not necessarily achieve the goal configuration. The

”mixed” dataset contains no complete solution trajectories, necessitating that the agent

learn to piece together relevant sub-trajectories. A similar setting happens in Maze2D

domain. Taking Maze2D-medium as an example, in the training set, the average return

of all trajectories is 3.98 with a standard deviation of 10.44, where the max return is 47.

DT’s score is only marginally above the average return. Yamagata et al. (2023) attribute

DT’s failure in Maze2D to its difficulty with trajectory stitching.

Figure 7.2 visualizes samples from the training data and successful trajectories in

testing. The left panels show that trajectories in training are suboptimal in terms of (1)

being short in length and (2) containing very few goal-reaching instances. Trajectories

on the right are generated by 10 random runs with LPT, where the agent successfully

navigates to the end goal from random starting positions in an effective manner. This

indicates that the agent can discover the correlation between different ys to facilitate

such stitching.
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(a) Maze2d-Medium (b) Maze2d-Large

Figure 7.2: (a) Maze2D-medium environment (b) Maze2D-large environment. Left panels
show example trajectories from the training set and right panels show LPT generations.
Yellow stars represent the goal states.

Figure 7.3: t-SNE visualization of latent variable in Maze2D-medium. Left: the distribu-
tion of z0, following an isotropic Gaussian. z0s from testing are disjoint from the training
population. Right: the distribution of z = Uα(z0). zs from the generated trajectories
become “in-distribution.”

To probe into the agent’s understanding of trajectories’ returns, we visualize the

representation space of the latent variables. The left of Figure 7.3 is the distribution of

z0. It follows an isotropic Gaussian, in which distance can roughly imply density. We can

see that z0 from the generated trajectories are distant away from the training population.

The agent understands they are not very likely in the training set. The right of Figure 7.3

is the distribution of z, which is transformed from z0 with the UNet. We observe that zs

from the generated trajectories become “in-distribution” in the sense that some of them

are mingled into the training population and the remaining lie inside a region coverable

through linear interpolation of training samples. The agent understands what trajectories

to generate even if they are unlikely among what it has seen.
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Dataset CQL DT ESPER LPT
Connect Four 0.61± 0.05 0.8± 0.07 0.99± 0.03 0.99± 0.01

Table 7.4: Evaluation results on Connect Four. Bold highlighting indicates top scores.

7.6.4 Environment Contingencies

To live in a stochastic world, contingent planning that is adaptable to unforeseen noises is

desirable. Paster et al. (2022); Yang et al. (2022) discover that DT’s performance would

degrade in stochastic environments due to inevitable overfitting towards contingencies.

We examine LPT and other baselines in Connect Four from (Paster et al., 2022). Connect

Four is a two-player game, where the opponent will make adversarial moves to deliberately

disturb an agent’s plan. According to the empirical study by Paster et al. (2022), the

degradation of DT is more significant than in stochastic Gym tasks from (Yang et al.,

2022). As shown in Table 7.4, LPT achieves the highest score with minimal variance.

The ESPER baseline is from (Paster et al., 2022), which is very relevant to LPT as it is

also a latent variable model. ESPER learns the latent variable model with an adversarial

loss. It further adds a clustering loss in the latent space. LPT’s on-par performance may

justify that MLE upon a more flexible prior can play an equal role.

7.7 Limitation

An interesting future direction is to study LPT’s continual learning potential. During

planning, LPT explores with provably efficient posterior sampling (Osband et al., 2013;

Osband and Van Roy, 2017). We include online learning experiments in Section F.4.

Despite significance in some tasks, most improvements are within 1 standard deviation

of the mean, similar to ODT (Zheng et al., 2022).
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7.8 Summary

In this chapter, we presented a latent-variable auto-regressive model, LPT, which gener-

ates trajectories and returns from the latent attractions of plans. In learning, posterior

sampling of the latent variables naturally gathers sub-trajectories to form an episode-

wise abstraction despite finite context windows. In inference, the posterior sampling

given the target final return explores the optimal regime of the latent space, producing

a latent variable that guides the autoregressive policy to execute consistently. Across

diverse evaluations, LPT demonstrates competitive capacities of nuanced credit assign-

ments, trajectory stitching, and adaptation to environmental contingencies. Our analysis

further showcased the connection between explicit inference of the latent temporal ab-

stractions and step-wise credit assignment in terms of promoting temporal consistency.

Given the architectural similarity between our trajectory generator and state-of-the-

art Large Language Models (LLMs) (Brown et al., 2020; Team et al., 2023), we anticipate

that the advantages of latent abstraction learning and inference can be directly gener-

alized to massive-scale Generative AI systems. This generalization has the potential to

challenge the current paradigms of LLM development, which typically rely on pretraining

with Maximum Likelihood Estimation followed by fine-tuning with Reinforcement Learn-

ing. Our findings suggest a more integrated approach that may potentially revolutionize

the way we develop and optimize these powerful AI systems.
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Part IV

Knowledge Distillation
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CHAPTER 8

Distilling Data-Space Diffusion Models to

Latent-Variable Models

8.1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) are

another family of generative models, which can directly model the data-space distribution

to enable the generation of high-quality images (Ramesh et al., 2022; Saharia et al., 2022;

Rombach et al., 2022), videos (Ho et al., 2022; Brooks et al., 2024), and other modalities

(Poole et al., 2022; Xu et al., 2022; Yang et al., 2023). Diffusion models use a forward

process to create a sequence of distributions that transform the complex data distribution

into a Gaussian distribution, and learn the score function for each of these intermediate

distributions. Sampling from a diffusion model reverses this forward process to create

data from random noise by solving an SDE, or an equivalent probability flow ODE (Song

et al., 2020a). Typically, solving this differential equation requires a significant number

of evaluations of the score function, resulting in a high computational cost. Reducing

this cost to single-function evaluation as the generators in latent-variable models would

enable applications in real-time generation.

To enable efficient sampling from diffusion models, two distinct approaches have

emerged: (1) trajectory distillation methods (Salimans and Ho, 2022; Berthelot et al.,

2023; Song et al., 2023; Gu et al., 2023; Zheng et al., 2023; Heek et al., 2024) that accel-

erate solving the differential equation, and (2) distribution matching approaches (Xiao

et al., 2021; Xu et al., 2023; Sauer et al., 2023; Luo et al., 2023c; Yin et al., 2024) that

learn implicit generators to match the marginals learned by the diffusion model. Trajec-

144



tory distillation-based approaches have greatly reduced the number of steps required to

produce samples, but continue to face challenges in the 1-step generation regime. Distri-

bution matching approaches can enable the use of arbitrary generators and produce more

compelling results in the 1-step regime, but often fail to capture the full distribution due

to the mode-seeking nature of the divergences they minimize.

In this chapter, we introduce EM Distillation (EMD), a diffusion distillation method

that minimizes an approximation of the mode-covering divergence between a pre-trained

diffusion teacher model and a latent-variable student model. The student enables ef-

ficient generation by mapping from noise to data in just one step. To achieve MLE

of the marginal teacher distribution for the student, we propose a method similar to

the EM framework (Dempster et al., 1977), which alternates between an Expectation-

step (E-step) that estimates the learning gradients with Monte Carlo samples, and a

Maximization-step (M-step) that updates the student through gradient ascent. As the

target distribution is represented by the pre-trained score function, the E-step in the

original EM that first samples a datapoint and then infers its implied latent variable

would be expensive. We introduce an alternative MCMC sampling scheme that jointly

updates the data and latent pairs initialized from student samples, and develop a repa-

rameterized approach that simplifies hyperparameter tuning and improves performance

for short-run MCMC (Nijkamp et al., 2019). For the optimization in the M-step given

these joint samples, we discover a tractable linear noise term in the learning gradient,

whose removal significantly reduces variances. Additionally, we identify a connection to

Variational Score Distillation (Poole et al., 2022; Wang et al., 2024) and Diff-Instruct (Luo

et al., 2023c), and show how the strength of the MCMC sampling scheme can interpolate

between mode-seeking and mode-covering divergences. Empirically, we first demonstrate

that a special case of EMD, which is equivalent to the Diff-Instruct (Luo et al., 2023c)

baseline, can be readily scaled and improved to achieve strong performance. We further

show that the general formulation of EMD that leverages multi-step MCMC can achieve

even more competitive results. For ImageNet-64 and ImageNet-128 conditional genera-

tion, EMD outperforms existing one-step generation approaches with FID scores of 2.20
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and 6.0. EMD also performs favorably on one-step text-to-image generation by distilling

from Stable Diffusion models.

8.2 Preliminary

8.2.1 Diffusion Models and Score Matching

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), also known as score-

based generative models (Song and Ermon, 2019; Song et al., 2020b), consist of a for-

ward process that gradually injects noise to the data distribution and a reverse process

that progressively denoises the observations to recover the original data distribution

pdata(x0). This results in a sequence of noise levels t ∈ (0, 1] with conditional distribu-

tions qt(xt|x0) = N (αtx0, σ
2
t I), whose marginals are qt(xt). We use a variance-preserving

forward process (Song et al., 2020b; Kingma et al., 2021; Kingma and Gao, 2023) such

that σ2
t = 1 − α2

t . Song et al. (2020b) showed that the reverse process can be simu-

lated with a reverse-time Stochastic Differential Equation (SDE) that depends only on

the time-dependent score function ∇xt log pt(xt) of the marginal distribution of the noisy

observations. This score function can be estimated by a neural network sϕ(xt, t) through

(weighted) denoising score matching (Hyvärinen and Dayan, 2005; Vincent, 2011):

J (ϕ) = Epdata(x0),p(t),qt(xt|x0)
[
w(t)‖sϕ(xt, t)−∇xt log qt(xt|x0)‖22

]
, (8.1)

where w(t) is the weighting function and p(t) is the noise schedule.

8.2.2 MCMC With Langevin Dynamics

While solving the reverse-time SDE results in a sampling process that traverses noise

levels, simulating Langevin dynamics (Neal, 2011) results in a sampler that converges

to and remains at the data manifold of a target distribution. As a particularly useful

MCMC sampling method for continuous random variables, Langevin dynamics generate
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samples from a target distribution ρ(x) by iterating through

xi+1 = xi + γ∇x log ρ(xi) +
√

2γn, (8.2)

where γ is the stepsize, n ∼ N (0, I), and i indexes the sampling timestep. Langevin

dynamics has been widely adopted for sampling from diffusion models (Song and Ermon,

2019; Song et al., 2020b) and energy-based models (Xie et al., 2016, 2018; Gao et al.,

2018; Nijkamp et al., 2021). Convergence of Langevin dynamics requires a large number

of sampling steps, especially for high-dimensional data. In practice, short-run variants

with early termination have been succesfully used for learning of EBMs (Nijkamp et al.,

2019, 2020a; Gao et al., 2020).

8.2.3 Maximum Likelihood and Expectation-Maximization

Expectation-Maximization (EM) (Dempster et al., 1977) is a maximum likelihood esti-

mation framework to learn latent variable models: pθ(x, z) = pθ(x|z)p(z), such that the

marginal distribution pθ(x) =
∫
pθ(x, z)dz approximates the target distribution q(x). It

originates from the generic training objective of maximizing the log-likelihood function

over parameters: L(θ) = Eq(x)[log pθ(x)], which is equivalent to minimizing the forward

KL divergence DKL(q(x)||pθ(x)) (Bishop, 2006). Since the marginal distribution pθ(x) is

usually analytically intractable, EM involves an E-step that expresses the gradients over

the model parameters θ with an expectation formula

∇θL(θ) = ∇θ Eq(x)[log pθ(x)] = Eq(x)pθ(z|x)[∇θ log pθ(x, z)], (8.3)

where pθ(z|x) = pθ(x|z)p(z)
pθ(x) is the posterior distribution of z given x. See Section G.1 for a

detailed derivation. The expectation can be approximated by Monte Carlo samples drawn

from the posterior using, e.g., MCMC sampling techniques. The estimated gradients are

then used in an M-step to optimize the parameters. Han et al. (2017) learned generator

networks with an instantiation of this EM framework where E-steps leverage Langevin

147



dynamics for drawing samples.

8.2.4 Variational Score Distillation and Diff-Instruct

Our method is also closely related to Score Distillation Sampling (SDS) (Poole et al.,

2022), Variational Score Distillation (VSD) (Wang et al., 2024) and Diff-Instruct (Luo

et al., 2023c), which have been used for distilling diffusion models into a single-step

generator (Yin et al., 2024; Nguyen and Tran, 2023). The generator produces clean

images x0 = gθ(z) with p(z) = N (0, I), and can be diffused to noise level t to form

a latent variable model pθ,t(xt, z) = pθ,t(xt|z)p(z), pθ,t(xt|z) = N (αtgθ(z), σ2
t I). This

model is trained to match the marginal distributions pθ,t(xt) and qt(xt) by minimizing

their reverse KL divergence. Integrating over all noise levels, the objective is to minimize

J (θ), where

J (θ) = Ep(t)[w̃(t)DKL(pθ,t(xt)||qt(xt))] = Ep(t)

[

w̃(t)

∫

pθ,t(xt) log
pθ,t(xt)
qt(xt)

dxt
]

. (8.4)

The gradient for this objective in (8.4) can be written as

∇θJ (θ) = Ep(t),p(ϵ),p(z)[−w̃(t)(∇xt log qt(xt)
︸ ︷︷ ︸

teacher score

−∇xt log pθ,t(xt)
︸ ︷︷ ︸

learned sφ(xt,t)

)∇θαtgθ(z)], (8.5)

where the teacher score is provided by the pre-trained diffusion model. In SDS,∇xt log pθ,t(xt)

is the known analytic score function of the Gaussian generator. In VSD and Diff-Instruct,

an auxiliary score network sϕ(xt, t) is learned to estimate it. The training alternates be-

tween learning the generator network gθ with the gradient update in (8.5) and learning

the score network sϕ with the denoising score matching loss in (8.1).
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(a) ImageNet (b) Text-to-image (SD embedding) (c) Text-to-image (SD image space)

Figure 8.1: Image samples before and after MCMC correction. In (a)(b), the left columns
are x = gθ(z), the right columns are updated x after 300 steps of MCMC sampling jointly
on x and z. (a) illustrates the effect of correction in ImageNet. Note that the off-manifold
images are corrected. (b) illustrates the correction in the embedding space of Stable
Diffusion v1.5, which are decoded to image space in (c). Note the disentanglement of the
cats and sharpness of the sofa. Zoom in for better viewing.

8.3 Method

8.3.1 EM Distillation

We consider formulating the problem of distilling a pre-trained diffusion model to a

deep latent-variable model pθ,t(xt, z) defined in Section 8.2.4 using the EM framework

introduced in Section 8.2.3. For simplicity, we begin with discussing the framework

at a single noise level and drop the subscript t. We will revisit the integration over

all noise levels in Section 8.3.3. Assume the target distribution q(x) is represented by

the diffusion model where we can access the score function ∇x log q(x). Theoretically

speaking, the generator network gθ(z) can employ any architecture including ones where

the dimensionality of the latents differs from the data dimensionality. In this chapter,

we reuse the diffusion denoiser parameterization as in other work on one-step distillation:

gθ(z) = x̂θ(z, t∗), where x̂θ is the x-prediction function inherited from the teacher diffusion

model, and t∗ remains a hyper-parameter.

A naive implementation of the E-step involves two steps: (1) draw samples from the

target diffusion model q(x) and (2) sample the latent variable z from pθ(z|x) with, e.g.,

MCMC techniques. Both steps can be highly non-trivial and computationally expensive,

so here we present an alternative approach to sampling the same target distribution

that avoids directly sampling from the pretrained diffusion model, by instead running
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MCMC from the joint distribution of (x, z). We initialize this sampling process using

a joint sample from the student: drawing z ∼ p(z) and x ∼ pθ(x|z). This sampled

x is no longer drawn from q(x), but z is guaranteed to be a valid sample from the

posterior pθ(z|x). We then run MCMC to correct the sampled pair towards the desired

distribution: ρθ(x, z) := q(x)pθ(z|x) = pθ(x, z) q(x)pθ(x) (see Figure 8.1 for a visualization

of this process). If q(x) and pθ(x) are close to each other, ρθ(x, z) is close to pθ(x, z).

In that case, initializing the joint sampling of ρθ(x, z) with pairs of (x, z) from pθ(x, z)

could significantly accelerate both sampling of x and inference of z. Assuming MCMC

converges, we can use the resulting samples to estimate the learning gradients for EM:

∇θL(θ) = Eρθ(x,z) [∇θ log pθ(x, z)] = Eρθ(x,z)

[

−∇θ‖x− αgθ(z)‖22
2σ2

]

. (8.6)

We abbreviate our method as EMD hereafter. To successfully learn the student network

with EMD, we need to identify efficient approaches to sample from ρθ(x, z).

8.3.2 Reparametrized Sampling and Noise Cancellation

As an initial strategy, we consider Langevin dynamics which only requires the score

functions

∇x log ρθ(x, z) = ∇x log q(x)
︸ ︷︷ ︸

teacher score

−∇x log pθ(x)
︸ ︷︷ ︸

learned sφ(x)

+∇x log pθ(x|z)
︸ ︷︷ ︸

−
x−αgθ(z)

σ2

,

∇z log ρθ(x, z) = ∇z log pθ(x|z) +∇z log pθ(z) = −
x− αgθ(z)

σ2
∇zgθ(z)− z.

(8.7)

While we do not have access to the score of the student, ∇x log pθ(x), we can approxi-

mate it with a learned score network sϕ estimated with denoising score matching as in

VSD (Wang et al., 2024) and Diff-Instruct (Luo et al., 2023c). As will be covered in

Section 8.3.3, this score network is estimated at all noise levels. The Langevin dynamics

defined in (8.7) can therefore be simulated at any noise level.

Running Langevin MCMC is expensive and requires careful tuning, and we found this
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(a) x w/ accumulated noise (b) x w/o accumulated noise

Figure 8.2: Images after 8-step Langevin updates with and without accumulated noise.

challenging in the context of diffusion model distillation where different noise levels have

different optimal step sizes. We leverage a reparametrization of x and z to accelerate the

joint MCMC sampling and simplify step size tuning, similar to (Nijkamp et al., 2021;

Xiao et al., 2020). Specifically, x = αgθ(z) + σϵ defines a deterministic transformation

from the pair of (ϵ, z) to the pair of (x, z), which enables us to push back the joint

distribution ρθ(x, z) to the (ϵ, z)-space. The reparameterized distribution is given by

ρθ(ϵ, z) =
q(αgθ(z) + σϵ)

pθ(αgθ(z) + σϵ)
p(ϵ)p(z). (8.8)

See Section G.2 for a detailed derivation. We found that this parameterization admits

the same step sizes across noise levels and results in better performance empirically

(Table 8.1).

Still, learning the student with these samples continued to present challenges. When

visualizing samples x produced by MCMC (see Figure 8.2a), we found that samples con-

tained substantial noise. While this makes sense given the level of noise in the marginal

distributions, we found that this inhibited learning of the student. We identify that, due

to the structure of Langevin dynamics, there is noise added to x at each step that can

be linearly accumulated across iterations. By removing this accumulated noise along

with the temporally decayed initial ϵ, we recover cleaner x samples (Figure 8.2b). Since

x is effectively a regression target in (8.6), and the expected value of the noises is 0,
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canceling these noises reduces variance of the gradient without introducing bias. This

noise cancellation was critical to the success of EMD, and is detailed in Section G.2 and

ablated in experiments (Figure 8.3ab).

8.3.3 Maximum Likelihood Across All Noise Levels

The derivation above assumes smoothing the data distribution with a single noise level.

In practice, the diffusion teachers always employ multiple noise levels t, coordinated by

a noise schedule p(t). Therefore, we optimize a weighted loss over all noise levels of

the diffusion model, to encourage that the marginals of the student network match the

marginals of the diffusion process at all noise levels:

∇θL(θ) = ∇θ Ep(t),qt(xt) [w̃(t) log pθ,t(xt)] = Ep(t),ρt(xt,z) [w̃(t)∇θ log pθ,t(xt, z)] , (8.9)

where pθ,t(xt, z) = pθ,t(xt|z)p(z), pθ,t(xt|z) = N (αtgθ(z), σ2
t I), with a shared generator

gθ(z) across all noise levels. Empirically, we find w̃(t) = σ2
t /αt or w̃(t) = σ2

t /α
2
t perform

well.

Denote the resulted distribution after K steps of MCMC sampling with noise cancel-

lation as ρKt (xKt , zK), the final gradient for the generator network gθ is

∇θL(θ) =Ep(t),ρKt (xKt ,zK)

[

−w̃(t)∇θ‖xKt − αtgθ(zK)‖22
2σ2

t

]

. (8.10)

The final gradient for the score network sϕ(xt, t) is

∇ϕJ (ϕ) = Ep(t),pθ,t(xt,z)
[
w(t)∇ϕ‖sϕ(xt, t)−∇xt log pt(xt|gθ(z))‖22

]
. (8.11)

Similar to VSD (Wang et al., 2024; Luo et al., 2023c), we employ alternating update

for the generator network gθ and the score network sϕ(xt, t). See summarization in

Algorithm 8.
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Algorithm 8 EM Distillation
Input: Teacher score functions ∇xt log qt(xt), generator network gθ, prior p(z), score
network sϕ, noise scheduler p(t), weighting functions w(t) and w̃(t), # of MCMC steps
K, MCMC step size γ.
Output: Generator network gθ, score network sϕ.
while not converged do

Sampling a batch of t, z, ϵ from p(t), p(z), N (0, I) to obtain xt
Updating sϕ via Stochastic Gradient Descent with the batch estimate of (8.11)
Sampling xKt and zK with (ϵ, z)-corrector(x0, ϵ, z, t,∇xt log qt(xt), gθ, sϕ, K, γ) as in
Algorithm 9
Updating gθ via Stochastic Gradient Ascent with the batch estimate of (8.10)

end while

Algorithm 9 (ϵ, z)-corrector
Input: x0, ϵ, z, t, teacher score function ∇xt log qt(xt), generator network gθ, prior
p0(z), score network sϕ, # of MCMC steps K, MCMC step size γ.
Output: xKt , zK .
Sampling Langevin noise n1, n2, . . . , nK from N (0, I), letting ϵ0 = ϵ, z0 = z
for i in [1, K] do

Updating (ϵi, zi) with 1-step Langevin update over scores (G.3), with ϵi updated
using ni

end for
Pushing (ϵK , zK) forward to (xKt , zK) and then canceling the noises in xKt

8.3.4 Connection With VSD and Diff-Instruct

In this subsection, we reveal an interesting connection between EMD and Variational

Score Distillation (VSD) (Wang et al., 2024; Luo et al., 2023c), i.e., although motivated

by optimizing different types of divergences, VSD (Wang et al., 2024; Luo et al., 2023c)

is equivalent to EMD with a special sampling scheme.

To see this, consider the 1-step EMD with noise cancellation, stepsize γ = 1 in x, and

no update on z

x0
t = αtgθ(z) + σtϵ, x1

t = αtgθ(z) + σ2
t∇x log

q(x0
t )

pθ,t(x0
t )
�
�

�
��

+
√
2σn1. (8.12)
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Substitute it into (8.10), we have

∇θL(θ) = Ep(t),p(ϵ),p(z)

[

−w̃(t)∇θ‖x1
t − αtgθ(z)‖22
2σ2

t

]

= Ep(t),p(ϵ),p(z) [w̃(t)(∇xt log qt(xt)−∇xt log pθ,t(xt))∇θαtgθ(z)] ,
(8.13)

which is exactly the gradient for VSD (8.5), up to a sign difference. This insight demon-

strates that, EMD framework can flexibly interpolate between mode-seeking and mode-

covering divergences, by leveraging different sampling schemes from 1-step sampling in

only x (a likely biased sampler) to many-step joint sampling in (x, z) (closer to a mixing

sampler).

If we further assume the marginal pθ(x) is a Gaussian, then the EMD update in (8.13)

would resemble Score Distillation Sampling (SDS) (Poole et al., 2022).

8.4 Related work

Diffusion Acceleration Diffusion models have the notable issue of slowness in

inference, that motivates many research efforts to accelerate the sampling process. One

line of work focuses on developing numerical solvers (Luhman and Luhman, 2021; Song

et al., 2020a; Lu et al., 2022a,b; Bao et al., 2022; Karras et al., 2022) for the PF-ODE.

Another line of work leverages the concept of knowledge distillation (Hinton et al., 2015)

to condense the sampling trajectory of PF-ODE into fewer steps (Salimans and Ho, 2022;

Meng et al., 2023; Song et al., 2023; Berthelot et al., 2023; Li et al., 2023; Luo et al.,

2023a; Heek et al., 2024; Kim et al., 2023; Zheng et al., 2024; Yan et al., 2024; Liu

et al., 2023). However, both approaches have significant limitations and have difficulty

in substantially reducing the sampling steps to the single-step regime without significant

loss in perceptual quality.

Single-Step Diffusion Models Recently, several methods for one-step diffusion

sampling have been proposed, sharing the same goal as our approach. Some methods

fine-tune the pre-trained diffusion model into a single-step generator via adversarial train-
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ing (Xu et al., 2023; Sauer et al., 2023, 2024), where the adversarial loss enhances the

sharpness of the diffusion model’s single-step output. Adversarial training can also be

combined with trajectory distillation techniques to improve performance in few or single-

step regimes (Kim et al., 2023; Lin et al., 2024; Ren et al., 2024). Score distillation

techniques (Poole et al., 2022; Wang et al., 2024) have been adopted to match the dis-

tribution of the one-step generator’s output with that of the teacher diffusion model,

enabling single-step generation (Luo et al., 2023c; Nguyen and Tran, 2023). Addition-

ally, Yin et al. (2024) introduce a regression loss to further enhance performance. These

methods achieve more impressive 1-step generation, some of which enjoy additional mer-

its of being data-free or flexible in the selection of generator architecture. However, they

often minimizes over mode-seeking divergences that can fail to capture the full distribu-

tion and therefore causes mode collapse issues. We discuss the connection between our

method and this line of work in Section 8.3.4.

8.5 Experiments

We employ EMD to learn one-step image generators on ImageNet 64×64, ImageNet

128×128 (Deng et al., 2009) and text-to-image generation. The student generators are

initialized with the teacher model weights. Results are compared according to Frechet

Inception Distance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al.,

2016), Recall (Rec.) (Kynkäänniemi et al., 2019) and CLIP Score (Radford et al., 2021).

Throughout this section, we will refer to the proposed EMD with K steps of Langevin

updates on (x, z) as EMD-K, and we use EMD-1 to describe the DiffInstruct/VSD-

equivalent formulation with only one update in x as presented in Section 8.3.4.

8.5.1 ImageNet

We start from showcasing the effect of the key components of EMD, namely noise can-

cellation, multi-step joint sampling, and reparametrized sampling. We then summarize

results on ImageNet 64×64 with Karras et al. (2022) as teacher, and ImageNet 128×128
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Figure 8.3: (a)(b) Gradient norms and FIDs for complete noise cancellation, last-step
noise cancellation and no noise cancellation. (c)(d) FIDs and Recalls of EMD with
different numbers of Langevin steps.

with Kingma and Gao (2023) as teacher.

Noise Cancellation During our development, we observed the vital importance of

canceling the noise after the Langevin update. Even though theoretically speaking our

noise cancellation technique does not guarantee reducing the variance of the gradients

for learning, we find removing the accumulated noise term from the samples (including

the initial diffusion noise ϵ) does give us seemingly clean images empirically. See Fig-

ure 8.2 for a comparison. These updated xK can be seen as regression targets in (8.10).

Intuitively speaking, regressing a generator towards clean images should result in more

stable training than towards noisy images. Reflected in the training process, canceling

the noise significantly decreases the variance in the gradient (Figure 8.3a) and boosts the

speed of convergence (Figure 8.3b). We also compare with another setting where only

the noise in the last step gets canceled, which is only marginally helpful.

Multi-Step Joint Sampling We scrutinize the effect of multi-step joint update

on (ϵ, z). Empirically, we find a constant step size of Langevin dynamics across all noise

levels in the (ϵ, z)-space works well: γ = (γϵ, γz) = (0.42, 0.0042), which simplifies the

process of step size tuning. Figure 8.1 shows results of running this (ϵ, z)-corrector for 300

steps. We can see that the (ϵ, z)-corrector removes visual artifacts and improves structure.

Figure 8.3cd illustrates the relation between the distilled generator’s performance and

the number of Langevin steps per distillation iteration, measured by FID and Recall

respectively. Both metrics show clear improvement monotonically as the number of
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FID (↓) IS (↑)
(x, )/(ϵ, ) 2.829 62.31
(x, z) 3.11 61.08
(ϵ, z) 2.77 62.98

Table 8.1: EMD-8 on ImageNet 64×64, 100k steps of training.

Langevin steps increases. Recall is designed for measuring mode coverage (Kynkäänniemi

et al., 2019), and has been widely adopted in the GAN literature. A larger number of

Langevin steps encourages better mode coverage, likely because it approximates the mode-

covering forward KL better. Sampling z is more expensive than sampling ϵ, requiring

back-propagation through the generator gθ. An alternative is to only sample ϵ while

keeping z fixed, with the hope that if x does not change dramatically with a finite

number of MCMC updates, the initial z remains a good approximation of samples from

ρθ(z|x). As shown in Figure 8.3cd, sampling ϵ performs similarly to the joint sampling

of (ϵ, z) when the number of sampling steps is small, but starts to fall behind with more

sampling steps.

Reparametrized Sampling As shown in Section G.2, the noise cancellation tech-

nique does not depend on the reparametrization. One can start from either the score

functions of (x, z) in (8.7) or the score functions of (ϵ, z) in (G.3) to derive something

similar. We conduct a comparison between the two parameterizations for joint sampling,

(x, z)-corrector and (ϵ, z)-corrector.

For the (x, z)-corrector, we set the step size of x as σ2
t γϵ to align the magnitude of

update with the one of the (ϵ, z)-corrector, and keep the step size of z the same (see

Section G.2 for details). This also promotes numerical stability in (x, z)-corrector by

canceling the σ2
t in the denominator of the term ∇x log pθ(x|z) = −x−αgθ(z)

σ2 in the score

function (8.7). A similar design choice was proposed in Song and Ermon (2019). Also

note that adjusting the step sizes in this way results in an equivalence between (ϵ, )-

corrector and (x, )-corrector without sampling in z, which serves as the baseline for the

joint sampling.
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(a) ImageNet 64 multi-class (b) ImageNet 128 multi-class (c) ImageNet 128 single-class

Figure 8.4: ImageNet samples from the distilled 1-step generator. Models are trained
class-conditionally with all classes. We provide single-class samples in (c) to demonstrate
good mode coverage.

Table 8.1 reports the quantitative comparisons with EMD-8 on ImageNet 64×64
after 100k steps of training. While joint sampling with (ϵ, z)-corrector improves over

(ϵ, )-corrector, (x, z)-corrector struggles to even match the baseline. Possible explana-

tions include that the space of (ϵ, z) is more MCMC friendly, or it requires more effort

on searching for the optimal step size of z for the (x, z)-corrector. We leave further

investigation to future work.

Comparsion With Existing Methods We report the results from our full-fledged

method, EMD-16, which utilizes a (ϵ, z)-corrector with 16 steps of Langevin updates,

and compare with existing approaches. We train for 300k steps on ImageNet 64×64, and
200k steps on ImageNet 128×128. Other hyperparameters can be found in Section G.3.

Samples from the distilled generator can be found in Figure 8.4. We also include addi-

tional samples in Section G.4.1. We summarize the comparison with existing methods

for few-step diffusion generation in Table 8.2 and Table 8.3 for ImageNet 64×64 and

ImageNet 128×128 respectively. Note that we also tune the baseline EMD-1, which in

formulation is equivalent to Diff-Instruct (Luo et al., 2023c), to perform better than their

reported numbers. The improvement mainly comes from a fine-grained tuning of learn-

ing rates and enabling dropout for both the teacher and student score functions. Our

final models outperform existing approaches for one-step distillation of diffusion models
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Method NFE (↓) FID (↓) Rec. (↑)
Multiple Steps
DDIM (Song et al., 2020a) 50 13.7
EDM-Heun (Karras et al., 2022) 10 17.25
DPM Solver (Lu et al., 2022a) 10 7.93
PD (Salimans and Ho, 2022) 2 8.95 0.65
CD (Song et al., 2023) 2 4.70 0.64
Multistep CD (Heek et al., 2024) 2 2.0 -
Single Step
BigGAN-deep (Brock et al., 2018) 1 4.06 0.48
EDM (Karras et al., 2022) 1 154.78 -
PD (Salimans and Ho, 2022) 1 15.39 0.62
BOOT (Gu et al., 2023) 1 16.30 0.36
DFNO (Zheng et al., 2023) 1 7.83 -
TRACT (Berthelot et al., 2023) 1 7.43 -
CD-LPIPS (Song et al., 2023) 1 6.20 0.63
Diff-Instruct (Luo et al., 2023c) 1 5.57 -
DMD (Yin et al., 2024) 1 2.62 -
EMD-1 (baseline) 1 3.1 0.55
EMD-16 (ours) 1 2.20 0.59
Teacher 256 1.43 -

Table 8.2: Class-conditional generation on ImageNet 64×64.

in terms of FID scores on both tasks. On ImageNet 64×64, EMD achieves a competitive

recall among distribution matching approaches but falls behind trajectory distillation

approaches which maintain individual trajectory mappings from the teacher.

8.5.2 Text-to-Image Generation

We further test the potential of EMD on text-to-image models at scale by distilling the

Stable Diffusion v1.5 (Rombach et al., 2022) model. Note that the training is image-free

and we only use text prompts from the LAION-Aesthetics-6.25+ dataset (Schuhmann

et al., 2022). On this task, DMD (Yin et al., 2024) is a strong baseline, which introduced

an additional regression loss to VSD or Diff-Instruct to avoid mode collapse. However,

we find the baseline without regression loss, or equivalently EMD-1, can be improved

by simply tuning the hyperparameter t∗. Empirically, we find it is better to set t∗ to
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Method NFE (↓) FID (↓) IS (↑)
Multiple Steps
Multistep CD (Heek et al., 2024) 8 2.1 164
Multistep CD (Heek et al., 2024) 4 2.3 157
Multistep CD (Heek et al., 2024) 2 3.1 147
Single Step
CD (Song et al., 2023) 1 7.0 -
EMD-1 (baseline) 1 6.3 134 ± 2.75
EMD-16 (ours) 1 6.0 140 ± 2.83
Teacher 512 1.75 171.1 ± 2.7

Table 8.3: Class-conditional generation on ImageNet 128×128.

Family Method Latency (↓) FID (↓)

Unaccelerated

DALL·E (Ramesh et al., 2021) - 27.5
DALL·E 2 (Ramesh et al., 2022) - 10.39
Parti-3B (Yu et al., 2022a) 6.4s 8.10
Make-A-Scene (Gafni et al., 2022) 25.0s 11.84
GLIDE (Nichol et al., 2021) 15.0s 12.24
Imagen (Saharia et al., 2022) 9.1s 7.27
eDiff-I (Balaji et al., 2022) 32.0s 6.95

GANs
StyleGAN-T (Karras et al., 2018) 0.10s 13.90
GigaGAN (Kang et al., 2023) 0.13s 9.09

Accelerated

DPM++ (4 step)† (Lu et al., 2022b) 0.26s 22.36
UniPC (4 step)† (Zhao et al., 2024) 0.26s 19.57
LCM-LoRA (1 step)† (Luo et al., 2023b) 0.09s 77.90
LCM-LoRA (4 step)† (Luo et al., 2023b) 0.19s 23.62
InstaFlow-0.9B† (Liu et al., 2023) 0.09s 13.10
UFOGen (Xu et al., 2023) 0.09s 12.78
DMD (tCFG=3)† (Yin et al., 2024) 0.09s 11.49
EMD-1 (baseline, tCFG=3) 0.09s 10.96
EMD-1 (baseline, tCFG=2) 0.09s 9.78
EMD-8 (ours, tCFG=2) 0.09s 9.66

Teacher SDv1.5† (Rombach et al., 2022) 2.59s 8.78

Table 8.4: † Results are evaluated by Yin et al. (2024).
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Family Method Latency (↓) CLIP (↑)

Accelerated

DPM++ (4 step) (Lu et al., 2022b)† 0.26s 0.309
UniPC (4 step)† (Zhao et al., 2024) 0.26s 0.308
LCM-LoRA (1 step)† (Luo et al., 2023b) 0.09s 0.238
LCM-LoRA (4 step)† (Luo et al., 2023b) 0.19s 0.297
DMD† (Yin et al., 2024) 0.09s 0.320
EMD-8 (ours) 0.09s 0.316

Teacher SDv1.5 † (Rombach et al., 2022) 2.59s 0.322

Table 8.5: CLIP Scores in high CFG regime

Figure 8.5: Text-to-image samples from the model distilled from Stable Diffusion v1.5.

intermediate noise levels, consistent with the observation from Luo et al. (2023c). Other

hyperparameters can be found in Section G.3.

We evaluate the distilled one-step generator for text-to-image generation with zero-

shot generalization on MSCOCO (Lin et al., 2014) and report the FID-30k in Table 8.4

and CLIP Score in Table 8.5. Yin et al. (2024) uses the guidance scale of 3.0 to com-

pose the classifer-free guided teacher score (we refer to this guidance scale of teacher as

tCFG) in the learning gradient of DMD, for it achieves the best FID for DDIM sampler.

However, we find EMD achieves a lower FID at the tCFG of 2.0. Our method, EMD-8,

trained on 256 TPU-v5e for 5 hours (5000 steps), achieves the FID=9.66 for one-step

text-to-image generation. Using a higher tCFG, similar to DMD, produces a model with

competitive CLIP Score. In Figure 8.5, we include some samples for qualitative evalu-
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ation. Additional qualitative results (Table G.8 and Table G.9), as well as side-by-side

comparisons (Table G.4, Table G.5, Table G.6, and Table G.7) with trajectory-based dis-

tillation baselines (Liu et al., 2023; Luo et al., 2023b) and adversarial distillation baselines

(Sauer et al., 2023) can be found in Section G.4.2.

8.6 Summary

We presented EMD, a maximum likelihood-based method that leverages the EM frame-

work with novel sampling and optimization techniques to learn a one-step latent-variable

student model whose marginal distributions match the marginals of a pretrained diffu-

sion model. EMD demonstrates strong performance in class-conditional generation on

ImageNet and text-to-image generation. Despite exhibiting compelling results, EMD has

a few limitations that call for future work. Empirically, we find that EMD still requires

the student model to be initialized from the teacher model to perform competitively, and

is sensitive to the choice of t∗ (fixed timestep conditioning that repurposes the diffusion

denoiser to become a one-step genertor) at initialization. While training a student model

entirely from scratch is supported theoretically by our framework, empirically we were

unable to achieve competitive results. Improving methods to enable generation from ran-

domly initialized generator networks with distinct architectures and lower-dimensional

latent variables is an exciting direction for future work. Although being efficient in in-

ference, EMD introduces additional computational cost in training by running multiple

sampling steps per iteration, and the step size of MCMC sampling can require careful

tuning. There remains a fundamental trade-off between training cost and model perfor-

mance. Analysis and further improving on the Pareto frontier of this trade-off would be

of interest for future work.
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CHAPTER 9

Conclusions

9.1 Summary of Contributions

The motivating theme for this dissertation was to develop Artificial Intelligence (AI)

agents that can effectively organize the patterns relevant to their own experiences for

better prediction, reasoning, and decision-making. Among the broad spectrum of AI

methodologies, our focus was particularly on Machine Learning (ML)-based AI systems

that combine data and computation following pattern theoretic principles (Grenander,

1970; Grenander and Miller, 2007). These systems are currently known as Generative

Models or Generative AI. We identified the learning and inference of latent abstractions as

a shortcoming of these powerful systems and a blocker to aligning their understanding and

intrinsic values with those of humans. To extend the validated principles of generative

modeling from data space to the latent space, we discussed the relevant theory and

practice across the four parts of this dissertation. We now summarize the contributions

and interconnections of these parts.

Part I and Part II share similar structures. We started from two latent-variable mod-

els, LDEBM and DRC, as holistic prototypes for applying the pattern theoretic principles

to abstraction learning. Leveraging the established workflow in well-developed research

topics, we focused on technical contributions in terms of designing models, learning ob-

jectives, and inference algorithms. Chapter 2 and Chapter 4 affirm the effectiveness of

learning latent abstractions in generative modeling. Experiments presented in these two

chapters, though limited by their controllable scopes, demonstrate the niche role of test-

time inference over latent abstractions in promoting better interpretability and broader

163



generalization.

Armed with these formalizations, we ventured into the uncharted territories of iconic

symbols (Chapter 3) and object compositionality (Chapter 5), and we were rewarded

with refreshed perspectives. In Chapter 3, we replicated a seminal experiment about

the formation of abstraction in human visual communication. When facing the unique

representations in the modality of sketches, we designed evaluation metrics following

mathematical principles to measure their alignment with human intuitions, making ex-

perimental contributions to the underexplored research topic of emergent communication.

The emergent phenomenon of coadapted agents switching between abstract and iconic

drawings to communicate seen and unseen concepts offers an intuitive mental model

for thinking about the convoluted relationship between abstraction and generalization.

While the metrics employed in Chapter 3 trace back to some established metrics in repre-

sentation learning, the COAT measure proposed in Chapter 5 is more original. We went

beyond the established problems of categorization and disentanglement, scrutinizing the

algebraic and geometrical structures of multi-object scenes, and redefined the problem of

object-centric abstraction learning. Our metric revealed existing models’ lack of under-

standing about an object’s absence and identity, pinpointing a fundamental misalignment

with object abstractions in human cognition.

The first two parts of the dissertation prepared us for Part III, where we combined the

contributions of initiating and shaping novel research topics with principled methodologi-

cal development. In Chapter 6, we challenged the widely adopted probabilistic model for

decision-making and the associated learning algorithm. We extended the scientific pro-

totypes from Chapter 2 and Chapter 4 to propose a novel solution. By viewing decisions

as latent abstractions, this new model formalizes the key concepts of “understanding”,

“intrinsic values”, and “consistency”, offering profound insights into the connection be-

tween decision-making and generative modeling. In Chapter 7, we further developed and

extended this quest by introducing a latent temporal abstraction — the plan. Utilizing

the most common language in generative modeling, distribution matching, we provided

an affirmative answer to the advantage of latent abstraction inference over the more pop-
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ular data-space auto-regressive models: it inherently enforces temporal consistency. Due

to the generality of this theoretical analysis, it may challenge the status quo pretraining-

postraining pipeline of Large Language Models (LLMs).

While the first three parts of the dissertation are sufficiently comprehensive with

regard to its theme, we included Part IV as a dialectic discussion. We demonstrated how

to re-purpose and extend the general techniques developed in the previous chapters to

tackle a research problem that is of contemporary value but lies beyond the presented

learning paradigm: distilling from foundational data-space diffusion models. Despite the

paradigm shift, we showed that our technical contributions can help improve state-of-

the-art massive-scale foundational models, independent of the high-level hypotheses of

whether the latent abstractions should be learned directly from raw data or distilled from

data-space models.

9.2 Future Work

The contributions of this dissertation suggest new opportunities and challenging ques-

tions, giving impetus to future research, some of which we highlight below:

Web-Scale Latent Abstraction Learning How do we scale up the abstraction

learning methods to leverage the abundant web-scale data? Just one day before the

submission of this dissertation, OpenAI released their latent-variable LLM, OpenAI o1

(El-Kishky et al., 2024), which achieves top expert-level performance in competitive pro-

gramming questions and the Math Olympiad. It is effectively a scaled-up version of the

model presented in Chapter 7, but learns the distribution over latent abstractions with re-

inforcement learning, similar to the method presented in Chapter 3. Looking forward, we

anticipate that the fundamental connection between latent-variable generative modeling

and decision-making we derived herein will open up new avenues for future research.

Test-Time Compute How do we design more efficient latent abstraction inference

algorithms to achieve adaptive test-time compute? The inference algorithms that we

presented in this dissertation are mostly MCMC-based sampling. While this captures
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the intuition of iterative refinement in principle, its intractability has been a long-standing

challenge. However, lifting MCMC to the latent space should potentially alleviate this

issue. Our recent publication Yu et al. (2023) proposes to learn a diffusion model during

the training of latent EBM to amortize the posterior inference. The learned latent energy

space is more traversible than in prior art (Nijkamp et al., 2020a). If we can achieve a

Bayesian-principled test-time computation in the future, we can expect it to be more

efficiently scalable than scaling the model parameters (Snell et al., 2024).

Unsupervised Machine Formalization What are the missing pieces to achieve

unsupervised formalization, the ultimate form of abstraction that facilitates our logical

and mathematical reasoning? To date, machine formalization is still a supervised transla-

tion task (Wu et al., 2022). Given the symbol-vector duality that we presented in Part I,

as well as some current progress in scaling up mechanistic interpretability (Cunningham

et al., 2023; Gao et al., 2024; Templeton, 2024), we are optimistic that an interpretable

hierarchy of categories will emerge automatically in the latent space of generative models.

Inference over these latent abstractions will potentially produce chains-of-thought that

align with human understanding.

Memory Systems as Generative Models Does the brain have the analog of a

computer hard disk drive? While we cannot be certain, the impressive capabilities of

generative models suggest that they could be viable candidates for modeling our memory

systems. This analogy opens up intriguing avenues for complementary memory systems

in neocortex and hippocampus that cognitive scientists have long postulated for language

(Ullman, 2004) and intelligence in general (Kumaran et al., 2016). Are latent abstractions

and generators two different but reciprocal memory systems? What would be the role of

data-space models? We hope that the models and methods presented in this dissertation

can provide the language and tools for studying these fundamental problems.

In closing, we are confident that future advancements of abstraction learning and

inference in generative modeling will have a profound impact not only in next generation

artificial intelligence, but also in the next epoch of human cultural evolution.
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APPENDIX A

Derivations and Experimental Details for Chapter 2

A.1 Extended Derivations and Further Discussion

A.1.1 Derivation of Conditional EBMs

We first define the marginal EBMs at each diffusion step:







pα(zt) =
1

Zα,t
exp(Fα(zt, t))p0(zt), t = T − 1

pα(zt) =
1

Zα,t
exp(Fα(zt, t)), t = 0, 1, . . . , T − 2,

(A.1)

where the marginal energy term is in a log-sum-exponential form Fα(zt, t) = log
∑

y exp(〈y, fα(zt, t)〉);
it serves to aggregate the energy score from each category. Of note, the marginal EBM

corresponding with the last diffusion step has a slightly different definition. We set this

term as exponential tilting of a non-informative Gaussian prior p0(zt) which helps to

stabilize training in practice.

Recall that zt+1 =
√
1− σ2

t+1zt+σt+1ϵt+1. Let z̃t =
√

1− σ2
t+1zt. For t = 0, 1, . . . , T−

2, we have
pα(z̃t|zt+1) =

pα(z̃t)p(zt+1|z̃t)
pα(zt+1)

=
1

Z̃α,t

exp(Fα(z̃t, t))
pα(zt+1)

exp
(

− 1

2σ2
t+1

||z̃t − zt+1||2
)

=
1

Z̃α,t(zt+1)
exp

(

Fα(z̃t, t)−
1

2σ2
t+1

||z̃t − zt+1||2
)

,

(A.2)

where Z̃α,t = (2πσ2
t+1)

n
2Zα,t; we slightly abuse the notation and use p(zt+1|z̃t) to represent

the forward transition q(zt+1|zt) defined in (2.4) for notation consistency.
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The diffused samples at time step T are close to Gaussian white noise; pα(z̃T−1|zT )
therefore falls to its marginal distribution p(z̃T−1) defined in (A.1).

A.1.2 Derivation of the ELBO

Recall that the ELBO in SVEBM is

ELBOθ,ϕ = log pθ(x)−DKL(qϕ(z|x)‖pθ(z|x))

= Eqφ(z|x)[log pβ(x|z)]−DKL(qϕ(z|x)‖pα(z))

= Eqφ(z|x) [log pβ(x|z)− log qϕ(z|x) + log pα(z)] ,

(A.3)

where DKL denotes the Kullback-Leibler divergence. Let us consider the full trajectory

of the perturbed samples z0, z1, . . . , zT . The above equation can be written as

ELBOθ,ϕ = Eqφ(z0|x) [log pβ(x|z0)− log qϕ(z0|x)]

+ Eqφ(z0|x)

[

log
∫

z1:T
pα(z0:T )dz1:T

]

,
(A.4)

where the last term is further lower-bounded by introducing the forward trajectory dis-

tribution; the inequality holds by applying Jensen’s Inequality:

Eqφ(z0|x)

[

log
∫

z1:T
pα(z0:T )dz1:T

]

= Eqφ(z0|x)

[

log
∫

z1:T
q(z1:T |z0)

pα(z0:T )
q(z1:T |z0)

dz1:T
]

≥ Eqφ(z0|x)

[∫

z1:T
q(z1:T |z0) log

pα(z0:T )
q(z1:T |z0)

dz1:T
]

= Eqφ(z0|x),q(z1:T |z0)

[

log pα(z0:T )
q(z1:T |z0)

]

.

(A.5)
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Further, we can decompose the joint distribution of forward and backward trajectories

as
Eqφ(z0|x),q(z1:T |z0)

[

log pα(z0:T )
q(z1:T |z0)

]

=

Eqφ(z0|x),q(z1:T |z0)

[

log p(zT ) +
T−1∑

t=0

log pα(zt|zt+1)

q(zt+1|zt)

]

=

E

[

log p(zT ) +
T−1∑

t=0

log pα(zt|zt+1)

]

+
T−1∑

t=0

H(zt+1|zt),

(A.6)

where p(zT ) is standard Gaussian distribution; E is the abbreviation of Eqφ(z0|x),q(z1:T |z0).

H(zt+1|zt), t = 0, . . . , 1 is the conditional entropy under the forward trajectory distribu-

tion. We obtain zt by sampling z̃t from pα(z̃t|zt+1) and then applying zt = z̃t/
√

1− σ2
t+1;

the reverse trajectory in our model is primarily defined by pα(z̃t|zt+1) for t > 0. We use

[zt|zt+1] to represent this process in the following sections; we may interchangeably use

the notation of z̃t and zt for simplicity.

Note that the entropies can be analytically computed and do not involve learnable

parameters. The joint training of inference, prior and generation models can be largely

reduced to finding the agreement of the forward and reverse Markov transitions defined

by qϕ and pθ respectively.

A.1.3 Detailed Discussion of Symbol Coupling

In Section 2.2, we briefly describe how to introduce the symbolic one-hot vector y. Since

only z0 is connected with y, we can first define the joint prior pα(y, z0) as in (A.1) by

substituting Fα(z̃0, 0) with 〈y, fα(z̃0, 0)〉. Then the conditional symbol-vector coupling

joint distribution follows as

pα(y, z0|z1) =
1

Z̃α,t=0

exp (〈y, fα(z̃0, 0)〉) exp
(

− 1

2σ2
1

||z̃0 − z1||2
)

. (A.7)
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Note that pα(y, z0|z1) = pα(y|z0)pα(z0|z1), i.e., z0 is sufficient for inferring y in this

formulation:
pα(y|z0, z1) =

pα(y, z0|z1)
pα(z0|z1)

=
exp (〈y, fα(z̃0, 0)〉)
exp (Fα(z̃0, 0))

,

(A.8)

so that given z0,

pα(y|z0) ∝ exp(〈y, fα(z̃0, 0)〉). (A.9)

It similarly becomes a softmax classifier where fα(z̃0, 0) provides the logit scores for the

K categories.

A.1.4 Derivation of the Information Bottleneck

We first define the mutual information term between z0 and y. Consider the joint dis-

tribution of x, z0 and y, π(y, z0, x) = pα(y|z0)qϕ(z0|x)qdata(x); the mutual information

I(z0, y) defined under π then follows as

I(z0, y) = H(y)−H(y|z0)

= −
∑

y
q(y) log q(y) + Eqφ(z0)

∑

y
pα(y|z0) log pα(y|z0),

(A.10)

where q(y) = Eqφ(z0)[pα(y|z0)]; pα(y|z0) is the softmax probability over K categories in

(A.9).

We then show how to obtain the quantities defined in Section 2.3.2. For the marginal

distribution of z0,
qϕ(z0) =

∫

x,z1:T
Qϕ(x, z0:T )dxdz1:T

= Eqdata(x)[qϕ(z0|x)].
(A.11)

The entropy and conditional entropy of z0 are thus

H(z0) = −Eqφ(z0)[log qϕ(z0)];

H(z0|x) = −EQφ(x,z0)[log qϕ(z0|x)].
(A.12)
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Taking together, we can then decompose the KL-Divergence, DKL(Qϕ‖Pθ) in (2.8)

as
DKL(Qϕ‖Pθ) = EQφ

[qdata(x)] + EQφ
[qϕ(z0:T |x)]

− EQφ
[pα(z0:T )]− EQφ

[pβ(x|z0)] ,
(A.13)

and further as

−H(x) +
T−1∑

t=0

H(zt+1|zt)−H(z0|x) +H(z0)−H(z0)

− EQφ
[pα(z0:T )]− EQφ

[pβ(x|z0)] ,
(A.14)

by plugging in H(z0)−H(z0) = 0. Rearranging (A.14), we can obtain

DKL(Qϕ‖Pθ) = C − EQφ
[pβ(x|z0)]

+DKL(qϕ(z0)‖pα(z0:T )) + I(x, z0),
(A.15)

which leads to our result in (2.9).

A.1.5 Derivation of the Learning Gradient

Recall that we derive the extended version of (2.6) in Section A.1.2. To calculate the

gradient of α, we have

∇α ELBODiff,θ,ϕ = ∇α E

[
T−1∑

t=0

log pα(zt|zt+1)

]

= E

[
T−1∑

t=0

∇α log pα(zt|zt+1)

]

,

(A.16)

where E is the abbreviation of Eqφ(z0|x),q(z1:T |z0); in practice, we use Monte-Carlo average

to approximate the expectation. We next examine the learning gradient for each diffusion

step t:

∇α log pα(zt|zt+1) = ∇αFα(z̃t, t)−∇αZ̃α,t(zt+1), (A.17)
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where the quadratic term 1
2σ2

t+1
||z̃t − zt+1||2 is not related to α and gets cancelled. Ac-

cording to the definition of the partition function in Section 2.2, we can similarly derive

∇αZ̃α,t(zt+1) = Epα(z̃t|zt+1) [∇αFα(z̃t, t)] , (A.18)

as in (Pang et al., 2020a). For the prior model, we thus have

∇α ELBOt = Eqφ(z̃t,z0|x)[∇αFα(z̃t, t)]− Eqφ(zt+1,z0|x),pα(z̃t|zt+1)[∇αFα(z̃t, t)], (A.19)

where qϕ(z̃t, z0|x) = q(z̃t|z0)qϕ(z0|x). Note that we can sample zt, t > 0 directly from

q(zt|z0) = N (zt;
√
γ̄tzt−1, (1− γ̄t)I) (A.20)

by merging the Gaussian noises during forward diffusion process; we denote γt = 1− σ2
t

and γ̄t =
∏t

i=1 γt.

For the encoder and decoder, based on (2.6) and (A.6), we have

∇ψ ELBO = ∇ψ Eqφ(z0|x)[log pβ(x|z0)− log qϕ(z0|x)]

−∇ϕ Eqφ(z0:T |x)

[

log p(zT ) +
T−1∑

t=0

log pα(zt|zt+1)

]

,
(A.21)

where the summation of energy terms provides extra guidance for the optimization of

encoder.

A.2 Extra Experimental Details and Discussion

A.2.1 Network Architecture and Hyperparameters

We provide detailed network architecture for the latent space model of this chapter in

Table A.1; we adopt the same architecture throughout the experiments. Spectral nor-

malization (Miyato et al., 2018) is used to regularize parameters in linear layers. The
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Layers Output size Note
Time Embedding

Input: t 1
Index of

diffusion step
Sin. embedding 200

Linear, LReLU 200
negative_slope

0.2
Linear 200

Input Embedding
Input: z dlat

Linear, LReLU 200
negative_slope

0.2
Linear 200

Context Embedding
(for response generation only)

Input: zctx 512 ctx. embedding

Linear, LReLU 200
negative_slope

0.2
Linear 200

LDEBM Prior

Input: z, t
∗zctx

1, dlat
512

optional zctx

Embedding 200
Embedding of

each input

Concatenate 400
600

w/o ctx.
w/ ctx.

LReLU, Linear 200
negative_slope

0.2

N ResBlocks 200
LReLU, Linear

+ Input
LReLU, Linear K K class logits
Log-Sum-Exp 1 energy score

Table A.1: Network architecture for the LDEBM prior. N is set to 12 for all the experi-
ments.
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Dataset dlat K λ1 λ2 λ3

2D Gaussian 2 16 1 0.05 0.05
2D Pinwheel 2 10 1 0.05 0.05
PTB 40 20 0.1 0.05 0.05
Jericho 40 20 0.1 0.05 0.05
DD-CLS 32 125 0.01 0.05 0.5
DD-GEN 32 125 1 0.05 0.05
SMD 32 125 10 10 5
Yelp 40 2 50 50 200
AGNews 20 4 1e-3 5 200

Table A.2: Hyperparameters of LDEBM. DD-CLS presents the set of hyperparameters
used in unsupervised clustering on DD dataset. DD-GEN presents the set of hyperpa-
rameters used in conditional response generation on DD dataset.

encoder and decoder in all models are the same as in (Pang and Wu, 2021), implemented

with a single-layer GRU with a hidden size of 512. The key hyperparameters of LDEBM

for each dataset are listed in Table A.2. Of note, we use the same dimension of the latent

space as in (Pang and Wu, 2021) for a fair comparison.

λ1 is the hyperparameter that reweights the term in (A.6); it generally controls how

fast qϕ and pθ run towards each other. λ2 refers to the hyperparameter in (2.9); it

controls the trade-off between the compressivity of z0 about x and its expressivity to y.

λ3 controls the weight of classification loss mentioned in Section 2.3.3; recall that we use

pseudo-label ŷ inferred by the geometric clustering algorithm or the ground-truth label

y to supervise pα(y|z0) in our modeling. For controllable generation and semi-supervised

classification, we find it important to have a larger weight on the classification loss so

that the model is forced to capture the major modes of the data.

For optimization, we use Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9 and

β2 = 0.999 for all the experiments. On all the datasets but 2D synthetic datasets and

AGNews dataset, we use a batch size of 128 and a constant learning rate of 1e − 3 for

encoder and decoder without weight decay. For LDEBM, we use a constant learning

rate of 1e − 4. We use a larger batch size of 1000 on 2D synthetic datasets. On the

AGNews dataset, we use the same set of hyperparameters as in (Pang and Wu, 2021) for

optimization. The batch size is set to 200; the initial learning rate is 1e− 4 for encoder
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and decoder, and 1e − 5 for LDEBM. Learning rates are exponentially decayed with a

decay rate of 0.998 for each model. Encoder and LDEBM have a weight decay rate of

2e− 3 and 1e− 3, respectively.

A.2.2 Experiment Settings and Baselines

Experiment Settings For generative modeling, following previous methods (Shi

et al., 2020; Pang and Wu, 2021), the NLL term is computed with importance sampling

(Burda et al., 2016) using 500 importance samples. To compute rPPL, we set the gener-

ated sample size as 40, 000, which is the same size as PTB training set. We recruit ASGD

Weight-Dropped LSTM (Merity et al., 2018) to compute rPPL as in previous works.

In terms of conditional response generation, for word-embedding-based evaluation on

SMD and DD, we use the publicly available GloVe (Pennington et al., 2014) word em-

beddings of 300 dimension trained on 840B tokens, and report the score from 1 response

per context. We use a context window size of 5 during training and evaluation.

The maximum length of each sentence is set to 40 words for most datasets and 70

words for the JerichoWorld dataset. On JerichoWorld dataset, we extract the description

of each state as the text data.

Baselines On PTB, DD and SMD, our model is compared with the following

baselines: (1) RNNLM (Mikolov et al., 2010), the language model implemented with

GRU (Cho et al., 2014); (2) AE (Vincent et al., 2010), the deterministic auto-encoder

which has no regularization to the latent space; (3) DAE, the AE with a discrete latent

space; (4) VAE (Kingma and Welling, 2014a), the vanilla VAE with a continuous latent

space and a non-informative Gaussian prior; (5) DVAE, the VAE with a discrete latent

space; (6) DI-VAE (Zhao et al., 2018b), a DVAE variant with a mutual information term

between the observed piece of text x and its inferred latent variable z; (7) semi-VAE

(Kingma et al., 2014), the semi-supervised VAE model with independent discrete and

continuous latent variables; (8) GM-VAE, the VAE with a Gaussian mixture prior; (9)

DGM-VAE (Shi et al., 2020), the GM-VAE with a dispersion term that avoids the mode-
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collapse of Gaussian mixture prior; (10) semi-VAE + I(x, y), GM-VAE + I(x, y), DGM-

VAE + I(x, y), are the same models as (7), (8), and (9) respectively, but with a mutual

information term between x and y computed using separate inference networks for y and

z. We compare with the close competitors (11) SVEBM, the symbol-vector coupling

prior model and (12) SVEBM-IB, SVEBM with regularization based on information-

bottleneck.

On Yelp dataset, we additionally include text conditional GAN (Subramanian et al.,

2018) as a baseline for controllable generation. On AGNews dataset, we further compare

our model to VAMPIRE (Gururangan et al., 2019), a VAE-based semi-supervised text

learning model. Other baselines include its supervised learning variants: (1) the model

trained with Glove embedding pre-trained on 840 billion words (Glove-OD); (2) the model

trained with Glove embedding on in-domain unlabeled data (Glove-ID). We also include

more recent baselines such as Hard EM and CatVAE (Jin et al., 2020) that improve over

VAMPIRE.

A.2.3 Extra Details for Experiments

More Ablation Study We conduct additional experiments on both PTB and DD

datasets to inspect the contribution of the proposed techniques. In Section 2.4.1, we have

reported results on PTB and datasets of Ours w/o GC which represents the model

with Information Bottleneck but without Geometric Clustering (GC); Ours denotes the

full model.

We further conduct experiments on the proposed model without using IB or GC. We

observe that the proposed model using only diffusion-based sampling scheme has a rPPL

of 166.26, BLEU of 11.30, wKL of 0.07 and NLL of 80.76 on PTB; it has a MI of 0.01,

BLEU of 19.28, Act. of 0.12 and Emo. of 0.06 on DD, which is better than SVEBMs

(see Table 2.1 and Table 2.3 in Section 2.4.1).

We also add GC to SVEBM (denoted as SVE-IB w/ GC). We find that SVE-IB

w/ GC does perform better compared with SVE-IB, showing a rPPL of 179.95, BLEU
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of 10.08, wKL of 0.15 and NLL of 93.28 on PTB; it has a MI of 2.88, BLEU of 11.75, Act.

of 0.61 and Emo. of 0.60 on DD. Notably, SVE-IB w/ GC is still inferior to LDEBMs.

In summary, we think these additional experiments (1) emphasize the importance of

our diffusion-based modeling approach, and (2) demonstrate the effectiveness of GC as

additional regularization.

2D Synthetic Data We provide the full evolution of SVEBM-IB and our models

as visualized in Figure A.1. Though SVEBM-IB can capture some regularities of the

data in the early stages of training, the model is prone to collapse due to the degenerated

sampling quality. This features an exploding KL-term and leads to poor performance on

generation. Our preliminary experiments indicate that common deep learning heuristics

for improving the model capacity barely help. These include but are not limited to in-

creasing the number of parameters in SVEBM, i.e., using larger models, and adopting

deliberately designed activation functions or normalization modules. LDEBM w/o geo-

metric clustering has a better sampling quality and effectively mitigates the instability

in training. However, the mode coverage is not satisfying in data space; the structure

is unclear in latent space. In contrast, LDEBM w/ geometric clustering shows superior

generation quality with better mode coverage. It demonstrates a better-structured latent

space.

Sentence Completion To perform sentence completion, we adopt a two-stage

training scheme. We first train the LDEBM with inference, prior and generation models

on the JerichoWorld dataset. After the first-stage training, the parameters of prior,

inference and generation models are fixed. We then train a shallow MLP in the latent

space to project the inferred posterior z0 to a disentangled space; the variables in the

projected z0 can be grouped as: (a) the representation of observable words ẑobs in the

input sentence and (b) the representation of unknown words ẑunk. Conditional sampling

in the latent space then refers to updating ẑunk based on the fixed ẑobs by running Langevin

dynamics guided by the latent space model.

We mask half of the words in the sentences with <unk> token to prepare the inputs.
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Figure A.1: Full evolution of SVEBM-IB and our models. In each sub-figure, we provide
the typical states of the model trained on the corresponding dataset, sequentially from
the top row to the bottom row.
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In the second stage of training, we supervise the MLP by minimizing the reconstruction

error between only the observable words of the input the sentence and the corresponding

outputs of the model.

Sentence Sentiment Control Recall that in our formulation only z0 is connected

to y. We therefore condition only the final reverse diffusion step [z0|z1] on y when

performing controllable generation, i.e., using y to guide the generation only when t =

0 in Algorithm 2. This can be a bit counter-intuitive since no label information is

injected in previous reverse steps. Theoretically, y and z1:T are independent given z0
in our formulation; however, we empirically observe that y and zt for t > 0 are nearly

independent even marginally after we integrating out z0:t−1 in our model. In other words,

pα(y|zt), t > 0 are in general non-informative since adding noise in the latent space could

be much more corrupting than adding noise in the data space. The model learns to enjoy

the less multi-modal energy landscape in previous reverse steps; it then seeks the given

mode only in the most informative final reverse step. We examine pα(y|zt), t > 0 for

the model trained on Yelp dataset by marginalizing out zt−1 of pα(y, zt−1|zt), t > 0. For

example, for t = 1, we may calculate

pα(y|z1) =
∫

z0
pα(y|z0)pα(z0|z1)dz0

= Epα(z0|z1) [pα(y|z0)]

≈ 1

M

M∑

i=1

pα(y|z(i)0 ).

(A.22)

See Figure A.2 for the visualization of pα(y|zt) over t.

A more intuitive method is to use the data label y to supervise each [y, zt|zt+1], so

that we can propagate the label information through the whole trajectory. Given z0, y

and z1:T are independent. But if we marginalize out z0, y will depend on z1. Similarly,

if we continue to marginalize out z1, y will depend on z2. Repeating this process results

in pα(y|zt) for each t after integrating out z0:t−1. Supervising pα(y|zt), t > 0 using y

therefore effectively encodes the label information into the whole trajectory.
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Figure A.2: Visualization of pα(y|zt) over t. pα(y|zt) is constantly around the probability
of 0.5 over t.

While the marginalization can be difficult, we may approximate it by learning the

amortized version of pα(y|zt), t > 0 as pα(y, zt−1 = µϕ,t−1|zt), t > 0, where µϕ,t is the

posterior mean of zt. We may therefore circumvent the intractable integration in practice

and guide the whole trajectory for controllable generation.
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APPENDIX B

Derivations and Experimental Details for Chapter 3

B.1 Category List

We include 30 categories for training and 10 held-out categories for testing in our game;

see Table B.1.

B.2 Category Embedding for Other Game Settings

Figure B.1 shows the t-SNE visualization for other game settings. Agents under max-

step, sender-fixed, and one-step settings fail to form clear boundaries between different

categories, which makes it hard to observe semantic relations.

training categories
apple axe bell blimp camel cannon car_(sedan) chicken
cow cup deer dolphin duck frog giraffe guitar

hamburger horse knife mushroom pig pistol pizza rabbit
sailboat seal shark sheep snail turtle

unseen categories
pear hammer pickup truck songbird violin sword elephant fish

penguin swan

Table B.1: Categories used in the visual communication game
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Figure B.1: t-SNE of visual embedding. These embeddings are extracted from the fine-
tuned VGGNet used for evolved sketch classification under the max-step (left), sender-
fixed (middle), and one-step (right) settings, respectively. Neither of them forms a clear
boundary between different categories.

B.3 Learning Objectives and Training Algorithm

Agents are trained jointly to maximize the objective

π∗
S, π

∗
R = argmax

πS ,πR

Eτ∼(πS ,πR)[
∑

t=0

γtrt], (B.1)

where τ = {C0, aS0,C1, aR1, aS1, . . . } is the simulated episodic trajectory. To further

expand the objective,

E(πS ,πR)[
∑

t=0

γtrt] =

∫

p(IS)p(I1R) . . . p(IMR )p(C0)

∫

πS(aS0|IS,C0)πR(aR1|C0, G(C0, aS0), I1R, . . . , IMR )

·
[

r0 + E(πS ,πR)

[
∑

t=1

γtrt

]]

daS0daR1dISdI1R . . . dIMR dC0

= EIS ,I1R,...,IMR ,C0

[

E(πS ,πR)

[

r0 + E(πS ,πR)

[
∑

t=1

γtrt

]]]

. (B.2)

We calculate EIS ,I1R,...,IMR ,C0
[·] by sampling IS, IR, and initializing C0 to blank at each round.

We represent the E(πS ,πR)[·] as V(X0) and use Vλ(X1) to estimate the reward expectation

E(πS ,πR)[
∑

t=1 γ
trt]:

V(X0) = E(πS(aS0|IS ,C0),πR(aR1|C0,G(C0,aS0),I1R,...,IMR ))[(r0 + γδ(aR1)Vλ(X1)], (B.3)
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where Xt = [IS, I1R, . . . , IMR ,Ct,Ct+1], t = 0, 1 . . . , δ(·) is the Dirac delta function that

returns 1 when the action is wait and 0 otherwise.

The sender policy is parametrized as a Gaussian distribution,

πS = N (µt,σ
2), µt = hS(IS,Ct), σ2 = c · I, (B.4)

such that aS0 can be written as

aS0 = µ0 + σϵ, ϵ ∼ N (0, I). (B.5)

Therefore, we can expand V(X0) as

V(X0) =

∫

πS(aS0|C0, IS)EπR(aR1|C0,G(C0,aS0),I1R,...,IMR ) · [r0 + γδ(aR1)Vλ(X1)]daS0

=

∫

p(ϵ)EπR(aR1|C0,G(C0,µ0+σϵ),I1R,...,IMR ) · [r0 + γδ(aR1)Vλ(X1)]dϵ

= Eϵ[EπR [r0 + γδ(aR1)Vλ(X1)]]. (B.6)

Eϵ[·] is approximated with a point estimate. Since πR is a categorical distribution, we

expand EπR as

EπR [r0 + γδ(aR1)Vλ(X1) =
M+1∑

j=1

p(ajR1)[r
j
0 + γδ(aR1)Vλ(X1)]. (B.7)

Vλ(Xt) in (B.3) is an eligibility trace approximation of the ground-truth value function

(Sutton and Barto, 2018). Considering the early termination in our setting, we set the

time step when the receiver makes the prediction as Tchoice. When t is the time step

less or equal than Tchoice, Vλ mixes Monte Carlo estimate at different roll-out lengths.
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Otherwise, we only have an estimated value vϕ(Xt).

Vλ(Xt) =







(1− λ)∑H−1
n=1 λ

n−1V n
N (Xt) + λH−1V H

N (Xt)

if t ≤ Tchoice

vϕ(Xt) otherwise,

(B.8)

where H = Tchoice − t+ 1, and V k
N(Xt) is the Monte Carlo estimate at k roll-out lengths.

V k
N(Xt) = EπS ,πR [

∑h−1
n=t γ

n−trn + γh−tδ(aRh)υϕ(Xh)], with h = min(t + k, Tchoice) being

the maximal timestep. Due to the error reduction property (Sutton and Barto, 2018),

the eligibility trace estimation Vλ(·) is less biased than vϕ(·). When regressing vϕ(Xt)

towards the bootstrapped Vλ(Xt),

ϕ∗ = argmax
ϕ

EπS ,πR [
∑

t

1

2
||vϕ(Xt)− Vλ(Xt)||2]. (B.9)

vϕ(Xt) will be improved towards the fixed point.

B.4 Visualizing Sketch Evolution

Visualizing the evolution process helps us understand what the agents have learned

through communication regarding different categories. By comparing the evolved sketches

with the intermediate results, we can know (i) how the agents abstract the sketch, (ii)

which parts of the visual concept they highlight, and (iii) which parts are de-emphasized.

Figure B.2, Figure B.3, and Figure B.4 show some evolution examples under different

settings. Agents under max-step seem to abstract their drawings by repeatedly placing

new strokes near old strokes, resulting in bold drawings. The number of strokes under

sender-fixed gradually decreases, but the way of the drawing will not change. Senders

under one-step change more wildly but cannot form a consistent drawing behavior. Over-

all, compared with the complete setting, agents under the control settings do not form

patterns to draw sketches, which echoes their relatively low classification results.
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(a) complete example 1

(b) max-step example 1

(c) sender-fixed example 1

(d) one-step example 1

Figure B.2: Evolution of rabbit and giraffe under different settings.
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(a) complete example 2

(b) max-step example 2

(c) sender-fixed example 2

(d) one-step example 2

Figure B.3: Evolution of cow and deer under different settings.
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(a) complete example 3

(b) max-step example 3

(c) sender-fixed example 3

(d) one-step example 3

Figure B.4: Evolution of horse and pig under different settings.
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APPENDIX C

Derivations and Experimental Details for Chapter 4

C.1 Dataset Details

C.1.1 Caltech-UCSD Birds-200-2011

Birds dataset consists of 11,788 images of 200 classes of birds annotated with high-quality

segmentation masks. Each image is further annotated with 15 part locations, 312 binary

attributes, and 1 bounding box. We use the provided bounding box to extract a center

square from the image, and scale it to 128× 128 pixels. Each scene contains exactly one

foreground object.

C.1.2 Stanford Dogs

Dogs dataset consists of 20,580 images of 120 classes annotated with bounding boxes.

We first use the provided bounding box to extract the center square, and then scale it to

128× 128 pixels. We approximate ground-truth masks for the pre-processed images with

Mask R-CNN (He et al., 2017), pre-trained on the MS COCO (Lin et al., 2014) dataset

with a ResNet-101 (He et al., 2016) backend. The pretrained model is acquired from the

detectron2 toolkit (Wu et al., 2019). We exclude the images where no dog is detected.

We then manually exclude those images where the foreground object has occupied more

than ∼ 90% of the image, those with poor masks, and those with significant foreground

distractors such as humans (see Figure C.1). The filtering strategy results in 5,024 images

with a clear foreground-background setup and high-quality mask.
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Figure C.1: Examples of excluded images. From left to right: (i) image with a foreground
object that occupied too much space, (ii) image with a low-quality mask, and (iii) image
with significant foreground distractors.

C.1.3 Stanford Cars

Cars dataset consists of 16,185 images of 196 classes annotated with bounding boxes.

Though also being primarily designed for fine-grained categorization, it has a much clearer

foreground-background setup compared with the Dogs dataset. We employ a similar pro-

cess as used for Dogs dataset to approximate the ground-truth masks, and only exclude

those images where cars are not properly detected. It finally produces 12,322 images for

our experiments.

C.1.4 CLEVR6

CLEVR6 dataset is a subset of the original CLEVR dataset (Johnson et al., 2017) with

masks, generated by Greff et al. (2019). We follow the evaluation protocol adopted by

IODINE (Greff et al., 2019) and Slot-attention (Locatello et al., 2020), which takes the

first 70K samples from CLEVR. These samples are then filtered to only include scenes

with at most 6 objects. Additionally, we perform a center square crop of 192×192 from the

original 240×320 image, and scale it to 128×128 pixels. The resulting CLEVR6 dataset

contains 3-6 foreground objects that could be with partial occlusion and truncation in

each visual scene.

C.1.5 Textured Multi-dSprites

TM-dSprites dataset, which is based on the dSprites dataset (Matthey et al., 2017) and

Textured MNIST (Greff et al., 2016), consists of 20,000 images with a resolution of
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Figure C.2: Samples from TM-dSprites. From top to bottom: (1) observed images, (ii)
background textures, and (iii) ground-truth masks.

Dataset Foreground Background Pixel Re-assignment
Birds 256 256 512
Dogs 256 256 512
Cars 256 192 512
CLEVR6 256 2 256
TM-dSprites 256 4 1024

Table C.1: Dimension of latent variables on each dataset.

128×128. Each image contains 2-3 random sprites, which vary in terms of shape (square,

circle, or triangle), color (uniform saturated colors), and position (continuous). The

background regions are borrowed from Textured MNIST dataset (Greff et al., 2016). The

textures for the background are randomly shifted samples from a bank of 20 sinusoidal

textures with different frequencies and orientations. We adopt a simpler foreground

setting compared with the vanilla Multi-dSprites dataset used by Greff et al. (2019),

i.e., the foreground objects are not occluded as the dataset is designed to emphasize the

background part. Some samples are presented in Figure C.2.
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C.2 Details on Models and Hyperparameters

Architecture We use the same overall architecture for different datasets (while

the size of latent variables may vary). The details for the generators and LEBMs are

summarized in Table C.1 and Table C.2.

Hyperparameters and Training Details For the Langevin dynamics sampling

(Welling and Teh, 2011), we use K0 and K1 to denote the number of prior and posterior

sampling steps with step sizes s0 and s1 respectively. Our hyperparameter choices are:

K0 = 60, K1 = 40, s0 = 0.4 and s1 = 0.1. These are identical across different datasets.

During testing, we set the posterior sampling steps to 300 for Dogs and Cars, and 2.5K,

5K and 5K for Birds, CLEVR6 and TM-dSprites respectively. The parameters of the

generators and LEBMs are initialized with orthogonal initialization (Saxe et al., 2014).

The gain is set to 1.0 for all the models. We use the ADAM optimizer (Kingma and Ba,

2014) with β1 = 0.5 and β2 = 0.999. Generators are trained with a constant learning

rate of 0.0001, and LEBMs with 0.00002. We run experiments on a single V100 GPU

with 16GB of RAM and with a batch size of 48. We set the maximum training iterations

to 10K and run for at most 48hrs for each dataset.

C.3 Details on Learning Objective and Regularization

C.3.1 Learning Objective

Derivation of Surrogate Learning Objective J (θ) = Ew∼pβ(w|x,z) [L(θ)] is the
conditional expectation of w,

J (θ) = Ew∼pβ(w|x,z) [L(θ)]

= log pα(z) + E
[

D∑

i=1

2∑

k=1

wik (log πik + log pβk
(xi|zk))

]

= log pα(z) +
D∑

i=1

2∑

k=1

E [wik] (log πik + log pβk
(xi|zk)) ,

(C.1)
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Layers In-Out size Comment
LEBM for Foreground/Background Models

Input: z D∗

Linear, LReLU 200
Linear, LReLU 200

Linear K†

LEBM for Pixel Re-assignment Model
Input: z D∗

Linear, LReLU 200
Linear, LReLU 200
Linear, LReLU 200

Linear 1
Generator for Foreground/Background Model and Re-assignment Model

Input: z D∗

Linear, LReLU 4× 4× 128 reshaped output
UpConv3x3Norm, LReLU 8× 8× 1024 stride 1 & padding 1
UpConv3x3Norm, LReLU 16× 16× 512 stride 1 & padding 1
UpConv3x3Norm, LReLU 32× 32× 256 stride 1 & padding 1
UpConv3x3Norm, LReLU 64× 64× 128 stride 1 & padding 1
UpConv3x3Norm, LReLU 128× 128× 64 stride 1 & padding 1

Conv3x3 128× 128× (3 + 1)
128× 128× 2

RGB & Mask
Re-assignment grid

Auxiliary classifier for Foreground/Background Model
Input: x 128× 128× 3 generated image

Conv4x4Norm, LReLU 64× 64× 64 stride 2 & padding 1
Conv4x4Norm, LReLU 32× 32× 128 stride 2 & padding 1
Conv4x4Norm, LReLU 16× 16× 256 stride 2 & padding 1
Conv4x4Norm, LReLU 8× 8× 512 stride 2 & padding 1
Conv4x4Norm, LReLU 4× 4× 1024 stride 2 & padding 1

Conv4x4 1× 1×K†

Table C.2: Architecture of the generators, LEBMs and auxiliary classifiers (see Sec-
tion C.3.2). UpConv3x3Norm denotes a Upsampling-Convolutional-InstanceNorm layer
with a convolution kernel size of 3. Similarly, Conv4x4Norm denotes a Convolutional-
InstanceNorm layer with a kernel size of 4. LReLU denotes the Leaky-ReLU activation
function. The leak factor for LReLU is 0.2 in LEBMs and auxiliary classifiers, and 0.01
in generators. *D represents the dimensions of the latent variables for different datasets;
see Table C.1. †K represents the pre-specified category number for latent variables. We
use 200 for both the foreground and background LEBMs on real-world datasets, and 30
and 10 in the foreground and background LEBMs on multi-object datasets respectively.
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where E is the conditional expectation of w. Recall that wik ∈ {0, 1}. The expectation

becomes
E [wik] = 0× p(wik = 0|xi, z) + 1× p(wik = 1|xi, z)

= γik,

(C.2)

which is the posterior responsibility of wik. We can further decompose J (θ) into

J (θ) = log pα(z)
︸ ︷︷ ︸

objective for LEBM

+
D∑

i=1

2∑

k=1

γik log πik
︸ ︷︷ ︸

foreground-background partitioning

+
D∑

i=1

2∑

k=1

γik log pβk
(xi|zk)

︸ ︷︷ ︸

objective for image generation

. (C.3)

Understanding the Optimization Process Note that the surrogate learning

objective is an expectation w.r.t z,

max
θ

Ez∼pθ(z|x) [J (θ)] , s.t. ∀i,
2∑

k=1

πik = 1, (C.4)

which is generally intractable to calculate. We therefore need to approximate the expec-

tation by sampling from the distributions, and calculating the Monte Carlo average. In

practice, this can be done by gradient-based MCMC sampling method, such as Langevin

Dynamics (Welling and Teh, 2011).

Given x, we have pθ(z|x) ∝ pβ(x|z)pα(z). Note that

∇z log pβ(x|z) =
1

pβ(x|z)
∇zpβ(x|z)

=

∫

w
pβ(w|x, z)∇z log pβ(x,w|z)dw

= Ew∼pβ(w|x,z) [∇z log pβ(x,w|z)] .

(C.5)

Therefore, the log-likelihood of surrogate target distribution for the Langevin dynam-
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ics at the t-th step is

log Q̃(zt) = log pα(zt) + Ew∼pβ(w|x,zt)

[
D∑

i=1

2∑

k=1

wik (log πik + log pβk
(xi|zk,t))

]

= log pα(zt) +
D∑

i=1

2∑

k=1

γik,t (log πik + log pβk
(xi|zk,t)) ,

(C.6)

which has the same form as J (θ). However, instead of updating parameters θ, Langevin

dynamics updates the latent variables z with the calculated gradients.

The two-step learning process of the DRC models can be understood as follows: (1)

in the first step, the algorithm optimizes J by updating latent variables z, where the

posterior responsibility γik inferred at each step serves to gradually disentangle the fore-

ground and background components, and (2) in the second step, the updated z is fed

again into the models to generate the observation x, where the algorithm optimizes J
by updating the model parameters θ.

It is worth mentioning that learning LEBMs requires an extra sampling step (Pang

et al., 2020a), as the gradients are given as follows:

δα(x) = Epθ(z|x) [∇αfα(z)]− Epα(z) [∇αfα(z)] , (C.7)

where the second terms should be computed by sampling with pα(z).

Further Details About the Loss Functions For the generative models pβk
(x|zk), k =

1, 2, we assume that x = gβk
(zk) + ϵ, where gβk

(zk), k = 1, 2 are the generator net-

works for foreground and background regions, and ϵ is random noise sampled from a

zero-mean Gaussian or Laplace distribution. Assuming a global fixed variance σ2 for

Gaussian, we have log pβk
(x|zk) = − 1

2σ2‖gβk
(zk) − x‖2 + C, k = 1, 2, where C is a con-

stant unrelated to βk and zk. Similarly for Laplace distribution, we have log pβk
(x|zk) =

− 1
λ
|gβk

(zk)−x|+C, k = 1, 2. These two log-likelihoods correspond to the MSE loss and

L1 loss commonly used for image reconstruction, respectively.
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C.3.2 Regularization

Pseudo Label Learning We exploit the symbolic vector y emitted by the LEBM

for additional regularization. Let the target distribution of yk be Pk given by pαk
(y|zk), k =

1, 2, which represents the distribution of symbolic vector for foreground and background

regions respectively. We can optimize the following objective as a regularization to our

original learning objective:

max
β,τ
Lpseudo-label =

2∑

k=1

H(Pk, Qk), (C.8)

H(Pk, Qk) = −〈pαk
(y|zk), log qτk(y|gβk

(zk))〉, k = 1, 2, (C.9)

where qτk , k = 1, 2 represents the jointly trained auxiliary classifier network (see Sec-

tion C.2 for architecture details) for foreground and background. gβk
(zk), k = 1, 2

represents the output of generator network. We set the weight of this regularization

term to 0.1 for all the models.

Total Variation Norm The Total Variation norm (Rudin et al., 1992) is commonly

used for image denoising, and has been extended as an effective technique for in-painting.

We use Total Variation norm (TV-norm) as a regularization for learning the background

generator:

min
β2

LTV-norm =
∑

h,w

(

|∂gβ2(z2)
∂x

(h,w)|+ |∂gβ2(z2)
∂y

(h,w)|
)

, (C.10)

where ∂xgβ2(z2)(h,w) and ∂ygβ2(z2)(h,w) represent the horizontal and vertical image gra-

dients at the pixel coordinate (h,w) respectively. We set the weight of this regularization

term to 0.01 for all the models.

Orthogonal Regularization We use orthogonal regularization (Brock et al., 2016)

for the convolutional layers only. Let W be the flattened kernel weights of the convolu-

tional layers, i.e., the size of W is C ×K where C is the output channel number. The
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orthogonal regularization is calculated according to

min
β
Lorthogonal-reg = ‖WWT � (1− I)‖F , (C.11)

where � is the Hadamard product. I denotes the identity matrix, and 1 denotes the

matrix filled with ones. We set the weight of this regularization term to 0.1 for Birds

models, and 1.0 for the rest of the models.

C.4 Evaluation Protocols

Intersecion of Union (IoU) The IoU score measures the overlap of two regions

A and B by calculating the ratio of intersection over union, according to

IoU(A,B) =
|A ∩ B|
|A ∪ B| , (C.12)

where we use the inferred mask and ground-truth mask as A and B respectively for

evaluation.

Dice (F1) score Similarly, the Dice (F1) score is

Dice(A,B) =
2|A ∩ B|
|A|+ |B| . (C.13)

Higher is better for both scores.

Evaluation IODINE (Greff et al., 2019) and Slot-attention (Locatello et al., 2020)

are designed for segmenting complex multi-object scenes using slot-based object represen-

tations. Ideally, the output of these models consists of masks for each individual object,

while the background is viewed as a virtual “object”as well. In practice, however, it

is possible that the model distributes the background over all the slots as mentioned

by Locatello et al. (2020). Taking both cases into consideration (see Figure C.3 and

Figure C.4), we propose two approaches to convert the multiple output masks into a

foreground-background partition, and report the best results of these two options: (1)
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Figure C.3: An example situation when using each individual mask as the background
mask gives higher scores. Note that if we threshold the output of each individual slot
and compose them, the result would be the mask shown in the last column.

Figure C.4: An example situation when thresholding and combining the output of each
individual slot gives higher scores. We can see from the last column that the combined
mask fits the foreground objects well.

we compute the scores by making each mask as the background mask at a time, and

then choose the best one; this works better when the background is treated as a virtual

”object”; (2) we threshold and combine all the masks into a foreground mask; this is for

when background is distributed to all slots.

C.5 Additional Illustrations and Baseline Results

C.5.1 More Examples

We provide more foreground extraction results of our model for each dataset; see Fig-

ure C.5, Figure C.6, Figure C.7 and Figure C.8. From top to bottom, we display: (i)

observed images, (ii) generated images, (iii) masked generated foregrounds, (iv) generated

backgrounds, (v) ground-truth foreground masks, and (vi) inferred foreground masks in

each figure.

C.5.2 Failure Modes

We provide examples for illustrating typical failure modes of the proposed model; see

Figure C.9. On Birds dataset, we observe that the method can perform worse on samples

where the foreground object has colors and textures quite similar to the background
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Figure C.5: Additional foreground extraction results on Birds dataset.
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Figure C.6: Additional foreground extraction results on Dogs dataset.
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Figure C.7: Additional foreground extraction results on Cars dataset.
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Figure C.8: Additional foreground extraction results on CLEVR6 and TM-dSprites
datasets.
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Figure C.9: Typical failure modes on Birds and TM-dSprites.

regions. Although the method can still capture the rough shape of the foreground object,

some details can be missing. On TM-dSprites dataset, we observe that the method may

occasionally miss one of the foreground objects. We conjecture that the problem can be

mitigated with more powerful generator and further fine-tuning on this dataset.

C.5.3 Baseline Results

GrabCut We provide results of GrabCut (Rother et al., 2004) on Birds dataset and

TM-dSprites dataset, shown in Figure C.10. We can see that GrabCut algorithm may

fail when the foreground object and background region have moderately similar colors

and textures. On TM-dSprites dataset, GrabCut algorithm outperforms other baselines,

but is still inferior to the proposed method and exhibits a similar failure pattern.
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Figure C.10: Results of GrabCut on Birds and TM-dSprites datasets. The first three
columns are results from Birds dataset, and the last three are from TM-dSprites. From
left to right, we display the observed image, ground-truth mask, and the foreground
extraction results respectively.
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Figure C.11: Results of ReDO on Birds and TM-dSprites datasets. The first four columns
are results from Birds dataset, and the last four are from TM-dSprites. From left to right,
we display the observed image, ground-truth mask, mask from the first output channel
and from the second channel respectively.
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Figure C.12: Results of IODINE on Birds datasets. We provide the observed image,
mask from the first slot and from the second slot respectively.
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Figure C.13: Results of IODINE on TM-dSprites datasets. We provide the observed
image and masks from four object slots respectively.

ReDO We provide results of ReDO (Chen et al., 2019a) on Birds dataset and

TM-dSprites dataset, shown in Figure C.11. ReDO overall performs better than GrabCut

on Birds dataset, while it may fail when the background regions become more complex.

We can also observe that ReDO relies heavily on the pixel intensities for foreground-

background grouping on TM-dSprites dataset.

IODINE On the Birds dataset, we observe that IODINE (Greff et al., 2019) tends

to use color as a strong cue for segmentation, see Figure C.12. On TM-dSprites dataset,

IODINE is distracted by the background; see Figure C.13. These two findings are con-

sistent with those reported by Greff et al. (2019).

Slot-Attention On the Birds dataset, Slot-attention learns to roughly locate the

position of foreground objects, but mostly fails to provide foreground masks when the

background region becomes complex; see Figure C.14. Similarly, we can observe that

Slot-Attention tends to use color as a strong cue for segmentation. On TM-dSprites

dataset, Slot-attention is distracted by the background; see Figure C.15.
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Figure C.14: Results of Slot-Attention on Birds datasets. We provide the observed image,
mask from the first slot and from the second slot respectively.

C.6 Further Discussion

C.6.1 Preliminary Analysis of Real-World Datasets

We provide preliminary analysis of the statistics of the three real-world datasets. To

measure the similarity of colors and textures for these datasets, we calculate the image

histogram for the foreground objects and background regions of each dataset; see Fig-

ure C.16. To probe the similarity of shape distributions, we also provide the heatmap of

foreground masks, as shown in Figure C.17. The heatmaps are calculated by overlapping

the ground-truth masks and normalizing the summarized intensities with the maximum
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Figure C.15: Results of Slot-Attention on the TM-dSprites datasets. We provide the
observed image and masks from four object slots respectively.
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Figure C.16: Image histograms for foreground objects and background regions from each
dataset.
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Figure C.17: Heatmaps of ground-truth masks for each dataset.

Figure C.18: Preliminary results on learning slot-based object representation.

values. Despite the apparent difference in Birds vs Dogs and Cars, we can see that the

data distribution of Birds dataset is more similar to that of Dogs dataset than to that

of Cars dataset. We can also observe the similarity between the distributions of Dogs

and Cars datasets. This could partly explain why the proposed method shows relatively

strong performance on objects from unseen categories, i.e., it effectively combines the

colors, textures and shapes for foreground extraction.

C.6.2 Possible Extension to Multi-Object Segmentation

We explore the possibility of using our model for segmenting and disentangling multiple

objects. As shown in Figure C.18, the proposed method can disentangle the foreground

objects, while providing explicit identification of the background region. However, we

find that the model occasionally distributes a single object into several slots based on

the difference in texture and shading; see Figure C.19. We conjecture that this is due to

the lack of objectness modeling. We would like to investigate further in this direction in
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Figure C.19: Failure modes of energy-based slot representation model.

future work.
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APPENDIX D

Derivations and Experimental Details for Chapter 5

D.1 Relation Between Compositionality and Disentanglement

D.1.1 Slot-Based Disentanglement is Compositional

Consider a slot-based representation space z = [z0, · · · , zK ] where each zi ∈ R
D
K with a

functional constraint that uses individual slots to decode them back into the pixel space,

namely fi(zi) = ui, where ui ∈ R
N as explained in Section 5.3. Further, assume that

fi = fj for all i, j ∈ 1, · · · , K (this constraint is typically followed by models as well).

Also, assume that the model represents all blank slots consistently, specifically, assume

that zk = 0 where 0 represents a vector in RD
K where each entry is 0, without loss of

generality.

Now, assume image A is the original image we add an object to, in order to obtain

image B, for the analogy test in Figure 5.1. Further assume that A has k objects. Thus,

by assumption that blank slots are consistently represented, ∀k′ > k, z′k = 0. Let δ ∈ R
D
K

be the offset to be added to a blank slot zk+1 in A in order to obtain B, which essentially

corresponds to the addition of a blue object. Then, in order to add the same object to

image C with k̂ objects, one would add the same offset vector δ to the blank slot zk̂+1.

This is true, since we assume that the function fi(zi) is independent for each slot, and

also fi = fj for all i, j ∈ 1, · · · , K.

Thus, by construction one achieves a parallelogram in the full original vector space z

in which the representation exists, meaning that an object-centric disentangled slot-based

representation is also compositional with respect to addition and subtration of objects
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A B C D

D’ D’ D’ D’ D’ D’ D’

Positive tuple

Hard negatives

drop object color material shape size pixel

Figure D.1: Example of the test corpus of COAT. A,B,C,D form the positive tuple,
where the same transformation leads A to B and C to D. In the second row there are
hard negatives D′, where “drop” is dropping one object from D, “object” is changing one
object from D, “color” is changing the color of one object from D, “material” is changing
the material of one object from D, “shape” is changing the shape of one object from D,
“size” is changing the size of one object from D, “pixel” is the result of B − A+ C.

from the scene.

D.2 Example Test Cases

In Figure D.1 and Figure D.2, we illustrate two examples of the COAT test. COAT

features a positive tuple of images A,B,C,D, and a set of negative D′s.

D.2.1 Full-Rank Transformed Disentanglement is Compositional

Given a disentangled representation q(x), and let zA = q(A), zB = q(B), zC = q(C) and

zD = q(D), where z ∈ R
D as in the rest of the chapter. be the representations for four

scenes in the analogy test Figure 5.1. Now, since disentangling implies compositionality,

we have

zB − zA + zC = zD. (D.1)

Next, consider a full rank matrix W ∈ R
D×D. Then, multiplying by W on both sides

above, we get

W zB −W zA +W zC = W zD. (D.2)
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A B C D

D’ D’ D’ D’ D’ D’ D’

Positive tuple

Hard negatives

drop object color material shape size pixel

Figure D.2: Example of the test corpus of COAT. A,B,C,D form the positive tuple,
where the same transformation leads A to B and C to D. In the second row there are
hard negatives D′, where “drop” is dropping one object from D, “object” is changing one
object from D, “color” is changing the color of one object from D, “material” is changing
the material of one object from D, “shape” is changing the shape of one object from D,
“size” is changing the size of one object from D, “pixel” is the result of B − A+ C.

Now, notice that in general, W zB is no longer disentangled with respect to the original

factors of variation (e.g., W could be a rotation matrix or a permutation matrix), but

the resultant representation still satisfies the parallelogram property. Moreover, given

invertibility of W because of it being full rank, it has all the information present in the

original disentangled space meaning that it avoids collapse of the representation which

might enable it to lose information of attributes or find some other “shortcut” to pass

the analogy test trivially.

D.3 CLEVR With Colorful Background

D.3.1 Independently Identically Distributed Dataset

The training set is built upon the renderer of CLEVR. We start from a setup commonly

used for multi-object scene understanding, where all objects are independently identically

distributed. Figure D.3 shows some example samples from this training set.
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Figure D.3: Example of the IID training data with colorful background.

Figure D.4: Example of the correlated training data with colorful background.

D.3.2 Correlated Dataset

We also explored a correlated dataset where all objects have identical color and materials

and are densely cluttered together, as shown in Figure D.4.

D.3.3 Impact on COAT of Using Colorful Background

To investigate the impact of colorful background on COAT, we apply the COAT measure

to a test corpus with only white background. The COAT score of slot-based models (e.g.,

IODINE) are not affected much by this change, but slot-free models improve by ≈3%
(although they still fail the hard-negative tests). IODINE segments white background

inconsistently in correlated images (see Figure 5.7), which might explain this lack of

improvement.

D.4 Greedy Matching Algorithm

When applying COAT metric to slot-based representations, a 4-way slot matching needs

to be conducted to find the lowest matching cost. In this chapter, this is realized by

iteratively picking one slot greedily from each representation zA, zB, zC , zD without re-

placement. And the criterion for this matching is the L2 residual ||zB − zA + zC − zD||2
from these slots. Empirically, we find this greedy matching algorithm perform very well

even if it does not guarantee global optimum.
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D.5 Additional Empirical Results

In Figure D.5 and Figure D.6 we provide the training curves of adjusted COAT metric

and the sampled success rate p̂ on hard negative tests for the Autoencoder and VAEs.
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(a) COAT l2 score (b) p̂ on pixel negative

(c) p̂ on object negative (d) p̂ on drop negative

(e) p̂ on color negative (f) p̂ on material negative

(g) p̂ on shape negative (h) p̂ on size negative

Figure D.5: COAT l2 for Autoencoder and VAEs
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(a) COAT acos score (b) p̂ on pixel negative

(c) p̂ on object negative (d) p̂ on drop negative

(e) p̂ on color negative (f) p̂ on material negative

(g) p̂ on shape negative (h) p̂ on size negative

Figure D.6: COAT acos for Autoencoder and VAEs
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APPENDIX E

Derivations and Experimental Details for Chapter 6

E.1 Learning and Sampling in LanMDP

E.1.1 Maximum Likelihood Learning

We need to estimate θ = (α,β). Suppose we observe training examples: {ξi}, i =

1, 2, · · · , n, ξi = [si0, si1, . . . , siT ]. The log-likelihood function is

L(θ) =
∑n

i=1
log pθ(ξi). (E.1)

Denote posterior distribution of action sequence pθ(a0:T−1|s0:T ) as pθ(A|S) for convenience
where A and S means the complete action and state sequences in a trajectory. The

gradient of log-likelihood is

∇θ log pθ(ξ) = ∇θ log pθ(s0, s1, · · · , sT )

= Epθ(A|S)[∇θ log pθ(s0, s1, · · · , sT )]

= Epθ(A|S)[∇θ log pθ(s0, s1, · · · , sT )] + Epθ(A|S)[∇θ log pθ(A|S)]

= Epθ(A|S)[∇θ log pθ(s0, a0, s1, a1, · · · , aT−1, sT )]

= Epθ(A|S)[∇θ log p(s0)pα(a0|s0) · · · pα(aT−1|s0:T−1)pβ(sT |sT−1, aT−1)]

= Epθ(A|S)[∇θ

∑T−1

t=0
(log pα(at|s0:t) + log pβ(st+1|st, at))]

= Epθ(A|S)[
∑T−1

t=0
(∇α log pα(at|s0:t)
︸ ︷︷ ︸

policy/prior

+∇β log pβ(st+1|st, at)
︸ ︷︷ ︸

transition

)],

(E.2)
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where the third equation is because of a simple identity Eπθ(a) [∇θ log πθ(a)] = 0 for any

probability distribution πθ(a). Applying this simple identiy, we also have

0 = Epα(at|s0:t) [∇α log pα(at|s0:t)]

= Epα(at|s0:t) [∇αfα(at; s0:t)−∇α logZ(α, s0:t)]

= Epα(at|s0:t) [∇αfα(at; s0:t)]−∇α logZ(α, s0:t).

(E.3)

Due to the normalizing constant Z(α, s0:t) in the energy-based prior pα, the gradient

for the policy term involves both posterior and prior samples is

δα,t(S) = Epθ(A|S) [∇α log pα(at|s0:t)]

= Epθ(A|S) [∇αfα(at; s0:t)−∇α logZ(α, s0:t)]

= Epθ(A|S)

[
∇αfα(at; s0:t)− Epα(at|s0:t) [∇fα(at; s0:t)]

]

= Epθ(A|S) [∇αfα(at; s0:t)]− Epα(at|s0:t) [∇αfα(at; s0:t)] ,

(E.4)

where δα,t(S) denotes the surrogate loss of policy term for time step t. Intuition can be

gained from the perspective of adversarial training (Finn et al., 2016; Ho and Ermon,

2016): On one hand, the model utilizes action samples from the posterior pθ(A|S) as

pseudo-labels to supervise the unnormalized prior at each step pα(at|s0:t). On the other

hand, it discourages action samples directly sampled from the prior. The model converges

when prior samples and posterior samples are indistinguishable.

To ensure the transition model’s validity, it needs to be grounded in real-world dy-

namics when jointly learned with the policy. Otherwise, the agent would be purely

hallucinating based on the demonstrations. Throughout the training process, we allow

the agent to periodically collect self-interaction data with pα(at|s0:t) and mix transition

data from two sources with weight wβ:

δβ,t(S) = wβEpθ(A|S) [∇β log pβ(st+1|st, at)] + (1− wβ)Epα(at|s0:t),T r [∇β log pβ(st+1|st, at)] .
(E.5)
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E.1.2 General Transition Model

We need to compute the gradient of β for the logarithm of transition probability in (E.5),

and as we will see in Section 6.3.3, we also need to compute the gradient of the action

during sampling actions. The reparameterization (Kingma and Welling, 2014a) is useful

since it can be used to rewrite an expectation w.r.t pβ(st+1|st, at) such that the Monte

Carlo estimate of the expectation is differentiable, so we use delta function δ(.) to rewrite

probability as an expectation:

pβ(st+1|st, at) =
∫

δ(st+1 − s′t+1)pβ(s′t+1|st, at)ds′t+1

=

∫

δ(st+1 − gβ(st, at, ϵ))p(ϵ)dϵ.
(E.6)

Taking advantage of the properties of δ(.):

∫

f(x)δ(x)dx = f(0), δ(f(x)) = Σn

1

|f ′(xn)|
δ(x− xn), (E.7)

where f is differentiable and have isolated zeros, which is xn, we can rewrite the transition

probability as

pβ(st+1|st, at) =
∫
∑

n

1

| ∂
∂ϵ
gβ(st, at, ϵ)|ϵ=ϵn

δ(ϵ− ϵn)p(ϵ)dϵ

=
∑

n

p(ϵn)

| ∂
∂ϵ
gβ(st, at, ϵ)|ϵ=ϵn

,

(E.8)

where ϵn is the zero of st+1 = gβ(st, at, ϵ). Therefore, if we have a differentiable simulator

∇at log pβ(st+1|st, at) and the analytical form of p(ϵ) , then gradient of both at and β for

log pβ(st+1|st, at) can be computed.

The simplest situation is

st+1 = gβ(st, at) + ϵ, ϵ ∼ p(ϵ) = N (0, σ2). (E.9)

In this case, there is only one zero ϵ∗ for the transition function, st+1 = gβ(st, at) + ϵ∗,
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and the gradient of log probability is

∇ log pβ(st+1|st, at) = ∇ log p(ϵ∗)

| ∂
∂ϵ
(gβ(st, at) + ϵ)|ϵ=ϵ∗

= ∇ log p(ϵ∗)

= ∇ log p(st+1 − gβ(st, at))

=
1

σ2
(st+1 − gβ(st, at))∇gβ(st, at).

(E.10)

E.1.3 Prior and Posterior Sampling

The maximum likelihood estimation requires samples from the prior and the posterior

distributions of actions. It would not be a problem if the action space is quantized.

However, since we target general latent action learning, we proceed to introduce sampling

techniques for continuous actions.

When sampling from a continuous energy space, short-run Langevin dynamics (Ni-

jkamp et al., 2019) can be an efficient choice. For a target distribution π(a), Langevin

dynamics iterates ak+1 = ak + s∇ak log π(ak) +
√
2sϵk, where k indexes the number of

iteration, s is a small step size, and ϵk is the Gaussian white noise. π(a) can be either

the prior pα(at|s0:t) or the posterior pθ(A|S). One property of Langevin dynamics that

is particularly amenable for EBM is that we can get rid of the normalizing constant. So

for each t the iterative update for prior samples is

at,k+1 = at,k + s∇at,kfα(at,k; s0:t) +
√
2sϵk. (E.11)

Given a state sequence s0:T from the demonstrations, the posterior samples at each

time step at come from the conditional distribution p(at|s0:T ). Notice that with Markov

transition, we can derive

pθ(a0:T−1|s0:T ) =
∏T−1

t=0
pθ(at|s0:T ) =

∏T−1

t=0
pθ(at|s0:t+1). (E.12)

The point is, given the previous and the next subsequent state, the posterior can be
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sampled at each step independently. So the posterior iterative update is

at,k+1 = at,k + s∇at,k log pθ(at,k|s0:t+1) +
√
2sϵk

= at,k + s∇at,k log pθ(s0:t, at,k, st+1) +
√
2sϵk

= at,k + s∇at,k(log pα(at,k|s0:t)
︸ ︷︷ ︸

policy/prior

+ log pβ(st+1|st, at)
︸ ︷︷ ︸

transition

) +
√
2sϵk.

(E.13)

Intuitively, action samples at each step are updated with the energy of all subsequent

actions and a single-step forward by back-propagation. However, while gradients from

the transition term are analogous to the inverse dynamics in BCO (Torabi et al., 2018a),

it may lead to poor training performance due to non-injectiveness in forward dynamics

(Zhu et al., 2020).

We develop an alternative posterior sampling method with importance sampling to

overcome this challenge. Leveraging the learned transition, we have

pθ(at|s0:t+1) =
pβ(st+1|st, at)

Epα(at|s0:t) [pβ(st+1|st, at)]
pα(at|s0:t). (E.14)

Let c(at; s0:t+1) = Epα(at|s0:t) [pβ(st+1|st, at)], posterior sampling from pθ(a0:T−1|s0:T ) can

be realized by adjusting importance weights of independent samples from the prior

pα(at|s0:t), in which the estimation of weights involves another prior sampling. In this

way, we avoid back-propagating through non-injective dynamics and save some compu-

tation overhead in (E.13).

To train the policy, (E.4) can now be rewritten as

δα,t(S) = Epα(at|s0:t)

[
pβ(st+1|st, at)
c(at; s0:t+1)

∇αfα(at; s0:t)
]

− Epθ(at|s0:t) [∇αfα(at; s0:t)] . (E.15)

E.1.4 Algorithm

The learning and sampling algorithms with MCMC and with importance sampling for

posterior sampling are described in Algorithm 10 and Algorithm 5.
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Algorithm 10 LanMDP without importance sampling
Input: Learning iterations N , learning rate for energy-based policy ηα, learning rate
for transition model ηβ, initial parameters θ0 = (α0,β0), expert demonstrations {s0:H},
context length L, batch size m, number of prior and posterior sampling steps {K0, K1},
prior and posterior sampling step sizes {s0, s1}.
Output: θN = (αN ,βN).
Reorganize {s0:H} to to state sequenec segments (st−L+1, · · · , st+1) with length L+1.
Use energy-based policy with α0 collect transitions to fill in the replay buffer.
Use transitions in replay buffer to pre-train transition model β0.
for t = 0 to N − 1 do

Demo sampling Sample observed examples (st−L+1, · · · , st+1)
m

i=1.
Posterior sampling: Sample {at}mi=1 using (E.13) with K1 iterations and stepsize
s1.
Prior sampling: Sample {ât}mi=1 using (E.11) with K0 iterations and stepsize s0.
Policy learning: Update αt to αt+1 by (E.4) with learning rate ηα.
Transition learning: Update replay buffer with trajectories from current policy
model αt+1, then update βt to βt+1 by (E.5) with learning rate ηβ.

end for

E.2 A Decision-making Problem in MLE

Let the ground-truth distribution of demonstrations be p∗(s0:T ), and the learned marginal

distributions of state sequences be pθ(s0:T ). Equation (E.1) is an empirical estimate of

Ep∗(s0:T )[log pθ(s0:T )] = Ep∗(s0)
[
log p∗(s0) + Ep∗(s1:T |s0)[log pθ(s1:T |s0)]

]
. (E.16)

We can show that a sequential decision-making problem can be constructed to maximize

the same objective. To start off, suppose the MLE yields the maximum, we will have

pθ∗ = p∗.

Define V ∗(s0) := Ep∗(s1:T |s0)[log p∗(s1:T |s0)], we can generalize it to have a V function

V ∗(s0:t) := Ep∗(st+1:T |s0:t)[log p∗(st+1:T |s0:t)], (E.17)

which comes with a Bellman optimality equation

V ∗(s0:t) = Ep∗(st+1|s0:t) [r(st+1, s0:t) + V ∗(s0:t+1)] , (E.18)
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with r(st+1, s0:t) := log p∗(st+1|s0:t) = log
∫
pα∗(at|s0:t)pβ∗(st+1|st, at)dat, V ∗(s0:T ) := 0. It

is worth noting that the r defined above involves the optimal policy, which may not

be known a priori. We can resolve this by replacing it with rα for an arbitrary policy

pα(at|s0:t). All Bellman identities and updates should still hold. Anyways, involving

the current policy in the reward function should not appear to be too odd given the

popularity of maximum entropy RL (Ziebart, 2010; Levine, 2018).

The entailed Bellman update, value iteration, for arbitrary V and α is

V (s0:t) = Ep∗(st+1|s0:t) [rα(s0:t, st+1) + V (s0:t+1)] . (E.19)

We then define r(st+1, at, s0:t) := r(st+1, s0:t) + log pα∗(at|s0:t) to construct a Q function,

Q∗(at; s0:t) := Ep∗(st+1|s0:t) [r(st+1, at, s0:t) + V ∗(s0:t+1)] , (E.20)

which entails a Bellman update, Q backup, for arbitrary α, Q and V :

Q(at; s0:t) = Ep∗(st+1|s0:t) [rα(s0:t, at, st+1) + V (s0:t+1)] . (E.21)

Also note that the V and Q in identities (E.19) and (E.21) respectively are not

necessarily associated with the policy pα(at|s0:t). Slightly overloading the notations, we

use Qα, V α to denote the expected returns from policy pα(at|s0:t).

By now, we finish the construction of atomic algebraic components and move on to

check if the relations between them align with the algebraic structure of a sequential

decision-making problem (Sutton and Barto, 2018).

We first prove the construction above is valid at optimality.

Lemma 1. When fα(at; s0:t) = Q∗(at; s0:t)− V ∗(s0:t), pα(at|s0:t) is the optimal policy.
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Proof. Note that the construction gives us

Q∗(at; s0:t) = Ep∗(st+1|s0:t) [r(st+1, s0:t) + log pα∗(at|s0:t) + V ∗(s0:t+1)]

= log pα∗(at|s0:t) + Ep∗(st+1|s0:t) [r(st+1, s0:t) + V ∗(s0:t+1)]

= log pα∗(at|s0:t) + V ∗(s0:t).

(E.22)

Obviously, Q∗(at; s0:t) lies in the hypothesis space of fα(at; s0:t).

Lemma 1 indicates that we need to either parametrize fα(at; s0:t) or Q(at; s0:t).

WhileQ∗ and V ∗ are constructed from the optimality, the derivedQα and V α measure

the performance of an interactive agent when it executes with the policy pα(at|s0:t). They
should be consistent with each other.

Lemma 2. V α(s0:t) and Epα(at|s0:t)[Q
α(at; s0:t)] yield the same optimal policy pα∗(at|s0:t).

Proof.

Epα(at|s0:t)[Q
α(at; s0:t)] := Epα(at|s0:t)

[
Ep∗(st+1|s0:t) [r(st+1, at, s0:t) + V α(s0:t+1)]

]

=Epα(at|s0:t)
[
Ep∗(st+1|s0:t) [log pα(at|s0:t) + r(st+1, s0:t) + V α(s0:t+1)]

]

=Ep∗(st+1|s0:t) [r(st+1, s0:t)−Hα(at|s0:t) + V α(s0:t+1)]

=V α(s0:t)−Hα(at|s0:t)−
∑T−1

k=t+1
Ep∗(st+1:k|s0:t)[Hα(ak|s0:k)],

(E.23)

where the last line is derived by recursively applying the Bellman equation in the line

above until s0:T and then applying backup with (E.19). As an energy-based policy,

pα(at|s0:t)’s entropy is inherently maximized (Jaynes, 1957). Therefore, within the hy-

pothesis space, pα∗(at|s0:t) that optimizes V α(s0:t) also leads to optimal expected return

Epα(at|s0:t)[Q
α(at; s0:t)].

If we parametrize the policy as pα(at|s0:t) ∝ exp(Qα(at; s0:t)), the logarithmic nor-

malizing constant logZαk(s0:t) will be the soft V function in maximum entropy RL (Fox
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et al., 2016; Haarnoja et al., 2017, 2018)

V α
soft(s0:t) := log

∫

exp(Qα(at; s0:t))dat, (E.24)

even if the reward function is defined differently. We can further show that Bellman

identities and backup updates above can entail RL algorithms that achieve optimality of

the decision-making objective V α, including soft policy iteration (Ziebart, 2010)

pαk+1
(at|s0:t)←

exp(Qαk(at; s0:t))
Zαk(s0:t)

, ∀s0:t, k ∈ [0, 1, . . . ,M ] (E.25)

and soft Q iteration (Fox et al., 2016)

Qαk+1(at; s0:t)← Ep∗(st+1|s0:t)
[
rα(s0:t, at, st+1) + V αk

soft(s0:t+1)
]
, ∀s0:t, at,

V
αk+1

soft (s0:t)← log
∫

exp(Qαk(a; s0:t))da, ∀s0:t, k ∈ [0, 1, . . . ,M ].
(E.26)

Lemma 3. If p∗(st+1|s0:t) is accessible and pβ∗(st+1|st, at) is known, soft policy iteration

and soft Q learning both converge to pα∗(at|s0:t) = pQ∗(at|s0:t) ∝ exp(Q∗(at; s0:t)) under

certain conditions.

Proof. See the convergence proof by Ziebart (2010) for soft policy iteration and the proof

by Fox et al. (2016) for soft Q learning. The latter requires Markovian assumption. But

under some conditions, it can be extended to non-Markovian domains in the same way

as proposed by Majeed and Hutter (2018).

Lemma 3 means given p∗(st+1|s0:t) and pβ∗(st+1|st, at), we can recover pα∗ through

reinforcement learning methods, instead of the proposed MLE. So pα(at|s0:t) is a viable

policy space for the constructed sequential decision-making problem.

Together, Lemma 1, Lemma 2, and Lemma 3 provide constructive proof for a valid

sequential decision-making problem that maximizes the same objective of MLE, described

by Theorem 1.
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Theorem 1. Assuming the Markovian transition pβ∗(st+1|st, at) is known, the ground-

truth conditional state distribution p∗(st+1|s0:t) for demonstration sequences is accessi-

ble, we can construct a sequential decision-making problem, based on a reward func-

tion rα(st+1, s0:t) := log
∫
pα(at|s0:t)pβ∗(st+1|st, at)dat for an arbitrary energy-based policy

pα(at|s0:t). Its objective is

∑T

t=0
Ep∗(s0:t)[V

pα(s0:t)] = Ep∗(s0:T )

[∑T

t=0

∑T

k=t
rα(sk+1; s0:k)

]

,

where V pα(s0:t) := Ep∗(st+1:T |s0:t)[
∑T

k=t rα(sk+1; s0:k)] is the value function for pα. This ob-

jective yields the same optimal policy as the Maximum Likelihood Estimation Ep∗(s0:T )[log pθ(s0:T )].

If we further define a reward function rα(st+1, at, s0:t) := rα(st+1, s0:t) + log pα(at|s0:t)
to construct a Q function for pα

Qpα(at; s0:t) := Ep∗(st+1|s0:t) [rα(st+1, at, s0:t) + V pα(s0:t+1)] .

The expected return of Qpα(at; s0:t) forms an alternative objective

Epα(at|s0:t)[Q
pα(at; s0:t)] = V pα(s0:t)−Hα(at|s0:t)−

∑T−1

k=t+1
Ep∗(st+1:k|s0:t)[Hα(ak|s0:k)]

that yields the same optimal policy, for which the optimal Q∗(at; s0:t) can be the energy

function.

Only under certain conditions, this sequential decision-making problem is solvable

through non-Markovian extensions of the maximum entropy reinforcement learning algo-

rithms.

E.3 More results of Curve Planning

The energy function is parameterized by a small MLP with one hidden layer and 4 ∗ L
hidden neurons, where L is the context length. In short-run Langevin dynamics, the

number of samples, the number of sampling steps, and the stepsize are 4, 20 and 1
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Figure E.1: More results for cubic curve generation
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respectively. We use Adam optimizer with a learning rate 1e-4 and batch size 64. Here

we present the complete result in Figure E.1 with different training steps under context

length 1 2 4 6, the acceptance rate and residual error of the testing trajectories, as well as

the behavior cloning results. We can see that even with sufficient context, BC performs

worse than LanMDP. Also, from the result of context length 6 we can see that excessive

expressivity does not impair performance, it just requires more training.

E.4 Implementation Details of MuJoCo Environment

This section delineates the configurations for the MuJoCo environments utilized in our

research. In particular, we employ standard environment horizons of 500 and 50 for

Cartpole-v1 and Reacher-v2, respectively. Meanwhile, for Swimmer-v2, Hopper-v2, and

Walker2d-v2, we operate within an environment horizon set at 400 as referenced in pre-

vious literature (Kidambi et al., 2021, 2020; Kurutach et al., 2018; Luo et al., 2018;

Nagabandi et al., 2018; Rajeswaran et al., 2020). Additional specifications are made for

Hopper-v2 and Walker2d-v2, where the velocity of the center of mass was integrated

into the state parameterization (Kidambi et al., 2021, 2020; Luo et al., 2018; Rajeswaran

et al., 2020). We leverage PPO (Schulman et al., 2017) approach to train the expert pol-

icy until it reaches (approximately) 450, -10, 40, 3000, 2000 for Cartpole-v1, Reacher-v2,

Swimmer-v2, Hopper-v2, Walker2d-v2 respectively. It should be noted that all results

disclosed in the experimental section represent averages over five random seeds. Com-

parative benchmarks include BC (Ross and Bagnell, 2010), BCO (Torabi et al., 2018a),

GAIL (Ho and Ermon, 2016), and GAIFO (Torabi et al., 2018b). MobILE (Kidambi

et al., 2021) is a recent method for Markovian model-based imitation from observation.

However, we failed to reproduce the expected performance utilizing various sets of demon-

strations, so it is prudently omitted from the present displayed result. We specifically

point out that BC/GAIL algorithms are privy to expert actions, however, our algorithm

is not. We report the mean of the best performance achieved by BC/BCO with five ran-

dom seeds, even though these peak performances may transpire at varying epochs. For

229



BC, we executed the supervised learning algorithm for 200 iterations. The BCO/GAIL

algorithms are run with an equivalent number of online samples as LanMDP for a fair

comparison. All benchmarking is performed using a single 3090Ti GPU and implemented

using the PyTorch framework. Notably, in our codebase, the modified environments of

Hopper-v2 and Walker2d-v2 utilize MobILE’s implementation (Kidambi et al., 2021).

Referring to the results in the main text, our presentation of normalized results in bar

graph form is derived by normalizing each algorithm’s performance (mean/standard devi-

ation) against the expert mean. For Reacher-v2, due to the inherently negative rewards,

we first add a constant offset of 20 to each algorithm’s performance, thus converting all

values to positive before normalizing them against the mean of expert policy.

We parameterize both the policy model and the transition model as MLPs, and the

non-linear activation function is Swish and LeakyReLU respectively. We use AdamW

to optimize both policy and transition. To stabilize training, we prefer using actions

around which the transition model is more certain for computing the expectation over

importance-weighted prior distribution in (E.15). Therefore, we use a model ensem-

ble with two transition models and use the disagreement between these two models to

measure the uncertainty of the sampled actions. We implement Algorithm 5 for all ex-

periments to avoid expensive computation of the gradient for the transition model in

posterior sampling. As for better and more effective short-run Langevin sampling, we

use a polynomially decaying schedule for the step size as recommended in (Grathwohl

et al., 2019). We also use weakly L2 regularized energy magnitudes and clip gradient

steps like (Du and Mordatch, 2019), choosing to clip the total amount of change value,

i.e. after the gradient and noise have been combined. To realize more delicate decision-

making, another trick in Implicit Behavior Clone (Florence et al., 2022) is also adopted

for the inference/testing stage that we continue running the MCMC chain after the step

size reaches the smallest in the polynomial schedule until we get twice as many inference

Langevin steps as were used during training.

Hyper-parameters are listed in Table E.1. Other hyperparameters that are not men-

tioned here are left as default in PyTorch. Also, note that the Cartpole-v1 task has no

230



Parameter Cartpole-v1 Reacher-v2 Swimmer-v2 Hopper-v2 Walker2d-v2

Environment

Specification

Horizon 500 50 400 400 400

Expert Performance
(≈)

450 -10 40 3000 2000

Transition Model

Architecture MLP(64;4) MLP(64;4) MLP(128;4) MLP(512;4) MLP(512;4)

Optimizer(LR) 3e-3 3e-3 3e-3 3e-3 3e-3

Batch Size 2500 20000 20000 32768 32768

Replay Buffer Size 2500 20000 20000 200000 200000

Policy Model (with context

length L)

Architecture MLP(150*L;4) MLP(150*L;4) MLP(150*L;4) MLP(512*L;4) MLP(512*L;4)

Learning rate 1e-3 1e-2 1e-2 1e-2 5e-3

Batch Size 2500 20000 20000 32768 32768

Number of test
trajectories

5 20 20 50 50

Sampling

Parameters

Number of prior
samples

\ 8 8 8 8

Number of Langevin
steps

\ 100 100 100 100

Langevin initial
stepsize

\ 10 10 10 10

Langevin ending
stepsize

\ 1 1 1 1

Table E.1: Hyper-parameters in MuJoCo experiments

parameters for sampling because expectation can be calculated analytically.
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APPENDIX F

Derivations and Experimental Details for Chapter 7

F.1 Details About the Model and Learning

Given a trajectory τ , z ∈ R
d is the latent vector to represent the variable-length trajec-

tory. y ∈ R is the return of the trajectory. With ofÒine training trajectory-return pairs

{(τ i, yi), i = 1, . . . , n}. The log-likelihood function is L(θ) =
∑n

i=1 log pθ(τ i, yi), with

learning gradient∇θL(θ) =
∑n

i=1∇θ log pθ(τ i, yi). We derive the form of∇θ log pθ(τ i, yi),

proving (7.4) below, dropping index subscript i for simplicity.

∇θ log pθ(τ , y) =
1

pθ(τ , y)
∇θpθ(τ , y)

=
1

pθ(τ , y)

∫

∇θpθ(τ , y, z)dz

=
1

pθ(τ , y)

∫

∇θ (pθ(τ , y|z = Uα(z0))p0(z0)) dz0

=

∫
pθ(τ , y|z = Uα(z0))

pθ(τ , y)
∇θ log (pθ(τ , y|z = Uα(z0))p0(z0)) dz0

=

∫

pθ(z0|τ , y)∇θ log (pθ(τ , y|Uα(z0))p0(z0)) dz0

= Epθ(z0|τ ,y) [∇θ log (pθ(τ , y|Uα(z0))p0(z0))]

= Epθ(z0|τ ,y) [∇θ log (pβ(τ |Uα(z0))pγ(y|Uα(z0))p0(z0))]

= Epθ(z0|τ ,y) [∇θ log pβ(τ |Uα(z0)) +∇θ log pγ(y|Uα(z0)) +∇θ log p0(z0)]

= Epθ(z0|τ ,y) [∇θ log pβ(τ |Uα(z0)) +∇θ log pγ(y|Uα(z0))] .
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Parameter HalfCheetah Walker2D Hopper AntMaze
Number of layers 3 3 3 3
Number of attention heads 1 1 1 1
Embedding dimension 128 128 128 192
Context length 32 64 64 64
Learning rate 1e-4 1e-4 1e-4 1e-3
Langevin step size 0.3 0.3 0.3 0.3
Nonlinearity function ReLU ReLU ReLU ReLU

Table F.1: Gym-Mujoco Environments LPT Model Parameters

Parameter Umaze Medium Large
Number of layers 1 3 4
Number of attention heads 8 1 4
Embedding dimension 128 192 192
Context length 32 64 64
Learning rate 1e-3 1e-3 2e-4
Langevin step size 0.3 0.3 0.3
Nonlinearity function ReLU ReLU ReLU

Table F.2: Maze2D Environments LPT Model Parameters

F.2 Training Details

For Gym-Mujoco ofÒine training, as shown in Table F.1, most of the hyperparameters

were shared across all tasks except context length and hidden size. However, due to the

significant variations in the scale of the maze maps and the lengths of the trajectories

within the Maze2D environments — spanning umaze, medium, and large categories —

model sizes were adjusted accordingly to accommodate these differences, where the de-

tailed setting can be found in Table F.2. We also show the parameters for Franka Kitchen

environment in Table F.3 and Connect Four in Table F.4.

Training time for the Gym-Mujoco tasks using a single Nvidia A6000 GPU is 18 hours

on average. We train Maze2d tasks using a single Nvidia A100 GPU using 30 hours on

average. Kitchen tasks using a single Nvidia A6000 GPU takes 60 hours on average.

Connect-4 on a single Nvidia A6000 GPU takes 10 hours.
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Parameter Mixed Partial
Number of layers 4 3
Number of attention heads 4 16
Embedding dimension 128 128
Context length 16 16
Learning rate 1e-3 1e-3
Langevin step size 0.3 0.3
Nonlinearity function ReLU ReLU

Table F.3: Franka Kitchen Environments LPT Model Parameters

Parameter Value
Number of layers 3
Number of attention heads 4
Embedding dimension 128
Context length 4
Learning rate 1e-3
Langevin step size 0.3
Nonlinearity function ReLU

Table F.4: Connect 4 LPT Model Parameters

F.3 Ablation Study

We investigate the role of the expressive prior pα(z) by removing the UNet, which trans-

forms z0 from a non-informative Gaussian. Table F.5 reports the result in three Mujoco

control tasks and Connect Four. We observe that the performance of LPT drops in all

of these environments. For example, in the stochastic environment Connect Four, LPT

drops from 0.99 to 0.90, while DT, the baseline without latent variable, obtains 0.8. The

result indicates that more flexible prior benefits the learning and inference of LPT.

Dataset DT LPT LPT w/o UNet
halfcheetah-medium-replay 33.0± 4.8 39.64± 0.83 34.70± 1.58
hopper-medium-replay 50.8± 14.3 71.17± 3.01 53.41± 6.95
walker2d-medium-replay 51.6± 24.7 72.31± 1.92 56.88± 4.20

Connect Four 0.8± 0.07 0.99± 0.01 0.90± 0.06

Table F.5: Ablation study on Gym and Connect Four.
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Dataset Step-wise Reward Final Return
ODT ∆ LPT ∆

halfcheetah-medium 42.16± 1.48 −0.56 43.26± 0.59 0.13
halfcheetah-medium-replay 40.2± 1.61 0.43 40.63± 0.28 0.99
hopper-medium 97.54± 2.1 30.59 64.84± 10.29 6.32
hopper-medium-replay 88.89± 6.33 2.25 72.44± 8.07 1.27
walker2d-medium 76.79± 2.30 4.60 79.54± 5.11 1.69
walker2d-medium-replay 76.86± 4.04 7.94 78.99± 3.84 6.68

Antmaze-umaze 88.5± 5.88 35.4 83.5± 3.28 22.3
Antmaze-diverse 56.00± 5.69 5.8 75.6± 2.8 8.0

Table F.6: Evaluation results of online Open AI Gym MuJoCo and Antmaze tasks. ODT
baselines are sourced from (Zheng et al., 2022). Our results are reported over 5 seeds.

F.4 Continual Learning With Online Data

We are also interested in LPT’s potential in finetuning or even continual learning. In-

spired by ODT (Zheng et al., 2022), we employ a trajectory replay butter (Mnih et al.,

2015) to store samples from online interaction in a first-in-first-out manner. After the

completion of each episode, we update LPT with the same learning algorithm as with the

ofÒine data. Note that ODT introduces some techniques additional to DT. In contrast,

LPT explores with the provably efficient posterior sampling (Osband et al., 2013; Osband

and Van Roy, 2017). We report the results in Table F.6. Despite the significance in a

few tasks, the improvement is within 1 standard deviation of the mean for the majority.

We observe a similar pattern in ODT (Zheng et al., 2022).
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APPENDIX G

Derivations and Experimental Details for Chapter 8

G.1 Expectation-Maximization

To learn a latent variable model pθ(x, z) = pθ(x|z)pθ(z), pθ(x) =
∫
pθ(x, z)dz from a

target distribution q(x), the EM-like transformation on the gradient of the log-likelihood

function is

∇θL(θ) = ∇θ Eq(x)[log pθ(x)]

= Epθ(z|x)[Eq(x)[∇θ log pθ(x)]]

= Eq(x)pθ(z|x)[∇θ log pθ(x) +∇θ log pθ(z|x)]

= Eq(x)pθ(z|x)[∇θ log pθ(x, z)].

(G.1)

Line 3 is due to the simple equality that Epθ(z|x)[∇θ log pθ(z|x)] = 0.

G.2 Reparametrized Sampling and Noise Cancellation

Reparametrization. The EM-like algorithm we propose requires joint sampling

of (x, z) from ρθ(x, z). Like Nijkamp et al. (2021) andXiao et al. (2020), we utilize a

reparameterization of x and z to overcome challenges in joint MCMC sampling, such as

slow convergence and complex step size tuning. Notice that x = αgθ(z) + σϵ defines a
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deterministc mapping from (ϵ, z) to (x, z). Then by change of variable we have

ρθ(ϵ, z)dϵdz = ρθ(x, z)dxdz

=
q(x)
pθ(x)

pθ(x, z)dxdz

=
q(αgθ(z) + σϵ)

pθ(αgθ(z) + σϵ)
pθ(ϵ, z)dϵdz

⇒ ρθ(ϵ, z) =
q(αgθ(z) + σϵ)

pθ(αgθ(z) + σϵ)
p(ϵ)p(z),

(G.2)

where p(ϵ) and p(z) are standard Normal distributions.

The score functions become

∇ϵ log ρ(ϵ, z) = σ(∇x log q(x)−∇x log pθ(x))− ϵ,

∇z log ρ(ϵ, z) = α(∇x log q(x)−∇x log pθ(x))∇zgθ(z)− z.
(G.3)

Noise Cancellation The single-step Langevin update on ϵ is then

ϵi+1 = (1− γ)ϵi + γσ∇x log
q(xi)
pθ(xi)

+
√

2γni. (G.4)

Interestingly, we find the particular form of ∇ϵ log ρ(ϵ, z) results in a closed-form accu-

mulation of multi-step updates

ϵi+1 = (1− γ)i+1ϵ0 + γ
∑i

k=0
(1− γ)i−kσ∇x log

q(xi)
pθ(xi)

+
∑i

k=0
(1− γ)i−k

√

2γnk,

(G.5)

which, after the push-forward, gives us

xi+1 =αg(zi+1) + γ
∑i

k=0
(1− γ)i−kσ2∇x log

q(xi)
pθ(xi)

︸ ︷︷ ︸

drift

+ (1− γ)i+1σϵ0 +
∑i

k=0
(1− γ)i−k

√

2γσnk
︸ ︷︷ ︸

noise

.

(G.6)
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lrg lrs batch size Adam b1 Adam b2 γϵ γz K λ∗ w̃(t)

2× 10−6 1× 10−5 128 0.0 0.99 0.42 0.0042 16 3.2189
σ2
t

α2
t

Table G.1

As xi+1 is effectively a regression target in (8.6), and the expected value of the noise is

0, we can remove it without biasing the gradient. Empirically, we find book-keeping the

sampled noises in the MCMC chain and canceling these noises after the loop significantly

stabilize the training of the generator network.

The same applies to the (x, z) sampling (with step size γσ2):

xi+1 =xi + γσ2(∇x log q(xi)−∇x log pθ(xi))− γ(xi − αg(zi)) +
√

2γni

=γ
∑i

k=1
(1− γ)i−kαg(zk) + γ

∑i

k=0
(1− γ)i−kσ2(∇x log q(xi)−∇x log pθ(xi))

+ (1− γ)iαg(z0) + (1− γ)i+1σϵ0 +
∑i

k=0
(1− γ)i−k

√

2γσnk

︸ ︷︷ ︸
noises

.

(G.7)

G.3 Implementation Details

G.3.1 ImageNet 64x64

We train the teacher model using the best setting of EDM (Karras et al., 2022) with the

ADM UNet architecture (Dhariwal and Nichol, 2021). We inherit the noise schedule and

the score matching weighting function from the teacher. We run the distillation training

for 300k steps (roughly 8 days) on 64 TPU-v4. We use (ϵ, z)-corrector, in which both

the teacher and the student score networks have a dropout probability of 0.1. We list

other hyperparameters in Table G.1. Instead of listing t∗, we list the corresponding log

signal-to-noise ratio λ∗.
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lrg lrs batch size Adam b1 Adam b2 γϵ γz K λ∗ w̃(t)

2× 10−6 1× 10−5 1024 0.0 0.99 0.42 0.0042 16 6
σ2
t

αt

Table G.2

lrg lrs batch size Adam b1 Adam b2 γϵ γz K t∗ w̃(t)

2× 10−6 1× 10−5 1024 0.0 0.99 0.32 0.0052 8 500
σ2
t

αt

Table G.3

G.3.2 ImageNet 128x128

We train the teacher model following the best setting of VDM++ (Kingma and Gao,

2023) with the ‘U-ViT, L’ architecture (Hoogeboom et al., 2023). We use the ‘cosine-

adjusted’ noise schedule (Hoogeboom et al., 2023) and ‘EDM monotonic’ weighting for

student score matching. We run the distillation training for 200k steps (roughly 10 days)

on 128 TPU-v5p. We use (ϵ, z)-corrector, in which both the teacher and the student score

networks have a dropout probability of 0.1. We list other hyperparameters in Table G.2.

G.3.3 Text-to-Image Generation

We adopt the public checkpoint of Stable Diffusion v1.5 (Rombach et al., 2022) as the

teacher. We inherit the noise schedule from the teacher model. The student score match-

ing uses the same weighting function as the teacher. We list other hyperparameters in

Table G.3.

G.4 Additional Qualitative Results

G.4.1 Additional ImageNet Results

In this section, we present additional qualitative samples for our one-step generator on

ImageNet 64×64 and ImageNet 128×128 in Figure G.1 to help further evaluate the

generation quality and diversity.
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(a) ImageNet 64×64 Multi-class

(b) ImageNet 128×128 Multi-class

(c) ImageNet 128×128 Single-class (Left: Husky, right: Siamese)

Figure G.1: Zoom in for better view.
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G.4.2 Additional Text-to-Image Results

In this section, we present additional qualitative samples from our one-step generator

distilled from Stable Diffusion 1.5. In Table G.4, Table G.5, Table G.6, and Table G.7, we

visually compare the sample quality of our method with open-source competing methods

for few- or single-step generation. We also include the teacher model in our comparison.

We use the public checkpoints of LCM1 and InstaFlow2, where both checkpoints share

the same Stable Diffusion 1.5 as teachers. Note that the SD-turbo results are obtained

from the public checkpoint 3 fine-tuned from Stable Diffusion 2.1, which is different from

our teacher model.

From the comparison, we observe that our model significantly outperforms distillation-

based methods including LCM and InstaFlow, and it demonstrates better diversity and

quality than GAN-based SD-turbo. The visual quality is on par with 50-step generation

from the teacher model.

We show additional samples from our model on a more diverse set of prompts in

Table Table G.8, Table G.9 and Table G.10.

1https://huggingface.co/latent-consistency/lcm-lora-sdv1-5

2https://huggingface.co/XCLiu/instaflow_0_9B_from_sd_1_5

3https://huggingface.co/stabilityai/sd-turbo
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Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table G.4: More results on text-to-image. Prompt: Dog graduation at university.
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Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table G.5: More results on text-to-image. Prompt: 3D animation cinematic style young
caveman kid, in its natural environment.
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Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table G.6: More results on text-to-image. Prompt: An underwater photo portrait of a
beautiful fluffy white cat, hair floating. In a dynamic swimming pose. The sun rays filters
through the water. High-angle shot. Shot on Fujifilm X.
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Teacher (50 step) EMD (1 step)

LCM (1 step) LCM (2 steps)

SD-Turbo (1 step) InstaFlow (1 step)

Table G.7: More results on text-to-image. Prompt: A minimalist Teddy bear in front of
a wall of red roses.
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A close-up photo of a intricate beautiful natural landscape of
mountains and waterfalls.

A hyperrealistic photo of a fox astronaut; perfect face, artstation.

Large plate of delicious fried chicken, with a side of dipping sauce,
realistic advertising photo, 4k.

A DSLR photo of a golden retriever in heavy snow.

Table G.8: Zoom-in for better viewing.
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Masterpiece color pencil drawing of a horse, bright vivid color.

Oil painting of a wise old man with a white beard in the
enchanted and magical forest.

3D render baby parrot, Chibi, adorable big eyes. In a garden with butterflies,
greenery, lush whimsical and soft, magical, octane render, fairy dust.

Dreamy puppy surrounded by floating bubbles.

Table G.9: Zoom-in for better viewing.
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A painting of an adorable rabbit sitting on a colorful splash.

Macro photo of a miniature toy sloth drinking a soda,
shot on a light pastel cyclorama.

A traditional tea house in a tranquil garden with blooming cherry blossom trees.

Three cats having dinner at a table at new years eve, cinematic shot, 8k.

Table G.10: Zoom-in for better viewing.

248



REFERENCES

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement
learning. In Machine Learning, Proceedings of the Twenty-first International Confer-
ence (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004. 121

Abel, D., Dabney, W., Harutyunyan, A., Ho, M. K., Littman, M., Precup, D., and
Singh, S. (2021). On the expressivity of markov reward. Advances in Neural Informa-
tion Processing Systems, 34:7799–7812. 103, 105

Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas, L. (2018). Learning repre-
sentations and generative models for 3d point clouds. In International Conference on
Machine Learning, pages 40–49. PMLR. 81

Adams, R. and Bischof, L. (1994). Seeded region growing. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 16(6):641–647. 55

Ajay, A., Du, Y., Gupta, A., Tenenbaum, J. B., Jaakkola, T. S., and Agrawal, P.
(2023). Is conditional generative modeling all you need for decision making? In The
Eleventh International Conference on Learning Representations. 103, 122

Ajay, A., Kumar, A., Agrawal, P., Levine, S., and Nachum, O. (2021). OPAL: OfÒine
primitive discovery for accelerating ofÒine reinforcement learning. In International
Conference on Learning Representations. 135, 136

Allen, C., Kirtland, A., Tao, R. Y., Lobel, S., Scott, D., Petrocelli, N., Gottesman,
O., Parr, R., Littman, M. L., and Konidaris, G. (2024). Mitigating partial observ-
ability in sequential decision processes via the lambda discrepancy. arXiv preprint
arXiv:2407.07333. 105

Amit, R. and Matari, M. (2002). Learning movement sequences from demonstration.
In Proceedings 2nd International Conference on Development and Learning. ICDL
2002, pages 203–208. IEEE. 121

Ammanabrolu, P. and Riedl, M. O. (2021). Modeling worlds in text. In Advances in
Neural Information Processing Systems (NeurIPS). 23

Andreas, J. (2019). Measuring compositionality in representation learning. arXiv
preprint arXiv:1902.07181. 81, 83, 84

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh, D.
(2015). VQA: Visual question answering. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2425–2433. 74

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483. 121

Atkeson, C. G. and Schaal, S. (1997). Robot learning from demonstration. In ICML,
volume 97, pages 12–20. Citeseer. 121

249



Attias, H. (2003). Planning by probabilistic inference. In International Workshop on
Artificial Intelligence and Statistics, pages 9–16. PMLR. 104

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and van den Berg, R. (2021). Structured
denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems (NeurIPS). 30

Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Zhang, Q., Kreis, K., Aittala,
M., Aila, T., Laine, S., et al. (2022). eDIFF-I: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324. 160

Bao, F., Li, C., Zhu, J., and Zhang, B. (2022). Analytic-DPM: an analytic esti-
mate of the optimal reverse variance in diffusion probabilistic models. arXiv preprint
arXiv:2201.06503. 154

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K., Kohli, P., Battaglia, P.,
and Hamrick, J. (2019). Structured agents for physical construction. In International
Conference on Machine Learning, pages 464–474. PMLR. 74

Barratt, S. T. and Sharma, R. (2018). A note on the inception score. CoRR,
abs/1801.01973. 83

Barrett, D., Hill, F., Santoro, A., Morcos, A., and Lillicrap, T. (2018). Measuring ab-
stract reasoning in neural networks. In International Conference on Machine Learning,
pages 511–520. PMLR. 74, 79

Bengio, Y., Yao, L., Alain, G., and Vincent, P. (2013). Generalized denoising auto-
encoders as generative models. In Advances in Neural Information Processing Systems
(NeurIPS). 14

Benny, Y. and Wolf, L. (2020). OneGAN: Simultaneous unsupervised learning of
conditional image generation, foreground segmentation, and fine-grained clustering.
In European Conference on Computer Vision (ECCV). 57, 68, 69

Berthelot, D., Autef, A., Lin, J., Yap, D. A., Zhai, S., Hu, S., Zheng, D., Talbott,
W., and Gu, E. (2023). Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248. 144, 154, 159

Bhunia, A. K., Das, A., Muhammad, U. R., Yang, Y., Hospedales, T. M., Xiang, T.,
Gryaditskaya, Y., and Song, Y.-Z. (2020). Pixelor: A competitive sketching AI agent.
so you think you can sketch? ACM Transactions on Graphics (TOG), 39(6):1–15. 37

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer Google
Schola, 2:1122–1128. 147

Bloom, P. (2002). How children learn the meanings of words. MIT press. 3

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bern-
stein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. (2021). On the opportunities
and risks of foundation models. arXiv preprint arXiv:2108.07258. 6

250



Botvinick, M. and Toussaint, M. (2012). Planning as inference. Trends in Cognitive
Sciences, 16(10):485–488. 104

Bouchacourt, D. and Baroni, M. (2018). How agents see things: On visual representa-
tions in an emergent language game. In Annual Conference on Empirical Methods in
Natural Language Processing (EMNLP). 35

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S.
(2016). Generating sentences from a continuous space. In Conference on Computa-
tional Natural Language Learning (CoNLL). 10, 29

Boykov, Y. Y. and Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary &
region segmentation of objects in nd images. In International Conference on Computer
Vision (ICCV). 54

Brafman, R. I. and De Giacomo, G. (2019). Regular decision processes: A model for
non-markovian domains. In IJCAI, pages 5516–5522. 105

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R., and Bruna, J. (2022). When
does return-conditioned supervised learning work for ofÒine reinforcement learning?
Advances in Neural Information Processing Systems, 35:1542–1553. 134

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale GAN training for high
fidelity natural image synthesis. arXiv preprint arXiv:1809.11096. 159

Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2016). Neural photo editing with
introspective adversarial networks. arXiv preprint arXiv:1609.07093. 66, 195

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011). Handbook of Markov chain
Monte Carlo. CRC press. 60

Brooks, T., Peebles, B., Holmes, C., DePue, W., Guo, Y., Jing, L., Schnurr, D.,
Taylor, J., Luhman, T., Luhman, E., Ng, C., Wang, R., and Ramesh, A. (2024).
Video generation models as world simulators. OpenAI Technical Report. 1, 144

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L. (1993). The
mathematics of statistical machine translation: Parameter estimation. Computational
Linguistics. 9

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot
learners. Advances in Neural Information Processing Systems, 33:1877–1901. 1, 6, 103,
142

Burda, Y., Grosse, R. B., and Salakhutdinov, R. (2016). Importance weighted autoen-
coders. In International Conference on Learning Representations (ICLR). 175

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M., and
Lerchner, A. (2019). Monet: Unsupervised scene decomposition and representation.
arXiv preprint arXiv:1901.11390. 55, 57, 74, 79, 80, 82

251



Cao, K., Lazaridou, A., Lanctot, M., Leibo, J. Z., Tuyls, K., and Clark, S. (2018).
Emergent communication through negotiation. In International Conference on Learn-
ing Representations (ICLR). 33, 34

Card, D., Tan, C., and Smith, N. A. (2018). Neural models for documents with
metadata. In Annual Meeting of the Association for Computational Linguistics (ACL).
28

Carey, S. (2000). The origin of concepts. Journal of Cognition and Development,
1(1):37–41. 2

Chattopadhyay, P., Vedantam, R., Selvaraju, R. R., Batra, D., and Parikh, D. (2017).
Counting everyday objects in everyday scenes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1135–1144. 74, 75, 83

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srini-
vas, A., and Mordatch, I. (2021). Decision transformer: Reinforcement learning via
sequence modeling. Advances in Neural Information Processing Systems, 34:15084–
15097. 103, 121, 122, 123, 124, 127, 135, 137, 138

Chen, M., Artières, T., and Denoyer, L. (2019a). Unsupervised object segmentation
by redrawing. In Advances in Neural Information Processing Systems (NeurIPS). 56,
68, 71, 206

Chen, R. T., Li, X., Grosse, R., and Duvenaud, D. (2019b). Isolating sources of
disentanglement in VAEs. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pages 2615–2625. 80, 82, 89

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for
contrastive learning of visual representations. In International Conference on Machine
Learning, pages 1597–1607. PMLR. 122

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016).
InfoGAN: interpretable representation learning by information maximizing generative
adversarial nets. In Advances in Neural Information Processing Systems (NeurIPS).
66, 80

Cheng, C.-A., Xie, T., Jiang, N., and Agarwal, A. (2022). Adversarially trained ac-
tor critic for ofÒine reinforcement learning. In International Conference on Machine
Learning, pages 3852–3878. PMLR. 135

Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H., and Hu, S.-M. (2014). Global
contrast based salient region detection. Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 37(3):569–582. 54

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder
for statistical machine translation. In Annual Conference on Empirical Methods in
Natural Language Processing (EMNLP). 175

252



Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image under-
standing, 53(2):211–218. 55

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and Sharkey, L. (2023). Sparse
autoencoders find highly interpretable features in language models. arXiv preprint
arXiv:2309.08600. 166

Dai, J., He, K., and Sun, J. (2015). BoxSup: Exploiting bounding boxes to supervise
convolutional networks for semantic segmentation. In International Conference on
Computer Vision (ICCV). 58

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the royal statistical society. Series
B (methodological), pages 1–38. 4, 145, 147

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255. Ieee. 155

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat GANs on image synthesis.
Advances in Neural Information Processing Systems, 34:8780–8794. 131, 238

Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. (1992). Un-
derstanding motor events: A neurophysiological study. Experimental Brain Research,
91:176–180. 102

Dosovitskiy, A. (2020). An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929. 76

Du, Y., Li, S., Tenenbaum, J., and Mordatch, I. (2021). Improved contrastive di-
vergence training of energy based models. In International Conference on Machine
Learning (ICML). 30

Du, Y. and Mordatch, I. (2019). Implicit generation and generalization in energy-based
models. CoRR, abs/1903.08689. 230

Eastwood, C. and Williams, C. K. (2018). A framework for the quantitative evaluation
of disentangled representations. In International Conference on Learning Representa-
tions. 80

Eccles, T., Bachrach, Y., Lever, G., Lazaridou, A., and Graepel, T. (2019). Biases
for emergent communication in multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems (NeurIPS). 33

Eitz, M., Hays, J., and Alexa, M. (2012). How do humans sketch objects? ACM
Transactions on Graphics (TOG), 31(4):1–10. 36

253



El-Kishky, A., Selsam, D., Song, Parascandolo, F. G., Ren, H., Lightman, H., Chung,
H. W., Akkaya, I., Sutskever, I., Wei, J., Gordon, J., Cobbe, K., Yu, K., Kondraciuk,
L., Schwarzer, M., Rohaninejad, M., Brown, N., Zhao, S., Bansal, T., Kosaraju, V.,
and Zhou, W. (2024). Learning to reason with LLMs. OpenAI Technical Report. 165

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S. (2021). RvS: What is essen-
tial for ofÒine RL via supervised learning? arXiv preprint arXiv:2112.10751. 135

Engelcke, M., Kosiorek, A. R., Jones, O. P., and Posner, I. (2020). GENESIS: Gen-
erative scene inference and sampling with object-centric latent representations. In
International Conference on Learning Representations (ICLR). 55, 57, 79

Eric, M., Krishnan, L., Charette, F., and Manning, C. D. (2017). Key-value retrieval
networks for task-oriented dialogue. In Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDial). 27

Eslami, S. A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K., and
Hinton, G. E. (2016). Attend, infer, repeat: Fast scene understanding with generative
models. In Advances in Neural Information Processing Systems (NeurIPS). 55, 57, 74

Eslami, S. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruder-
man, A., Rusu, A. A., Danihelka, I., Gregor, K., et al. (2018). Neural scene represen-
tation and rendering. Science, 360(6394):1204–1210. 81, 82

Evtimova, K., Drozdov, A., Kiela, D., and Cho, K. (2018). Emergent communication
in a multi-modal, multi-step referential game. In International Conference on Learning
Representations (ICLR). 33, 34, 36

Eysenbach, B., Udatha, S., Salakhutdinov, R. R., and Levine, S. (2022). Imitating
past successes can be very suboptimal. Advances in Neural Information Processing
Systems, 35:6047–6059. 134

Fan, J. E., Hawkins, R. D., Wu, M., and Goodman, N. D. (2020). Pragmatic infer-
ence and visual abstraction enable contextual flexibility during visual communication.
Computational Brain & Behavior, 3(1):86–101. 37

Fang, L., Li, C., Gao, J., Dong, W., and Chen, C. (2019). Implicit deep latent variable
models for text generation. In Annual Conference on Empirical Methods in Natural
Language Processing (EMNLP). 10, 29

Fay, N., Ellison, M., and Garrod, S. (2014). Iconicity: From sign to system in human
communication and language. Pragmatics & Cognition, 22(2):244–263. 32, 33, 34

Fay, N., Garrod, S., Roberts, L., and Swoboda, N. (2010). The interactive evolution
of human communication systems. Cognitive Science, 34(3):351–386. 35, 36

Fay, N., Walker, B., Swoboda, N., and Garrod, S. (2018). How to create shared
symbols. Cognitive Science, 42:241–269. 34

254



Ferrer-Mestres, J., Dietterich, T. G., Buffet, O., and Chades, I. (2020). Solving k-
MDPs. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 30, pages 110–118. 116

Finn, C., Christiano, P. F., Abbeel, P., and Levine, S. (2016). A connection between
generative adversarial networks, inverse reinforcement learning, and energy-based mod-
els. CoRR, abs/1611.03852. 108, 121, 219

Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid, A., Downs, L., Wong,
A., Lee, J., Mordatch, I., and Tompson, J. (2022). Implicit behavioral cloning. In
Conference on Robot Learning, pages 158–168. PMLR. 230

Foerster, J. N., Assael, Y. M., De Freitas, N., and Whiteson, S. (2016). Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS). 34

Forgues, G., Pineau, J., Larchevêque, J.-M., and Tremblay, R. (2014). Bootstrapping
dialog systems with word embeddings. In Advances in Neural Information Processing
Systems (NeurIPS). 27

Fox, R., Pakman, A., and Tishby, N. (2016). Taming the noise in reinforcement
learning via soft updates. In 32nd Conference on Uncertainty in Artificial Intelligence
2016, UAI 2016, pages 202–211. Association For Uncertainty in Artificial Intelligence
(AUAI). 104, 225, 226

Freed, B., Venkatraman, S., Sartoretti, G. A., Schneider, J., and Choset, H. (2023).
Learning temporally abstractworld models without online experimentation. In Inter-
national Conference on Machine Learning, pages 10338–10356. PMLR. 136

Fu, H., Li, C., Liu, X., Gao, J., Çelikyilmaz, A., and Carin, L. (2019). Cyclical an-
nealing schedule: A simple approach to mitigating kl vanishing. In North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT). 29

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219. 125, 136,
139

Fujimoto, S. and Gu, S. S. (2021). A minimalist approach to ofÒine reinforcement
learning. Advances in Neural Information Processing Systems, 34:20132–20145. 135

Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., and Taigman, Y. (2022).
Make-a-scene: Scene-based text-to-image generation with human priors. In European
Conference on Computer Vision, pages 89–106. Springer. 160

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R., Radford, A., Sutskever,
I., Leike, J., and Wu, J. (2024). Scaling and evaluating sparse autoencoders. arXiv
preprint arXiv:2406.04093. 166

255



Gao, R., Lu, Y., Zhou, J., Zhu, S., and Wu, Y. N. (2018). Learning generative convnets
via multi-grid modeling and sampling. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pages 9155–9164. 147

Gao, R., Song, Y., Poole, B., Wu, Y. N., and Kingma, D. P. (2020). Learning energy-
based models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125. 10,
11, 14, 19, 30, 147

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. C., and Bengio, Y. (2014). Generative adversarial nets. In Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672–
2680. 56

Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt, D. (2019). Permutation
equivariant models for compositional generalization in language. In International Con-
ference on Learning Representations. 83, 84

Goyal, A., Lamb, A., Gampa, P., Beaudoin, P., Levine, S., Blundell, C., Bengio,
Y., and Mozer, M. (2020). Object files and schemata: Factorizing declarative and
procedural knowledge in dynamical systems. arXiv preprint arXiv:2006.16225. 74

Graesser, L., Cho, K., and Kiela, D. (2019). Emergent linguistic phenomena in multi-
agent communication games. In Annual Conference on Empirical Methods in Natural
Language Processing (EMNLP). 33, 36

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., Norouzi, M., and Swer-
sky, K. (2019). Your classifier is secretly an energy based model and you should treat
it like one. arXiv preprint arXiv:1912.03263. 10, 18, 30, 230

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L.,
Botvinick, M., and Lerchner, A. (2019). Multi-object representation learning with iter-
ative variational inference. In International Conference on Machine Learning (ICML).
55, 57, 58, 64, 65, 70, 74, 75, 79, 80, 81, 82, 89, 92, 97, 189, 190, 196, 206

Greff, K., Rasmus, A., Berglund, M., Hao, T. H., Schmidhuber, J., and Valpola, H.
(2016). Tagger: Deep unsupervised perceptual grouping. In Advances in Neural Infor-
mation Processing Systems (NeurIPS). 55, 57, 70, 189, 190

Greff, K., van Steenkiste, S., and Schmidhuber, J. (2017). Neural expectation maxi-
mization. In Advances in Neural Information Processing Systems (NeurIPS). 55, 57,
79

Greff, K., Van Steenkiste, S., and Schmidhuber, J. (2020). On the binding problem in
artificial neural networks. arXiv preprint arXiv:2012.05208. 74

256



Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., andWierstra, D. (2015). DRAW:
A recurrent neural network for image generation. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
pages 1462–1471. 57

Grenander, U. (1970). A unified approach to pattern analysis. In Advances in Com-
puters, volume 10, pages 175–216. Elsevier. 1, 163

Grenander, U. and Miller, M. I. (2007). Pattern theory: from representation to infer-
ence. Oxford University Press. 1, 163

Gu, J., Zhai, S., Zhang, Y., Liu, L., and Susskind, J. M. (2023). Boot: Data-free
distillation of denoising diffusion models with bootstrapping. In ICML 2023 Workshop
on Structured Probabilistic Inference {\&} Generative Modeling. 144, 159

Guo, C.-e., Zhu, S.-C., and Wu, Y. N. (2007). Primal sketch: Integrating structure
and texture. Computer Vision and Image Understanding (CVIU), 106(1):5–19. 55, 62

Gupta, A., Agarwal, A., Singh, P., and Rai, P. (2018). A deep generative framework
for paraphrase generation. In AAAI Conference on Artificial Intelligence (AAAI). 9,
29

Gururangan, S., Dang, T., Card, D., and Smith, N. A. (2019). Variational pretrain-
ing for semi-supervised text classification. In Annual Meeting of the Association for
Computational Linguistics (ACL). 176

Ha, D. and Eck, D. (2018). A neural representation of sketch drawings. In Interna-
tional Conference on Learning Representations (ICLR). 34, 35, 36, 81

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. (2017). Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning,
pages 1352–1361. PMLR. 104, 105, 112, 226

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Interna-
tional Conference on Machine Learning, pages 1861–1870. PMLR. 104, 112, 226

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2019). Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Represen-
tations (ICLR). 40

Han, T., Lu, Y., Zhu, S., and Wu, Y. N. (2017). Alternating back-propagation for
generator network. In AAAI Conference on Artificial Intelligence (AAAI), pages 1976–
1984. 130, 133, 147

Han, T., Nijkamp, E., Fang, X., Hill, M., Zhu, S.-C., and Wu, Y. N. (2019). Divergence
triangle for joint training of generator model, energy-based model, and inferential
model. In Conference on Computer Vision and Pattern Recognition (CVPR). 17

257



Han, T., Nijkamp, E., Zhou, L., Pang, B., Zhu, S.-C., and Wu, Y. N. (2020). Joint
training of variational auto-encoder and latent energy-based model. In Conference on
Computer Vision and Pattern Recognition (CVPR). 30

Harispe, S., Ranwez, S., Janaqi, S., and Montmain, J. (2015). Semantic similarity
from natural language and ontology analysis. Synthesis Lectures on Human Language
Technologies, 8(1):1–254. 35

Havrylov, S. and Titov, I. (2017). Emergence of language with multi-agent games:
Learning to communicate with sequences of symbols. In Advances in Neural Informa-
tion Processing Systems (NeurIPS). 33, 36, 40

Hawkins, R. X., Sano, M., Goodman, N. D., and Fan, J. E. (2019). Disentangling
contributions of visual information and interaction history in the formation of graphical
conventions. In Annual Meeting of the Cognitive Science Society (CogSci). 32, 33, 34,
35, 36

Hayes, G. M. and Demiris, J. (1994). A robot controller using learning by imitation.
University of Edinburgh, Department of Artificial Intelligence. 102, 121

He, J., Spokoyny, D., Neubig, G., and Berg-Kirkpatrick, T. (2018). Lagging infer-
ence networks and posterior collapse in variational autoencoders. In International
Conference on Learning Representations (ICLR). 29

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 9729–9738. 89, 98, 122

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-CNN. In Interna-
tional Conference on Computer Vision (ICCV). 68, 188

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR). 68,
76, 188

Heek, J., Hoogeboom, E., and Salimans, T. (2024). Multistep consistency models.
arXiv preprint arXiv:2403.06807. 144, 154, 159, 160

Heider, F. and Simmel, M. (1944). An experimental study of apparent behavior. The
American Journal of Psychology, 57(2):243–259. 5

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017).
GANs trained by a two time-scale update rule converge to a local nash equilibrium. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA,
pages 6626–6637. 155

258



Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed,
S., and Lerchner, A. (2016). beta-VAE: Learning basic visual concepts with a con-
strained variational framework. In International Conference on Learning Representa-
tions (ICLR). 29, 74, 75, 80, 82, 83

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531. 154

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D. P.,
Poole, B., Norouzi, M., Fleet, D. J., et al. (2022). Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303. 144

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. Advances in
Neural Information Processing Systems, 29. 108, 118, 121, 219, 229

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840–6851. 11, 15, 19, 21, 30,
135, 144, 146

Ho, J. and Salimans, T. (2022). Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598. 131

Hoffmann, D. L., Standish, C. D., García-Diez, M., Pettitt, P. B., Milton, J. A.,
Zilhão, J., Alcolea-González, J. J., Cantalejo-Duarte, P., Collado, H., De Balbín, R.,
et al. (2018). U-Th dating of carbonate crusts reveals neandertal origin of Iberian cave
art. Science, 359(6378):912–915. 32, 82

Hoogeboom, E., Heek, J., and Salimans, T. (2023). Simple diffusion: End-to-end
diffusion for high resolution images. In International Conference on Machine Learning,
pages 13213–13232. PMLR. 239

Horner, V. and Whiten, A. (2005). Causal knowledge and imitation/emulation switch-
ing in chimpanzees (pan troglodytes) and children (homo sapiens). Animal Cognition,
8:164–181. 104, 117

Huang, J. and Murphy, K. (2015). Efficient inference in occlusion-aware generative
models of images. arXiv preprint arXiv:1511.06362. 74, 82

Huang, Z., Heng, W., and Zhou, S. (2019). Learning to paint with model-based deep
reinforcement learning. In International Conference on Computer Vision (ICCV). 34,
36, 39, 40

Huang, Z., Wang, X., Wang, J., Liu, W., and Wang, J. (2018). Weakly-supervised
semantic segmentation network with deep seeded region growing. In Conference on
Computer Vision and Pattern Recognition (CVPR). 58

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification,
2(1):193–218. 79

259



Hutter, M. (2009). Feature reinforcement learning: Part i. unstructured MDPs. Jour-
nal of Artificial General Intelligence, 1(1):3–24. 105

Hyvärinen, A. and Dayan, P. (2005). Estimation of non-normalized statistical models
by score matching. Journal of Machine Learning Research, 6(4). 146

Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S. (2018). Using reward
machines for high-level task specification and decomposition in reinforcement learning.
In International Conference on Machine Learning, pages 2107–2116. PMLR. 105

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages
448–456. 66

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive
mixtures of local experts. Neural Computation, 3(1):79–87. 55, 60

Janner, M., Du, Y., Tenenbaum, J., and Levine, S. (2022). Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pages
9902–9915. PMLR. 103, 122, 135

Janner, M., Li, Q., and Levine, S. (2021). OfÒine reinforcement learning as one big
sequence modeling problem. Advances in Neural Information Processing Systems,
34:1273–1286. 103, 120, 121, 122, 123, 135

Jayaraman, D. and Grauman, K. (2015). Learning image representations tied to ego-
motion. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1413–1421. 81, 84

Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review,
106(4):620. 225

Ji, X., Henriques, J. F., and Vedaldi, A. (2019). Invariant information clustering for
unsupervised image classification and segmentation. In International Conference on
Computer Vision (ICCV). 58

Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., and Li, S. (2013). Salient object
detection: A discriminative regional feature integration approach. In Conference on
Computer Vision and Pattern Recognition (CVPR). 54

Jin, S., Wiseman, S., Stratos, K., and Livescu, K. (2020). Discrete latent variable rep-
resentations for low-resource text classification. In Annual Meeting of the Association
for Computational Linguistics (ACL). 176

Jing, M., Ma, X., Huang, W., Sun, F., and Liu, H. (2019). Task transfer by preference-
based cost learning. In AAAI Conference on Artificial Intelligence (AAAI). 30

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale similarity search with gpus.
IEEE Transactions on Big Data. 20

260



Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C.,
and Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language
and elementary visual reasoning. In Conference on Computer Vision and Pattern
Recognition (CVPR). 67, 69, 76, 79, 189

Jordan, M. I. and Jacobs, R. A. (1994). Hierarchical mixtures of experts and the EM
algorithm. Neural Computation, 6(2):181–214. 55, 60

Julesz, B. (1981). Textons, the elements of texture perception, and their interactions.
Nature, 290(5802):91–97. 62

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134. 105

Kahneman, D., Treisman, A., and Gibbs, B. J. (1992). The reviewing of object files:
Object-specific integration of information. Cognitive Psychology, 24(2):175–219. 4

Kampelmuhler, M. and Pinz, A. (2020). Synthesizing human-like sketches from natural
images using a conditional convolutional decoder. In Proceedings of Winter Conference
on Applications of Computer Vision (WACV). 36, 39

Kanezaki, A. (2018). Unsupervised image segmentation by backpropagation. In Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). 58

Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E., Paris, S., and Park, T.
(2023). Scaling up GANs for text-to-image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10124–10134. 160

Kappen, H. J., Gómez, V., and Opper, M. (2012). Optimal control as a graphical
model inference problem. Machine Learning, 87:159–182. 110

Karazija, L., Laina, I., and Rupprecht, C. (2021). ClevrTex: A texture-rich benchmark
for unsupervised multi-object segmentation. arXiv preprint arXiv:2111.10265. 79, 89

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space
of diffusion-based generative models. Advances in Neural Information Processing Sys-
tems, 35:26565–26577. 154, 155, 159, 238

Karras, T., Laine, S., and Aila, T. (2018). A style-based generator architecture for
generative adversarial networks. arXiv preprint arXiv:1812.04948. 160

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International Journal of Computer Vision (IJCV), 1(4):321–331. 55

Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D., Kashubin, S., Mom-
chev, N., Sinopalnikov, D., Stafiniak, L., Tihon, T., et al. (2019). Measuring com-
positional generalization: A comprehensive method on realistic data. arXiv preprint
arXiv:1912.09713. 81

261



Khoreva, A., Benenson, R., Hosang, J., Hein, M., and Schiele, B. (2017). Simple
does it: Weakly supervised instance and semantic segmentation. In Conference on
Computer Vision and Pattern Recognition (CVPR). 58

Khosla, A., Jayadevaprakash, N., Yao, B., and Li, F.-F. (2011). Novel dataset for fine-
grained image categorization: Stanford dogs. In CVPR Workshop on Fine-Grained
Visual Categorization (FGVC). 67, 71

Kidambi, R., Chang, J., and Sun, W. (2021). MobILE: Model-based imitation learning
from observation alone. arXiv preprint arXiv:2102.10769. 121, 229, 230

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. (2020). Morel: Model-
based ofÒine reinforcement learning. Advances in Neural Information Processing Sys-
tems, 33:21810–21823. 229

Kim, D., Lai, C.-H., Liao, W.-H., Murata, N., Takida, Y., Uesaka, T., He, Y., Mitsufuji,
Y., and Ermon, S. (2023). Consistency trajectory models: Learning probability flow
ode trajectory of diffusion. arXiv preprint arXiv:2310.02279. 154, 155

Kim, H. and Mnih, A. (2018). Disentangling by factorising. In International Confer-
ence on Machine Learning, pages 2649–2658. PMLR. 79, 80, 83

Kim, I. Y. and De Weck, O. L. (2005). Adaptive weighted-sum method for bi-objective
optimization: Pareto front generation. Structural and Multidisciplinary Optimization,
29(2):149–158. 46

Kingma, D. and Gao, R. (2023). Understanding diffusion objectives as the elbo with
simple data augmentation. Advances in Neural Information Processing Systems, 36.
146, 156, 239

Kingma, D., Salimans, T., Poole, B., and Ho, J. (2021). Variational diffusion models.
Advances in Neural Information Processing Systems, 34:21696–21707. 146

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. 174, 191

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. 44

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-supervised
learning with deep generative models. In Advances in Neural Information Processing
Systems (NeurIPS). 175

Kingma, D. P. and Welling, M. (2014a). Auto-encoding variational bayes. In 2nd In-
ternational Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings. 10, 13, 29, 71, 112, 135, 175, 220

Kingma, D. P. and Welling, M. (2014b). Auto-encoding variational Bayes. In Inter-
national Conference on Learning Representations (ICLR). 41

262



Kong, D., Xu, D., Zhao, M., Pang, B., Xie, J., Lizarraga, A., Huang, Y., Xie, S.,
and Wu, Y. N. (2024). Latent plan transformer: Planning as latent variable inference.
arXiv preprint arXiv:2402.04647. 6

Kosiorek, A., Kim, H., Teh, Y. W., and Posner, I. (2018). Sequential attend, infer,
repeat: Generative modelling of moving objects. Advances in Neural Information
Processing Systems, 31. 74

Kostrikov, I., Nair, A., and Levine, S. (2021). OfÒine reinforcement learning with
implicit Q-learning. In International Conference on Learning Representations. 135

Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, 37(2):233–243. 89

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. (2013). 3D object representations for
fine-grained categorization. In ICCV workshops. 67, 71

Kumar, A., Sattigeri, P., and Balakrishnan, A. (2018). Variational inference of disen-
tangled latent concepts from unlabeled observations. In International Conference on
Learning Representations. 80

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative Q-learning for
ofÒine reinforcement learning. Advances in Neural Information Processing Systems,
33:1179–1191. 124, 135, 137

Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What learning systems do
intelligent agents need? complementary learning systems theory updated. Trends in
Cognitive Sciences, 20(7):512–534. 166

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-
ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592. 229

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., and Aila, T. (2019). Improved
precision and recall metric for assessing generative models. Advances in Neural Infor-
mation Processing Systems, 32. 155, 157

Lake, B. and Baroni, M. (2018). Generalization without systematicity: On the compo-
sitional skills of sequence-to-sequence recurrent networks. In International Conference
on Machine Learning, pages 2873–2882. PMLR. 75, 81, 83

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and Srinivas, A. (2020). Rein-
forcement learning with augmented data. Advances in Neural Information Processing
Systems, 33:19884–19895. 122

Lazaridou, A. and Baroni, M. (2020). Emergent multi-agent communication in the
deep learning era. arXiv preprint arXiv:2006.02419. 33

Lazaridou, A., Hermann, K. M., Tuyls, K., and Clark, S. (2018). Emergence of lin-
guistic communication from referential games with symbolic and pixel input. In Inter-
national Conference on Learning Representations (ICLR). 33, 34, 36, 40

263



Lazaridou, A., Peysakhovich, A., and Baroni, M. (2017). Multi-agent cooperation
and the emergence of (natural) language. In International Conference on Learning
Representations (ICLR). 33, 34, 36, 37, 40

Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning.
International Journal of Computer Vision (IJCV), 3(1):73–102. 55

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang, F. (2006). A tutorial
on energy-based learning. Predicting structured data, 1(0). 121

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Freeman, D., Guadarrama, S., Fischer,
I., Xu, W., Jang, E., Michalewski, H., et al. (2022). Multi-game decision transformers.
Advances in Neural Information Processing Systems, 35:27921–27936. 135

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tu-
torial and review. arXiv preprint arXiv:1805.00909. 104, 110, 224

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). OfÒine reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.
103, 123

Lewis, D. K. (1969). Convention: A Philosophical Study. John Wiley & Sons. 44, 47

Li, B., He, J., Neubig, G., Berg-Kirkpatrick, T., and Yang, Y. (2019a). A surpris-
ingly effective fix for deep latent variable modeling of text. In Annual Conference on
Empirical Methods in Natural Language Processing (EMNLP). 29

Li, J., Jia, R., He, H., and Liang, P. (2018). Delete, retrieve, generate: a simple ap-
proach to sentiment and style transfer. In North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT). 27

Li, M., Lin, Z., Mech, R., Yumer, E., and Ramanan, D. (2019b). Photo-sketching:
Inferring contour drawings from images. In Proceedings of Winter Conference on
Applications of Computer Vision (WACV). 39

Li, P., Lam, W., Bing, L., and Wang, Z. (2017a). Deep recurrent generative decoder
for abstractive text summarization. In Annual Conference on Empirical Methods in
Natural Language Processing (EMNLP). 9, 29

Li, Y., Su, H., Shen, X., Li, W., Cao, Z., and Niu, S. (2017b). DailyDialog: A
manually labelled multi-turn dialogue dataset. In Annual Meeting of the Association
for Computational Linguistics (ACL). 25

Li, Y., Wang, H., Jin, Q., Hu, J., Chemerys, P., Fu, Y., Wang, Y., Tulyakov, S., and
Ren, J. (2023). SnapFusion: Text-to-image diffusion model on mobile devices within
two seconds. arXiv preprint arXiv:2306.00980. 154

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971. 138

264



Lin, S., Wang, A., and Yang, X. (2024). SDXL-Lightning: Progressive adversarial
diffusion distillation. arXiv preprint arXiv:2402.13929. 155

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
and Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European
Conference on Computer Vision (ECCV). 68, 161, 188

Lin, Z., Wu, Y.-F., Peri, S. V., Sun, W., Singh, G., Deng, F., Jiang, J., and Ahn,
S. (2020). SPACE: Unsupervised object-oriented scene representation via spatial at-
tention and decomposition. In International Conference on Learning Representations
(ICLR). 55, 57

Liu, X., Zhang, X., Ma, J., Peng, J., et al. (2023). InstaFlow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International
Conference on Learning Representations. 154, 160, 162

Liu, Y., Gupta, A., Abbeel, P., and Levine, S. (2018). Imitation from observation:
Learning to imitate behaviors from raw video via context translation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 1118–1125. IEEE.
121

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit,
J., Dosovitskiy, A., and Kipf, T. (2020). Object-centric learning with slot attention.
In Advances in Neural Information Processing Systems (NeurIPS). 55, 57, 58, 64, 65,
70, 75, 79, 80, 81, 82, 83, 88, 89, 92, 93, 99, 189, 196

Lorenz, D., Bereska, L., Milbich, T., and Ommer, B. (2019). Unsupervised part-based
disentangling of object shape and appearance. In Conference on Computer Vision and
Pattern Recognition (CVPR). 58

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. (2022a). DPM-Solver: A fast
ODE solver for diffusion probabilistic model sampling in around 10 steps. Advances
in Neural Information Processing Systems, 35:5775–5787. 154, 159

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu, J. (2022b). DPM-Solver++:
Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095. 154, 160, 161

Luhman, E. and Luhman, T. (2021). Knowledge distillation in iterative generative
models for improved sampling speed. arXiv preprint arXiv:2101.02388. 154

Luo, S., Tan, Y., Huang, L., Li, J., and Zhao, H. (2023a). Latent consistency
models: Synthesizing high-resolution images with few-step inference. arXiv preprint
arXiv:2310.04378. 154

Luo, S., Tan, Y., Patil, S., Gu, D., von Platen, P., Passos, A., Huang, L., Li, J.,
and Zhao, H. (2023b). LCM-LoRA: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556. 160, 161, 162

265



Luo, W., Hu, T., Zhang, S., Sun, J., Li, Z., and Zhang, Z. (2023c). Diff-Instruct:
A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36. 144, 145, 148, 150, 152, 153,
155, 158, 159, 161

Luo, Y., Xu, H., Li, Y., Tian, Y., Darrell, T., and Ma, T. (2018). Algorithmic frame-
work for model-based deep reinforcement learning with theoretical guarantees. arXiv
preprint arXiv:1807.03858. 229

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine, S., and Sermanet,
P. (2020). Learning latent plans from play. In Conference on Robot Learning, pages
1113–1132. PMLR. 135

Lyons, D. E., Young, A. G., and Keil, F. C. (2007). The hidden structure of overimi-
tation. Proceedings of the National Academy of Sciences, 104(50):19751–19756. 104

Majeed, S. J. and Hutter, M. (2018). On Q-learning convergence for non-Markov
decision processes. In IJCAI, volume 18, pages 2546–2552. 226

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large
annotated corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330.
23

Marino, J., Yue, Y., and Mandt, S. (2018). Iterative amortized inference. In Interna-
tional Conference on Machine Learning (ICML). 57

Matthey, L., Higgins, I., Hassabis, D., and Lerchner, A. (2017). dSprites: Disentangle-
ment testing sprites dataset. https://github.com/deepmind/dsprites-dataset/. 67, 69,
189

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon, S., Ho, J., and Salimans, T.
(2023). On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14297–14306. 154

Merity, S., Keskar, N. S., and Socher, R. (2018). Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations (ICLR).
175

Miao, Y., Yu, L., and Blunsom, P. (2016). Neural variational inference for text pro-
cessing. In International Conference on Machine Learning (ICML). 28

Mihai, D. and Hare, J. (2021). Learning to draw: Emergent communication through
sketching. In Advances in Neural Information Processing Systems (NeurIPS). 36, 37

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 36, 49

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and Khudanpur, S. (2010). Re-
current neural network based language model. In Interspeech. 23, 175

266



Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems, 26. 75, 77, 80

Mitchell, J. and Lapata, M. (2008). Vector-based models of semantic composition. In
Annual Meeting of the Association for Computational Linguistics (ACL). 27, 75

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization
for generative adversarial networks. In 6th International Conference on Learning Rep-
resentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. 172

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533. 235

Mordatch, I. and Abbeel, P. (2018). Emergence of grounded compositional language
in multi-agent populations. In AAAI Conference on Artificial Intelligence (AAAI). 33

Muhammad, U. R., Yang, Y., Song, Y.-Z., Xiang, T., and Hospedales, T. M. (2018).
Learning deep sketch abstraction. In Conference on Computer Vision and Pattern
Recognition (CVPR). 37

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2018). Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning.
In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
7559–7566. IEEE. 229

Neal, R. M. (2011). MCMC using hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2. 129, 146

Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse reinforcement learning. In
Icml, volume 1, page 2. 103, 121

Nguyen, T. H. and Tran, A. (2023). SwiftBrush: One-step text-to-image diffusion
model with variational score distillation. arXiv preprint arXiv:2312.05239. 148, 155

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever,
I., and Chen, M. (2021). Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741. 160

Nie, W., Vahdat, A., and Anandkumar, A. (2021). Controllable and compositional
generation with latent-space energy-based models. Advances in Neural Information
Processing Systems, 34:13497–13510. 11, 31

Nijkamp, E., Gao, R., Sountsov, P., Vasudevan, S., Pang, B., Zhu, S.-C., and Wu,
Y. N. (2021). Mcmc should mix: Learning energy-based model with neural transport
latent space mcmc. In International Conference on Learning Representations. 147,
151, 236

267



Nijkamp, E., Hill, M., Han, T., Zhu, S.-C., and Wu, Y. N. (2020a). On the anatomy
of MCMC-based maximum likelihood learning of energy-based models. In AAAI Con-
ference on Artificial Intelligence (AAAI). 10, 30, 147, 166

Nijkamp, E., Hill, M., Zhu, S.-C., and Wu, Y. N. (2019). Learning non-convergent
non-persistent short-run MCMC toward energy-based model. Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, Canada. 10,
30, 71, 104, 108, 145, 147, 221

Nijkamp, E., Pang, B., Han, T., Zhou, L., Zhu, S.-C., and Wu, Y. N. (2020b). Learning
multi-layer latent variable model via variational optimization of short run MCMC for
approximate inference. In European Conference on Computer Vision (ECCV), pages
361–378. 130

Oh, S. J., Benenson, R., Khoreva, A., Akata, Z., Fritz, M., and Schiele, B. (2017).
Exploiting saliency for object segmentation from image level labels. In Conference on
Computer Vision and Pattern Recognition (CVPR). 58

Osband, I., Russo, D., and Van Roy, B. (2013). (more) efficient reinforcement learning
via posterior sampling. Advances in Neural Information Processing Systems, 26. 141,
235

Osband, I. and Van Roy, B. (2017). Why is posterior sampling better than optimism
for reinforcement learning? In International Conference on Machine Learning, pages
2701–2710. PMLR. 131, 141, 235

Ostyakov, P., Suvorov, R., Logacheva, E., Khomenko, O., and Nikolenko, S. I. (2018).
SeiGAN: Towards compositional image generation by simultaneously learning to seg-
ment, enhance, and inpaint. arXiv preprint arXiv:1811.07630. 56

Pang, B., Han, T., Nijkamp, E., Zhu, S.-C., and Wu, Y. N. (2020a). Learning la-
tent space energy-based prior model. In Advances in Neural Information Processing
Systems (NeurIPS). 10, 30, 55, 59, 71, 103, 107, 121, 127, 129, 172, 194

Pang, B., Han, T., and Wu, Y. N. (2020b). Learning latent space energy-based prior
model for molecule generation. arXiv preprint arXiv:2010.09351. 30

Pang, B. and Wu, Y. N. (2021). Latent space energy-based model of symbol-vector
coupling for text generation and classification. In International Conference on Machine
Learning (ICML). 10, 12, 13, 21, 23, 27, 28, 29, 30, 60, 174, 175

Pang, B., Zhao, T., Xie, X., and Wu, Y. N. (2021). Trajectory prediction with latent
belief energy-based model. In Conference on Computer Vision and Pattern Recognition
(CVPR). 30

Papandreou, G., Chen, L.-C., Murphy, K. P., and Yuille, A. L. (2015). Weakly-and
semi-supervised learning of a deep convolutional network for semantic image segmen-
tation. In International Conference on Computer Vision (ICCV). 58

268



Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for
automatic evaluation of machine translation. In Annual Meeting of the Association for
Computational Linguistics (ACL). 23

Paster, K., McIlraith, S., and Ba, J. (2022). You can’t count on luck: Why decision
transformers and rvs fail in stochastic environments. Advances in Neural Information
Processing Systems, 35:38966–38979. 134, 135, 137, 141

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing
Systems, pages 8024–8035. 65

Pathak, D., Krahenbuhl, P., and Darrell, T. (2015). Constrained convolutional neural
networks for weakly supervised segmentation. In International Conference on Com-
puter Vision (ICCV). 58

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for
word representation. In Annual Conference on Empirical Methods in Natural Language
Processing (EMNLP). 175

Pham, T. T., Do, T.-T., Sünderhauf, N., and Reid, I. (2018). SceneCut: Joint ge-
ometric and object segmentation for indoor scenes. In International Conference on
Robotics and Automation (ICRA). 58

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. (2022). DreamFusion: Text-to-
3D using 2D diffusion. arXiv preprint arXiv:2209.14988. 144, 145, 148, 154, 155

Qin, A., Gao, F., Li, Q., Zhu, S.-C., and Xie, S. (2023). Learning non-Markovian
decision-making from state-only sequences. In Thirty-Seventh Conference on Neural
Information Processing Systems. 5

Qiu, S., Xie, S., Fan, L., Gao, T., Joo, J., Zhu, S.-C., and Zhu, Y. (2022). Emergent
graphical conventions in a visual communication game. Advances in Neural Informa-
tion Processing Systems, 35:13119–13131. 3

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models
from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR. 155

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learning
with deep convolutional generative adversarial networks. In 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings. 66, 75, 80

Rajeswaran, A., Mordatch, I., and Kumar, V. (2020). A game theoretic framework for
model based reinforcement learning. In International Conference on Machine Learning,
pages 7953–7963. PMLR. 229

269



Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125,
1(2):3. 144, 160

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and
Sutskever, I. (2021). Zero-shot text-to-image generation. In International Conference
on Machine Learning, pages 8821–8831. Pmlr. 1, 160

Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. (2006). Maximum margin planning.
In Proceedings of the 23rd International Conference on Machine Learning, pages 729–
736. 121

Ren, Y., Guo, S., Labeau, M., Cohen, S. B., and Kirby, S. (2020). Compositional
languages emerge in a neural iterated learning model. In International Conference on
Learning Representations (ICLR). 33, 34, 36

Ren, Y., Xia, X., Lu, Y., Zhang, J., Wu, J., Xie, P., Wang, X., and Xiao, X. (2024).
Hyper-SD: Trajectory segmented consistency model for efficient image synthesis. arXiv
preprint arXiv:2404.13686. 155

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, pages 1278–1286. 10, 29

Rizzolatti, G., Fogassi, L., and Gallese, V. (2001). Neurophysiological mechanisms
underlying the understanding and imitation of action. Nature Reviews Neuroscience,
2(9):661–670. 102

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-
resolution image synthesis with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–
10695. 144, 159, 160, 161, 239

Ronca, A., Licks, G. P., and De Giacomo, G. (2022). Markov abstractions for PAC rein-
forcement learning in non-markov decision processes. arXiv preprint arXiv:2205.01053.
105

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Octo-
ber 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer. 127

Ross, S. and Bagnell, D. (2010). Efficient reductions for imitation learning. In Proceed-
ings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 661–668. JMLR Workshop and Conference Proceedings. 118, 132, 229

270



Rother, C., Kolmogorov, V., and Blake, A. (2004). GrabCut interactive foreground ex-
traction using iterated graph cuts. ACM Transactions on Graphics (TOG), 23(3):309–
314. 54, 72, 202

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–268. 67, 195

Rus, V. and Lintean, M. (2012). An optimal assessment of natural language student
input using word-to-word similarity metrics. In International Conference on Intelligent
Tutoring Systems. 27

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al. (2022). Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems, 35:36479–36494. 1, 144, 160

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., and Chen, X.
(2016). Improved techniques for training GANs. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 2226–2234. 155

Salimans, T. and Ho, J. (2022). Progressive distillation for fast sampling of diffusion
models. arXiv preprint arXiv:2202.00512. 144, 154, 159

Sangkloy, P., Burnell, N., Ham, C., and Hays, J. (2016). The sketchy database: Learn-
ing to retrieve badly drawn bunnies. ACM Transactions on Graphics (TOG), 35(4):1–
12. 36, 40, 42

Sauer, A., Boesel, F., Dockhorn, T., Blattmann, A., Esser, P., and Rombach, R. (2024).
Fast high-resolution image synthesis with latent adversarial diffusion distillation. arXiv
preprint arXiv:2403.12015. 155

Sauer, A., Lorenz, D., Blattmann, A., and Rombach, R. (2023). Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042. 144, 155, 162

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2014). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In International Conference on
Learning Representations (ICLR). 66, 191

Sayim, B. and Cavanagh, P. (2011). What line drawings reveal about the visual brain.
Frontiers in Human Neuroscience, 5:118. 39

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and
Bengio, Y. (2021). Toward causal representation learning. Proceedings of the IEEE,
109(5):612–634. 79, 81, 82

Schuhmann, C., Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti, M.,
Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al. (2022). Laion-5b: An open
large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294. 159

271



Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347. 118, 229

Serban, I., Sordoni, A., Bengio, Y., Courville, A., and Pineau, J. (2016). Building
end-to-end dialogue systems using generative hierarchical neural network models. In
AAAI Conference on Artificial Intelligence (AAAI). 9, 29

Serban, I., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and Bengio, Y.
(2017). A hierarchical latent variable encoder-decoder model for generating dialogues.
In AAAI Conference on Artificial Intelligence (AAAI). 29

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 22(8):888–905. 54

Shi, W., Zhou, H., Miao, N., and Li, L. (2020). Dispersed exponential family mix-
ture vaes for interpretable text generation. In International Conference on Machine
Learning (ICML). 10, 23, 27, 29, 30, 175

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and
support inference from rgbd images. In European Conference on Computer Vision
(ECCV). 58

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).
Deterministic policy gradient algorithms. In International Conference on Machine
Learning (ICML). 41

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations
(ICLR). 40

Singh, G., Deng, F., and Ahn, S. (2021). Illiterate DALL-E learns to compose. arXiv
preprint arXiv:2110.11405. 74, 75

Singh, K. K., Ojha, U., and Lee, Y. J. (2019). FineGAN: Unsupervised hierarchical
disentanglement for fine-grained object generation and discovery. In Conference on
Computer Vision and Pattern Recognition (CVPR). 57

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994). Learning without state-estimation
in partially observable markovian decision processes. In Machine Learning Proceedings
1994, pages 284–292. Elsevier. 103

Sinha, A., Song, J., Meng, C., and Ermon, S. (2021). D2C: Diffusion-denoising models
for few-shot conditional generation. In Advances in Neural Information Processing
Systems (NeurIPS). 31

Sinha, S., Mandlekar, A., and Garg, A. (2022). S4RL: Surprisingly simple self-
supervision for ofÒine reinforcement learning in robotics. In Conference on Robot
Learning, pages 907–917. PMLR. 122

272



Snell, C., Lee, J., Xu, K., and Kumar, A. (2024). Scaling LLM test-time com-
pute optimally can be more effective than scaling model parameters. arXiv preprint
arXiv:2408.03314. 166

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep
unsupervised learning using nonequilibrium thermodynamics. In International Con-
ference on Machine Learning (ICML). 11, 13, 30, 144, 146

Song, J., Meng, C., and Ermon, S. (2020a). Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502. 144, 154, 159

Song, J., Pang, K., Song, Y.-Z., Xiang, T., and Hospedales, T. M. (2018). Learning to
sketch with shortcut cycle consistency. In Conference on Computer Vision and Pattern
Recognition (CVPR). 35

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. (2023). Consistency models. In
International Conference on Machine Learning, pages 32211–32252. PMLR. 144, 154,
159, 160

Song, Y. and Ermon, S. (2019). Generative modeling by estimating gradients of the
data distribution. In Advances in Neural Information Processing Systems (NeurIPS).
30, 146, 147, 157

Song, Y. and Ermon, S. (2020). Improved techniques for training score-based gener-
ative models. In Advances in Neural Information Processing Systems (NeurIPS). 11,
30

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B.
(2020b). Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations (ICLR). 11, 30, 31, 144, 146,
147

Štrupl, M., Faccio, F., Ashley, D. R., Schmidhuber, J., and Srivastava, R. K. (2022).
Upside-down reinforcement learning can diverge in stochastic environments with
episodic resets. arXiv preprint arXiv:2205.06595. 134

Subramanian, S., Rajeswar, S., Sordoni, A., Trischler, A., Courville, A., and Pal,
C. (2018). Towards text generation with adversarially learned neural outlines. In
Advances in Neural Information Processing Systems (NeurIPS). 176

Sun, W., Vemula, A., Boots, B., and Bagnell, D. (2019). Provably efficient imitation
learning from observation alone. In International Conference on Machine Learning,
pages 6036–6045. PMLR. 103, 121

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press. 3, 5, 34, 41, 103, 105, 124, 183, 184, 224

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). Policy gradi-
ent methods for reinforcement learning with function approximation. In Advances in
neural information processing systems, pages 1057–1063. 41

273



Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalk-
wyk, J., Dai, A. M., Hauth, A., et al. (2023). Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805. 1, 6, 142

Templeton, A. (2024). Scaling monosemanticity: Extracting interpretable features from
claude 3 sonnet. Anthropic. 166

Tieleman, T. (2008). Training restricted boltzmann machines using approximations
to the likelihood gradient. In Proceedings of the 25th International Conference on
Machine learning, pages 1064–1071. 130

Tishby, N., Pereira, F. C., and Bialek, W. (2000). The information bottleneck method.
arXiv preprint physics/0004057. 16, 32

Todorov, E. (2006). Linearly-solvable Markov decision problems. Advances in Neural
Information Processing Systems, 19. 105

Todorov, E. (2008). General duality between optimal control and estimation. In 2008
47th IEEE Conference on Decision and Control, pages 4286–4292. IEEE. 110

Torabi, F., Warnell, G., and Stone, P. (2018a). Behavioral cloning from observation.
arXiv preprint arXiv:1805.01954. 109, 118, 222, 229

Torabi, F., Warnell, G., and Stone, P. (2018b). Generative adversarial imitation from
observation. arXiv preprint arXiv:1807.06158. 103, 118, 121, 229

Toro Icarte, R., Waldie, E., Klassen, T., Valenzano, R., Castro, M., and McIlraith,
S. (2019). Learning reward machines for partially observable reinforcement learning.
Advances in Neural Information Processing Systems, 32. 105

Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages
1049–1056. 110

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al. (2023). LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971. 1

Tu, Z. and Zhu, S.-C. (2002). Image segmentation by data-driven markov chain
Monte Carlo. Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
24(5):657–673. 54, 79

Uehara, M. and Sun, W. (2021). Pessimistic model-based ofÒine reinforcement learning
under partial coverage. In International Conference on Learning Representations. 135

Ullman, M. T. (2004). Contributions of memory circuits to language: The declara-
tive/procedural model. Cognition, 92(1-2):231–270. 166

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016). Instance normalization: The
missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022. 66

274



Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2020). Deep image prior. International
Journal of Computer Vision (IJCV), 128(7). 58

Vahdat, A. and Kautz, J. (2020). NVAE: A deep hierarchical variational autoencoder.
In Advances in Neural Information Processing Systems (NeurIPS). 31

Vahdat, A., Kreis, K., and Kautz, J. (2021). Score-based generative modeling in latent
space. In Advances in Neural Information Processing Systems (NeurIPS). 11, 31

Van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research (JMLR), 9(11). 50

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber, J. (2018). Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. In
International Conference on Learning Representations (ICLR). 55, 57, 74

Varin, C., Reid, N., and Firth, D. (2011). An overview of composite likelihood methods.
Statistica Sinica, pages 5–42. 108

Vedantam, R., Szlam, A., Nickel, M., Morcos, A., and Lake, B. M. (2021). Curi:
A benchmark for productive concept learning under uncertainty. In International
Conference on Machine Learning, pages 10519–10529. PMLR. 74

Villaflor, A. R., Huang, Z., Pande, S., Dolan, J. M., and Schneider, J. (2022). Address-
ing optimism bias in sequence modeling for reinforcement learning. In International
Conference on Machine Learning, pages 22270–22283. PMLR. 134

Vincent, P. (2011). A connection between score matching and denoising autoencoders.
Neural Computation. 30, 146

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., and Bottou, L.
(2010). Stacked denoising autoencoders: Learning useful representations in a deep net-
work with a local denoising criterion. Journal of Machine Learning Research (JMLR).
175

Voynov, A., Morozov, S., and Babenko, A. (2021). Object segmentation without labels
with large-scale generative models. In International Conference on Machine Learning
(ICML). 58

Wang, A., Ren, M., and Zemel, R. (2021). SketchEmbedNet: Learning novel concepts
by imitating drawings. In International Conference on Machine Learning (ICML). 35

Wang, W., Gan, Z., Xu, H., Zhang, R., Wang, G., Shen, D., Chen, C., and Carin, L.
(2019). Topic-guided variational auto-encoder for text generation. In North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies (NAACL-HLT). 10

275



Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., and Zhu, J. (2024). Prolific-
Dreamer: High-fidelity and diverse text-to-3D generation with variational score distil-
lation. Advances in Neural Information Processing Systems, 36. 145, 148, 150, 152,
153, 155

Wehenkel, A. and Louppe, G. (2021). Diffusion priors in variational autoencoders.
arXiv preprint arXiv:2106.15671. 31

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona,
P. (2010). Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California
Institute of Technology. 67

Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning,
ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 681–688. 13,
19, 60, 65, 191, 193

Wen, T.-H., Miao, Y., Blunsom, P., and Young, S. (2017). Latent intention dialogue
models. In International Conference on Machine Learning (ICML). 10, 29

Wen, Y., Yang, Y., Luo, R., Wang, J., and Pan, W. (2019). Probabilistic recur-
sive reasoning for multi-agent reinforcement learning. In International Conference on
Learning Representations (ICLR). 34

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine Learning, 8(3-4):229–256. 46

Wu, Y., Jiang, A. Q., Li, W., Rabe, M., Staats, C., Jamnik, M., and Szegedy, C.
(2022). Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353–32368. 166

Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2.
https://github.com/facebookresearch/detectron2. 68, 188

Xia, X. and Kulis, B. (2017). W-net: A deep model for fully unsupervised image
segmentation. arXiv preprint arXiv:1711.08506. 58

Xiao, Z., Kreis, K., Kautz, J., and Vahdat, A. (2020). VAEBM: A symbiosis between
variational autoencoders and energy-based models. In International Conference on
Learning Representations. 151, 236

Xiao, Z., Kreis, K., and Vahdat, A. (2021). Tackling the generative learning trilemma
with denoising diffusion GANs. In International Conference on Learning Representa-
tions. 144

Xie, J., Lu, Y., Gao, R., and Wu, Y. N. (2018). Cooperative learning of energy-based
model and latent variable model via mcmc teaching. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32. 147

276

https://github.com/facebookresearch/detectron2


Xie, J., Lu, Y., Zhu, S., and Wu, Y. N. (2016). A theory of generative convnet. In
Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pages 2635–2644. 30, 147

Xie, S., Morcos, A. S., Zhu, S.-C., and Vedantam, R. (2022). COAT: Measuring object
compositionality in emergent representations. In International Conference on Machine
Learning, pages 24388–24413. PMLR. 4

Xie, S. and Tu, Z. (2015). Holistically-nested edge detection. In International Confer-
ence on Computer Vision (ICCV). 39

Xie, S., Xiao, Z., Kingma, D. P., Hou, T., Wu, Y. N., Murphy, K. P., Salimans, T.,
Poole, B., and Gao, R. (2024). EM distillation for one-step diffusion models. arXiv
preprint arXiv:2405.16852. 6

Xie, T., Cheng, C.-A., Jiang, N., Mineiro, P., and Agarwal, A. (2021). Bellman-
consistent pessimism for ofÒine reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 34:6683–6694. 135

Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., and Tang, J. (2022). GeoDIFF:
A geometric diffusion model for molecular conformation generation. arXiv preprint
arXiv:2203.02923. 144

Xu, Y., Zhao, Y., Xiao, Z., and Hou, T. (2023). UFOGen: You forward once large
scale text-to-image generation via diffusion GANs. arXiv preprint arXiv:2311.09257.
144, 155, 160

Yamagata, T., Khalil, A., and Santos-Rodriguez, R. (2023). Q-learning decision trans-
former: Leveraging dynamic programming for conditional sequence modelling in ofÒine
RL. In International Conference on Machine Learning, pages 38989–39007. PMLR.
126, 134, 135, 137, 138, 139

Yan, H., Liu, X., Pan, J., Liew, J. H., Liu, Q., and Feng, J. (2024). PeRFlow: Piecewise
rectified flow as universal plug-and-play accelerator. arXiv preprint arXiv:2405.07510.
154

Yang, J., Kannan, A., Batra, D., and Parikh, D. (2017). LR-GAN: Layered recursive
generative adversarial networks for image generation. In International Conference on
Learning Representations (ICLR). 56

Yang, M., Cho, K., Merchant, A., Abbeel, P., Schuurmans, D., Mordatch, I., and
Cubuk, E. D. (2023). Scalable diffusion for materials generation. arXiv preprint
arXiv:2311.09235. 144

Yang, S., Schuurmans, D., Abbeel, P., and Nachum, O. (2022). Dichotomy of control:
Separating what you can control from what you cannot. In The Eleventh International
Conference on Learning Representations. 134, 135, 141

277



Yang, Y., Lai, B., and Soatto, S. (2021). DyStaB: Unsupervised object segmentation
via dynamic-static bootstrapping. In Conference on Computer Vision and Pattern
Recognition (CVPR). 58

Yang, Y., Loquercio, A., Scaramuzza, D., and Soatto, S. (2019). Unsupervised moving
object detection via contextual information separation. In Conference on Computer
Vision and Pattern Recognition (CVPR). 58

Yin, T., Gharbi, M., Zhang, R., Shechtman, E., Durand, F., Freeman, W. T., and Park,
T. (2024). One-step diffusion with distribution matching distillation. In Conference
on Computer Vision and Pattern Recognition (CVPR). 144, 148, 155, 159, 160, 161

Young, S., Gašić, M., Thomson, B., and Williams, J. D. (2013). POMDP-based
statistical spoken dialog systems: A review. Proceedings of the IEEE. 9

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z., Vasudevan, V., Ku, A.,
Yang, Y., Ayan, B. K., et al. (2022a). Scaling autoregressive models for content-rich
text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5. 160

Yu, P., Xie, S., Ma, X., Jia, B., Pang, B., Gao, R., Zhu, Y., Zhu, S.-C., and Wu, Y. N.
(2022b). Latent diffusion energy-based model for interpretable text modeling. arXiv
preprint arXiv:2206.05895. 3

Yu, P., Xie, S., Ma, X., Zhu, Y., Wu, Y. N., and Zhu, S.-C. (2021). Unsupervised
foreground extraction via deep region competition. In Advances in Neural Information
Processing Systems (NeurIPS). 4, 30, 97

Yu, P., Zhu, Y., Xie, S., Ma, X. S., Gao, R., Zhu, S.-C., and Wu, Y. N. (2023).
Learning energy-based prior model with diffusion-amortized MCMC. Advances in
Neural Information Processing Systems, 36:42717–42747. 166

Yu, Q., Liu, F., Song, Y.-Z., Xiang, T., Hospedales, T. M., and Loy, C.-C. (2016).
Sketch me that shoe. In Conference on Computer Vision and Pattern Recognition
(CVPR). 36

Yuan, L., Gao, X., Zheng, Z., Edmonds, M., Wu, Y. N., Rossano, F., Lu, H., Zhu,
Y., and Zhu, S.-C. (2022). In situ bidirectional human-robot value alignment. Science
Robotics, 7(68). 36

Zaslavsky, N., Kemp, C., Regier, T., and Tishby, N. (2018). Efficient compression
in color naming and its evolution. Proceedings of the National Academy of Sciences
(PNAS), 115(31):7937–7942. 46

Zeng, Y., Zhuge, Y., Lu, H., and Zhang, L. (2019). Joint learning of saliency detec-
tion and weakly supervised semantic segmentation. In International Conference on
Computer Vision (ICCV). 58

Zhang, B., Xiong, D., Su, J., Duan, H., and Zhang, M. (2016). Variational neural
machine translation. In Annual Conference on Empirical Methods in Natural Language
Processing (EMNLP). 29

278



Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). The unreason-
able effectiveness of deep features as a perceptual metric. In Conference on Computer
Vision and Pattern Recognition (CVPR). 49

Zhang, T., Janner, M., Li, Y., Rocktäschel, T., Grefenstette, E., Tian, Y., et al. (2022).
Efficient planning in a compact latent action space. In The Eleventh International
Conference on Learning Representations. 135

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for
text classification. In Advances in Neural Information Processing Systems (NeurIPS).
28

Zhao, J., Kim, Y., Zhang, K., Rush, A., and LeCun, Y. (2018a). Adversarially regular-
ized autoencoders. In International Conference on Machine Learning, pages 5902–5911.
9, 23, 29

Zhao, T., Lee, K., and Eskenazi, M. (2018b). Unsupervised discrete sentence represen-
tation learning for interpretable neural dialog generation. In Annual Meeting of the
Association for Computational Linguistics (ACL). 10, 23, 25, 29, 175

Zhao, T., Zhao, R., and Eskenazi, M. (2017). Learning discourse-level diversity for
neural dialog models using conditional variational autoencoders. In Annual Meeting
of the Association for Computational Linguistics (ACL). 9, 29

Zhao, W., Bai, L., Rao, Y., Zhou, J., and Lu, J. (2024). UniPC: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Infor-
mation Processing Systems, 36. 160, 161

Zheng, H., Nie, W., Vahdat, A., Azizzadenesheli, K., and Anandkumar, A. (2023).
Fast sampling of diffusion models via operator learning. In International Conference
on Machine Learning, pages 42390–42402. PMLR. 144, 159

Zheng, J., Hu, M., Fan, Z., Wang, C., Ding, C., Tao, D., and Cham, T.-J. (2024).
Trajectory consistency distillation. arXiv preprint arXiv:2402.19159. 154

Zheng, Q., Zhang, A., and Grover, A. (2022). Online decision transformer. In Inter-
national Conference on Machine Learning, pages 27042–27059. PMLR. 135, 137, 141,
235

Zhu, S. C., Wu, Y., and Mumford, D. (1998). Filters, random fields and maximum en-
tropy (FRAME): Towards a unified theory for texture modeling. International Journal
of Computer Vision, 27(2):107–126. 55, 121

Zhu, S.-C. and Yuille, A. (1996). Region competition: Unifying snakes, region growing,
and bayes/mdl for multiband image segmentation. Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 18(9):884–900. 4, 54, 55, 60, 64, 65, 79

Zhu, W., Liang, S., Wei, Y., and Sun, J. (2014). Saliency optimization from robust
background detection. In Conference on Computer Vision and Pattern Recognition
(CVPR). 54

279



Zhu, Z., Lin, K., Dai, B., and Zhou, J. (2020). Off-policy imitation learning from
observations. Advances in Neural Information Processing Systems, 33:12402–12413.
109, 118, 121, 222

Ziebart, B. D. (2010). Modeling purposeful adaptive behavior with the principle of
maximum causal entropy. Carnegie Mellon University. 104, 110, 112, 224, 226

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy
inverse reinforcement learning. In Proceedings of the Twenty-Third AAAI Conference
on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages
1433–1438. 103, 104, 105, 106, 121

Zou, C., Yu, Q., Du, R., Mo, H., Song, Y.-Z., Xiang, T., Gao, C., Chen, B., and Zhang,
H. (2018). SketchyScene: Richly-annotated scene sketches. In European Conference
on Computer Vision (ECCV). 35

280


	1 Introduction
	1.1 Research Objective
	1.2 Dissertation Overview

	I Category
	2 Learning Symbol-Vector Latent Space in Generative Text Modeling
	2.1 Introduction
	2.2 Preliminaries: Symbol-Vector Coupling EBM
	2.3 Latent Diffusion Energy-Based Model
	2.4 Experiments
	2.5 Discussion and Related Work
	2.6 Summary

	3 Emerging Iconic Symbols in a Visual Communication Game
	3.1 Introduction
	3.2 Related Work
	3.3 The Visual Communication Game
	3.4 Agents
	3.5 Learning to Communicate
	3.6 Experiments
	3.7 Limitation
	3.8 Summary


	II Object
	4 Disentangling Objects From Background With Region Competition
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.4 Experiments
	4.5 Summary

	5 Measuring Object Compositionality in Latent Representations
	5.1 Introduction
	5.2 Related Work
	5.3 Background
	5.4 Method
	5.5 Experiments
	5.6 Summary


	III Decision
	6 Learning Latent Decisions From State-Only Sequences
	6.1 Introduction
	6.2 Non-Markov Decision Process
	6.3 Learning and Sampling
	6.4 Decision-Making as Inference
	6.5 Experiments
	6.6 Discussion
	6.7 Summary

	7 Planning as Inference of Latent Temporal Abstractions
	7.1 Introduction
	7.2 Background
	7.3 Latent Plan Transformer
	7.4 A Sequential Decision-Making Perspective
	7.5 Related Work
	7.6 Experiments
	7.7 Limitation
	7.8 Summary


	IV Knowledge Distillation
	8 Distilling Data-Space Diffusion Models to Latent-Variable Models
	8.1 Introduction
	8.2 Preliminary
	8.3 Method
	8.4 Related work
	8.5 Experiments
	8.6 Summary

	9 Conclusions
	9.1 Summary of Contributions
	9.2 Future Work

	A Derivations and Experimental Details for Chapter 2
	A.1 Extended Derivations and Further Discussion
	A.2 Extra Experimental Details and Discussion

	B Derivations and Experimental Details for Chapter 3
	B.1 Category List
	B.2 Category Embedding for Other Game Settings
	B.3 Learning Objectives and Training Algorithm
	B.4 Visualizing Sketch Evolution

	C Derivations and Experimental Details for Chapter 4
	C.1 Dataset Details
	C.2 Details on Models and Hyperparameters
	C.3 Details on Learning Objective and Regularization
	C.4 Evaluation Protocols
	C.5 Additional Illustrations and Baseline Results
	C.6 Further Discussion

	D Derivations and Experimental Details for Chapter 5
	D.1 Relation Between Compositionality and Disentanglement
	D.2 Example Test Cases
	D.3 CLEVR With Colorful Background
	D.4 Greedy Matching Algorithm
	D.5 Additional Empirical Results

	E Derivations and Experimental Details for Chapter 6
	E.1 Learning and Sampling in LanMDP
	E.2 A Decision-making Problem in MLE
	E.3 More results of Curve Planning
	E.4 Implementation Details of MuJoCo Environment

	F Derivations and Experimental Details for Chapter 7
	F.1 Details About the Model and Learning
	F.2 Training Details
	F.3 Ablation Study
	F.4 Continual Learning With Online Data

	G Derivations and Experimental Details for Chapter 8
	G.1 Expectation-Maximization
	G.2 Reparametrized Sampling and Noise Cancellation
	G.3 Implementation Details
	G.4 Additional Qualitative Results

	References


