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CHAPTER 1

Introduction

In recent years, computer-based three-dimensional (3QJefity has given rise to
some amazing applications. To list just a few, several mgtiotures, such as “Avatar”,
are either in whole or in part situated in virtual worlds plgted by virtual characters
and creatures, some of the latest video games feature eintual cities, and Google,
Inc., is steadily creating a 3D digital archive of the englebe (Google Earth). On the
whole, the opportunities of modeling technology are ersléasl its ongoing and future

impact is exciting.

Considering the complexity of the real world, however, ttetesof-the-art in creat-
ing content for most virtual world applications such as wvidmmes, motion pictures,
and online applications remains woefully simple-minddgds tcumbersome and time-
consuming to create detailed 3D content using today’s nmogletchnology. This con-
tributes to the fact that the production of games and mowgsires tremendous in-
vestments of time and money, and that one still cannot ci&atmodels as easily as
one can draw with a pen. The difficult long-range goal cortfr@nus is to enable dig-
ital content creators, whether they be experienced digit&ts or mere amateurs, to
quickly represent and synthesize virtual worlds that amcasas the real world. To this
end, much research remains to be done to improve both 3Drdesyathesis capability

and speed.

In this thesis, we delineate and tackle a variety of impdrésu challenging 3D mod-

eling research problems. In particular, we investigateaglication of data-driven
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Figure 1.1: The 3D computer graphics pipeline.

optimization to the essential task of modeling, both in thietext of computer graphics
and computer vision. The objective from the graphics pextdgeis to design pow-
erful and intuitive modeling tools to assist digital asish creating 3D content. The
objective from the vision perspective is to reconstructiséa 3D models of objects

and scenes from image data.

1.1 The Modeling Problem

Modeling in computer graphics refers to the process of orgahathematical mod-
els to represent 3D objects in the virtual environment. fedul depicts the role of
modeling in the 3D computer graphics pipeline. After creati3D models are typ-
ically rendered, which takes into account the interactietwieen the illumination in
the virtual environment with the geometry and reflectanaperties of the 3D model,
resulting in a high quality synthetic image of the virtuaése if, as is typical, the goal
is to achieve photorealism. Such virtual 3D models can atsartimated. For example,
3D virtual characters used in motion pictures are usualigpnated in a way similar to
how real human actors would act in order to advance a sterylfurthermore, such

virtual 3D models can be fabricated in order to produce a 3@l model in the real



world—the recent trend of 3D printing in computer-aidedigesOverall, 3D models

serve as important prerequisites in various graphics asigal@pplications.

A large component of modeling research aims to make innanatin the virtual 3D

model creation process; for example:

e How can we generate photorealistic 3D models that closeimobjects of

interest in the real world?
e How should modeling tools be designed to enable fast andreaggling?

e Isit possible to generate a variety of realistic 3D modets@atically?

1.2 Common Modeling Approaches

This section describes modeling approaches that have bdetywadopted for graphics

production (e.g., for movies and games).

1.2.1 Manual Model Creation

The most common way to create 3D models is by manual meangydial modeling
and digital sculpting are popular manual modeling methads, the choice between
them depends on the type of the 3D model to be created. Forlmgdean-made
objects such as furniture and buildings, polygonal modeisnpreferred because the
polygonal mesh representation is generally consisterit thié shapes of man-made
objects. For modeling organic objects such as virtual huohanacters, digital sculpt-

ing is preferred due to its added flexibility in the mesh mougprocess.

Manual 3D modeling is commonly done via interactive modgkoftware (e.g., 3ds

Max, Maya, ZBrush) and Figurg.2 shows some modeling interfaces. Commercial
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Figure 1.2: Common methods used in the manual creation of 3D models.Radftg-

onal modeling in 3ds Max; Right: Digital sculpting in ZBrush

modeling software has reached a level of sophistication ttier interfaces, which
provide a wide range of modeling control, enable the creatibhighly realistic and
detailed 3D models. However, the control complexity posaitega steep learning
curve, so that 3D modeling has become the privilege of psides! digital artists. But
even for professionally-trained experts, the creationsthiied 3D models still requires
a lot of time and effort, which often accounts for the tremamlinvestment of time and
money in movie and game production. For example, in the 20®8er{Avatar”, which
was filmed in a virtual world, the production alone cost at®800 million Wikipedia,
2013 and took several years of intensive labor. For the latesiegeand movies, which
usually demand a vast quantity of high-quality 3D models, ittvestment is similar
or even higher. This severely limits the speed of productiot the number of annual
releases. In constrast to the situation in the 1980’s whedeo\game usually involved
simple 2D graphics and the entire production could be chwig by a small team, the

current barrier to production in the video game and moviest is huge.

While the manual approach to creating 3D models is perhapmthst straightforward
for an artist, he or she can readily benefit from the developioemore powerful and

intelligent modeling tools and interfaces. Indeed, thexeehbeen ongoing efforts in



Figure 1.3: Procedural modeling methods are used to automatically geaevari-
ous types of 3D models. Left: Plants synthesized by an ersy@rusinkiewicz and
Lindenmayer1996; Middle: Procedurally-generated buildingsA{ller et al., 2006);
Right: A procedurally-generated city?érish and Muller 20017).

computer graphics research to enhance interactive mgdelethods; e.g.Gal et al,
2009, (lgarashi et al.1999, (Bokeloh et al. 2011), and Chaudhuri et aJ.20113,

among others, were introduced to assist modelers.

1.2.2 Automatic Model Generation

When the 3D models of interest involve highly repetitivetpats, one may resort to
rule-based approaches to automatically generate them.s@oessful application of
rule-based approaches is for the generation of plants,astiees. Rrusinkiewicz and
Lindenmayey 1999 proposed the use of formal grammars to encode the gererativ
rules of plants. This has proven to be successful and the lmgdechnique has been
widely adopted, such as in the level design components ofrtcmmgame engines (e.g.,
Unity) and in gaming applications where plants are syn#eekio populate the terrain.
There are also interesting approaches to apply formal gesta describe and encode
the generation of city layout$@rish and Mtiller2001) and buildings Kuller et al,
2006, which enable virtual cities to be procedurally synthedizand this has success-
fully led to the development of modeling software such asGhgEngine. Figurel.3

shows some procedurally-generated 3D models.



The major advantages of rule-based procedural modelingpappes is the fast model-
ing speed and the fact that the entire model synthesis taskecautomated once given
the correct generative grammar. This makes it an attrachieece for the generation of
a vast amount of similar 3D models, such as trees, to popalartual world. Further-

more, the generation can be done on the fly; for example, taebe generated in real
time as the user navigates through a virtual forest. Theaakedpscription of the object
type as a grammar also results in a small storage size, whfeliorable for interactive

applications.

However, the automatic, rule-based approaches have samifimitations. First, while
the special case of plant synthesis can be described dgucilly by a grammar, this
may not be the case for the generation of other types of abjbett do not have a
repetitive pattern in their 3D forms; e.g., the generatibwiiual human characters. It
can be difficult to devise a suitable grammar which yieldsrdeg generation. Also, it
can be difficult for the user to control the generation precaad the resulting models
may not be what he or she desires. There have recently bemarch=fforts to tackle
these problemsStava et a].201Q Talton et al, 2011); for example, by trying to learn a
descriptive grammar from data, or constraining the geivergrocess using data such

that the user can exercise better control over it.

1.3 Thesis Objective and Contributions

The present thesis can be stated as follows:

Based on useful relationships and features extracted fiatm @hich can
be created manually or acquired using sensors, optimizaiproaches
can be devised to generate realistic 3D models automatiadl to facili-

tate the manual 3D modeling task.



Accordingly, the objective is to achieve the following gaal

e Devise novel data-driven optimization approaches to aatmally synthesize
realistic 3D models. Specifically, we will demonstrate sapproaches in virtual

world modeling and virtual character modeling.

e Devise novel data-driven optimization approaches toitatd interactive mod-
eling tasks. Specifically, we will demonstrate how such epphes can provide
useful modeling suggestions in virtual character modeding interactive scene

modeling.

e Devise novel data-driven optimization approaches to engdalistic 3D surface
reconstruction from real-world data. Specifically, we widimonstrate the appli-
cation of such approaches to perform outdoor photometeiestand to refine

3D shapes from intensity and depth data.

¢ \erify the effectiveness of the devised approaches threagbus qualitative and

guantitative experiments, perceptual studies, and usateists.

Our specific contributions are grouped into the followingfprojects:
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MAKE T HOME

Figure 1.4: Top: Initial layout where furniture pieces are placed arhitly. Bottom:
Two synthesized furniture arrangements optimized tofgairgonomic criteria, such as

unobstructed accessibility and visibility, required ofealistic furniture configuration.

Make it Home: Automatic Synthesis of Furniture Arrangement (Yu et al., 2011)

In Chapter2, we develop a system that automatically synthesizes indoenes re-
alistically populated by a variety of furniture objectsdire 1.4). Given examples
of sensibly furnished indoor scenes, our system extrattagdvance, hierarchical and
spatial relationships for various furniture objects, afing them into priors associated
with ergonomic factors, such as visibility and accessipilwhich are assembled into a
cost function whose optimization yields realistic furméuwarrangements. To deal with
the prohibitively large search space, the cost functiopiswzed by simulated anneal-
ing using a Metropolis-Hastings state search step. We dstrata that our system can
synthesize multiple realistic furniture arrangements, dhtbugh a perceptual study,
investigate whether there is a significant difference inpieeived functionality of the
automatically synthesized results relative to furnituramgements produced by human

designers.



Input Body Input Wardrobe Casual Business

Figure 1.5: Outfit optimization with different input dress codes. Léftt input human
body with hair color, eye color, and skin color specified,pluwardrobe of clothing

items. Right: Optimized outfits for dress cddi@sualand Business

DressUp: Outfit Synthesis Through Automatic Optimization (Yu et al., 2012 In
Chapter3, we develop an automatic optimization approach to outfitlesis (Fig-
urel.5). Given the hair color, eye color, and skin color of an inputtan body model,
plus a wardrobe of clothing items, our outfit synthesis systeggests a set of outfits
subject to a particular dress code. We introduce a prolséibiframework for modeling
and applying dress codes that exploits a Bayesian netwairkel on example images
of real-world outfits. Suitable outfits are then obtained pyiraizing a cost function
that guides the selection of clothing items to maximize thlerccompatibility and dress
code suitability. We demonstrate our approach on the fowstm@mmon dress codes:
Casual SportswearBusiness-CasuahndBusiness A perceptual study validated on

multiple resultant outfits demonstrates the efficacy of camework.



Figure 1.6: A living room before (left) and after clutterbrushing (righ

The Clutterbrush: Interactive Scene Modeling In Chapter4, we introduce the
Clutterbrush, an interactive tool for enhancing indoomssewith small-scale details
(Figurel.6). When the user points to a location in the scene, the Chrtish suggests
detail items for that location. In order to present apprajgrsuggestions, the Clutter-
brush is trained on a dataset of images of real-world sceremtated with support
relations. Our experiments and user study demonstratehiibadaptive suggestions
presented by the Clutterbrush increase modeling speedhandlutterbrushing en-

hances the realism of indoor scenes.
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Figure 1.7: Horse (Sunlight). Top row: Captured input images. MiddlgroEn-
vironmental illumination captured in a mirror sphere. Ndtee variance among the
input images under different illumination conditions. ®oh row: The left two im-
ages show the normal mapsdisplayed asa - 1with1 = [~1/4/3,1/v/3,1/+/3]" and

1= [1/v3,1//3,1/3/3]", respectively. The third image shows the color-coded nor-
mal map. The fourth and the fifth images show two differems/@f the reconstructed

3D surface of the horse.

Outdoor Photometric Stereo (Yu et al., 20130 In Chaptel5, we introduce a frame-
work for outdoor photometric stereo utilizing natural g@ovimental illumination (Fig-
urel.7). Our framework extends beyond existing photometric stemethods intended
for laboratory environments to encompass robust outdoeration in the real world.
We motivate our framework, describe the components of isgssing pipeline, and
assess its performance in synthetic experiments as wefl agtural experiments in-

cluding objects in outdoor environments with complex neaHd illuminations.

11



(b) input depth map
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(¢) shaded normal map of raw Kinect data (d) our result

Figure 1.8: Shading-based shape refinement deals with shape/reflectanbiguities

and enhances surface normals computed from raw Kinect data.

Shading-Based Shape Refinement of RGB-D Image¥| et al., 20139 In Chap-
ter 6, we develop a shading-based shape refinement algorithmhwisies a noisy,
incomplete depth map from the Kinect sensor to help resainbkiguities in shape-
from-shading (Figurd..8). In our framework, the partial depth information is used to
overcome bas-relief ambiguity in normals estimation, al &geto assist in recovering
relative albedos, which are needed to reliably estimatéigh&éng environment and to
separate shading from albedo. This refinement of surfageaisrusing a noisy depth
map leads to high-quality 3D surfaces. The effectivenessuofalgorithm is demon-

strated through several challenging real-world examples.

We will next discuss several fundamental issues commoretafttrementioned projects.
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1.4 Data-Driven Optimization Approaches for Modeling

We are witnessing the rapidly increasing public avail&pdif real-world data and user-
created content on the internet. The wide availability af-#gorld scene sensors has
made data acquisition much easier. In addition to highiyudigital cameras, which
have become commonplace over the last decade, in recestigeacost depth cameras
(e.g., the Microsoft Kinect) have been growing in popularithis has made publicly
available on the internet a tremendous quantity of RGB dalensity and RGB/depth
(RGB-D) data. For example, there exist RGB datasets of yeadry common scene
and object typeXiao et al, 201Q Deng et al. 2009 and RGB-D datasets of many

common indoor sceneSilberman et a).2012).

These trends have made data-driven modeling a potentiayeggul approach, as we
will demonstrate in this thesis by devising several dataedroptimization methods for
modeling. These novel methods utilize data to assist weghmbdeling task. The data
can be of various types, depending on the problem settingreycbr may not be of the

same form as the final 3D models that are synthesized by otnoat In particular,

¢ in the Make-it-Homeproject, the data comprise examples of virtual 3D content

that have been manually created by users;
¢ in theDressUpproject, the data comprise many annotated fashion images;

¢ in theClutterbrushproject, the data comprise many real-world images anrobtate

with support relations;

¢ in theOutdoor Photometric Sterguroject, the data comprise RGB images of the

object-of-interest captured under different outdoor ¢ooiis;

¢ in the Shading-Based Shape Refinemamaject, the data comprise RGB-D im-

ages captured by a depth camera.

13



Within our data-driven modeling framework, we identify amgbresent relevant inter-
relationships between different entities in the data. Tdaert knowledge is usually
modeled statistically using a machine learning model, vitian differ depending on
the problem. For example, in tH2ressUpproject, a Bayesian network is applied to
statistically represent the learnt probabilities of didfiet clothing combinations in the
data. One can then utilize the learnt statistics to asst$t the modeling process. In
the Make-it-Homeproject, the learnt statistics are used to guide an optim@auto-
matically synthesize new furniture arrangements. In@uedoor Photometric Stereo
project, shading variation statistics are used to comsthes optimization of the surface
normals of the object of interest, thereby enabling a highlity 3D surface reconstruc-

tion of the object.

1.4.1 Advantages

The major advantage of our data-driven approach is that thdefimg process is ef-
fectively guided by exploiting inherent relationships geet in the data that may be
difficult to represent explicitly a priori. For example, ingDressUpproject it seems
evident that there are inherent statistical relationsgijging how different clothing
items should be worn together, as observed in daily life (@pegally do not dress
ourselves with clothes randomly selected from our wardshildowever, it can be dif-
ficult to write down all the “dressing rules” and to determthe probabilities of how
different clothing items should be worn together, givert thare can be hundreds of
clothing items and a tremendous variety of possible contimna. By contrast, we can
efficiently bring to bear the inherent statistics of clothicombinations by capturing

the co-occurrence probabilities of clothing items in a Bage network.

Subsequent to the data learning stage, the process oihg@&imodels can be formu-
lated as an optimization, wherein the learnt statisticgesas constraints guiding the

optimizer in its search for a solution, which is taken as #sulting 3D model. For
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example, in théressUpproject, the learnt clothing statistics are used to guidein
mizer to synthesize virtual character models which arastedlly dressed. There are

advantages to formulating modeling as an optimization lerabincluding:

Explicit Control:  Users can have explicit control over the modeling procesd, a
hence the expected optimization results, by adjusting tis¢ terms used in the opti-
mization. For example, in thidake-it-Homeproject, users can in principle include any
interior design / ergonomics factor to be applied in optimgdayouts, as long as it can
be formulated mathematically as a cost term. InDinessUpproject, users can control
the variety of the outfits synthesized by controlling thediimnal form of the style cost
term. This is an attractive and important feature of optatian-based model synthe-
sis, especially when the techniques are used in automass praduction of virtual
content (e.g., a building containing hundreds of room lagoor a crowd composed of

thousands of virtual characters).

Automation: Users can automate the entire modeling process. This sesub
tremendous saving of work and time because the tediouswatimodeling is instead

accomplished by the optimizer through automatic synthesis

Guided Modeling: Users can semi-automate the modeling process while halisg,c
interactive control. For example, in ti@utterbrushproject, an optimization-based
suggestive modeling interface facilitates indoor scendeting. During the modeling
process, the suggestion engine instantly provides optinibject suggestions to assist

the user in quickly embellishing the scene in a realistic megn

Multiple Design Exploration:  Users can obtain multiple, realistic modeling results.

The optimizer in general stops once it reaches a local optipwhich it returns as a

15



modeling result. As there can usually be multiple local matiwith respect to the cost
terms, the optimizer can be run for multiple trials, whergdaherates a feasible result
in each trial. This way, multiple realistic modeling resutain be obtained, which may
all be selected for the modeling task or serve as modelingraisons for the user. For
example, in theviake-it-Homeproject, the optimizer is run multiple times to generate
different optimized layouts for a factory scene. These gaed layouts can all be used

to populate rooms inside a factory.

1.4.2 Challenges

The data-driven optimization approach to modeling is a psorg direction, yet it poses

various research challenges:

What data to use? The datato be used is specific to the modeling task. In sonescas
such as in thélake-it-Homeproject, the data (example room layouts) and the modeling
result (synthesized layouts) are of the same form. A toprdapproach is usually
adopted in which the desired model type (e.g., house modgkant models?) is first
determined. Then we identify and generalize the commonacienistics among the
instances of the desired model type. Finally, we seek owcaphe data that contains

the necessary inherent relationships in order to synteéisezdesired model type.

How to obtain the data? The data may be captured from the real world by data ac-
quisition devices; for example, tl&utterbrushis trained using RGB-D data captured
by a depth camera in real-world indoor scenes. The data nsaybal completely syn-
thetic; for example, in th®ake-it-Homeproject, the room layouts that serve as training
data are manually created by users. In many cases, thenggalata must be annotated
by humans when it involves features that are difficult to beueately identified by au-

tomated classification techniques. For example, inDkhessUpproject, human users
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helped to annotate the clothing items that are present ifetéon images. In such
scenarios, a recent trend is to leverage collaborativesgqrgrower” over the internet to
perform the annotation; for example, the annotation ses/provided by the Amazon
Mechanical Turk. Nevertheless, this routine process cam ¢l®llenge to data-driven

approaches especially when the dataset is a large-scale one

How to mitigate noise in the data? Another problem is that data captured in the real
world are often noisy and suffer from various problems duéédimitations of the data
acquisition devices. For example, the RGB-D data captuyddvis-cost depth cameras
such as the Kinect are usually noisy and incomplete, or thta-dapture can only be
performed indoors. Therefore, the quality of 3D models gagat by the Kinect re-
mains far from satisfactory for immediate use. Various d&ing technigues have been
researched to address this problem. Our work in this thesBhading-Based Shape
Refinemenbof RGB-D images can be regarded as a useful postprocessihgidee,
inasmuch as it exploits shading information to improve the depth data acquired by
common depth cameras, so that a high-quality 3D model ofdbeescan be obtained

as the final output.

What relationships to learn from the data? This refers to identifying the useful
features to learn from the data, which are to be used for ggittie modeling task in
the subsequent stage. Note that the same data may be udiffmently in different
scenarios, depending on the modeling objective, and tlifreint types of features
may be extracted accordingly. For example, while bothGhéterbrushproject and
the Shading-Based Shape Refinemaoject make use of RGB-D scene data from the
Kinect, support relations were used in the former while siadetails were used in

the latter.
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How to represent the learnt relationships? The relationships learnt from the data
must be encoded in a machine learning model, which suppadses in the subse-
guent modeling (optimization) stage. For example,DinessUpproject makes use of a
Bayesian network to encode the co-occurrence probabibfidifferent clothing items.
Note that the choice of the learning model is largely deteediby how the learnt rela-
tionships will be used in the modeling stage. For exampliegua Bayesian network,
we can readily query various conditional and joint proki&ibs in the modeling stage,
thus providing flexibility in making arbitrary probabilistqueries in the modeling in-

terface and, hence, increasing convenience to the user.

How to optimize with respect to the learnt relationships? This refers to the choice
of optimizer. The optimization algorithm searches for aalagptimum which will be

taken as the modeling result. First, one needs to encodesthieed relationships from
the data as cost terms whose minimization should give aat#simodeling result.
Hence, the choice of cost terms directly affects the quaiftyhe result. For exam-
ple, one can use robust functions in formulating the cost$en order to alleviate bad
effects due to noise in the data. Second, one must choosetiamzzion algorithm

to optimize the objective function comprising the cost ternMany factors must be
considered in this choice, which usually depend on the cerilyl of the optimization

landscape posed by the cost terms. For example, for a simapliratic cost function,
one may obtain an optimal solution by a simple least-squaetkod. If the optimiza-
tion landscape is highly non-convex, however, one may needdort to a stochastic
optimization method to obtain optimal solutions; for exdephe Markov chain Monte

Carlo method. There are other practical challenges; fomgiea,
e How should the optimization be initialized?
e Is the optimization result sensitive to the initialization

e How to avoid bad local minima?

18



e How long does the optimization take?
e When should the optimization stop?

For example, in cases where the optimization result is Se@s$d the initialization, one
must determine how to obtain a good initialization from thput data. For interac-
tive applications, long computational times are impradtiand one must either adopt
a strategy to speed up the optimization (e.g., by paralletgssing) or use simpler

functional forms for the cost terms that can be more effityepptimized.

The following sections detail the use of data-driven optiamtion approaches for mod-
eling both from the computer graphics and computer visiaisgeetives and further

explain some of their attractive features.

1.4.3 The Computer Graphics Perspective

This section discusses the role of data-driven 3D modetirtge context of graphics.
This refers to the top-down modeling process: Given the comuoharacteristics of
certain categories of 3D models, what tools can we devisadilithte the modeling
process? Examples include the modeling of virtual builgjrfgrniture objects, and
human characters. There are two main streams of techniqugaphics modeling, (i)

interactive modeling techniques and (ii) automatic madgtechniques.

The first category, interactive modeling techniques, fesusn providing convenience
and semi-automation (e.g., providing useful suggestitmagsist the user in the mod-
eling process. For example, intelligent suggestions geeéusing Bayesian networks
may be provided to enable assembly-based modeGhgdhuri et a).20118 and an
interactive tool may be devised to assist interior modefolpwing interior design
guidelines Merrell et al, 20113. These kinds of techniques are particularly desired in

subjective, artistic creation, as they can enhance theaasedeling while still pro-
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viding artists the necessary freedom to control the cregirocess. Moreover, these
kinds of tools can greatly ease the difficulty faced by laymasdelers by providing

useful initial modeling suggestions for them. The conveogthey offer makes them
an attractive choice for integration in future modelingenfiéices intended for general
users; e.g., the virtual character / interior layout mouginterfaces present in video

games such as “The Sims”.

Our work on outfit synthesis in theressupproject partly falls into this first category.
Trained by clothing relationships gleaned from real-wddshion images, our frame-
work can act as an interactive suggestion engine for cteracbdeling. For exam-
ple, one can fix a clothing item (e.g., sport-shoes) and asklitfit suggestions. As
the probabilistic inquiry and outfit synthesis process isa@st instant, one can modify
modeling attributes (e.g., clothing color) and get usefiggestions on the fly. This is
highly practical; e.g., in the character modeling engingarhing applications, which

nowadays usually feature many user-created clothing items

Our work in theClutterbrushproject is also aligned with the data-driven, interactive
modeling direction. Our approach is built on the novel ideéasing real-world scene
data to assist with virtual world modeling. The Cluttertirus an interactive scene
modeling tool that is trained on the support relations presereal-world scene data.
It encodes the learnt knowledge into a probabilistic framwvsuch that when the mod-
eler models different parts of a virtual room, the Cluttesdr will quickly analyze the
virtual environment and provide instant, useful objectgrsiions that can be directly
chosen by the modeler. We will show in the usability tests, thsing the Clutterbrush,
users can in general model an indoor scene much faster, tbitesulting scene shows

richer scene details, which we refer to as clutter objects.

The second category, automatic modeling techniques, ésausproviding full-automation
in the modeling process; hence, they are suitable for géngnanultitudes of realistic

models in a timely-manner with minimal human interventidRecently, there have
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been efforts on the automatic generation of realistic indmwironments; e.g., floor-
plans Merrell et al, 2010 and furniture arrangementy et al, 2011). The general ad-
vantage of automated techniques is the capability to quitkidel a large-scale virtual
world, and those methods can potentially be incorporateghiming/map-navigation

applications to generate realistic models on the fly.

Our Make-it-Homeproject on automatic furniture arrangement falls into tt@gegory.
Useful relationships among furniture objects and the s@relearnt from positive
examplar scenes, which are subsequently enforced in thelragdthesis phase. The
approach can be used to generate a large number of diffenenitufre layouts, which
are often needed in virtual world applications such as tafaip the rooms in virtual
building in video games. This work is a breakthrough in threction of automatic level

design.

In our DressUpproject, different realistic outfits under the same dregstyle can
be automatically generated by a MCMC sampler, which can bd tsclothe a large
number of virtual characters automatically in real-tirmegider to synthesize crowd of
characters exhibiting realistic variety. This can greatijhance realism in video games
as well. For example, non-player characters (NPC) can bardigally generated, each
exhibiting a different dressing style. This eliminates #ngfactual repetitiousness re-
sulting from the commonly-used work-around of cloning aedsing clothing textures

on multiple virtual characters.

1.4.4 The Computer Vision Perspective

This section discusses the role of data-driven 3D modetiog fthe computer vision
perspective. This refers to the bottom-up modeling prac&sen real-world data,
such as RGB and depth values, how can we reconstruct a i@8Itmodel? This

has been an active research area for decades, and varidusdsmbave been proposed;
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Figure 1.9: A view of the virtual San Francisco in Google Earth.

e.g., shape from shading, photometric stereo, multi-vieskes, and structure-from-
motion. Each method is based on some assumptions, for egabrgrhbertian surface
reflectance, controlled lighting environment, uniformeadb, convex surfaces, etc., and
each method has its own limitation; for example, multi-visi®reo performs poorly
on textureless objects and the reconstructed point clousially sparse, while shape-

from-shading uses only one image but generally suffers fiorhiguity.

The main advantage of vision-based 3D modeling is that iedlam realistic 3D recon-
struction of real-world scenes and objects in a fast antffdimanner. For example,
the Google Earth project is an ambitious project to recostx 3D model of the entire
world (Figurel.9shows a view of the virtual San Francisco in Google Earthg Jdale
of the problem seems to be infeasible for an approach thaldradtempt to manually
create a realistic 3D model for every building. Hence, aoridbased approach—in par-
ticular, an extensive spectrum of stereo-based 3D reaarigin techniques—is more
promising than the graphics-based approach, since itierdasacquire the vision data

needed (RGB images) than to model every building in the waoiddiually.
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A major challenge with the vision-based 3D modeling apphnoscto deal with the
many different variations in surface properties amongedéiht objects in the real world.
As a result, specific approaches have been devised to tdekimaodeling of specific
categories of objects, each based on different assumptibos example, there are
vision-based approaches specifically tailored to the nioglalf plants Quan et al.
2000, trees Tan et al, 2007, hair (Chai et al, 2012, clothes Wang et al.20113, etc..
However, the goal remains the same—qgiven the input dat&aicstically reconstruct

the object of interest in 3D.

Due to the different challenges and problems in the visiasell 3D modeling pipeline,
numerous opportunities arise for computer vision resedrtiparticular, the growing
popularity of low-cost RGB-D (e.g., Kinect) and light-fistdmeras will make possible
a new wave of 3D reconstruction and indoor scene modelingpappes, which should
be accessible to general users, thereby making a signifiopatct. In fact, there have
been active research efforts to reconstruct indoor sceing imv-cost depth cameras
(Izadi et al, 2011).

The computer vision portion of this thesis focuses on eatieg3D reconstruction
process and improving the quality of the reconstructed 3ffasas. In particular, we
devise approaches to make 3D reconstruction more accessigeneral users collect-
ing data under natural indoor/outdoor environment rathan in controlled, laboratory

environments.

In our Outdoor Photometric Stergaroject, we demonstrate for the first time that high-
quality 3D reconstruction by photometric stereo can begoeréd outdoors with the
use of a mirror sphere; for example, by using natural suhligler a day. The same
technique can also be applied under natural indoor illuttana hence relaxing the
conventional assumption of a darkroom setting during dafature, thus making pho-

tometric stereo much more accessible to general users.
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In our work onShading-Based Shape Refinen@mRGB-D images, we aim at repair-
ing the Kinect depth-map and refining the 3D shapes obtaifi&é. Kinect provides
an economical solution to indoor scene reconstruction;dvew the depth maps that
it captures usually suffer from a considerable amount osmgs values, resulting in
breakages in the reconstructed 3D models. Various Kinastdb applications usually
fill in such holes by simple smoothing. In this project, in @rdo repair the depth-
map and refine the shape obtained, we make intensive useiminktion estimation
and shading cues present in the corresponding RGB imageredptThe developed

technique promises to benefit a wide range of Kinect-basedilications.

1.5 Thesis Synopsis and Organization

To summarize the thesis at hand, in view of the large amouabsfract relationships
inherent among 3D models and the growing amount of 3D model tthat are freely
available (e.g., 3D models in Trimble 3D Warehouse, Kinedobr scene dataset),
data-driven approaches show great promise for semangdinigh relationship extrac-
tion, object search, and model synthesis. Our data-drivedeling approach gener-
ally comprises learning and synthesis phases. Abstrattorkhips are initially learnt
from real-world / human-provided training data, in ordetr&@n a generative statisti-
cal model that supports inquiries in the subsequent opéiticia-based model synthesis
process. It is exciting to explore creative applicationth® modeling problem in vi-
sion and graphics, and vision and graphics techniques tiamatly be fused together

to reinforce the modeling process.

The remainder of the thesis is organized as follows: Aimindeanonstrating the data-
driven optimization approaches for modeling, we will prasfve projects in which
we devise novel, data-driven optimization approaches fodehsynthesis. These will

be discussed in the five chapters that follow—in Chap2e and4, we tackle three
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modeling problems from the computer graphics perspedaiitieyeas in Chaptetsand

6, we tackle two modeling problems from the computer visiorspective. In each
chapter, we will begin with a problem statement and intraidug followed by a review
of related work relevant to the problem, a presentation eftéthnical details of our
novel data-driven optimization method suited to the madgtask at hand, followed
by experimental validations, discussion of results, anghsations for future work.

Chapter7 concludes the thesis.
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CHAPTER 2

Virtual World Modeling: Make-it-Home

2.1 Introduction

Whereas in recent years numerous publications have agpéaneonstrating the auto-
matic modeling of building exteriors and facades, the aatiicrgeneration of realistic
indoor configurations has not yet received the attentionitll@serves. With the grow-
ing popularity of social virtual worlds and massively-niplldyer online games that
feature large quantities of realistic environmental cofjtautomated procedural meth-
ods for synthesizing indoor environments are needed, asutdibe too tedious and
impractical to model every indoor scene manually. Curgestich indoor modeling is
usually simplified or even ignored, which severely limite tiealism of many virtual

environments.

A realistic indoor scene is typically populated by seveiffedent kinds of furniture

objects, but only a few of the many possible spatial arrareggsnof these objects are
functional and livable. For example, the front of a telemsor computer screen should
not be blocked, since it is supposed to be visible. Furthezmmost of the objects
in the scene should be accessible to human habitants. Oritbeland, one object
is often placed on top of another object, such as a vase onleg wbthere exists a
hierarchical relationship among the two objects if we rdghe carrier object as the

parent and the supported object as its child.
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While the aesthetic and creative process of interior desiguid best be done by pro-
fessional interior designers, our goal is to create softwapable of automatically gen-
erating furniture arrangements for complex indoor scehasdare optimized to respect
important ergonomic factors. This technique would be usefunultiplayer online
games and other graphics applications requiring fully @uatiic interior design with a

high degree of realism. The system that we present achieigegdal in two stages.

First, our system extracts spatial relationships on thegpteent of furniture pieces from
user-supplied exemplars of furnished indoor scenes. Thfsis done only once, in

advance. The acquisition of examples and subsequent gatrat spatial relationship

should not be costly, given that many virtual worlds featuser-created content and
collaborative design. A scene is then initialized with fture pieces randomly placed
at arbitrary positions and orientations. Here, the fumeifplacement is almost always
unlivable, with objects that are wrongly-located (e.g.pakshelf is placed at the center
of the room rather than against a wall) or wrongly-oriented)( a television screen is

facing the wall), and furniture is usually blocking pathwdetween doors.

Given an arbitrary initial arrangement, such as the one shiowrigurel.4(left), opti-
mizing a furniture arrangement subject to human ergonoirinst an easy task, since
the search space can be prohibitively large. To addresssths, in the second stage,
the initial layout will be adjusted iteratively by minimiaj a cost function that accounts
for factors, such as human-accessibility, visibility,rqpase object relationships, and so
forth, wherein the spatial relationships extracted from éixemplars are encoded as
prior cost terms. We demonstrate that the overall cost fonatan be optimized by
simulated annealing with a Metropolis-Hastings stateeteatep. From the random
initial arrangement in Figuré.4, the optimization produces the two synthesized exam-

ple scenes shown in the figure.

We furthermore perform a perceptual study that adopts aestibg¢ forced-choice ap-

proach to investigate whether people have a preference bageerceived functionality
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between our synthesized results and arrangements protdydednan designers.

2.2 Related Work

We will first discuss the scarce existing research on gengrétinctional furniture
arrangements and then review other relevant work rangom ftoor-plan generation
and interior design metrics to applications requiring idageneration of livable indoor

scenes, such as virtual worlds and artificial life.

2.2.1 Furniture Arrangement

Previous systems that generate furniture arrangemgiitag 200Q Akazawa et al.
2005 Germer and Schwar2009 Larive et al, 2004 Sanchez et 312003 require
manual control or intervention, or do not adequately cagrstigonomic factors, which
makes them susceptible to generating uninhabitable agraegts. Figur®.1 shows
an unsatisfactory arrangement where ergonomic factorsegkected in the interior

design.

To generate a furniture layoujfaas 2000 represents a given room as a nested hi-
erarchy of rectangular templates, which are swapped by prgldetermined mutation
functions. Empty boxes are placed in front of doors and wivelto represent free
space. However, the approach is limited to rectangular sp@md each template plus

the set of corresponding parameters must be carefully nedig

Akazawa et al.Z005 use a semantic database to explicitly store furnitureapaia-
tionships in order to synthesize new arrangements. Ouitfuerepresentation is sim-
ilar in its use of furniture object interrelationships wtharent-child hierarchies where
each object is represented as a bounding box. Unlike ouoapby however, their

inter-object contact constraints must be manually spekifie¢he database.
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No human ergonomics With human ergonomics

Figure 2.1: Examples of furniture arrangement. Left: An unsatisfagtepatial ar-

rangement resulting from the neglect of human ergonomiasiderations; note that
the furniture objects are packed together near the uppirelerner and are blocking
the door. Right: A satisfactory arrangement with realiatlg positioned furniture ob-
jects that are accessible, do not obstruct the door, andiohel television that is readily

viewable from a well-positioned chair.

Germer and Schwar2(09 take a similar approach, regarding each furniture object a
an agent seeking to attach itself to a parent object. Sirepdhent-child relationships
of each object must be manually defined, however, this taikoecome prohibitive
as the number of objects grows. Furthermore, as ergonormtieréasuch as good ac-
cessibility and visibility are disregarded, unrealistitdauninhabitable configurations

suffering undesired physical or visual blocking are undsbie.

Recently, Yeh et al.A012 described an approach that uses stochastic optimization
to generate open worlds. The approach is based on manualtyfisd relationships
between objects. Fisher et a202 describes a probabilistic approach to synthesize

3D object arrangements using a large dataset of virtuaksomodeled by human users.
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2.2.2 Floor Plan Generation

Relevant floor plans can be generated before planning tloeilayf furniture pieces.
Recently, Merrell et al.Z010 proposed a data-driven method to generate residential
building layouts. In their work, 120 examples of architeatyprograms are used to
train a Bayesian network that captures the relationshipsgndifferent rooms. Given
certain user requirements as priors, the Bayesian netveorkihen be used to generate
a floor plan, which is iteratively modified to incorporate idaisle human factors. The

result is a synthesized floor plan for a residential building

We also note the work of Chun and L&i997), which encapsulates architectural design
knowledge into an expert system. The system modules candaetasevaluate floor
plan and furniture arrangement according to governmeniaggns and interior design

guidelines, providing suggestions for changes.

2.2.3 Relationship with Interior Design Practices

Although interior design involves creative solutions tbah be fairly subjective, a set
of quantifiable design criteria has long been accepted imthestry. Specifically, such
criteria determine whether the design is functional anthble for human inhabitants.
Panero and Zelnickl@79 conducted a detailed study on human dimensions and er-
gonomics, by carefully defining metrics such as height, lwideachable-range, and
visibility, which are believed to be conducive to functibaad comfortable designs.
For example, a television should maintain a certain digdram the normal viewing
area (e.g., a sofa) depending on the dimensions of its sc¥é@ning from an oblique
angle should also be avoided for the sake of the viewer’'s cdmfNote that Ching
and Binggelj 2005 describes these human factors as the “prime determinahts*
terior design, emphasizing that while average measurenséould be used, flexibility

should be exercised to satisfy specific user needs. In gmiion terms, such guide-
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lines can be interpreted as soft constraints. Miitton and Nystuen2007 Ching and
Binggeli, 2005, the importance of accessibility in furniture placemennoted, which
is a common consideration in decorating rooms with diffeygmrposes. Ching and
Binggeli (2005 illustrate how pathways connecting doors may affect humawe-
ment and interior furnishing. In general, a pathway conngaloors should be a short
path that facilitates movement while leaving considerdlder areas for furnishing.
The width of a pathway should depend on the habitant’s bodithyiwith possible
amendments when designing homes for the physically-aigie to allow wheelchair

movement.

2.2.4 Related Applications

The realistic synthesis of spatial arrangements of objemtstremendously facilitate
virtual world modeling. For exampleSfao and Terzopoulp2007 demonstrated a
large-scale virtual model of a train station populated bgnatous autonomous pedes-
trians. The mobile human agents can perceive the envirotair@jects they encounter
and respond to them appropriately. An automatic means fgeply placing various

different kinds of environmental content in the scene wdaddiseful in this context.

Collaborative design spaces have been used to assist ohgeteling [Talton et al,

2009, and they are commonly used in constructing virtual wqrkigh as Second-
Life and many massively-multiplayer online games. The 8tsge of our approach
entails the extraction of spatial and hierarchical retehaps from positive furnished
examples, which is a more practical approach compared tm#meial specification of
such relationships, especially for scenes where therewarérads of different kinds of

objects.

There are numerous efforts in the modeling and synthesigties @and building ex-

teriors. In Chen et al.2008 Miiller et al, 2006 Parish and Muller2001; Vanegas
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Cost-term
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Figure 2.2: Overview of the Make-it-Home system.

etal, 2012 a procedural modeling approach was used to realisticatithesize streets,
buildings, and cities, by which parameters such as heigihtagie can be specified to
guide the synthesis. The result is a realistic city modeluteted with buildings. Other
efforts (Muller et al, 2007 Xiao et al, 2008 Bao et al, 20133 also employ image-
based approaches to model facades. Such techniques caogtediith Google Earth,
Bing Maps, and other applications that enable users to zaotmstreet views and nav-

igate the exteriors of texture-mapped buildings in 3D.

2.3 Overview of the Make-it-Home System

We have developed a software system that can extract inmporkationships from
examples of interior design, and then automatically regeafurniture objects in a
scene to synthesize different new configurations. This isrgrortant aspect of virtual

world modeling of interior environments.

Figure2.2provides an overview of our approach, which is divided imto stages: (1)
the extraction of spatial, hierarchical, and pairwisetrefeships from positive exam-
ples and (2) the synthesis of novel furniture arrangemémtsigh optimization. The

following section describes the first stage and the subseque describes the second.
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2nd-tier object

Surface 5

Suriace 4 Surface 1

Surface 3 s

Surface 6

Figure 2.3: Left: A television, its bounding box, and six surfaces; Righ cande-
labrum on a table; the table is a first-tier object and the caladbrum is a second-tier

object.

2.4 Furniture Relationship Extraction

2.4.1 Object Representation

Optimizing furniture arrangement into a realistic and fiimeal indoor configuration

involves considerable complexity, taking into accouniaas interacting factors, such
as pairwise furniture relationships, spatial relatiopshwith respect to the room, and
other human factors. An effective representation thaturaptthe necessary spatial

relationships is needed.

Bounding surfaces: Similarly to (Germer and Schway2009 Kjlaas 2000, each
object in the scene is represented by a set of bounding ssrfgiccan be a simple

rectangular bounding box or a convex hull to deal with monaglex spatial arrange-
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ments). Figure2.3 shows an example object (television) represented by a logind
box whose six surfaces are labeled 1 to 6. Apart from the topbattom surfaces, we
search for the “back” surface of every object, which is théame closest to any wall.
Other surfaces are labeled as “non-back” surfaces. Thedwatkce is used to define a

reference plane for assigning other attributes.

Center and orientation: Figure2.4(a) shows the key attributes of an object—center
and orientation, denoted Hy;, 0;), wherep; denotes théx, y) coordinates and; is

the angle relative to the nearest wall (defined as the angheclea the nearest wall and
the back surface). An optimized furniture arrangem{ént, ¢;) } involving all objectsi

is one that minimizes our cost function defined in the nextisec

Accessible space: For each surface of the object, we assign a correspondimgsiec
ble space (see Figuie4(b)). We definez;;, to be the center coordinates of accessible
spacek of objecti. The diagonal of the region is measureddaly,, which is used to
measure how deep other objects can penetrate into the spacg dptimization. The
size of the accessible space is set from available examplgisen as input related to
the size of a human body. If the space is very close to the walllithe examples, the
corresponding surface need not be accessible; otherwessetat to be the dimension

of an average-sized adult if such a measurement is not given.

Viewing frustum: For some objects, such as the television and painting, tmeai
surface must be visible. We assign a viewing frustum to thisiqular surface. Given
an objects, its viewing frustum is approximated by a series of rectasglith center
coordinates;;,,, wherek is the rectangle indexvd;;, is the diagonal of the rectangle,
which is useful in defining the penetration cost akin to tloatthe accessible space.

Figure2.4(c) provides an example.
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Other attributes:  Other attributes are involved in the optimization proceRefer-
ring again to Figure2.4(a), the distance from; to its nearest wall is defined ak,;
the diagonal fronp; to the corner of the bounding box is definediagthe current

implementation is a rectangle). We also recordfpositionz; of the object.

Note that to simplify the optimization process, the tratisfastep considers the:, y)-
space only. In other words, an objectposition is fixed as the-position of the surface
of its first-tier parent. Nevertheless, theposition can still change in the swapping
step, when a second-tier object changes its first-tier parghis placed on a different
surface. Possible collisions in thedimension will still be considered when evaluating
accessibility and visibility costs. For example, an oveiteetween a chair and a bed
in the (x, y) space is penalized, while that between a wall clock and a bedt, as
the former involves collision in the-dimension but the latter does not. Thus, the chair

tends to move away from the bed in the y) space, whereas the wall clock does not.

2.4.2 Learning Prior Relationships

Given the above object representation, the following fumei relationships are ex-

tracted automatically from positive input examples.

Spatial relationships: The key prior relationships are the distance of an object to
its nearest wall; and its relative orientation to the wall. They are respectively
estimated as the clustered means of input examples, wheoanvassign one of the
clustered means ak andd; respectively for object during optimization. The number

of clusters can be preset or estimated Gyunwald 2007).

Hierarchical relationships: Given two objectsd and B, object A is defined as the

parent of B (and B as the child ofA) if A is supportingB by a certain surface. Fig-
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(@) (b) ()

Figure 2.4: An example object (a) Lengthd; measures the distance of the object

centerp; to its nearest wall. Anglé; is the orientation of the object relative to the
nearest wall (or the tangent plane if the wall is nonplanamngthb, gives the diagonal
of the bounding box. (b) The object has 4 accessible spacdsred ata;;, a;2, a;3,
anda;, respectively. (c) A viewing frustum associated with thecdis represented by
3 rectangles centered af;, v;2, v;3. Quantitiesud;;, andwvd;, denote the corresponding

diagonal lengths of the rectangles.
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ure 2.3 shows a candelabrum on top of a table. The table is hence teatpat the

candelabrum, and the candelabrum is the child of the table.

Suppose an example room populated by furniture objectsengWith the room itself
regarded as the root, all objects directly supported by tia fbr the wall are defined
as “first-tier objects” (e.g. bed, table, clock on the walill objects supported by a
surface of a first-tier object (e.g., a vase on top of a cuph@ae defined as “second-tier
objects”. A room configuration is thus represented by a hibraof relationships. For
simplicity, our optimization considers only first-tierscasecond-tiers, which should

cover most objects of interest.

Pairwise relationships: Certain objects, such as a television and a sofa or a dining
table and chairs, interact with each other in pairs subgegatrwise orientation and dis-
tance constraints. Each pairwise relationship can be selidiing the corresponding
objects in the Ul, after which the mean relative distance amgle are extracted from

the examples for use as pairwise constraints.

2.5 Furniture Arrangement Optimization

Given the spatial relationships extracted as describesleglmur goal is to integrate
this information into an optimization framework with a pesty defined cost function
guantifying the quality of the furniture arrangement. Givan arbitrary room layout
populated by furniture objects, the synthesized arrangésteould be useful for vir-
tual environment modeling in games and movies, interioigihesoftware, and other

applications.

The search space of our problem is highly complex as objeetsnéerdependent in

the optimization process. The furniture positions andriaagons depend on numerous

37



factors, such as whether the object should be visible orsadae. It is very difficult
to have a global optimization scheme or a closed-form smiutihat yields a unique

optimum.

To tackle this problem, we resort to stochastic optimizatethods, specifically, simu-
lated annealingKirkpatrick, 1984 with a Metropolis-Hastings state-search stee{ropo-
lis et al, 1953 Hastings 1970 to search for a good approximation to the global opti-
mum. Note, however, that given a room, a set of furniture abjeand the prior spatial
and hierarchical relationships, numerous acceptablytgoafigurations will be possi-
ble. This is the rationale for finding a good approximatiomireasonably short time,
rather than searching exhaustively over the complex sespabe in order to find the
global optimum of the cost function. The evaluation of irdedecoration results can
be subjective; hence, we will perform a perceptual studyalwate the realism of our

synthesized results.

2.5.1 Simulated Annealing

Simulated annealing is a computational imitation of they§ital) annealing process,
which gradually lowers the temperature of a heat bath thatrots the thermal dynam-
ics of a solid in order to bring it into a low-energy equilibm state. Theoretically,
the algorithm is guaranteed to reach the global minimum aigarithmic rate given
a sufficiently slow cooling schedulé&séman and Gemar984). Using such a slow
cooling schedule is impractical, however. Nevertheldssas been widely used to find
guasioptimal configurations in circuit design, operati@msl many scientific problems.
As in the work on floor-plan generatioMérrell et al, 2010, we found that simulated
annealing with the simple Metropolis criterioBi{ib and Greenberd 999 is effective
in our problem of optimizing configurations in the space a$gible furniture arrange-
ments. For additional details about the simulated anngatiethod, refer to§chneider
and Kirkpatrick 2006 Liu, 2008 Aarts and Korst1989.
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By analogy, the furniture objects in our application arearégd as the atoms of a
metal being annealed—they are initially “heated up” toalftexible rearrangement,
and refine their configuration as the temperature graduallyedses to zero. At each
temperature, the Metropolis criterion is used to deterrttieetransition probability. It

employs a Boltzmann-like objective function

flg) = e @, (2.1)

where the state of the systemn= {(p;,0;)|i = 1,...,n} represents a furniture con-
figuration comprising the positiong and orientation®; of each of then furniture
objects,C' is the cost (energy) function, which will be defined in Sect®5.3 andj

is inversely proportional to the temperature, increaswey the iterations as the system
anneals from a high temperature to a low temperature. Atiéaetion, a new furniture

configurationy’, or “move”, is proposed, and it is accepted with probability

a(¢'|¢) = min Hi‘i; : 1} (2.2)
= min [exp(3(C(¢) — C(¢)), 1] (2.3)

Note that the Metropolis criterion can accept moves thatemse the cost, which en-

ables the method to avoid becoming stuck at local minima.

Figure 2.5 depicts an example furniture optimization process. Wecslpyi initialize
the furniture objects in random positions and orientatiarnfiguration that typically
has very high energy. The supplemental videos include @mmnmsof the optimization

process.

2.5.2 Proposed Moves

To explore the space of possible arrangements effectitheyproposed move — ¢’
involves both local adjustment, which modifies the currerdragement, and a global

reconfiguration step that swaps objects, thereby altehiegtrangement significantly.
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Initialization 1000 iterations 5000 iterations 15000dttons 25000 iterations

Figure 2.5: Furniture arrangement optimization from a random initiardiguration
(left). As the optimization process proceeds, the fureittonfiguration is iteratively

updated until it achieves an optimized final arrangemgnn 25,000 iterations (right).

Translation and Rotation: The basic move of the optimization modifies the position
of an object and its orientation. For the purposes of theitium®arrangement problem,
2D translation and rotation transformations suffice to gan® objects into practica-
ble arrangements, since in most cases furniture objeatd sfaright on the floor due
to gravity. In addition, we found in practice that performitranslation and rotation
separately gives a more stable optimization. In mathemlatrms, an object or a
subset of objects is selected and updated with the nipvé;,) — (p; + dp,6;) or
(pi, 0:;) = (pi, 0; + 08), wheredp ~ [N(0,02) N(0,072)]" anddd ~ N(0,07), with

N (i, 0?) = (2rn02)~1/2e~@=1*/27* g normal (Gaussian) distribution of mearand
varianceo?. The variances’ andoj, which determine the average magnitude of the

moves, are proportional to the temperature.

Swapping Objects: To enable a more rapid exploration of the arrangement spate a
avoid becoming stuck in local minima, a move involving theapping objects in the
existing arrangement may be proposed. Two objects of the semmare selected at
random and their positions and orientations are intercbdngp;, ;) < (p;,6;) for
objectsi andj. Object swapping usually changes the cost significantiyethy leading

to considerable rearrangement of the configuration.
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Pairwise Relationship

Pathway

Figure 2.6: Left: A pathway connecting doors. Right: A pairwise consitraetween

the television and the sofa.

Moving Pathway Control Points: Given two doors, multiple pathways are possible.
By moving the control points of the pathway, which is repriged as a cubic Bezier
curve, the pathway can change its course to avoid collidiilg furniture objects. As
shown in Figure2.6, the free space of a pathway is represented by a series ahgges
along the curve. Thus, pathways can also be regarded asttiwrobjects” whose
control points may be modified, and a move can be defined agdhsldtion of a

pathway control point in a certain direction.

With the aforementioned moves, given a floor-plan and a fixaahber of furniture
objects that define the solution space, the configuratiorfufréture object(p;, 6;) has
a positive probability to move to any other configuratigh ¢;). Given the annealing
schedule, the solution space is explored more extensivéiyiavger moves early in the
optimization, and the furniture configuration is more fintiped with smaller moves

towards the end.
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(a) Initial random arrangement (b) Arrangement includih@@onomic terms (c) No accessibility termv{ = 0)

flir = 0)  (f) No pairwise orientation termu),, = 0)

(9) No pathway termipath = 0) (h) No prior distance termu(gr =0) (i) No prior orientation termz@gr =0)

Figure 2.7: The effect on the automatic arrangement (b) of the furnitu(e) resulting
from the omission of individual cost terms: Disregardingrtan ergonomics results in
unrealistic synthesized arrangements that that are nablie in several ways; e.g., (c)
the furniture objects are colliding, (d) a potted plant imbking the television and the
armchair, (e) the work-chair is too far from the desk, (f) #renchair is facing away
from the television, (g) the desk and work-chair are blogkihe door, (h) furniture

objects are too far from the wall, (i) objects are randomlyenited.
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2.5.3 Cost Function

The goal of the optimization process is to minimize a costfiom that characterizes
realistic, functional furniture arrangements. Althouglisioften difficult to quantify
the “realism” or “functionality” of a furniture arrangemgithe following basic criteria

should not be violated.

Accessibility: A furniture object must be accessible in order to be funetidklitton
and Nystuen2007 Ching and Binggeli2005. In Section2.4.1, we defined for every
face of an object an accessible space determined from pr@ngles and the dimen-
sions of the human body (see Figi2&l). To favor accessibility, the cost increases
whenever any object moves into the accessible space ofaratfect. Suppose object

1 overlaps with the accessible spdcef objectj, the accessibility cost is defined as

Ci(¢) = Z Z zk:max {o, 1— %} . (2.4)

Note that we simplify the move by dropping the optimizatidrodentationd;, only
measuring the relative distance. Our experiments reveaidhis simplification suf-
fices to ensure accessibility and more easily prompts thdap@ng object to move

away.

Visibility: ~ Some objects, such as a television or a painting, impos¢ sgguirements
on the visibility of their frontal surfaces, since their iamental functionality is com-
promised if their fronts are blocked by another object. rarg such object that must
be visible, we associate with it a viewing frustum (see Fégud). Similar to the acces-
sibility constraint, whenever another object moves intme®bject’s viewing frustum,
the cost increases in order to discourage the move. As disdus Sectior?.4.], for
an object; with a viewing frustum we approximate the frustum by a seofeectan-

gles whose center coordinates are defined;adf object: overlaps with the visibility
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approximation rectangle of objecty, the visibility cost is defined as

ZZZmaX lO 1— HI;DZ+ ;;;k” (2.5)

Note that it is similar to the accessibility casf, where the accessible space of object

j is replaced by the viewing frustum.

Pathway Connecting Doors: Anotherimportant criterion involves pathways between
doors Ching and Binggeli2009. The placement of furniture objects such that they
block doors should obviously be inhibited. However, a roanfiguration with cir-
cuitous and narrow pathways should also be avoided. Toestribalance, we assume
that a pathway in a typical living environment should be sthpand we define its lo-
cus by a cubic Bezier curve, where the free space of the pgtlsagpproximated by

a series of rectangular objects, as shown in Figuée Thus, the movement of furni-
ture objects into the rectangles is penalized. Apart fronvingfurniture objects, the
pathway itself can be adjusted by translating the controitp@f the Bezier curve. Be-
cause a pathway should be free of obstacles and thus vigiblpathway cost’,.., can

be defined similarly a¢’, defined in Eq. 2.5), and applied to the series of rectangles

along the pathway.

Prior:  The prior cost controls the similarity between the new camfigjon and con-
figurations seen in the examples. According to Sec?ign2 we extract for each fur-
niture object its prior distance and orientation to the asawall(d;, 6;). Alternatively,
for any new furniture object that is absent from the posigxamples, the user can
manually assign the prior. Given a new room layout, the euiri@rniture arrangement

will be compared with the prior by
w(@) = lldi—di (2.6)
= _116: - 61, (2.7)
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whered; and#; can be computed from the currept i.e., finding the distance and

relative angle to the nearest wall.

Pairwise Constraint: The pairwise constraint is applied between two furniture ob
jects with a specific pairwise relationship; e.qg., the tisiewn should be facing the sofa

as shown in Figur@.6, and a bedside table should be close to a bed. It thus encodes
the natural affinity of certain furniture objects in the opized result. We define the

(¢) andC?

pair

pairwise constraint'?

pair

(¢) by simply replacing the distance and orientation
to the wall in the prior cost as defined by Eq&.6) and @.7), with the desired distance

and orientation between the pair of objects.

Given the above costs, we define the overall cost function as

C(¢) = w,Ca(9) + w,Co(9) + WoarCrar D)
+wlC4 ) +wlC(¢)

pr—pr pr—pr

g Co(0) + Wi Cr( @) (2.8)

pair " pair pair " pair

Thew coefficients determine the relative weighting between st terms; in practice,

b =10.0.

pair

we setw, = 0.1, w, = 0.01, Wy = 0.1, w = w?, = [1.0,5.0], andwf, = w

pair

The effect of omitting individual terms is depicted in Figu.7.

The optimization formulation can be readily extended t@seégtier objects—optimization
is performed to move second-tier objects on the supportinigses provided by their
first-tier counterparts in the same way that furniture ofsjewove over the floor space of
aroom, which is regarded as the root in the hierarchy. Howeeeond-tier objects will
attach to their first-tier parents if they are not alreadgated when the optimization

begins.
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Number of| Number of| Total Time

Objects | Iterations (sec)
Living Room 20 20000 22
Bedroom 24 20000 48
Restaurant 54 25000 219
Resort 30 42000 126
Factory 51 42000 262
Flower Shop 64 22000 376
Gallery 35 18000 88

Table 2.1: Computation times are measured on a 3.33GHz Intel Xeon P&tigbpnd

hierarchical relationships are extracted automaticallgrh positive examples.

2.6 Results

Figure 2.8 shows typical input exemplars that serve in extractingifura relation-

ships. For each scene, we build five exemplars which covemib& common types
of furniture objects. The furniture objects used in the ingxemplars for relationship
extraction may differ in appearance from those used in théhggis, although they are

of the same type.

To demonstrate the efficacy of our optimization approacheseed it on seven different
scenes, théiving RoomandBedroomexamples shown in earlier figures, plus the five
additional scenegactory, Flower Shop Gallery, Resort and Restaurant shown in
Figure2.9. Table2.1 tabulates the computational complexity, running time, trel
number of iterations in each scene. Note that the respguiisiéions and orientations of
the windows, doors, and ceiling fans are fixed and not upddueidg the optimization

unless otherwise stated.

For each scene, we synthesized three different furnituesgements; the same view
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Living Room Bedroom  Factory Flower Shop Gallery Resort &easint

Figure 2.8: Typical input examples for different scenes.

Synthesis 1 Synthesis 2 Synthesis 3

Figure 2.9: Selected views of our synthesized results. Top to bottostofa Flower

Shop, Gallery, Resort, Restaurant.
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of each synthesized arrangement is shown in Figu@ér comparison. Two additional
views of each synthesized arrangement are included in ticejpial study, which will

be detailed in the next section.

TheFactoryscene in the figure shows the efficacy of the pairwise comstrgy modi-
fying the weights of the pairwise distance and orientatezmts, different groupings of
work desks and chairs are obtained. The accessibility agiliNy constraints acting
together prevent the door and poster from being blocked. Hibvver Shopprovides

a striking example of the effect of the pathways constraiitich maintains a clear
path between the doors despite the dense coverage of thendemaf the room by
flowers. For this scene, we change the position of the main idoeach synthesis to
illustrate different path generation solutions. The asitBlity constraint also prevents
the cashier from being blocked. We modeled @allery scene based on an image of
the Yale University Art Gallery. The scene consists of a nectangular room sup-
ported by numerous pillars. Our synthesis result suggeseswainterior arrangement
for the gallery, where optimizing visibility and accessilyihelps avoid obstruction of
the pictures and information counter. TResortprovides another example of a non-
rectangular room. Using pairwise constraints betweendseleand the stool, our sys-
tem automatically generated a area dedicated to paintirgchwose a different mean
position for the sofa in Synthesis 2 so that the optimizeation is farther from the
wall. The Restauranexample illustrates the significance of the pairwise retethip
on both first-tier and second-tier objects. With the use adracentric spatial relation-
ship between the chairs and table extracted from the exesppléferent numbers of
chairs are correctly oriented and evenly distributed adciineir respective tables and

each dish-set is near and properly oriented to its correfipgrchair.
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2.7 Perceptual Study

We performed a perceptual study to evaluate the realismwrdibnality of the furni-
ture arrangements synthesized by our interior designmsystur null hypothesig,
was that users perceive no significant differences in thetfomality of the synthesized
arrangements relative to those produced by a human degjiyeerthe same rooms and
sets of furniture objects. The alternative hypothésisvas that users did perceive sig-
nificant differences. Our experiment was conducted usingpgestive, two-alternative,
forced-choice preference approach patterned after theepueted in Jimenez et a).
2009.

2.7.1 Participants

25 volunteer participants were recruited who were unawhtbeopurpose of the per-
ceptual study. This number of participants was comparalile similar studies in
which 16 users were recruitedggnow et a).2008 Jimenez et a).2009. The par-
ticipants included 18 males and 7 females whose ages ranged20 to 60. All the
subjects reported normal or corrected-to-normal visiainwo color-blindness and re-
ported that they are familiar with the indoor scenes to bieteis the study. 14 subjects

reported that they did not have any expertise in interioigites

2.7.2 Data

The synthesis results shown in Figz® were compared against furniture arrange-
ments designed by humans. To assess the significance o$ jamok pairwise con-
straints, we produced two additional synthesis resultsespectively settingu;lr =
wl, = 0andw’ = w?, = 0. Figure2.10shows selected views of the two additional

synthesized examples of the five scenes. Note that the gusibf objects mounted on

the walls, such as paintings and posters, are fixed in the@ram
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Figure 2.10: Synthesis results obtained without enforcing a selectedtcaint. Left:

No distance constraint; e.g., in the Living Room, the cowchadt placed against the
wall and, in the Factory, some work-chairs are placed famirtheir respective work
desks. Right: No orientation constraint; e.g., in the LgviRoom the television is
oriented at an awkward angle against the wall and, in the Bagtsome work-chairs

are oriented arbitrarily.
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Figure 2.11: A screenshot used in our perceptual study. Each participas shown

70 pairs comprising a synthesized arrangement and an aearent created by a hu-
man designer given the same room and set of furniture objeetf$. Overhead and 2
different views of a synthesized furniture arrangemerghRiCorresponding views of

a human-designed furniture arrangement.

2.7.3 Procedure

The study was conducted in a manner similar to the traditiprectice adopted in
industry, where interior decorators present their desltgrraatives to customers and
request their preference. It involved static 2D image viegmather than 3D scene
navigation so as to eliminate differences due to varyingees of skill among the
participants in using navigation software. The viewing mfeo was avoided because,

as our preliminary experiments showed, repeated videoingeeasily causes fatigue.

Figure2.11shows a screenshot used in our perceptual study for paiogis@arison.
The left and right color plates respectively show three gi@f a furniture arrange-
ment, one synthesized by our system and the other createtitoyan designer. Each

participant viewed a total of 70 trials (5 paired comparsgn/ scenarios< 2 trials).

Participants were encouraged to ask any questions pribetsttidy. After completing a

consent form and questionnaire, they were given a sheetitidg the task description:
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“This test is about selecting a color plate from a pair of cqiates, and
there are 70 pairs in total. Each plate shows three views ofratéire
arrangement. You will be shown the plates side-by-side wiginey image

displayed between each evaluation.

Your task in each evaluation is to select the arrangementhichwyou
would prefer to live, stay, work, visit, etc., depending be primary func-
tion of the room, by clicking on the color plate. You can vidwve test pair
for an unlimited amount of time, but we suggest that you s@endnd 15

seconds on each set before making your selection.”

The color plates were presented to each participant in ardiit random order. Coun-
terbalancing was used to avoid any order bias—each paimgadson was assessed
twice by each participant, where in half of the trials thethgsized arrangement is

displayed as the left plate and as the right plate in the dthkr

2.7.4 Outcome and Analysis

The primary goal of the experiment was to validate the qualithe furniture arrange-
ments synthesized by our system relative to that of arraegeydesigned by humans.
If human-designed arrangements are not clear winners logeiynthetic ones, then our

system may be considered successful.

The collected preference outcomes were analyzed to deterifrany statistically sig-
nificant trend exists. To this end, we first adopted the Chiasgnonparametric analysis
technique. A one-sample Chi-square includes only one dslmansuch as is the case
in our perceptual study. The obtainedi/ A,,Ag/As,AplA3, Al Ay, ArlAs) frequen-
cies were compared to an expected 25/25 (50 for each coraparissult to ascertain
whether this difference is significant. The Chi-square @slwere computed and then

tested for significance. TabR2tabulates the survey results. Overall, they indicate that
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the furniture arrangements created by humansarelearly preferred over the arrange-
mentsA;, A,, and Az, when all the cost terms participate in the optimizatior gyan-
thesizes the furniture arrangements. FordhéA,, A/ A, andA g/ Az pairs, among the
21 synthesized arrangements, only 3 showed a significditeliice fp < 0.05) inas-
much as most of the participants were able to identify thednuxatesigned arrangement

in these cases.

Second, we adopted a Bayesian analySalljstel, 2009 Rouder et a].2009 to deter-
mine whether the number of participants who selected thiéhsegized layout was what
would be expected by chance, or if there was a preferencerpatFor each scene,
we assumed that the participant had a probab#ityf picking the human-designed ar-
rangement, and that the results of different trials of theesacene were independent of
each other. Based on these assumptions, we used a binostiddution to model the
results, where the only parameter wasThenH, hasP = 0.5 andH, hasP = [0, 1].
We computed the odd@ on H, over H,. According to Rouder et al.2009, O > 3
shows evidence favoring/, whereasO < 1/3 shows evidence favoring/;, while

other odds values are inconclusive.

Table2.3tabulates the odds computed. For the/ A, Ap/As, andAg/ A pairs among
the 21 synthesis results, 10 favBg indicating the lack of a significant perceived dif-
ference between the furniture arrangements synthesizedrgystem and the human-
designed arrangements, 6 favéy indicating a significant difference, and 5 are incon-

clusive.

Orientation vs distance: Most users chose the human-designed arrangement when
the distance or orientation constraint was inhibited, dwdais easier for users to de-
tect the difference when we inhibited the orientation telantwhen we inhibited the
distance term. Omitting orientation constraints yieldd basults in practice, which

suggests that a greater weight can be applied in penaliziegtation deviation during
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Ap /A Ap /A Ap/As Ap /A4 Ap/As

Scene |y2-valuep-valug y2-valuep-valug y2-value p-value x2-value p-value y2-value p-valug
Living Room 1.210 0.271] 0.010 0.920, 0.010 0.920 5.290 0.021] 10.89 0.001
Bedroom 0.810 0.368 7.290 0.007] 0.010 0.920, 4.410 0.036 20.09 0.000

Factory 0.490 0.484] 1.690 0.194 0.810 0.368 13.69 0.000] 20.25 0.000
Flower Shop 0.090 0.764| 9.610 0.002] 6.250 0.012 0.090 0.764/ 10.89 0.001
Gallery 0.250 0.617] 3.610 0.057| 0.090 0.764] 1.690 0.194] 3.610 0.057
Resort 0.010 0.920 2.890 0.089 0.090 0.764 9.610 0.002 12.25 0.000

Restaurant | 3.610 0.057] 0.250 0.617] 1.690 0.194 8.410 0.004 2.890 0.089

Table 2.2: Chi-square analysis (degrees of freedom = 1, level of siganiite = 0.05).
Ag, A1, As, Az are, respectively, the example arrangement and synthesidts 1,

2, and 3 in Figure2.8 and Figure2.9. A, and A; are the respective synthesis results
without distance and orientation considerations. Valulesven in boldface indicate

significant differences.

optimization.

2.8 Summary, Discussion, and Future Work

In this chapter, we introduced a framework for the autormmstithesis of furniture lay-
outs, avoiding manual or semi-automated interior desigmagcrhes that are impracti-
cal in graphics applications requiring full automation. Wédieve that our work is the
first to consider in a comprehensive manner human factorsngrthem accessibility,
visibility, pathway constraints, and so forth. We have dastmated the effectiveness of
our automated interior design approach in generating geraents for various scenar-
ios, and our results have been deemed by human observerptvdaeptually valid in

functionality compared to arrangements generated by hulesigners.

Although our framework espouses optimization as a meangrahssizing realistic

furniture arrangements, it provides users the flexibil@tycontrol furniture placement

54



Ap/Ay | Ag/Ay | Ap/As | Ag/As | Ag/As

Scene odds odds odds odds odds
Living Room| (1.377)| 5.506 | 5.506 | 0.016 | 0.000
Bedroom (2.135)| 0.002 | 5.506 | 0.042 | 0.000

Factory 3.050 | (0.818) | (2.135)| 0.000 | 0.000
Flower Shop| 4.894 | 0.000 | 0.005 | 4.894 | 0.000
Gallery 4.020 | 0.102 | 4.894 | (0.818)| 0.102
Resort 5506 | 0.223 | 4.894 | 0.000 | 0.000

Restaurant | 0.102 | 4.020 | (0.818)| 0.000 | 0.223

Table 2.3: Odds on the null hypothesig, over the alternative hypothesis;. Val-
ues shown in boldface favdf,, indicating no significant difference; values shown in

parentheses are inconclusive; other values fakler

that respects furniture functionality and interior desagsthetics. For instance, the
pairwise constraint promotes the even distribution of isharound a circular table in
the Restauranexample, which is a typical case of radial balance or symy{€&thing
and Binggelj 2005 Malnar and Vodvarkal992. Our framework also demonstrates
its effectiveness in a “tight fit” scenario, where many fuocal groupings of furniture
(e.g., work desks and chairs) are possible as inRdetory example, as well as in
a “loose fit” scenario, where the placement is more flexiblé fumniture types are
more diverse, as in thResortexample. The framework is also flexible enough to
cater to specific needs related to human factors, which magdudily encoded into
the accessibility and pathway terms in order to generaabl@/furniture arrangements.
Note that we make the implicit assumption that the perimaftarroom is long enough
to accommodate all the furniture objects that ought to begalagainst walls. Violating
this assumption may lead to local suboptima or failure castegre in the resulting
layout some furniture objects that should be positionedasgavalls may be placed at

a distance from the nearest wall that is already occupiedbthar object.
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Given our automatic tool for synthesizing furniture arramgnts plus existing methods
for synthesizing floor-plans, buildings, and cities, we patentially create and model
virtual worlds much faster and with much less human efforhe Tesulting interior
enrichment would enhance the level-of-detail and, theegfihe realism of large-scale
buildings in virtual worlds, which are becoming increagyngpbiquitous in motion pic-

tures and interactive games.

The future extension of our framework will focus on functissues, including con-
sideration of interior lighting design and the acousticldies of a synthesized furniture
configuration, as well as on subjective, aesthetic issuasng them the selection of
furniture styles and colors consistent with design corespth as balance, harmony,
and emphasisGhing and Binggeli2005 Malnar and Vodvarkal992. Furthermore,
pairwise relationships between objects in exemplars shioelanalyzed in a more so-

phisticated manner from the perspective of unsupervisethime learning.

Future work can also investigate how sophisticated humetorfs, such as pathways
and the interaction of humans with their environment, cataken into account in the
automatic generation of interior layouts. Other sophéded factors, such as lighting
and aesthetics, can also be considered in the layout optilizprocess. This will
not only lead to higher realism of the generated layoutspiay also help in creating
smart homes where the generated layouts may be employedtbigsito automatically

arrange the given rooms into pleasant configurations.
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CHAPTER 3

Virtual Character Modeling: DressUp

3.1 Introduction

As you awaken each day, there is a simple question that youne®y to answer: How
should | dress today? Your wardrobe contains various kifidsothes, such as dress
shirts, dress pants, jeans, sweaters, suits, and diffgrees of shoes. What combi-
nation of clothing will have you most appropriately dres$edthe day’s activities,

thereby making you most visually appealing? Perhaps youdiike multiple sugges-

tions that best coordinate with the new tie that you recefvech your daughter as a
birthday gift. The outfit selection problem also occurs imguiter graphics modeling,
especially in movie and game production: How should one@pyately dress a large
number of human characters with an eye to functionality e/hiloiding visual awk-

wardness and repetitiveness? The manual specificationtbirg is obviously tedious

and it may be prohibitive on a large scale.

We demonstrate that the task at hand, of selecting apptetigsets of clothing items
from a wardrobe, can be addressed formally as a combinbbtianization problem.
Figurel.5shows an overview of our approach. A suitable outfit reqyoégly com-
bining a variety of clothing items to satisfy functional acertain visual criteria. We
do not generally wear a pair of sandals with dress pants toftloe, nor do we wear a
red dress shirt with a green suit for a business meeting. ditiad, to put a wardrobe

into full use, we would like to explore as many good solutiasgossible, so that we
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can exhibit sartorial variety. A similar, but much largeake problem comes up with
regard to online boutique websites, where shoppers cantssat®ong many clothing
items. Usually it is not difficult for a shopper to locate aided clothing item; the non-
trivial question is how this clothing item should be matcieterms of style and color
with other clothing items from the same or different shop&om one’s wardrobe at

home.

There is no single universal rule that satisfies both thevaglifunctionaland visual
criteria. People generally categorize outfits idtess codeswhich represent different
functionalities. These can range from strictly regulatedsuch agvhite Tie suitable
for formal events, to relatively unrestricted ones suclasual suitable for many ev-
eryday activities. Without restriction, one can define dipalar clothing requirement
for an event and consider it a dress code. Different relgji@ocieties, and cultural
practices adhere to different dress codes; for exampl@nredormal occasions, Scot-
tish men wear a kilt, a form of dress not commonly worn by meewhere. The visual
criteria involve numerous factors, from human body atteisusuch as skin color, eye
color, hair color, and body shape, which are model-specdiaspects of the clothing
items such as the clothing color, cutting, style, and fatem¢ure. The rules vary across
national and cultural boundaries and historic timelineserEwhen one has satisfied
all the applicable rules, whether one is dressed in a vigédasing manner is still a

rather subjective question.

In tackling the clothes matching problem, we enforce fuorai and visual criteria
through the two most important factorsiress codeandcolor. While color is an ob-
vious visual factor Jackson1987 Zyla, 201Q Nicholson 2003, to a certain extent it
is also related to functionality, which in turn depends ohliwre. For example, people
in China usually dress in red for festivals and in white fanduals. On the other hand,
the dress code is a broader guideline that pertains moreteotmbination of clothing

items. Some dress codes also have strict requirement faotbes of particular items,
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but how different colors coordinate is not their main concer

Given a specific dress code favoring various combinatiordathing items and a hu-
man body, our outfit synthesis framework optimizes the commpatibility between
the human body and the suggested items in order to realizetbetfunctional and
visual criteria. We employ four of the most common dress s@jmrtswearCasual
Business-Casuabnd Businesswhich cover the main functionalities of daily life in
much of the world. These dress codes are encoded in our systeim a probabilistic
framework, via a Bayesian network. The Bayesian netwonlaiaéd on real image data
and it associates any particular clothing item combinatidh an observed probability
distribution under any specific dress code. Additional sliesdes and other matching
criteria can be trained and included in the same manner. é@nsnon practice in the
fashion industry Jackson and Lulow1984 Jackson1987 Henderson and Henshaw
2008, our system classifies the color type of the human subjett@sn’ or ‘cool’
based on his or her skin, hair, and eye colors. This is aufoailgtaccomplished by
a classifier that is pre-trained on a database of images qi@edfter assigning the
user color type, our system will suggest a preferable coddetfe for the subject and
this color palette will serve as a soft constraint during dpéimization, which auto-
matically searches for clothing items guided by the dreske aghile satisfying color

compatibility criteria subject to the suggested color fiale

In summary, outfit selection is a common everyday problemyewer, the nature of
this problem is very broad and it involves a considerablewamof visual and social

factors that can be implicit and abstract. Our main contitims are as follows:

1. The introduction of a novel topic area to computer graphitd a first attempt to

tackle the automatic outfit synthesis problem through a-deteen approach.

2. The encoding of implicit, probabilistic clothing matobirelationships on real-

world data through Bayesian Networks that support conugtigueries and in-
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Input Body Suggested Color Palette Suggestion Result

Input Dress Code
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User changes:

1) Dress Code

2) Color Preference
3) Clothing Items

Accept?
Yes

Figure 3.1: Our optimization framework. Inputs include body color diiites, an input

dress code, and a wardrobe of clothing items. The optimigeerates optimal sugges-
tions according to cost terms defined by the dress code, tugested color palette, and
color compatibility. In response to a user’s change of stgtdor preference, or speci-

fication of particular clothing items, our system automaliiz synthesizes new outfits.

corporate a Support Vector Machine classifier of body cadmetthat applies

subjective evaluation criteria common in the fashion inidus

3. The formulation of outfit synthesis as an optimizationhpem that takes into
account the style and color compatibility of clothing comdtions, and that is
flexible and easily extensible through the modification &f Bayesian networks

and cost terms of the formulation.

4. The application of our novel approach in different preatscenarios; e.g., as an
outfit advisor, as a suggestion engine in shopping/boutiegirsites, or as part of

the character modeling engine for games/virtual world iappibns.

5. The validation of the efficacy of our approach through adgerspecific percep-
tual study.
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3.2 Related Work

We will begin by discussing related work on clothing andwaéitcharacter modeling in

computer graphics and then review other relevant work dmdasand color.

3.2.1 Clothing in Computer Graphics

Modeling, animating, and rendering visually realistictbiag has been an area of inter-
est in computer graphics for decad@srzopoulos et al1987 Terzopoulos and Fleis-
cher, 1988 Provot 1995 Baraff and Witkin 1998 and it has received much attention
in recent years in movies and games especially for dresangg Inumbers of human
characters. Researchers have been putting significamt ieffo the realistic modeling
(Kaldor et al, 2008 Volino et al, 2009 Kavan et al.2011, Wang et al.2011h Umetani

et al, 2012, Guan et al.2012 and/or animationKaldor et al, 201Q de Aguiar et al.
201Q Wang et al. 2010 Feng et al.2010 of clothing, and their efforts have enabled

computer animated clothing to blend seamlessly with th#éhiig worn by real actors.

Tools are now available to help artists interactively desigtual garments, which is
adequate for highly-detailed, small scale production,, éag motion pictures. How-
ever, manual approaches become too tedious on a large sualeas when there is
a need to clothe numerous virtual humans in a virtual city.ilgvbur work does not
concern the physically-realistic deformation of clothessimes over virtual bodies, we
are not aware of any research on automatic outfit synthesismputer graphics; i.e.,
given a set of clothing items and a human body model, auteaalbtisuggest a clothing

combination for a general or particular scenario.

Tsuijita et al. 2010 conducted a user survey that pointed out the difficulty fead-
ple have in selecting suitable outfits from their wardrobé&ey proposed the simple

heuristic of not repeating outfits on consecutive days, asthiled a camera system
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in a user’s wardrobe that can acquire and upload pictureitifes to the internet so
that the user can solicit outfit selection advice from frien@ur data-driven approach
captures clothing combination “advice” implicit in exaradiashion images, but we

automate the suggestion and synthesis process.

3.2.2 Human Modeling

Human characters are an important aspect of creating Wrrdds (McDonnell et al,
2006 Dobbyn et al. 2006 McDonnell et al, 2008 2009 O’Sullivan, 2009. While
realistic human animation and rendering can be critifat¢hia et al.2002), variety
in human appearance is equally important when consideriagga group of people.
Ulicny et al. 004 describe a system that enables the interactive creatiointoél hu-
mans with variety. The importance of appearance variataealistic human percep-
tion is nicely summarized with an extensive perceptualystndhe work of O’Sullivan
et al. 008 2009 2009.

For the most part, existing human modeling software requstdstantial manual in-
tervention. However, researchers have proposed app®acheass-produce various
characters by automatically modifying the texture, coboxd geometry of different
body parts in order to create crowds that exhibit some nauardation (McDonnell
et al, 2006 Dobbyn et al. 2006 Thalmann et aJ.2007. However, the goal of prior
approaches is to enhance the realism of the crowd as a whtiey than specific con-
cern as to whether any individual in the crowd is dressed gutgpor in a visually
pleasing manner. The lack of a fast, highly automated ajgpramthis problem limits
variation in the style of human characters, leading, inipaldr, to repetitive sartorial

patterns that greatly reduce realism.
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Casual Sportswear Business-Casual Business

Figure 3.2: Example images of dress codes from Google Images.

3.2.3 Colorin Clothing

Recently, techniques for combining colors in a scene to nialak, say, “harmo-
nious” or “peaceful” have been gaining intere€tofien-Or et a).2006 O’Donovan

et al, 2011). Color coordination is a core consideration in clothesahiaty Zyla,
201Q Gilchrist, 2011 Nicholson 2003. Fashion and make-up professionals usually
regard color coordination as person-specific, mostly dégehon the person’s intrin-
sic color tones, in particular, the skin, eye, and hair ®[dackson1987. A basic
approach is to first classify individuals as suited to a ‘waom‘cool’ color palette,
from which they should choose the colors for their clothes. tlere is no definitive
classification rule, subjective evaluation is usually parfed, and a common test is to
have observers evaluate whether the individual looks beating gold or silver acces-
sories, respectivelydackson1987. There are other variations of classification which
are more subtle and abstract—e.g., in accordance with gsoedlackson and Luloyw
1984, or according to “light/deep/clear/softHenderson and Hensha®008. How-
ever, the basic principle is still the same—suggesting arqualette for clothing items

based on the classification result.
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3.2.4 Dress Codes

A dress code is a set of rules governing what garments may be twgether and in
what setting. Such rules are commonly agreed upon amongeyeasgually depen-
dent on events and occasions. Common dress codes nowadhydeiSportswear
Casual Business-CasuaBusinessandFormal. Figure3.2shows typical example im-
ages. Some of the aforementioned dress codes also corikaiolor of the items; for
example,Busines<lothing tends to be darker, while there is not much resbmcin
Casualor Sportswear Pattern, fabric weight, and texture are also relevantealtiess
code Gilchrist, 2011).

The dress code is important in governing the functionalftyhe clothing Schoeffler
and Gale 1973 Fischer-Mirkin 1995 Flusser 2002 Sondag2011; Gilchrist, 2011).
However, the main objective of a dress code is to convey aagedtirough the combi-
nation of various clothing items. For example, dressindnauit a tie for a job interview
will convey a less formal and more relaxed impression, whd@ning a suit, dress
shirt, and tie to the beach will create an unusual scene.dwjth strict definition, the
perception of some dress codes can be ambiguous and persanasomeBusiness

Casualoutfits may be regarded &isines®r Casual

3.3 Data-driven Approaches

Figure3.1shows an overview of our optimization approach for autoomatifit sugges-

tion. The inputs comprise a human body model, a specific da$s, and a predefined
wardrobe. The output is one or more optimized outfit suggesti Before present-
ing the technical details of our optimization framework ateeloping the objective
function in the next section, let us consider the informatiequired to define our cost

functions.
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Example node Example state
Dress Code | Casual, Sportswear, Business-Casual, Business

Chest 1 t-shirt, dress shirt, sleeveless

Chest 2 tank, sweater, vest, long t-shirt

Chest 3 suit jacket, jacket, hoodie, open sweater
Hip jeans, shorts, dress pants
Foot slippers, dress shoes, boots
Neck necklace, scarf, tie, bow tie

Dress Code

Figure 3.3: Representing distributions of clothing items combinatiasith a Bayesian
network. Top: A table showing the major example nodes withesof their states.
Bottom: A part of an example Bayesian network for men, thungng labeled fashion
images. Refer to our supplementary materials for the coraglephs of the Bayesian

networks. Note that each node, except for the dress code hasgla state ‘none’.
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There are two preprocessing steps before the optimizataeps—encoding the cloth-
ing relationship and classifying the color tone of the sobfdy. We must quantify
the relationships among different clothing items so thatewm define compatible costs
among them; for example, what should or should not be woredas the selected
dress code and some already selected clothing items. Asweedigcussed, the dress
code involves various factors and can change from time te.tifor example, a dress
shirt usually goes with dress shoes if dress pants are wairthbre could be more

flexibility if jeans are worn.

An expedient way to generate outfit variety is to randomlgsieamong predefined
rules to combine clothing items. However, the question of ho define the rules,

which is critical to synthesis quality, is susceptible tbjsative bias. It is difficult to

consider all possible combinations, and the rules quickbone intractable to maintain
as the types of clothing items grow. Restricting to a smdikstiof possible outfits may
avoid awkward synthesis, but it will result in limited vagiend common artifacts such
as “repeated” characters that are noticeable in virtualexeThe lack of conditional
guery support has also prohibited the use of such approathesctical scenarios (e.g.,

shopping websites).

One possibility to encoding various relationships and defircompatible costs be-
tween clothing items is to adopt a data-driven approachdaseobservational data.
Data driven approaches have recently proven to be suct@sgitoblems involving
abstract semantic relationships; for example, in architat design, furniture lay-
out, assembly-based 3D modeling, and color compatibiptyliaations Merrell et al,
2010 Yu et al, 2011, Chaudhuri et a).20113 O’'Donovan et al.201]). Since our goal
is to match different clothing items in a sensible manned, &ith natural variety con-
forming to real world observations, a probabilistic maehiearning framework trained
by real world data is appropriate to encode the matching sash that the higher the

probability of a particular clothes combination, the lowgeits matching cost.
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An important issue in establishing the probabilistic rielaships between different
clothing items relates to thegonditional dependenciesFor example, the frequent
occurrence in the data of a jeans-sandals combination areka shirt-jeans combina-
tion could lead to a dress shirt-jeans-sandals combinatida being generated, which
should have very low likelihood. Therefore, simply encagihe observed probability

of a clothing item and any combination between it with otems is prone to error.

Probabilistic graphical models, in particular, Bayesiatworks, are an elegant and
efficient choice Pear| 1988 Koller and Friedman2009 for learning the implicit re-
lationships among different clothing items consistenhwitteir conditional dependen-
cies. Our trained Bayesian networks effectively encodetbbability distributions in
the space of clothing combinations. An important featuréhefBayesian network is
its ability to support conditional query, which is frequigmeeded in clothes matching.
The values of any subset of a clothing combination can be fx®bthe probabilities
of the remaining clothes can be calculated. For examplengikieBusiness-Casual
dress code, one may constrain the upper body to be clothettshiet and blazer and
guery the probability of the lower body being clothed in jgaccording to the trained
distribution. This allows better flexibility to recommenidthing items under different

user-specified conditions or scenarios.

3.3.1 Bayesian Networks for Clothing Relationships

To make the scope of our problem tractable, we train sep8agesian networks for
men’s and women’s wear and exclude color from the trainirgg@ss. In our current
system, we train these networks on four dress co&gmirtswear Casual Business-
Casual andBusiness Figure 3.3 shows part of the Bayesian network for men. The
network for women is similar, with differences in some of tiale states; e.g., having
statedressin nodeChest 1 The complete networks can be found in our supplementary

materials.
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The nodes of the Bayesian networks correspond to differedy lbegions on which a
clothing item can be worn, and each node state representypgbeof clothing item
being worn. For example, the nofleot has statedress shoesslippers boots and so
on. Except for the noddress codeeach node also has a stawene which is used
when the node does not carry any clothing item; apt = nonewhen no shoe is
worn. While state choices can be easily modified to suit $ijgedomain needs, as a
general case, we follow common classification in boutiquesites such as “H&M”

and “eBay”.

To enable us to handle more complicated situations where théayering of clothing,
we permit a body region to be represented by multiple noddstrrespond to multiple
clothing layers. For example, the chest has nddlesst 1 Chest 2 andChest 3 with

Chest Icorresponding to the innermost layer (e.g., a t-shiitlest 2o the middle layer

(e.g., a vest), an@hest 3o the outer layer (e.g., a jacket).

Usually a reasonable quantity of input training data is negi For example, 120
architecture programs were used to train the networkdvieriell et al, 2010. In
our case, we downloaded around 3000 images for the four doghkss for men and
women from Google Imagés Since some of the downloaded images are not useful,
and determining whether the images belong to the dress saalsubjective process,
we hired three fashion school students to manually labetindutes of each instance
in the network, who used their judgment to disregard inappate images. In total,
around 2000 labeled data sets for men and women were usedirialie Bayesian
networks. Labeling each image took about 15-20 sec, and hioéeviabeling process
took 4 hours. Example training images fBusinessand Sportswearare shown in
Figure3.4. Variety arises when multiple item combinations occur uride same dress
code. Theimages, labeling program, and labeled data drelgatin the supplementary

materials.

'Example keywords we used for the image search: ‘Casual veeanén’, ‘Sportswear for men’,
‘Business-Casual wear for men’, Business wear for men’ samdarly for women.
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Sportswear
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Dress Shirt
Suit Jacket
Tie

Dress Pants
Dress Shoes

Dress Shirt

Vest

Suit Jacket

Tie

Dress Pants

Dress Shirt
Suit Jacket
Dress Hat
Tie

Dress Pants

Hoodie Tank

Sport Pants Shorts Sport Pants
Cap Socks

Ear Rings

Hand Wrap

Figure 3.4: The top row shows typical example images from Google Imagesbot-

tom row shows the corresponding labeled data used for Bageasetwork training.

Note that some images may have occluded items (e.g., shoastarisible in the sec-

ond image), but partially labeled data is still usable initreng the Bayesian network.
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Figure 3.5: Top: An example fashion image and its corresponding 5-cphiette.

(Image courtesy of COLOURLovers.)

Two attributes should be assigned to two different noddsitorresponding two cloth-
ing items can coexist; e.g., shirt and suit jacket. Othezwisey should be put under
the same node; e.g., sandals and lace-up shoes, since it pesgible to wear both
at the same time. The important point here is to capture taéarships among dif-
ferent clothing items and their conditional dependencldsing the labeled data, we
learnt the Bayesian network structures for men and womegeogisely, by the Tree
Augmented Naive Bayes methder{edman et a).1997 which maximizes conditional
mutual information between attributes. The conditionalgability tables are trained
by the Expectation-Maximization algorithm, which can ledne probabilities even if
some training data are only partially labeled. Notice thheomethods such as maxi-
mum likelihood estimation could also be adopted. We fourad the results generated
using the learnt networks faithfully reproduce our humarcegtual requirement for
the four dress codes considered. TablEshows some example queries based on the

probabilities captured.
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3.3.2 Body Color Tone Classifier

After encoding the probabilistic relationships among tlagheng items, the next step is
to inform the optimization process of a color guide. It is axwoon practice in fashion
to first classify a person’s body color tone and then suggsattable color palette for
matching clothes for them. There are multiple ways for ctdore classification such
as subjective evaluation test3atkson 1987 or by “guidelines” or “rules?. How-
ever, as shown in Tablg.2, the classification “guidelines” can be very obscure and
cumbersome, arguably uninterpretable by a general usereT& obviously no unique
one-to-one correspondence between body color attributksaor tone classification

for users to follow.

To this end, we train a classifier to predict the body coloetoha target person consis-
tent with human preferences. This has two major advantdgest, we integrate sub-
jective evaluation tests commonly adopted in fashiteckson1987) into a machine
learning framework by capturing the subjective evaluatrem a number of people.
Second, after the classifier is trained, it is intuitive & tiser's end—a user simply in-
puts his/her body colors (e.g., by a few clicks on his/hee falooto) and automatically

obtains a color tone classification result, instead of preting obscure descriptions.

We acquired from Google Images a training dataset comrid0 facial images after
discarding images with strong illumination effect, indlugl both males and females.
For each image, we manually extracted the RGB values of thestyn, and two loca-

tions in the hair (to encode hair color variation). In ac@rce with common practice
in the fashion industry, we matched each image with a sehvdrsaccessories and then
with a set of gold accessories, from which a test subject wkscto choose which one
they preferred, thus indicating ‘cool’ and ‘warm’ color ®respectively. We recruited

40 volunteer participants, including 20 males and 20 femaleose ages ranged from

Zhttp://www.askandyaboutclothes.com/Tutorials/CindgBhColorAnalysis.htm
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20 to 60, to evaluate the 1000 face images. Evaluation tooktél 10 sec per image.

We trained a Support Vector Machine (SVM) classifi€rigtianini and Shawe-Taylpr
2000 and performed cross-validation by randomly choosing 9@ ¢or training and
100 data for testing, achieving a prediction rate of aboWb.7Given a previously
unseen human body model with specific skin, hair, and eyergotbe trained clas-
sifier predicts the body color tone, thereby recommenditigeeia ‘cool’ or ‘warm’
color palette to be used in the optimization. Each suggestéat palette consists
of 40 colors, as inJackson1987. While the evaluation is by its nature subjective
and ambiguous, we find that in general people with brownestdish hair and brown-
ish/greenish eyes are usually classified as ‘warm’, whettease with light-colored
hair and dark/bluish eyes are classified as ‘cool’. The kdb&hining data and labeling

program are included in the supplementary materials.

3.3.3 Color Compatibility Predictor

Figure 3.5 shows example images from fashion websites such as “Weatt&sl and
“COLOURLovers”, which are usually accompanied by a repméstave 5-color palette
that supports the color matching idea. Akin to this practateeach iteration of the
optimization, our optimizer extracts a representativebicpalette from an outfit and
evaluates the color compatibility of the palette based @nrdgression model from
(O’'Donovan et al.2011), which is trained by a large number of user-rated colortpede
The trained regression model can take a 5-color palettead,iand predict a user
preference rating (se®©{Donovan et al.20117) for the details of the training dataset,

prediction result evaluation, and analysis).
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3.4 Outfit Optimization

In performing the optimization phase, our system expldits trained Bayesian net-
works, body color tone classifier and color compatibilitggictor described in the
above sections. Given a human model, a wardrobe of clothémgsi and a dress code
as inputs, our system suggests multiple outfits whose cateradjusted desirably such

that they are compatible to each other guided by the coletieal

To achieve our goals we must solve a combinatorial optingagtroblem. Denoting
the wardrobe aBl/, which is a set containing all clothing items, the state afsystem
is a subset of1/, which we refer to as aoutfit ¢ = {6;]i = 1,...,T}, where each
0; = (ci,n;, s;) is a 5-value tuple representing a selected clothing iteme fBnm
¢; = (r4, gi, b;) contains the RGB values of the clothing item, which are gaedtfrom
0 to 255, n; is the node of the Bayesian network to which this clothingniteelongs,
ands; is the corresponding node state. For example= footands; = dress shoes
means that selecting the clothing iteincorresponds to setting the notteot of the

Bayesian network to statiess shoes

Note that the total numb@r of selected clothing items is a variable that can be changed.
Thus, the dimension of the input space is a variable. Our igdal obtain an outfity

that minimizes an objective function described in the nextisn.

3.4.1 Objective Function

We now describe the cost terms constituting our overallcibje function.

Style Cost: In order to obtain the matching cost between different ahgthtems, at
each iteration, we must determine every node state of theday network. Suppose

the network hasV nodes (excluding the root nodieess codedenoted bye,, ..., zy.
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(a) 3.44 (b) 3.35 (c) 3.35 (d) 3.57 (€) 3.48 (f) 3.50

Figure 3.6: Results with specific clothing items being fixed. (a)—(ciiflack sweater.

(d)—(e) fixed orange shoes. Color ratings are shown at theobut

Given an oultfitp, every noder;, is instantiated to stat&(z;.) by:

S; X =Ny
S(xy) = (3.1)

none x; # n;, Vi

The style cost term has two componeit§, andCh. Given

style®

dress code= d € {Casual SportswearBusiness-CasuaBusines}, thenCZ encodes
the conditional probability of each clothing item. It gusdéhe optimizer by penalizing
the selection of clothing items that do not fit dress cddeOn the other hand, ™

style

defines the conditional joint probability of the clothingnt combination:

style

Cr(p) =1 — % Zk: P(S(z;,)|dress code &). (3.2)

Co"(p) =1 — P(S(x1),...,S(xy)|dress code 4). (3.3)

style

To evaluate these costs, our framework makes queries ogeBdiiesian network to
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provide the conditional and conditional joint probabégiin @.2) and 3.3).2 In case
the user fixes one or multiple node states, the fixed nodesstalibecome the given

conditions. Figure3.6 shows two examples with specific items being fixed.

Color Rating Cost: Similar to the convention in fashion images, we use a 5-color
palette to represent a clothing combinatiorwhich comprisesl” selected clothing

items, based on a heuristic:
1. Each clothing item is represented by the color of its Istrgarface area.
2. Select 5 colors:
If 7= 5, select colors from all clothing items.

If 7 > 5, sort clothing items by their surface areas. Select colams fthe

5 clothing items with the largest surface areas.

If T < 5, sort clothing items by their surface areas. Duplicate rsotd
the5 — T clothing items with the largest surface areas. Selectbthel’

duplicated colors and the colors of tieclothing items.

3. Sort the 5 selected colors according to their physicaitiposon the body, from

top to bottom.

In practice, we assume the outfit comprises at least 2 clgtiems, i.e., T >= 2.
Denoting these ordered 5 colors &8s . . ., A5, this is the 5-color palette representing

outfit . The color compatibility cost is

(@) = 1 — [R(Ms ..., As) — 1]/4. (3.4)

color

In (3.4), R € [1,5] is the regression model fronD{Donovan et al. 2011), which

*To illustrate the effectiveness @fii:, suppose the dress codeBssinessthe initialized outfit is
joint

“shirt, jeans, slippers” and another outfit “shirt, dresatsaslippers” is sampled. Althougtt;. will
evaluate both outfits as unlikely% will favor the latter, hence effectively guiding the synsistowards

style
aBusines®utfit.
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No dress code, no color compatibility Fixed dress code, no color compatibility

240 2.66 2.71 2.63 2.82 3.04

No dress code, with color compatibility With dress code and color compatibility

h\

',_
- |
3.68 3.79

Figure 3.7: Effects of omitting individual cost terms. Top left: No dresde and no
color optimization. Top right: Fixed dress code, no colotiopzation. Bottom left:
No dress code but with color optimization. Bottom right: édxdress code with color

optimization. The color ratings are shown at the bottom.
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Figure 3.8: Results with two different color palettes.

predicts the user rating of a 5-color palette, with a higla¢ing implying higher user

preference. The cost i3(4) is normalized accordingly.

Color Palette Cost: To keep the clothing item colors close to the suggested color
palette, the system calculates the distance of each ctpitieim’s colorc; to each color
¢; in the suggested color palette, and penalizes it if the sedrstance is larger than a

thresholdh. The color palette cost term is defined as

1
Cpalette —
color (¢) T \/3?

\whereZ = 255 is the maximum quantized RGB value.

Zmax(mjn lei — ¢4l — h,0) (3.5)
- J

The total cost function is the weighted sum of the above &ratg:

C(¢) = wigCa(¢) + wgCHi(e) +
wcompc«comp(¢) + wpalettecpalette(¢) (36)

color " color color color

Thew coefficients determine the relative weighting between st terms; in practice,
we setwy = 1.0, wii = [5.0,10.0], win® = 1.0, andwfe = 1.0. Figure3.7 shows

the effect of omitting the style and color cost terms. FigBu&illustrates the effect of

using different color palettes.
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3.4.2 Reversible Jump Markov Chain Monte Carlo

Since our optimization problem is combinatorial and the hanof combination items
can vary (e.g., a jacket can be added or removed), it is difficulefine a closed-form
solution. In fact, as in the real world, we wish to obtain ripi# optimal solutions (out-
fits) from the same wardrobe instead of a single global optim@rhis motivates the
generation of candidate solutions by sampling a densitgtfon defined over the space
of possible outfits. The density function is defined usin@iaded analytical formula-
tions. Sampling is performed using a Markov chain Monte €admpler. Figur&.9

shows multiple optimal outfits generated.

One of the difficulties for our optimization problem is th& dimensionality may
change; i.e., the number of clothing items may be alterethguhe optimization pro-
cess. To deal with this complication, we adopt the Revezsibimp MCMC (RIM-
CMC) framework (Green 1995 which can be considered a generalization of the orig-
inal Metropolis-Hastings (MH) algorithmMetropolis et al. 1953 Hastings 1970.
RIMCMC works by supplementing the parameter-changingisih moves of MH
with an additional set of dimension-altering jump movesjclhallow the chain to
move between subspaces of different dimension. RIMCMC éas buccessfully ap-
plied to other graphics and vision problems such as proe¢duwdeling Talton et al,

2017 and image segmentatiomy and Zhy2002.

3.4.3 Annealing

To efficiently explore the solution space, we apply the sated annealing technique
(Schneider and KirkpatrigR006 in the optimization process. We define a Boltzmann-

like objective function:

f(¢) = exp(=£C(0)), (3.7)
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wheref is a constant inversely proportional to the temperaturb@énnealing process.
At the beginning of optimizationj; is set to a low value, equivalent to setting a high
temperature, which allows the sampler to more aggressexgiiore the solution space.
Then 5 is gradually increased throughout the optimization. Néarend,5 attains

a large value, equivalent to setting the temperature near, teereby allowing the

sampler to refine the solution. FiguselOshows the iterative optimization process.

3.4.4 Proposed Move

We adopt thalimension matchingtrategy to allow reversible jumps across subspaces
of different dimension or within the same subspace. At etarlation of our optimiza-
tion, a moven’ € {m,, m,, ms, m,,} is chosen with probability,,,. Associated with

the move is a move-specific proposal distributign(.), which is a function of an aux-
iliary variableU’. As movem’ is chosen, a sample of the auxiliary variables drawn
from ¢, (U"), which modifies the current outfitto a proposed new outfit by a deter-
ministic function¢’ = h(¢, U’). We also need to compute the reverse mayevhich
revertsy’ back tog, by sampling’ from ¢, (U) such that) = h*(¢’, U). The proposed
outfit ¢’ is then accepted with probability

(¢, U)| f(¢)
o, U")| f(o)
where|0(¢', U)/0(¢, U")| is the Jacobian of the diffeomorphism fram U’) to (¢, U).
Defining¢’ = h(¢,U’) = U’ and¢ = h*(¢',U) = U, the Jacobian is unityGodsill,
20037). For further detail on RIMCMC, refer t&sfeen 2003 Andrieu et al, 2003.

Pm qm(U)
Pm/ Qm’(U/)

a(¢'|¢) = min(1, ), (3.8)

Based on the RIMCMC formulation, we follow the natural giggtto define the jump
moves as adding/removing a clothing item to/from the owttitich induce a dimension
change, and diffusion moves as swapping items or modifymgean’s color, which

involve no dimension change, as follows:
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Figure 3.9: Multiple outfit recommendations. The dressed models anddirespond-

ing items. Top:SportswearBottom: Business-Casuall he recommendations from left

to right are arranged in descending matching cost value.
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Initialization Iteration 20 lteration 50 Iteration 100 dé&tkion 180 Iteration 250

Figure 3.10: Outfit optimization from a random initial configuration {efor dress
codeBusiness As the optimization process proceeds, the clothing item#eratively
updated until the outfit converges to the desired clothiagnitombination with coordi-

nated color.

81



d
)

= o
= K

p S
P
]

— < e

Il

4

——

1 :(01"1;/

TN B < 8% as

Figure 3.11: Outfit synthesis results for the models, associated itentstlze 5-color
palette. From top to bottom: “Mag” (Female, Cool), “Eddie’Male, Cool), “Ce” (Fe-
male, Warm), “Jacen” (Male, Warm). From left to righ€asual SportswearBusiness-

CasualandBusiness
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(@) (b) (€) (d)

Figure 3.12: Close-up views of populated virtual scenes with and witlowtfit con-
sideration. (a) Outfits synthesized randomly; (b)—(c) @ausiynthesized under dress
codeBusiness(d) Outfits re-synthesized after changing dress codggortswear An

unnatural appearance clearly results in the absence of @@ralress code.

Adding an Item (m,): Randomly pick an available clothing itefn from wardrobeV’
and add it to oultfiy, so thaty’ = ¢ [ J{6,}.

Removing an Item (n,): Randomly remove a selected clothing itérirom outfit ¢,

so thaty’ = ¢ \ {6;}.

Swapping Items (n,): Randomly pick a selected clothing itefinfrom outfit ¢, and
swap it with an available clothing itefi) from wardrobél’, so thay’ = ¢\{0;} (J{6;}.

Modifying an Item Color (m,,): Randomly pick a selected clothing itefn from
outfit ¢ and change its colatf;. Hence f; is updated ast = (¢; + d¢;, ny, s;), where
dci ~ IN(0,02) N(0,02) N(0,02)]" and, wWith\ (i, 02) = (2r02)~1/2e~(z=m)?/20% g
Gaussian distribution of meanand variancer. The variancer?, which determines

the average magnitude of the change, is proportional tceth@érature.

The acceptance probabilities of the proposed RIMCMC maees a

Adding an Item {n,,):

1

L P 1 f()

aleflo) = min(l, 7= B8 (3.9)
o n WS
=min(L T f) (3.10)
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Removing an Itemif,.):

; /
a(¢'16) = min(1, 2 LI, (3.11)
Dr W (¢)
o Pa o] f(¢)
it a1 7(6) (3.12)
Swapping Itemsif,):
o(&6) = min(1, P F1I11(9) 3.13
(#16) =min(1, 3 1 gs) (3.13)
)
= (1, f(gb))' (3.14)
Modifying an Item Color {n,,,):
P P(0i]65) f(¢')
(10) = minCt, @0 76) (329
(@)
= (1, f(¢))' (3.16)

In our implementation, we simply set the prior distributiemformly over the moves

aASpg = Pr = Ps = Pm = 0.25.

3.5 Results

To demonstrate the efficacy of our optimization approachteseed it on six different
virtual human models, three males and three females. F@jddedepicts two males
and two females. The remaining characters were used in ocepeal study and can
be found in the supplementary material. For the males, “Thas white skin and dark
brown hair, “Eddie” has yellow skin and black hair, and “Jalchas black skin and
black hair. For the females, “Fiona” has white skin and bhdir, “Mag” has yellow

skin and black hair, and “Ce” has dark brown skin and black hai

We synthesized all four test dress co8gmrtswearCasual Business-CasuandBusi-

nessfor all the models. We optimized the male and female modeiteuising the
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Bayesian networks learned for males and females, respgctivhe clothing items are

also segregated into male and female wardrobes. Each \bardantains about 10
clothing items for each of the 40 states in the Bayesian nétvgo there are about 400
clothing items in total. We simply used a budget of 250 optation iterations for each

outfit synthesis, which takes about 1-2 second per syntbesis3.33GHz Intel Xeon

PC.

The final optimized outfits with the corresponding selectedhs are shown in Fig-
ure 3.11 We also show the corresponding 5-color palette alongsitlie the items.
Mag and Eddie are classified as ‘cool’ and a ‘cool’ color galetas assigned to them
prior to the optimization. Meanwhile Ce and Jacen are diasisas 'warm’. The ‘cool’
and ‘warm’ color palettes are shown in Figu8el. For all the generated results, the

color ratings are greater than 3.3.

Thedress codeas the root node determines the style of synthesis; i.e. elbtting
items should be chosen and how they should combine. For dgainpghe 3rd row
showing the synthesis for Ce, the same sweater is chose@afsualand Business

However, the sweater is worn alone@asua) but with a suit jacket irBusiness

When we designed our Bayesian networks, we defined more thamaode for the
chest to permit the coexistence of different items. Sewggakrated results reflect this
property, which is important for creating variation. It lpgms more often for the dress
codeBusinessfor example, Eddie in the 2nd row wears a dress shirt, a aasta suit
jacket for his upper body outfit, a combination which is oazaally observed in the

Businesdraining data.

Our outfit optimization can lead to two potential applicaso

Outfit Suggestion Engine: The outfit suggestions can readily assist shoppers in bou-

tique websites or fitting rooms, in which case the clothiegis are those available in
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Figure 3.13: Populating virtual scenes. Our approach can automaticaliggest ap-
propriate outfits to a large number of virtual characters.e3s codeSportsweaand

Casualwere used in accordance with the virtual beach scene.

the store; or it can be used as a personal outfit advisor, iohwd@se the clothing items
are those available in the user’'s wardrobe. The supportfaiesft, arbitrary proba-
bilistic queries can handle scenarios commonly encouateréhe clothes matching
process. For example, conditional queries allow one to fix onmultiple clothing
items and ask for multiple matching suggestions. Refergofe3.6for two examples.
One can also change the preferred color palette, after whelptimizer will update
the suggestion accordingly, as shown in Figdu& As a personal outfit advisor, given a
dress code, it can automatically suggest many decent cuifitsf the user’s wardrobe,

thereby making full use of it. Refer to FiguBe9for two examples.

Virtual Character Modeling:  Our approach is also useful for dressing human-like
characters in large-scale virtual worlds, in which casesatttist can specify dress codes

and allow the computer to synthesize coordinated clothomglgnations for each char-
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acter in a fully automated manner. This can be readily inm@ied on top of character
modeling engines in gaming applications, which commonfypsut automatic clothes
meshing on virtual charactetsyut lack support for reasoning about the many possible

outfits out of the massive amount of clothing items available

Figure3.12shows virtual scenes with and without outfit considerati®ne can easily
see that the scene appears unnatural if the characterstgm®perly dressed; e.g., don-
ning a suit jacket, or wearing a dress in a gym, or dressingantswear in the office.
Figure3.13shows a beach scene populated by approximately 100 vittaghcters au-
tomatically dressed up iSportsweaiand Casualdress codes. With our optimization,
the characters are appropriately dressed in multiple wayseate variety suitable to

the scene.

While we demonstrated our approach based on the four dreles ¢bat are common
nowadays, our framework offers the flexibility to cope withesific clothing styles
matching a theme. An interesting example is for a massineljtiplayer online game
featuring the Medieval Fantasy, in which case the nodesstate be replaced by me-
dieval clothes and specific nodes such as “weapon” may belatiuthis case, training
examples may be collected directly from the player-crege@ue characters, and our
trained framework can be used to provide outfit suggestiotisa character modeling
engine used by new players, or for the automatic, realiginthesis and dressing of

non-player characters.

3.6 Perceptual Study

We performed a perceptual study to evaluate the functiomhVesual appearance of our

outfit synthesis framework. Since comparisons of outfitsranerently subjective, one

4Examples include Playstation Home, XBox 360 Avatars (Httparketplace.xbox.com/en-
US/AvatarMarketplace), Second Life, etc.
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Sportswear No Dress Code

Figure 3.14: Example images in Experiment 2 of the perceptual study.: Caftfits
synthesized with the corresponding dress codes. Rightfit®©aynthesized without

dress code consideration. Note that all syntheses coresidée color cost terms.
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possible way is to evaluate our synthesis results againgpacable results produced by
human fashion designers. However, assessing metrics afadrpig pairwise com-
parisons is very difficult when there are significant differes, and they may not lead
to meaningful conclusions. For example, a particular stibjeay be fond of some

particular skirt and be biased in favor of women wearing shist.

The goal of our system is to synthesize visually reasonabldeasing outfits under
certain dress codes. To evaluate the efficacy of our appreacimust demonstrate that
the clothing items enforce the selected dress code andh#iatblors are nicely coordi-
nated. Since color coordination was extensively evalugté¢®’'Donovan et al.2017)
and crowd perception as such was studied comprehensively Sullivan, 2009, our
perceptual study was focused on whether the matched clatieesinctionally sound
individually. We attempted to verify the following two coitidns, by two experiments:
First, a classification experiment to testify the outfit mcoendations that our system
produces successfully reflect the dress code and, henaateabur Bayesian network
training. Second, a discrimination experiment to verifgtitine incorporated dress code

yields a benefit over outfit synthesis results obtained iabtence.

Similar to those of other authorgggnow et aJ.2008 Jimenez et al.2009 Yeung
etal, 2011a Yu et al, 2011), our experiments were conducted using a subjective, five-
alternative/two-alternative, forced-choice prefereapproach. In Experiment 1, our
null hypothesisH, was that users cannot recognize the dress code of the sgathes
for each category; i.e., recognition rate is at chance lekeExperiment 2, our null
hypothesigi, was that users show no preference among the syntheses witvithout

dress code consideration.

Participants: 32 volunteer participants were recruited who were unawhtkeopur-
pose of the perceptual study. This number of participantsagaparable with similar
studies in which 16 users were recruiteddignow et a).2008 Jimenez et a).2009.

The participants included 16 males and 16 females whoseragged from 20 to 60.
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All the subjects reported normal or corrected-to-normaion with no color-blindness
and reported that they are familiar with the dress codes tegted in the study. 29

subjects reported that they did not have any expertise mdasiesign.

Data: We picked 4 virtual models to cover both genders: Thor anérdace male,
Fiona and Mag are female. For each virtual model, we syrmtbds20 outfits (5 per
dress code) with the complete objective function, and 2@tewtith an objective func-
tion lacking the style cost term. Figu@11 depicts example matching results with
their associated items used in the user study. For the pareomparison, examples
are shown in Figur8.14 With multiple outfits per dress code we can create variety in
the comparisons. The images used in perceptual study ted fizr visual inspection

in the supplementary materials.

Procedure: The study was conducted in two experiments. Participants @Bcour-
aged to ask any question prior to the study. After completicgnsent form and ques-

tionnaire, they were given a sheet detailing the task detsonis.

Experiment 1 (Classification): The main goal was to test whether our generated re-
sults reflect the corresponding dress code faithfully amhch, verify our Bayesian
network encoding. To achieve this, we asked the subjecthehéte synthesized cloth-

ing combinations fall into any of our encoded dress codes:

“This experiment involves selecting a dress code from amgamd a dressed

model. There are 80 images.

Your task in each evaluation is to select one of the followdingss codes
which you feel best describes the outfit shown in the im&mortsweay
Casual Business-CasuaBusinessandOtherif the image does not match
any of the previous four. You can view the test image for annuitéd
amount of time, but we suggest that you spend around 15 se@neach

image before making your selection.”
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Experiment 2 (Discrimination): The main goal was to evaluate if incorporating the
style cost term really shows a significant preference on uhetfonality of the outfit

compared to outfits synthesized without consideration akasicode:

“This experiment involves selecting a dressed model fromiagd images,
and there are 160 pairs in total. You will be shown the imagis-By-side

with a grey image displayed between each evaluation.

Your task in each evaluation is to select the model based&indahitfit in
which you would prefer to dress for a particular occasionolis depicted
in the top of the image pairsCasual Sportswear Business-Casualbr
Business You can view the test pair for an unlimited amount of timet, bu
we suggest that you spend around 15 seconds on each paie bed&ing

your selection.”

Each participant viewed a total of 160 trials (4 modelg dress codes 5 pairsx 2
trials). Each pair comprises a full objective result andsulterandomly chosen among
those synthesized without considering the style cost td&ime. pairs were presented to
each participant in a different random order. Counterlzatgnwas used to avoid any
order bias—each paired comparison was assessed twice bbyadcipant: In half of
the trials the full objective result was displayed on thé $&de and in the other half on

the right.

Results and Analysis:Figure3.15shows the correct recognition rates of Experiment 1.
We display the results by gender of the participants vetseigénder of the syntheses.
Overall, the correct recognition rates atasual(83.125%),Sportsweal(66.875%),
Business-Casudb7.969%),Businesg76.25%). The detailed recognition rates tabu-

lated by gender can be found in the supplementary materials.

Figure 3.15also shows some interesting observations. While all coneognition

rates were significantly above chan@&portswearand Business-Casudbtave lower
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Figure 3.15: Recognition rates of Experiment 1: Perceived dress codsugetested
dress code. “A/A”: All participants perceiving all synthes “M/F”: Male participants
perceiving female syntheses. Similar for “M/F”, “F/M” andF/F”. All recognition

rates are significantly above chance level.

User’s Preference: ExPe”ment 2

% [ Our Syntheses B Random

1
QL L
1111 0%

A/A MM M/F F/IM F/F ANA MM M/F FIM F/F AA MM M/F FIM F/F AA MM MF F/IM F/F

Casual Sportswear Business-Casual Business
Tested Dress Code

Figure 3.16: User’s preference of Experiment 2: Our syntheses versusorarsynthe-

ses. The rates of picking our syntheses are significantlyabbance level.
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recognition rates. A certain portion &portsweamwas perceived a€asual while a
certain portion oBusiness-Casualas perceived aBusinesandCasual respectively.
This is probably because in reality, the perception of diifé dress codes can be am-
biguous and may overlap; e.g., some people may regard atsafbSportswearand

a subset oBusiness-Casuallso as belonging t€asual which tends to be more fre-
guently chosen as a result and received higher recogniéims.r This also accounts
for the recognition rates dBusinesghat have minor portions perceived Basiness

Casual which if added up together should give rates over 90% fohn lgenders.

With respect to gender difference, we note that m&uisinestend to be more defini-
tive than women’'Businesswith slightly higher correct recognition rates on men’s
Businessyntheses and less meBasiness-Casualyntheses being perceivedBissi-
ness On the contrary, men'€asualtend to have more overlap witBportsweaiper-
ceptually. TheCasualplot shows a certain portion of men@asualbeing perceived
asSportswearwhile this is rarely the case for womerGasual Finally, we note that

male and female participants tend to give similar respomesels in classification.

Figure3.16depicts the results of Experiment 2 by comparing the ratefiobdsing our
synthesized outfit and random syntheses. In all the casesyntireses are much more
preferable than random syntheses. Notice that the reljatiw@er recognition rates on
dress cod€asual which is not surprising due to its less restrictive natdieascertain
that our results are significant, we performed t-tests agjalance in both experiments.
Figure3.17summarizes the p-values. In all cases, we have p-valuethi@ss.00001,
which are very small. Therefore, we reject the null hypothés in both experiments.
For Experiment 1, this concludes that subjects can coyreetiognize the dress code
of the syntheses as one of the 4 encoded dress codes. Fomraaapie2, this concludes

that subjects also prefer the syntheses that include doelesaonsideration.
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Figure 3.17: Results of t-tests against chance for Experiment 1 (lefd) Bxperiment
2 (right) shown as log(p-value). Notations are the same d3gnre 3.15 Test for A/A
hasd.f. = 31. Other tests havé. f. = 15. All tests have log(p-valuey —5 which is

equivalent to p-value: 0.00001.

3.7 Summary, Discussion, and Future Work

In this chapter, we introduced an automated framework fafitaynthesis, which is
a highly practical topic both in daily life and computer ghégs. Our approach opti-
mizes outfits in a way similar to real-world situations. Theali color tone classifier
automates the classification pre-process in fashion pesgtiavoiding cumbersome,
obscure, manual classification. From the user’s persgeaiwr framework is highly
intuitive in practical use. On the one hand, if one fixes itenois and permits only ad-
dition, removal, or swapping moves during optimizationg @mimicking the scenario
of a fixed wardrobe, and the optimizer jointly considersesgghd color when synthe-
sizing outfits out of the available clothing items. On theasthand, if one permits the
changing of certain clothing item colors, this is similartiaying new clothes, and it

is particularly useful for populating virtual worlds wittharacters that exhibit realistic

sartorial variety.

Currently, we have incorporated four different dress caodisour outfit synthesis sys-

tem, but our learning and synthesis framework is flexibleugihato accommodate ad-
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ditional criteria such as season, texture pattern, clgtiivape, age, body proportion, or
even the association of outfits with multiple dress codesduraining. For simplicity,
we assumed that each clothing item is represented by its@oiiolor. More sophisti-
cated representations, such as representing each cld#mmgyith an arbitrary number
of colors (e.g., one color for a plain shirt and two colorsdarheckered shirt), can be
readily handled by our RIMCMC formulation, which flexiblyaats varying the num-
ber of dimensions. On the other hand, the color palette stiggeis motivated from
the fashion literature, and it is easy for users to changerdotw to their own prefer-
ence; e.g., using a more colorful palette for a festive doca®r replacing the color
palette with one tailor-made by a fashion professional fgpecific client, or trained by
large-scale commercial datasets. Our framework is noashnch as it formulates the
seemingly abstract fashion matching problem as a combiabtptimization problem
in which style and color are jointly considered. Speedinghgautomated outfit syn-
thesis process for crowds through parallel computatiod,acomprehensive human

perceptual study on different outfits are additional irdéng) avenues for future work.
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(a) Conditional probabilities

P(bracelet dress code -Business) 0.0691
P(bracelet dress code Business Casual) 0.2456
P(bracelet dress code =Casual) 0.4591
P(bracelet dress code =Sportswear) 0.1023

(b) Joint conditional probabilities

P(dresd dress code Business Casual) 0.1706
P(dresg dress code Business Casuakoot = legging) 0.6710
P(sweatef dress code -Business Casual) 0.0504

P(sweatef dress code Business CasuaChest 1 =dress shirt) | 0.1095

(c) Conditional joint probabilities

P(sport pants, sport shoes, tdrnkess code =Sportswear) 0.1181
P(sport pants, sport shoes, long t-shiftess code =Sportswear) 0.0353

P(shorts, sport shoes, swedtdress code =Sportswear) 0.0007

Table 3.1: Example probabilistic queries supported by Bayesian Netsvda) Simple
gueries by conditional probabilities. (b) Increased joanditional probabilities effec-
tively reflect common matching styles such as “legging,dre'sliress shirt, sweater”
from the training data. (c) Conditional joint probabilitefor more complicated com-
binations. The major advantage of Bayesian Networks is titrey support instant,

arbitrary queries.
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Body Attribute Description Classification

(a) teal blue eyes, dirty blonde hair, peach skin  Autumn

(b) dark brown eyes, oyster white hair, ivory skin  Autumn

(c) black brown eyes, white hair, beige skin Winter

Table 3.2: Example classification guidelines for four-season bodgroine. To obtain
a classification result, the user must first determine hislfwgly attributes according
to the description. The description and classification carobscure to interpret: (a)
and (b) have different descriptions, but are classified a&dame, while (b) and (c)

have similar descriptions, but are classified as differd@ourtesy of AskAndyAbout-

Clothes.com; refer to website for the full table.)
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CHAPTER 4

Interactive Scene Modeling: The Clutterbrush

4.1 Introduction

Visual realism is one of the defining goals of computer grephWhile realism is often
approached in terms of rendering fidelity, it is also a madgproblem Newell and
Blinn, 1977). Realism calls for creating synthetic environments thspldy a convinc-

ing level of detail, on par with typical real-world scenes.

Consider the kitchens in Figusel There is stark contrast between the real-world
scenes and the synthetic ones. Without the odds and endpdpalate real-world
scenes, the synthetic environments appear eerily baresojdiof traces of life. This
lack of small-scale detail objects is characteristic oftegtic environments and com-
monly undermines their realism. As observed by Xu et200Q), “computer graphics

scenes are often unrealistically simple or overly tidy."

The difficulty of populating a scene with detail objects igdiupart to the large number
of such objects that can appear in a typical scene. A realistioor environment can
easily contain over a hundred detail items: books, statipa@d computing equipment
in an office; dinnerware, cookware, and food items in a kitglodothes, bedding, and
decor in a bedroom. Searching for each individual item bexotedious at this scale.
The mere identification of items that could fit well at a parkir place in the scene

becomes a chore when it needs to be repeated hundreds of times
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Real-world kitchens Synthetic kitchens

Figure 4.1: Real-world (left) and synthetic kitchens (right). The ireagf real-
world scenes were obtained by searching Flickr Creative @oms with the keyword
“kitchen"; the synthetic scenes were obtained by searctieglrimble 3D Warehouse

with the same keyword. The synthetic scenes appear barmomniparison.

To make the enhancement of synthetic indoor scenes withl dbjacts faster and eas-
ier, we have developed the Clutterbrush, an interactivé ttead assists modelers in
enriching their scenes. When the user points to a locatitimeiscene, the Clutterbrush
suggests appropriate detail items for that location. The tlsus retains control over
the content of the scene, but the laborious search for appteglutter objects is auto-
mated. The Clutterbrush identifies appropriate cluttengewhich are presented to the
user. A scene can thus be rapidly populated by repeatediyipgithe Clutterbrush and
picking a suggested object until a sufficient level of detaeached. As an example,

Figurel.6shows a virtual living room before and after Clutterbrusghin

In order to suggest appropriate objects, the Clutterbrusét fme trained on data, since
manually codifying the dependencies between hundredgebtyf clutter objects, fur-
niture objects, and scenes would be impractical. The negeathta on which the Clutter-
brush can be trained presents us with a circular dependsimge creating realistically
detailed scenes using current modeling tools is tedioudiarelconsuming, there are

few such scenes in the public domain. We overcome this ditficy training the Clut-
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terbrush on real-world imagery. Specifically, the Cluttedh is trained on a dataset of
images of real-world indoor scenes, annotated with obygiets and support relations.
This yields a scalable training pipeline that transferssiiraantics of real-world scenes

to 3D modeling.

We evaluated the utility of the Clutterbrush in a set of ekpents with participants

who modeled different types of indoor scenes, and indepgmi@luators who assessed
relative scene realism. The experimental results dematestnat the suggestions pre-
sented by the Clutterbrush speed up modeling time, and th&e@rushing enhances

the realism of indoor scenes.

4.2 Related Work

The difficulty of modeling realistic indoor scenes has bemsognized for some time.
Early work focused on assisted placement and arrangemetjedts. Bukowski and
Séquin (995 developed a system for assisted placement of furnitureotivet objects
in indoor scenes. The system helped align objects by assarthem to each other:
keeping bookshelves against walls, for example, or tableffoors. The associations
between different types of objects were specified manu#llyet al. 002 described
a system for automatic placement of a large number of objees indoor scene. The
system is guided by a set of manually specified constraifitishwlescribe relationships
between different types of objects. Following this line airk, Merrell et al. 2011H
described a system that assists furniture arrangementooinscenes. The system
relies on manually encoded interior design guidelinesatt@iships between furniture
types are again specified manually. The reliance on manumdti@nt specification
limits the scalability of these approaches. For examplerder to handle a new scene
type, such as a classroom or a hotel lobby, all relevantiogistiips between all types

of objects would need to be specified in detail. In contrast,ppeline is designed to
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deal with the numerous small and diverse detail items thptlade indoor scenes. As

we demonstrate, it is highly scalable.

Yu et al. 011 described a procedural furniture arrangement systemsltigtined on
data. For each type of scene, five example scenes were maooafitructed to illus-
trate relationships between furniture types. This limiits scalability of approach in
dealing with new scene types and with a large number of clotdgects. Fisher and
Hanrahan2010 described a context-aware search engine for 3D modelssttratned
on data. Given an incomplete indoor scene and a boundingpEnifed by the user,
the system retrieves objects that fit the scene and the bhogiidix, based on pair-
wise relationships and individual object descriptorsastied from the data. Fisher and
Hanrahan assume that the training data consists of congideteenes and rely on fine-
grained geometric properties of and spatial relationghgteeen objects in the dataset.
In our setting, this assumption is unrealistic due to thetteaf realistically cluttered
scenes in publicly available 3D scene repositories. Fa riis@son, our approach is

trained on images of real-world scenes.

Fisher et al. 201]) describe an approach to comparing synthetic 3D scenes loaise
geometric properties of and spatial relationships betwagacts in the scenes. As
with the prior work of Fisher and Hanrahan, this relies ondkailability of a dataset

of complete synthetic scenes that demonstrate properamsaips between objects.
In contrast, our approach decouples the dataset of clubjects from the dataset of
images that demonstrate relationships between objecis allbws our two datasets to
scale independently: additional clutter instances brodle range of objects available
to the modeler and additional training images broaden tleesys knowledge about
object relationships. Clutter instances and real-wordihing images can be added

independently.

Yeh et al. 2012 describe an optimization approach that procedurallyngea a large

number of objects in a scene. This approach relies on mamgadicified relationships
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Figure 4.2: An overview of our approach.

between objects. Fisher et aRQ(l2 present an approach that synthesizes complete
object arrangements that are similar to given input arrareggs. Xu et al. 2013
present a sketch-based modeling system for indoor scereseTapproaches are not

trained on real-world data and do not support interactiveaanement of scene detail.

Our interface builds on the idea of suggestive interfacespgsed by Igarashi and
Hughes 200J). In such interfaces, the authoring tool reasons aboutabipess that the
user is likely to undertake and presents suggestions thiaigate the user’s choices.
The user can pick one of the suggestions or disregard thertisnvay, content cre-
ation is made faster and easier. Chaudhuri and collabsr@@taudhuri and Koltun
201Q Chaudhuri et a).20110 describe data-driven suggestive interfaces for modeling
individual 3D objects. Lee et al201]) develop a suggestive interface for freedhand
drawing. Chajdas et al2010 describe a suggestive interface for assigning textures to
surfaces in 3D scenes and Jain et 2012 present an interface for assigning materials
to parts of 3D objects. Umetani et a(Q12 develop a suggestive interface for design-
ing physically valid furniture and Bao et aR@13h describe an interface for exploring
building layouts. Our work develops a suggestive interfaceenhancing the level of

detail of indoor scenes.
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4.3 System Overview

Figure4.2shows an overview of our approach.

4.3.1 Interaction

We assume that the user begins with a room in which basictuenhas been arranged.
This can be achieved with any of the existing approachestatfuwe layout Bukowski
and Séquin1995 Xu et al, 2002 Merrell et al, 2011h Yu et al, 2011). The user
then enhances the scene with the Clutterbrush. When theaoises to a location in the
scene, the Clutterbrush presents the types of objectsréhat@st likely to appear there.
The likelihood computation is based on the type of the sckitehen, bedroom, office,
etc.), the type of the supporting object (floor, wall, desd ketc.), and the clutter items
that are already present on this supporter. This computases statistics extracted
from a dataset of real-world images of indoor scenes. Thasdais described in the

second part of this section.

The most likely clutter types are presented in order, as shinwigure4.3. For each
clutter type, a randomly chosen object of this type is shawsitu, in the context of the
scene. The user can quickly place the presented object stdme by double-clicking
on it. To see additional instances of the presented type @tluer bottles, other jars,
other cups, etc.), the user can click on the correspondifgcbbnce: this brings up
a secondary panel that shows additional instances. Thiarbiecal selection scheme
affords greater flexibility in choosing a particular objatdtance of the suggested type,

for example out of personal preference for the object’srcofstyle.

Throughout the modeling process, the user can also fregsiton and delete objects,
after which the new scene setting will automatically be takeo account and appro-

priate new suggestions will be presented with the next stodkhe Clutterbrush. The
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Figure 4.3: Interaction with the Clutterbrush. Left: the user brushles tounter and
the Clutterbrush presents objects that fit the brushed lonatRight: the same scene

after one of the suggested objects was selected.

interface is further demonstrated in the supplementargovid

4.3.2 Data

The suggestive functionality of the Clutterbrush relieglmcomputation of the likeli-
hood of a given clutter type appearing at the brushed logatfibis likelihood computa-
tion is described in detail in Sectigh4. It relies on conditional probabilities that relate
types and quantities of clutter objects to each other anidetdyipe of the scene and the
type of the supporting object on which the clutter residesour approach, these prob-
abilities are estimated by extracting empirical statsstiom real-world observations of
cluttered, lived-in indoor scenes. For the sake of scatgbie do not require these
observations to be detailed or complete. Each observagedsito provide only the
following information: the type of the scene (e.g., kitchemlist of observed support-

ing objects (e.qg., floor, wall, counter), and a list of clutdjects on each supporting

104



object (e.g., bottle on counter, another bottle on countgy,on counter, clock on wall,

garbage bin on floor).

As a source of observations of real-world scenes, we use Yié Depth datasetSil-
berman et a).2012. This is a dataset of 1449 RGBD images of 464 indoor scenes
from 3 cities. The scenes appear in their natural messy ttondiTo provide data for
training and evaluating scene understanding algorithritiser®an et al. used Ama-
zon Mechanical Turk to annotate individual objects in thag®s as well as support
relationships between objects. We use this informatiortrigning the Clutterbrush.
Although the NYU dataset contains both color and range image do not use the
range data. The range data was also not used for obtainirantisations: the Ama-
zon Mechanical Turk system was provided only with the cofoages. A dataset of
analogously annotated color images can thus be used toderadditional training

data for the Clutterbrush.

A sample image from the NYU dataset is shown in Figlie We trained the Clutter-
brush on five scene types from the dataset: bedrooms, kicheimg rooms, offices,
and classrooms. For each scene type, we identified the mosnhon clutter types
(e.g., book, bottle, box, etc.). As shown in TaBld, several dozen clutter types were
identified for each scene type. Some of the object types atetwin the NYU dataset
were not used due to lack of available 3D models. For eackecliype that was used,
we collected 4 or 5 object instances from the Trimble 3D Wauslke and from other
online sources of free 3D models. In total, our 3D objectloase contains 176 clutter

object types and 786 object instances.

4.4 Suggestion Generation

When the user brushes a location in the scene, the Clutgdrbreeds to determine

which clutter types to suggest and in what order. In essehoeeds to answer the
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Figure 4.4: An image from the NYU dataset, with some of the annotatedsuigba-

tions.

following question: "If there was an additional clutteniteat this location, what would
it be?" This is done by evaluating the likelihood that a gicriter type would appear
at the identified location. The types with the highest likebd are presented to the

user, in order.

The Clutterbrush evaluates the likelihood of a given chiitpe conditioned on the type
of the scene, the type of the supporting object, and theetlottjects that are already
present on this supporter. Specifically, the brush evadithtefollowing probability for
each clutter typé’*:

Pz =Y'|w,s,{n'}), (4.1)

wherez is the type of the hypothetical new clutter itemjs the scene type (‘kitchen’,
‘bedroom’, etc.),s is the type of the supporting object (‘floor’, ‘desk’, ‘walletc.),
andn’ is the number of clutter objects of typé€’ that are already present an for

each typeY’’ for whichn’ > 0. Note thatj may be equal te, for example when the
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model considers the probability of adding a second monitca desk. To evaluate the
probability @.1) in terms of empirical statistics we can extract from théniray data,

we use the naive Bayes model. Specifically,

Pz =Y'|w,s,{n'})
_ Pz =Y")P(w,s,{n'}z =Y")

Plw,s {(w}) (@2
x P(x =Y")P(w,s,{n'}z =Y") (4.3)
= P(z=Y")P(w|z =Y")P(s|lz = Y") [[ P(n[x = Y"). (4.4)

J

(4.2 follows by Bayes’ theorem.4(3) follows because we are only interested in the
relative ordering of the likelihoods for different cluttgmppesY™, and P(w, s, {n’}) is
constant as a function af (4.4) follows by the naive Bayes assumption. We now
describe how each of the probabilities #4) is computed. All the estimates that are
based on the training data are computed during a preprogestsige. We use uniform

small-sample correction in all empirical estimates to dwaaroing out the probabilities.

Prior P(x =Y"). There are a number of ways to approximate the prior, the sisopl
being a uniform approximation. We use a more informed ergliprior. To estimate
P(x = Y"), we enumerate all clutter instances from all classes impllii scenes and

take the fraction of these instances that belong to dfass

# training images # clutter types| # support relations
Bedroom 383 85 5843
Kitchen 225 67 4067
Living room 221 66 3712
Office 78 53 1245
Classroom 49 62 1315

Table 4.1: Real-world images used for training the Clutterbrush.
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kitchen (bottom) brings up different suggestions.

P(desk|speaker)
=0.10

P(shelves|speaker)
=0.03

P(floor|speaker)
=0.29

P(desk|bottle)
=0.12

P(floor|bottle)
=0.001

P(desk|book)
=0.05

| ¢ P(shelves|book)
» =0.15

P(floor|book)
=0.02

Figure 4.6: The effect of supporter probability. Clutterbrushing thaifferent support-
ers in the scene yields different supporter probabilit@stihe different clutter objects.
The speaker has a preference for floor, the bottle has a @eder for desk, and the

book has a preference for shelves.
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Figure 4.7: The effect of co-occurrence probability. When the desk s$$ firushed

[

(top), paper and monitor are the most likely clutter typesteAa monitor is placed

(bottom), mouse and keyboard become the most likely clyties to be added.

Conditional scene probability P(w|r = Y?). We estimate the conditional scene
probability by enumerating all clutter instances from sl&$ in the training set and
taking the fraction of these instances that occur in scefigpe w:

P(w,z=Y")

P(w|lzr =Y") = PV

Figure4.5illustrates the effect of the scene probability on the pmeese suggestions.

Conditional supporter probability P(s|z = Y*). Similarly, we estimate the condi-
tional supporter probability by enumerating all cluttestinces from clasg” in the
training set and taking the fraction of these instancesdbettir on supporters of class

) P(s,z=Y")
Ple=Y7)

Figure4.6illustrates the effect of the supporter probability.

P(slz =Y") =
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Co-occurrence probability P(n’|x = Y*). This is the probability that there are cur-
rently at least’ instances of class’ on the given supporter, conditioned orbeing

a new instance of class’. Note thatj can equal. In this case, the instanaeis not
included in the count?, thusn’ is the count of other instances from cldsson the
supporter. Note also tha&t(n’/|x = Y") is interpreted as the probability that there are at
leastn’ instances of class’ on the current supporter (not countimly because when
we consider adding to the scene, we do not know what other clutter objects will be
added by the user subsequently. Figdreillustrates the effect of the co-occurrence

probability.

We can evaluaté’(n’|r = Y*) by enumerating all supporters in which at least one
instance ofY" appears, and taking the fraction of these supporters inhwdtideast

n’/ instances ofy’/ appear. In the special case pf= i, we take the fraction of the
scenes in which at least + 1 instances ol appear. We use a distance threshold of
1.5 meters such that only pairs of clutter objects within thistaince from each other
are considered in the co-occurrence estimation (both amerand during training).
This is to deal with larger supporters, such as floors, whashaover a large area with

numerous clusters of clutter.

To alleviate data fragmentation, we quantiZeo three possible values: ‘zero’, ‘some’,
and ‘many’. To determine the quantization boundaries w&ecglin a preprocessing
step, the numbers of objects of classthat occurred together on individual supporters
in all scenes in the training set. Let be the median of this set. We s€tto ‘zero’ if
there are no items of clag§’ on the current supporter, to ‘some’ if there are between
1 andm’ such items, and to ‘many’ if the number of such items is dyrigteater than

m/.
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45 Results and Evaluation

The Clutterbrush was implemented in C++ and experiments performed on a 3.33GHz
Intel Xeon machine with 12GB of RAM. All empirical statistiavere computed in a
preprocessing stage. At runtime, a probability of the foAr)(is evaluated in less
than0.1 milliseconds. Suggestions were thus presented almosintasteously when

the Clutterbrush was used.

To evaluate the utility of the Clutterbrush, we recruitedu@iversity students and staff
to model indoor scenes. There were 12 male and 8 femaleipariis. All participants
were frequent computer users and most reported some expeneth using simple
visual authoring interfaces intended for the general guBlich as those used in video

games or in photo editing applications.

Each participant was given a brief 5-10 minute tutorial omniodeling interface. We
then let the participants experiment freely with the irded until they felt comfortable
with the functionality. Our simple interface is demonstahin the accompanying video:
it allows users to add, delete, move, and rotate clutterotdjé\ll participants reported

being comfortable with the functionality within 15 minutes

Each participant was assigned one of the scene types: badkichen, living room,
office, or classroom. The participant was shown several @nad real-world scenes of
this type, collected through Google Images. The partidipas then asked to use the
modeling interface to create a realistic scene of the giype.t For each scene type,
we manually created an initial scene with the basic fureitufhe initial scenes are
shown in Figuret.8@). These were given to the participants as input. Theqiaaints
then used the modeling interface to bring the scene to a ¢éwehlism that they were
satisfied with. There was no time limit, each participantided on their own when

they were done. Modeling times ranged frérto 25 minutes.
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Kitchen Bedroom

Living room

Office

Classroom

(a) Input scene (b) After Clutterbrushing

Figure 4.8: Modeling experiments. (a) Initial scenes given to the pgrtints. (b)

Scenes produced by the participants using the Clutterbrush

112



Each participant was randomly and without their knowledggigned to one of two
conditions. In the first condition, the Clutterbrush prasdnsuggestions ranked ac-
cording to the model described in Sectibd. In a separate tab, the participants could
also browse an alphabetical list of available clutter tyqed choose objects using that
list. The participants could easily toggle between the @lst In the second condition,
the Clutterbrush only presented the alphabetical listhigs tondition, the suggestion

engine described in Secti@d4 was not used.

The participants were not aware of the different conditiol3 scenes were produced
in each of the two conditions. The number of scenes of eaahigghe same in the two
sets. The scenes produced in the first condition (suggestahphabetical) are shown

in Figure4.8(b).

4.5.1 Usage Pattern and Modeling Time

In the first condition (suggestions+alphabetical), usdded34.1 objects to the scene
on average. In the second condition (alphabetical onlygrauadded0.8 objects on
average. In the first condition, the average time betweeacblgddition wa2.25
seconds. In the second condition, the average time betwgeot@ddition was 33.17

seconds. The suggestion engine thus resulted3ff@mprovementin modeling speed.

Figure 4.9 provides a detailed analysis of the time spent using thetagagugges-
tions versus the time spent using the alphabetical listeémh of the 10 users in the
suggestions+alphabetical condition. The analysis detrates that users had a strong
preference for the adaptive suggestions. On average, tfgestions were usetf %

the time, while the alphabetical list was used ory; of the time.
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User

0% 20% 40% 60% 80% 100%
Percentage of Usage

Figure 4.9: Time spent using the suggestions (blue) versus time spemy te al-
phabetical list (red), for each user in the first condition,which both the adaptive

suggestions and the alphabetical list were available.
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45.2 Scene Realism

We performed two experiments to evaluate the relativesentf the initial scenes, the
scenes produced by users in the first condition, and the sgeoduced by users in the

second condition.

In the first experiment, our goal was to evaluate the relaaism of the scenes before
and after Clutterbrushing. To this end, we recruited a sgpajroup o225 evaluators.
This group was recruited through social media. The evatsat@re shown pairs of
images. For each pair, the evaluator had to indicate whidcheopresented images is
more realistic, or to indicate lack of preference. The twag®s in each pair were
shown side by side and the left-right order was randomizeghBpair showed images
of the same scene type. One image was of the scene in itd wotidition (Figure
4.8(@)). The other image was of one of the scenes produced hgiparits in the first
condition. The evaluators were not told how the scenes weiduged and in what way

they were related to each other. In tofal() pairwise comparisons were performed.

Figure4.10summarizes the results of this experiment. The evaluat@sanelmingly
preferred the scenes produced by Clutterbrushing. Foobeas, kitchens, and offices,
this preference was exclusive: all users voted that theescerere more realistic after
Clutterbrushing. For living rooms, 97 of the comparisons were in favor of the clut-
tered scenes. For classrooms, three quarters of the votesmiavor of the cluttered
scenes. In informal exit interviews, the evaluators whe@udor the uncluttered scenes
remarked that empty classrooms are often encountered ie#hevorld, for example

when class is not in session.

We also evaluated the relative realism of the scenes prdduncéhe first condition
(suggestions+alphabetical) and scenes produced in tbadeondition (alphabetical
only). For this experiment, we recruited a separate grou ef/aluators, distinct from

the prior groups of participants and evaluators. This gnmap also recruited through
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bedroom
kitchen
livingroom
office

classroom

0% 20% 40% 60% 80% 100%
B Prefer after M Prefer before M No preference
Figure 4.10: Results of the first experiment. Independent evaluatorgpawed the

realism of scenes before and after Clutterbrushing.

social media. In this experiment the evaluators also peréor randomized pairwise
comparisons, akin to the first experiment. In each pair, dni@images was of a
scene created in the first condition and the other was of eestrerated in the second
condition. (Each pair showed scenes of the same ty28() pairwise evaluations were

performed.

Figure4.11summarizes the results. For bedrooms, offices and classtdgbmevalu-
ators has statistically significant preference for the esameated in the first condition
(p < 0.05), according to a two-taile¢rtest. For kitchens and living rooms, there was

no significant preference for either of the two conditions.

4.6 Summary, Discussion, and Future Work

In this chapter, we presented the Clutterbrush, an intgeatbol for enhancing the
level of detail of indoor scenes. Our experiments demotesttrat people find scenes

enhanced with detail objects to be substantially moresgathan scenes prior to detail
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bedroom
kitchen
livingroom
office

classroom

0% 20% 40% 60% 80% 100%
M First condition M Second condition & No preference

Figure 4.11: Results of the second experiment. Independent evaluaiorgared the

realism of scenes created in each of the two conditions.

enhancement. The adaptive suggestion generation fuattipaf the Clutterbrush was
found to improve modeling time and to facilitate the cremidrealistic scenes. We ex-
pect the Clutterbrush to be useful in a variety of scene nioglepplications, including

level design interfaces in game engines, home modeling@mddeling applications,

and simulation games with user-generated content.

One of the key ideas in our work is the training of the Cluttegh on real-world im-
ages. We expect this idea to have broader applicationstingetvhere semantics of

real-world scenes and objects can be used to train intetligeual authoring tools.

There are many possibilities for further advancing intBvadools for scene detail en-
hancement. Our approach operates on a purely semanticaesialoes not take the
appearance of objects into account. It also does not redsurt detailed placement of
objects. This enables our approach to be trained on spasalytated images, which
are easy to acquire for a broad range of domains. It would teeesting to investi-

gate scalable approaches to training models that reasar faber-grained geometric

properties.
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CHAPTER 5

Outdoor Photometric Stereo

5.1 Introduction

Photometric stereo is a technique for inferring 3D surfdwgpse from pixel intensities
in ordinary 2D imagesW/oodham198Q Horn, 1986. In the conventional photometric
stereo setting, multiple images of an object are capturetbudifferent illumination
conditions. By fitting different reflectance models to thesetved pixel intensities,
pixel-dense surface normals are estimatedl¢man and Jajril982 Tagare and de-
Figueiredo 1991 Solomon and Ikeuchil996 Barsky and Petrqu2003 Basti et al,
2007 Sunkavalli et al.201Q Lu et al, 2010a Yeung et al.2011h Chandraker et gl.
2017). The focus in the majority of prior photometric stereo war&s to tackle tech-
nical challenges such as reflectance model assumptiofishselowing, specularities,
noise and outliers, and so on; accordingly, experiment® wermally conducted in
well-controlled laboratory environments, usually darkmes with single localized light

sources, which facilitated empirical evaluation while miizing uncertainties.

The objective of our work is to free photometric stereo framlaboratory confines
and help make it a useful tool for computational photography this end, we de-
velop an outdoor photometric stereo framework that can déhlreal-world objects
subject to natural illumination conditions. Figuter illustrates the application of our
framework to a horse statuette in a sunlit outdoor envirartr®y analyzing the varia-

tion of pixel intensities among a set of input images (top)rasquired under different
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Method Surface Assumption Calibration Object |Capturing Environment #lmages

Ours Lambertian; varying albedo mirror sphere natural illumination | 6-10 (theoretical: 4

Lambertian; uniform albedo
Johnson et al. same-material sphere natural illumination 1
(painted to match calibration sphere)

dark room;
Basri et al. Lambertian; varying albedo none general unknown lighting32-64 (theoretical:27)

fixed intensity

mixtures of 2-3 30-50 from more than
Ackermann et a. none natural illumination
fundamental materials 20k over a year
Oxholm et al. isotropic BRDF mirror sphere natural illumination 1

Table 5.1: Comparisons between our work and previous works.

environmental illuminations whose associated envirortmnesgps are acquired using
a mirror sphere (middle row), our algorithms can estimagediwrface normals using
our generalized reflectance model and reconstruct the 3pesbiathe horse statuette
surface (bottom row). To deal with outliers such as shadtwghlights and/or small
misalignment errors across input images, we apply low raakimcompletion Lin

et al, 2009 to preprocess the input images. Our shape estimation agiprie then
formulated as an optimization method which alternates éetwnormal estimation and
estimation of environmental illumination that contribsite pixel intensities. Finally,
total variation regularizatiorRudin et al, 1992 Bresson and Cha2008 is applied to
refine the estimated normals by reducing ambiguities anskeniai preparation for 3D

surface reconstruction.

After reviewing related prior work (Sectiob.2), we will present the generalized re-
flectance model employed in our outdoor photometric steramdéwork along with
the key steps of its processing pipeline, including our &stjon system, preprocess-

ing step, main algorithm, and postprocessing step thatlyieigh-quality pixel-dense
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surface normal estimation in natural environments (Sestt3-5.4). We will also
discuss implementation considerations relevant to thieeges s Then, we will demon-
strate the effectiveness of our framework through a vamdtgxperiments including
synthetic data, different background scenes, indoor scerta different combinations
of light sources, and outdoor scenes with varying sunli§eic{ion5.5). Finally, we

will present our conclusions and suggest avenues for futork (Sectionb.6).

5.2 Related Work

There is a substantial amount of literature on photometigies, with representative pa-
pers including\(Voodham 1980 1994 Horn, 1986 Coleman and Jajri982 Solomon
and Ikeuchi1996 Barsky and Petrqi2003 Wu et al, 2006 Wu and Tang201Q Basri
et al, 2007 Wu et al, 201Q Shi et al, 201Q Sunkavalli et al.201Q Lu et al, 2010a
Yeung et al.2011h Chandraker et 812017).

Much of this prior work is based on the Lambertian surfaceectfince model, which
requires at least three illumination directions to solve slurface normal estimation
problem Woodham 198Q 1994). For more than three input images, the surface nor-
mal vector at every pixel may be obtained using least squdtieg (Wu et al, 2006

Wu and Tang2010, robust low rank minimizationfu et al, 2010, or subspace clus-
tering (Sunkavalli et al.2010. Several authors have relaxed the Lambertian model
assumption; for instance, Tagare and deFigueir@881) employed am-lobed reflec-
tive map, Solomon and Ikeuchl 996 used the Torrance-Sparrow reflectance model,
Hertzmann and Seit2003 used a reference object of the same material and a known
shape to compute surface normals through analogy, Netyat. (1990 used a hy-
brid reflectance model (Torrance-Sparrow and Beckmanmz&pino), Goldmaret

al. (2010 optimized the shape and the BRDFs alternatively by assyimiset of ba-

sis materials according to the isotropic Ward model, anchyeat al. (20110 applied
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orientation consistency to estimate normals for transpanejects.

To our knowledge, there are only a handful of papers thatidengeneral/natural il-
lumination conditions. Johnson and Adels@011) describe a shape-from-shading al-
gorithm under natural illumination; however, their regurent of a calibration sphere
of the same material BRDF as the captured object limits @éstarality. Oxholm and
Nishino 20123 relax this restriction by using a mirror sphere to calibrtte illumi-
nation, while Yuet al. (20133 utilize information obtained from depth cameras to con-
strain the problem. Since only a single input image is usech shape-from-shading
methods share some common limitations, including the feattthe estimated surface
normals can easily be corrupted by outliers. Basal.(2007) used low-order spherical
harmonics to model general illumination, akin to the enmim@nt mapping representa-
tion (Ramamoorthi and Hanrahg20013. Their model includes 27 variables and thus
requires significantly more input images compared to cotmveal photometric stereo.
The prior work that is most relevant to ours is by Ackermanal. (2012 who captured
over twenty thousand outdoor webcam images throughoutdhe yhe robustness of
their photometric stereo method can be attributed to thgeelamount of data and a
smart data selection process. However, acquiring this nmelge data is not an easy
task. Very recently, Abrams et al. 2q12 proposes a variant of photometric stereo
which also works on a time lapse of outdoor images. The approggards the sun as

a distant light source and estimates the lighting direatising GPS information.

We offer an approach to outdoor photometric stereo thdtestran attractive balance
between the amount of image data required (about 6 to 10 images) and the type of
calibration object needed (a mirror sphere). Comparedaa@us methods, our method
is both practical and accurate. Taldel compares our work to the aforementioned

efforts.
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5.3 Environment Light Photometric Stereo

In this section, we describe the basic model of our envirartriight photometric stereo

and our image data acquisition process.

5.3.1 Basic model

In the Lambertian surface model (assuming a linear cames@orese function), the
intensity of a pixell depends on the surface albeddhe illumination directior, and

the surface normal according to

I(x) = p(@)l(z) - n(a), (5.2)

wherez is the image coordinate. The common photometric steremggitesumes a
distant, directional light source. Thusis spatially invariant and it can easily be esti-
mated from the input imageSki et al, 2010 or using a calibration objectNu et al,
2006. To solve the surface normalin (5.1), we capture multiple images each taken
with a different illumination direction. Hence, we obtairore observations than un-
knowns in 6.1) andn can be solved effectively using methods presentedoodham
1980 Wu et al, 2006 201Q Sunkavalli et al.2010.

When we have multiple directional light sources, we canrexi®.1) by summing the

contribution of each light source to the pixel’s intensiy,follows:

I(w) = plx) p_eili - n(x), (5.2)

whereK is the number of light sources in the scene, and the strength of light source
1 with directionl;. In the case where the illumination comes from all direciome can
describe the image intensity using.?) with K tending to infinity; i.e., an integral.
Note that in b.2) the number of unknowns far remains the same as i8.0) and 6.2

remains a linear equation wherandl; are known.
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" Environmental cube

Effective incoming light

/

N Ve

Figure 5.1: Left: Our simple setup for data acquisition. A mirror sphex@laced near
the object. Middle: From the image of the mirror sphere, winegte the illumination
environment map using the method Depevec1998. Right: For each pixel, we must
estimate the illumination directions that contribute te fhixel intensity, which depends

on the orientation of the associated surface normal.

5.3.2 Data acquisition

In the conventional photometric stereo setting, imageseqeired in a darkroom and
the light source directions can be well calibrated with fikgtit sources. By contrast,
we wish to use natural environmental illumination. Hencejyagor component in our
environment light photometric stereo approach is the edion of the light source

directionsl; in (5.2).

Figure5.1 shows our experimental setup for data acquisition. We useramsphere

to capture the strength of the incoming light from all direns in the form of an en-
vironment map, a common method in graphics rendering faesgmting the effect of
distant light sources illuminating object surfacBebevec1998, and adopt it for sur-
face normal estimation in our environment light photoneestereo. We put the mirror

sphere near the object of interest and capture images of both

Once we have acquired the environment map, we sample a nahdheections in the
illumination hemisphere using an icosahedron with sulisdin (Ballard and Brown

1982, and average the illumination environment map over thesztbns; i.e., ac-
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cording to 6.2),
K
p(x
= 7 g CZIZ 1’1 (53)

where K is now the number of directions. In our implementation, wegke 2562
directions in the environment map to approximate the illuation. Note that when
1;-n(x) <0, thenl; does not contribute to the image intendity:) in (5.3). Hence, we
also need to estimate the lighting directions (Figbir(Right)) that contribute to the

pixel intensity, as described in the next section.

5.4 Normal Estimation Algorithm

We will now describe our surface normal estimation algonithWe first present our
preprocessing step based on low-rank matrix completioenTive present our method
for normal and light contribution refinement. Finally, wesdebe how to include total
variation regularizationRudin et al, 1992 Bresson and Char2008 to postprocess

surface normals using spatial support.

5.4.1 Preprocessing via low-rank matrix completion

Our input data is subject to different sources of error—esladows, highlights, and
even pixel misalignment across different image capturesielwcan affect the per-
formance of our algorithm. To deal with these errors, we adog low-rank matrix

completion techniquelL{n et al, 2009 Wu et al, 2010. We assemble our input

imagesl’ for j = 1,--- ,n into a data matrix
= [ved ') ---vedI™)], (5.4)
where vec{?) = [I7(1), - - -, I’(m)]T is the vectorized input image amdis the number

of pixels in the object mask. Since our environment light elawl (5.2) is linear and the
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dimension ofn is 3, the rank of matriD is in principle at most 3. However, due to the
various errors, we observe in practice that the rank a$ greater than 3. As observed
in (Wu et al, 2010, the errors related to photometric stereo are usuallysspéence,

we can isolate them by formulating the problem as a matrik ramimization:
min ||A|l, + A[[E[|; suchthat D=A+E, (5.5)

whereA is a rank 3 matrixE is the matrix of error residuals, -

. and|| - [, are the
nuclear norm and.,-norm, respectively, and > 0 is a weighting parameter. We use
the Accelerated Proximal Gradientif et al, 2009 to solve §.5). The clean low-rank
matrix A, computed separately for each color channel, will be usedpag data in the

subsequent steps.

The above preprocessing step offers us three major ademnt&gst, by isolating the
errors, such as specular highlights and shadows, our nastimhation algorithm is
robust. Second, although we fix our captured object and aaptersically, small mis-
alignment errors during image data capture are inevitafdethe preprocessing step
makes our method robust to small misalignment errors byiniegathe misaligned
pixels with proximal values, which ensures the rank 3 priypef matrix A. Third,
the low-rank matrix completion allows us to relax the strexjuirement of a Lamber-
tian surface reflectance model in comparing with the methddahnson and Adelson
20117), as long as the non-Lambertian aspect can be factorizedhetsparse residual

matrix E. Figure5.2 compares results without and with low-rank matrix completi

5.4.2 Normal refinement using least squares

We will now present our method for normal refinement. We wilktfiassume that
we know the lighting directions that contribute to the irgiéy of a pixel. In the next
subsection, we will describe how to refine the contributibreach lighting direction

given the surface normal. Hence, the steps for normal ahtrig direction refinement
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will be performed in an alternating optimization fashion.

In order to deal with surface albedo, we follow the procedune(Wu et al, 2006 to

choose a denominator imagéand to estimate the surface normals from ratio images

I K.
D _2ialin (5.6)
L ST

wherel’, j = 1,--- ,n— 1 are the input after low-rank matrix completion. Frosg),

we can re-write%.3) as
An=0 (5.7)

whereA = [I7 32K ¢1¢ — 15K J1/]. The least square solution nfcan be obtained

7

by singular value decomposition (SVD), which explicitlyferces||n|| = 1.

5.4.3 lllumination contribution refinement

Given the estimated normal direction, we now wish to refireedantribution of illu-
mination direction that affects the pixel intensity. Withiself-occlusion, this can be
achieved by fitting a hemisphere of directions such that > 0 (Figure5.1 (Right)).
We propose a simple heuristic method to evaluate self-smoiu If the normal direction
between neighboring pixels forms a concave shape and thenturormal direction is
closer to]0, 0, 1]7, it is likely that the incoming light from the neighboringrdctions is
being occluded. Hence, we give a smaller weight to the ligithfthat projected light-
ing direction. We evaluate self-occlusion for all direcigowithin the local neighbor-
hood and finally obtain a weighted mask for the contributibiiwumination directions,

which represents the relative contributions of the lightdrdifferent directions.

We initialize the normal direction and the correspondinghtsphere of environment
illumination using exhaustive search, which minimizes é¢ners from the input im-

ages. The exhaustive search algorithm generally providesd initialization, but it is
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Figure 5.2: Self-comparisons of our results without (left) and withgkr) low-rank

matrix completion.

slow if the search space is large. Therefore, we sample éhtlifferent normal direc-
tions for the exhaustive search initialization; i.e., avsighedron subdivided once. This
yields a good balance between accuracy and efficiency foaltennating optimization

(AO) approach.

5.4.4 Spatial refinement using TV regularization

Thus far, our normal estimation method processes each ippieidually. As demon-
strated in several previous worké/( et al, 2006 Goldman et al.201Q Shi et al,
2010, spatial regularization is useful in error correction aslvas in improving the
overall accuracy of the estimated surface normals. In ostgoocessing step, we em-
ploy L;-norm vectorial total variation (TV) regularization to medi the estimated sur-

face normals1* obtained from the previous section, as follows:

n* = argmin ||n* — n||> + A\|Vqan), (5.8)
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Figure 5.3: Self-comparisons of our results without (left) and witlylr) TV regular-

ization.

o

ssacassoN
a¥Ecdes oM

Figure 5.4: Input environments and images for the synthetic examplesr&mnd

Bunny.

whereVqn is the vectorial first derivative ai defined over a local neighborhood(in

and\ = 0.1 is the regularization weight (seBiesson and Cha2008) for the details).

Figure5.6shows intermediate results during the AO iterations andrel§.3compares
the result without and with spatial refinement with TV regidation. The TV regular-
ization postprocessing step produces our final normal atbmresultsa*, and we use

the technique fromWu et al, 2008 to reconstruct the 3D surface fromt.
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5.5 Results

We will now validate the efficacy of our proposed method inexkpents using both

synthetic and real objects.

5.5.1 Quantitative evaluation with synthetic images

Our first experiment evaluates uses synthetic input imagrestiich ground truth nor-
mal maps are available, and we analyze the effect of the nuafbeput images and

the convergence of our AO.

Two synthetic examples Sphere and (Stanford) Bunny wem fosguantitative evalu-
ation. We use the environment maps frdbepevec1998 to render the synthetic input
images as shown in Figuie4. We show the color coded ground truth normal maps
and estimated normal maps in Figue for qualitative comparison. Our approach
faithfully estimates the surface normals, which closelpragimate the ground truth

normals with RMS error of 0.0099 and 0.1051 for the SphereBamthy, respectively.

To evaluate the robustness of our method, we plot the RM$ efithe estimated nor-
mals with different numbers of input images in Figbté. As expected, the RMS error
decreases as the number of images increases, with lesBcsighdecreases forthcom-
ing after more than 5 input images. Fig&® plots the RMS error against the number
of iterations, which shows that our approach converges io 8 iterations for both

examples.

5.5.2 Qualitative evaluation with real images

Next, we evaluate our framework on various real world exaspinder different il-

lumination conditions, including different backgrounceses, an indoor scene with
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(a) Ground truth (b) Result (c) Ground truth (d) Result

Figure 5.5: Comparison between ground truth and normal maps obtainewusne

environments. The results are obtained after four iteragiof the AO process.
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Figure 5.6: Convergence analysis of our alternating optimization feavork. Top:
RMS error of the estimated normals versus the number oftiters, using different
numbers of input images. Bottom: qualitative illustratiminour intermediate results

for Bunny. Iteration O is the result after the exhaustiverseanitialization.
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#images size time (sec)

Sphere 9 200 x 200 40.3
Bunny 9 200 x 200 27.9
Couple 10 300 x 420 450.0
Mother&Baby 10 230 x 500 334.0

HorseHead (Indoor 600 x 600 575.7

Chef (Indoor) 371x 514 468.7
Shoe (Indoor) 496 x 234 309.2

Horse (Sunlight) 260 x 347 140.8

© o ~N N~

371 x 503 466.9

Chef (Sunlight)

Table 5.2: The running times of our Matlab R2009b implementation wexasured on

a 3.33GHz Intel Xeon PC.

Figure 5.7: Input environments and images for Couple and Mother&Baby
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different indirect light sources, and an outdoor scene wsithlight direction varying

throughout a day. The running times are indicated in Tali2e

Different background scenes Our first real-world experiment closely mimics the syn-
thetic experiments, by capturing the object in differehiriination environments. We
used 10 input images for the examples Couple and Mother&Babg input images
are shown in Figur&.7 and Figure5.10 depicts the results. The reconstructed nor-
mal maps and surfaces appear faithful. We showl the images under two different
lighting conditions to reveal the shading, and we show thages of the real objects
alongside the reconstructed surfaces captured from aasiwigwpoint. The corre-
sponding closeup view illustrates the details preservetheénreconstructed surfaces.
For example, the arms and legs of the Couple are clearly atdrand we can clearly

see that the mother is holding her baby in Mother&Baby.

Indoor scene with different illumination conditions. Next, we consider in an indoor
scene with different illumination conditions, by turning/off different light sources

in a room. Note the presence of ambient light and the use afeictdlight sources
(e.g., table lamp, floor lamp). We captured illuminationieswvments and images for
Shoe (Indoor), HorseHead (Indoor) and Chef (Indoor), soimehich are shown in
Figure5.8. Figure5.10shows the results. As can be seen from the closeup image, our
results are very good under these conditions and subtldsisteh as the textures of

the shoe are faithfully reconstructed.

Outdoor scene with moving sunlight Our final experiments were conducted in an
outdoor environment using sunlight for reconstructionjohitis the main goal of this
project. We captured images of the Horse (Sunlight) and Chflight) objects every
hour from 10am to 5pm, obtaining eight input images per dbj@te input images
and results are shown in Figute?7, Figure5.9, and Figure5.1Q The results of Chef
(Indoor) are shown alongside to facilitate comparisonsfidéethat although the results

for the outdoor environment are reasonably good, they a@rasigood as those for the
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Figure 5.8: Input environments and images for Shoe (Indoor), HorseHé&zabor)
and Chef (Indoor)

)

.»‘
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Figure 5.9: Input environments and images for Chef (Sunlight).
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Couple

Mother&Baby

Shoe
(Indoor)

HorseHead
(Indoor)

Chef
(Indoor)

Chef
(Sunlight)

(a) (b) (©) (d) (e) | U
Figure 5.10: Real-world results. (a) Color-coded normal map. (b—c) Nakmap
shaded byl - n with1 = [~1/+/3,1/+/3,1/V/3]" andl = [1/V/3,1//3,1/3/3]", re-

spectively. (d) Novel view of the reconstructed surfacé) (Eloseup view comparing

the reconstructed surface with the real object from a similawpoint.
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indoor environment. Part of the reason is the relatively esbaariation in sunlight as
the sun moves along its trajectory, whereas the light saurcthe indoor environment

are well distributed in different directions.

5.6 Summary, Discussion, and Future Work

In this chapter, we presented a photometric stereo frametlvat employs natural envi-
ronmental illumination, demonstrating the feasibilityprhctical outdoor photometric
stereo. Featuring a simple setup for data capture with amagattion framework for

dense object surface normal estimation, our system achlagé quality normal esti-

mation even for complex indoor and outdoor scenes with abillumination.

By exploiting low-rank matrix completion and total variati regularization techniques,
our framework is robust to small object misalignment, shejcand highlights. We
believe that our framework has effectively mitigated thailations of conventional
photometric stereo algorithms, among them the need for aalted environment for

image data capture.

In the future, we plan to extend our framework to incorporaia-Lambertian surface
reflectance models. We also aim to integrate our framewoitk nvulti-view structure-
from-motion algorithms in order to reconstruct high qualtodels of 3D objects in

their entirety.
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CHAPTER 6

Shading-Based Shape Refinement of RGB-D Images

6.1 Introduction

Shape-from-shading (SfS) is a challenging problem becaitee considerable ambi-
guity in its solution. For the simplest case of Lambertidteance and known albedo,
the derived solution suffers from bas-relief ambiguitio(n and Brooks1989 Zhang

et al, 1999 Durou et al, 2009. When albedo is unknown, the range of possible solu-
tions expands significantly. To resolve these ambiguidasybvious solution is to uti-
lize a set of input images under different lighting condigpwhich transforms the SfS
problem into that of photometric steréd/¢odham 198Q Yu et al, 2013H. However,
such additional input data is often inconvenient to obtaipractise. Recent techniques
for SIS gohnson and AdelspR011; Oxholm and Nishinp2012h estimate shape from

a single input image under natural illumination, but deahwiniform-albedo objects

and require a special calibration target to measure lightin

We propose a shading-based shape refinement algorithmtifimesuMicrosoft Kinect

to address the ambiguities that exist among lighting, nsraad albedo. The Kinect
records each RGB image together with a depth map. Althouglépth map is noisy
and typically contains hol€swe present a method that effectively utilizes this informa-

tion to improve the performance of SfS for scenes with unkmosflectance variation

!Depth map holes result from scene areas in a Kinect depthemaigide the depth sensing range or
occluded from the infrared light projections, since theanéd projection and sensing directions are not
the same.
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Figure 6.1: Flowchart of our approach.

and lighting. The depth information not only helps to resobas-relief ambiguity,
but also aids in clustering pixels with similar normal direns. Such grouping allows
us to effectively estimate relative albedos and the enwr@mt illumination in terms
of spherical harmonics. To handle the holes in a depth mapjsgeedges from the
RGB image to guide a structure-preserving hole filling psscand create a reliable
depth map proxy for our shading-based shape refinementthiligorThe utilization of
a noisy, incomplete depth map in our approach leads to higlitgy 3D scene recon-

struction, as exemplified in Figude8.

6.2 Related Work

Our work is related to SfS and depth map enhancement. Redeahees in SfS aim
to relax strict assumptions about lighting and reflectanioe(Johnson and Adelson
2017, Johnson and Adelson show that the inherent complexityatdral illumina-
tion actually benefits shape estimation instead of introdugreater ambiguity. Their
work uses a reference sphere with the same reflectance pespes the target object
to model the object’s shading under the environment illlation (Ramamoorthi and
Hanrahan20018. Instead of assuming Lambertian reflectance, Oxholm astihb
consider arbitrary isotropic BRDF©®&holm and Nishinp2012h, with the illumina-
tion environment acquired using a reflective sphere. Recddrron and Malik 2012

proposed an SfS approach that enforces multiple priors apestalbedo and illumina-
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tion in estimating those properties. Our approach diffesenfthese recent techniques
in that it employs an RGB-D camera, but does not require &edion target, an as-
sumption of uniform albedo, or reliance on smoothness at@@yconstraints which
may be unsuitable for the given scene. This makes our apprace general and ro-
bustin practice. For a more extensive review of SfS, we mefaders to various surveys

(Horn and Brooks1989 Zhang et al.1999 Durou et al, 2008.

Apart from single image approaches, another direction isstoa shape prior to con-
strain the solution space of SfS. Huang and Sn#@i()) interpolate the boundary nor-
mals of an object to obtain a rough shape prior to constreth Bfu et al. 2011) use

multiview stereo to obtain rough but reliable geometry aged it to resolve the local
ambiguity of SfS. After that, the SfS solution is used to erdeathe multiview stereo
geometry by integrating subtle details from SfS. Such atsmiuhowever, cannot be
directly applied with an RGB-D image that contains subséhnbise and holes. Their

method also does not handle objects with reflectance vamiati

With regard to depth map enhancement, recent advances askldional RGB image
to denoise and upsample a depth mapng et al, 2007 Dolson et al. 201Q Park

et al, 2011). With an RGB image that has a higher resolution and signaleise ratio
than the depth map, a direct approach is to apply a jointdvddfilter (Yang et al,
2007 Dolson et al.2010 using the RGB image to define a neighborhood smoothness
term. In Park et al. 2011, Park et al. formulate this as an optimization problem
and show that with a small amount of user interaction, thetdeap can be greatly
improved. But while these depth map enhancement methodsecate noise and
increase resolution, they also lose fine depth details guhie smoothing process. By
contrast, our approach recovers fine depth details everyfdhe not captured in the
initial noisy depth map, by making greater use of the RGB ientigough an analysis

of its shading.
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6.3 Depth-Assisted SfS Approach

To facilitate SfS, our approach utilizes partial depth miation to separate shading
from albedo, aid illumination estimation, and resolve aocef normal ambiguity. No
assumptions are made on the incident illumination or sert@ometry, while the re-

flectance in the scene is taken to be Lambertian.

6.3.1 Overview

Figure6.1displays a flowchart of our algorithm. From the input RGB imaad depth
map, our method first computes a normal map from the captuwepthdnap and seg-
ments the RGB image into regions of piecewise smooth coldmodgh alternating
optimization (AO), the relative albedos among the diffémegions are calculated, and
the environment illumination is estimated from the albedomalized image. After
that, we estimate normals over the whole image using SfS tételp of a normal
map computed from Kinect as a shape prior to resolve basteehbiguity. For regions
that lack depth map values from Kinect, we use a constramddre synthesis to fill in
the missing depth values prior to applying our normal esiimnealgorithm. As shown
in Figurel.8, the output of our method is a refined normal map without tlapstand

reflectance ambiguities of SfS nor the noise and holes of thedrange data.

6.3.2 Relative Albedo and Lighting Estimation

The input from Kinect consists of an RGB imafie= {I;}, I, = [, ,, I; 4, I; )" Where

1 is the pixel index, and a depth map. From the point cloud detexd from the depth
map, we calculate a rough normal map= {n;}, wheren; = [n; ., n;,,n;.)" is the
unit normal at pixeli, obtained by a simple cross-product of the neighboring tgoin

For pixels with missing depth values, or whose neighboriixglp have any missing
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depth values, no initial normal is computed.

6.3.2.1 Relative Albedo from Common Normals

We first perform a mean-shift clustering on the RGB imagehwitminimum region
size of 500 pixels. Suppose this forms a set @lustersC = {C,,u =1, ..., S}. Each
cluster contains a set of pixels and a corresponding setrofads. Under consistent
environment lighting, any two pixetsandb with same normal direction in two different
clusters have the same shading, and thus the differenogsdetheir pixel values are

due only to differences in their relative albedps; andpy x:

Ia,k o Pa,k
Ib,k Db,k

wherek = 1,2, 3 respectively index the RGB channels. With this property,soke
for the relative albedos between different clusters usirelypairs of common normals
from different clusters. We note that intensity ratios halso been used as an illu-
mination invariant for object recognitiof(nt and Finlaysaril995 Nayar and Bolle
1996.

6.3.2.2 Data Structure

To facilitate normal direction comparisons among clusters quantize all possible
normal directions to vertices on an icosahedron, whichiges/a uniformly-distributed
set of " = 642 normal directions over a sphere. The normals in an imagetaredsin

a data structurés, ; , which we refer to avins whereu = 1, ..., S denotes the cluster
index,7 = 1, ..., T denotes the normal directions as sampled from the icosahgaind

k =0,..,3 with B, as an indicator bit of whether thieth normal direction exists
within clusterC,,, and[B, ; 1, B, ; 2, Bu,j 3] Store the RGB values corresponding to the

j-th normal direction in cluster’,.
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Figure 6.2: Graph of common-normal-direction relationships amongstdus, with the

maximum spanning tree indicated by red edges.

All the bin values are initialized to zeros. Then, for eaakstérC,,, each normat falls

into a bin B, ; , wheren has the smallest dot-product with th¢h normal direction
among all thel’ normal directions on the icosahedron. We Bgt, = 1 to indicate
that this bin is utilized. Then we fill itB, ; ,, Wwherek = 1,2, 3, with the RGB values
of the pixel with normakh. If there are multiple pixels having normals that fall inket

same binB,, ; x, the median of their RGB values is used.

6.3.2.3 Graph Representation

After the data structure is built, we represent the commamnal-direction relation-
ships between different clusters as a gragh= {C,E}. Each clustelC, is repre-
sented as a node. An edgg, ,, exists between cluster,, andC,, only if there are
more than\ common normal directions between clustéts andC,,,, with A = 20

in our experiments. The edge is given a score equal to the auailtommon normal

directions. Refer to Figuré.2for an example graph.

141



(d) (e)

@) (b) (©)
Figure 6.3: Relative albedos estimated by our alternating optimizati@) Input im-
age, (b) & (c) Relative albedos estimated at the 1st and gtlation, (d) & (e) Corre-
sponding shading images at the 1st and 5th iteration. Clast#&hout relative albedos

in the 1st iteration are simply filled by original RGB valuegb).

In estimating a globally consistent set of relative albedes utilize the maximum
spanning tree (MST) algorithm to determine a cycle-freea$dinks that maximize
the number of common normal directions between clustergh@dgraph may be dis-
connected, a forest of trees may be formed. After the MSTusdiowe calculate the

relative albedos between all of its clusters in a depth-giesirch order along the tree.

The relative albedo between two clusters is computed byd@atgrmining the common
bins (corresponding to common normals) utilized in clustéy, andC,,,, denoted by
Q ={q: By 40 =1andB,,,o = 1}. Then we obtain an estimate of relative albedo

of C,, overC,, for each of the RGB channels:

_ Bu27q7k
pUQ,k - B .
u17q7k

Among all common bins, we run RANSAC to obtain the relativeealo estimates in a
manner robust against outliers. Pseudocode of this relalibedo estimation procedure

is provided in the supplementary material.
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6.3.2.4 Lighting Estimation

The estimated relative albedos are highly useful. By nomimgy the albedos in dif-
ferent regions, we can then jointly use their rich varietynofmal directions to more

reliably estimate the environment lighting.

Suppose there arR pixels whose relative albedos are estimated from the MST|etn
n; = [nI 1]7. We estimate the lighting in terms ®hd order spherical harmonics (SH)
for each RGB channél = 1, 2, 3:

Ii

Dik

1T Myni; =

(6.1)

wherei = 1, ..., R and M, depends on the SH coefficients for theh RGB channel
(Ramamoorthi and Hanraha2001h. Using the RGB imagé and initial normal map
N computed from Kinect)/,, in (6.1) can be estimated up to a scale factor by linear

least-squares minimization.

6.3.2.5 Refinement by Alternating Optimization

With the estimated lighting, we refine the relative albedod aalculate the relative
albedos of those clusters not yet estimated. For each clasteestimate of relative
albedo for each RGB channkls obtained foireach normak; in the cluster as:

Ii

_ bk 6.2
0T M, (6-2)

Dik
RANSAC is again run on these estimates to obtain an updalkativeealbedo for each
cluster. Using the updated relative albedos of the MST elgstve re-estimate the SH
coefficients by §.1). This alternating optimization process is repeated tinélchange
falls below a small value. In practice, convergence is oletdiin 3-5 iterations. An
example of the improvements gained through iterative dgtitiron is shown in Fig-

ure6.3. We note that despite the noisy normals of the depth map etaéve albedos
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Figure 6.4: Effect of prior normals on handling bas-relief ambiguityeft: without
prior normals, the bed is roughly co-planar with the backlzbaRight: by accounting

for prior normals, the bed normals are correctly pointingvward.

between two regions can be reliably determined when theg hreany normals in com-
mon, as is the case for connected nodes in the MST. Moretesgtvironment lighting
can also be dependably recovered when the number and rangsyhormals is large,

as again is the case with the MST.

6.3.3 Geometry Estimation

6.3.3.1 Structure-Preserving Shape Prior

Shape-from-shading on a single image is an ill-posed proltkat suffers from bas-
relief ambiguity Belhumeur et a).1999 (see Figures.4) unless a shape prior is en-
forced. In our work, we exploit the Kinect RGB-D data to obhtaistructure-preserving

shape prior, in the form of prior normals to be used later il@nal refinement step.

Kinect depth maps, however, frequently contain holes wireres is no depth informa-
tion for directly computing surface normals. Rather thalmfjl the holes by smooth

interpolation, which tends to lose sharp edges and coreeesKigurés.7), we estimate
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Figure 6.5: lllustration of patch-based repairing of a structural hole

(b) (© (d) (e)

(a) ®) (9)
Figure 6.6: Example of repairing a depth map hole. (a) Input RGB, (b) trgbepth,

(c) Depth gradient map, (d) Depth gradient map after patgaie (e) Depth map after

patch repair and poisson integration, (f) Prior normal mgp) Resulting normal map
after SfS.
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the missing data in a structure-preserving manner, sinmlgpirit to (Sun et al,. 2009

but with different considerations due to our different desb setting.

Though holes may exist in the depth image, they do not appeiduei corresponding
RGB image. We thus take advantage of the RGB image as a guidegith completion
in the hole region. First, a Canny edge detector is appligdedRGB image. We then
identify RGB edges that pass through a hole, referred to stsuatural hole in the
depth image. Along the edge, we generatdée patchesvhich contain hole pixels
whose depths need to be obtained, &ndwn patchesvhich contain no hole and are

used for repairing the hole patches. Figaréshows an illustration.

The goal is to transfer the depth gradients from the knowohast to the hole patches,
after which the depth of the hole can be filled in by poissoegration while preserving

the structure along the edge. This structural propagaitormulated as an MRF which
is solved by belief propagation. The MRF total cost funcfianthe set of hole patches

H is defined as:

Csp(H) =wp,,Cp,,, (H) + ws,,,Cs,,, (H) + (6.3)

rgb

WDy, CDdg (H> + wsdgcsdg (H>

rgb rgb

whereCp, ,(H), Cs,,, (H), Cp,, (H) andCs,, (H) are respectively the RGB data cost,
RGB smoothness cost, depth gradient data cost and deptiemgiradhoothness cost.
We setwp, , = 1.0, wp,, = 1.0, ws,,, = 0.1 andws,, = 0.1 in our experiments. Each

cost term is detailed as follows.

Denote the set of hole patchestas- {H,} and the set of known patcheslés= {K,,}.

H, is itself a set containing all pixels that lie within the gatevith each pixel indexed
by local patch coordinatp. For notational convenience, we also deffiigp) as the
pixel location in image coordinates, such tha#{,(p)) is the RGB intensity of the
pixel, and likewise fod (K,,(p)). Also, H, ! returns the corresponding known patch’s

index, such thaKHlfl is the patch that repaits;.
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(@) (b) (© (d)

Figure 6.7: Example of patch-based repairing versus smoothing to olatatructure-
preserving shape prior for the example scene in Figuf Patch-based repairing al-
lows propagation of existing structure to the hole regiaa). $hape prior using poisson
smoothing. (b) Shape prior using patch-based repairinQ.&¢d) Resultant normals

using shape prior from (a) & (b).

RGB Data Cost: Let Zp, , denote the number of pixels covered by hole patches. The
RGB data cost is defined so that the selected known patchlglosgches the hole
patch in the RGB image:

1
CD'rgb (H)

~ 37,

> > HHilp)) — I(K -1 (p)> (6.4)

rgb | pEH;

Depth Gradient Data Cost: Let Zp,, be the number of non-hole pixels covered by
hole patches, anf)’ as the depth gradient image. Since these pixels have ddp#sya
their depth gradients can be calculated. The depth grad&atcost favors solutions in
which the computed depth gradients closely match the aigiapth gradients for the

non-hole pixels:

Co, (1) = 52— 7 57 a(Hy(p)|ID'(Hi(p) ~ D (K ()2 (65)

2Zpa, peH,
where (o) denth g
1 H,(p) has a depth gradient
a(H(p)) = , (6.6)
0 otherwise.

RGB Smoothness CostSupposgH;;, H;»} is a pair of overlapping hole patches, and
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KHfl andKHfl respectively denote their repairing known patches. Suppts that
pixel p, of K ;-1 coincides with pixelp; of K., whenK ;- andK ;. are pasted
ontoH;; andH;. With Z,, being the number of pixels in the overlapping regions of

hole patches, we penalize solutions where the overlapp@ig ®alues are inconsistent:

'rgb Z Z HI I(Kngl(pb))Hz- (6-7)

Y {Hi1,Hi2} {Pa,ps}

Cs

Depth Gradient Smoothness CostSimilar to the RGB smoothness cost, we have a

corresponding cost for the depth gradient image:

S Y IDE ) - D (K@)’ (68)

Y {Hi1.Hio} {Pa.ps}

Cs,, (H

After belief propagation is performed to minimizgr(H), depth gradients of pixels
within hole patches are replaced by depth gradients fronassggned known patches.
With the transferred depth gradients and the known deptiegadlong the hole bound-
ary as boundary conditions, poisson integrati®érez et aJ.2003 is used to fill in the

depth values of the hole. Figuée6illustrates this process.

6.3.3.2 Surface Normal Refinement

The estimated relative albedos, lighting and shape primesas useful inputs for nor-
mal refinement over the whole scene. Suppose there are in4Agta pixels. The
surface normal refinement is formulated as a non-lineanopétion using the total

energy function:

g(N) - waSgSfS(N) + wpriorgprior(N) + (69)

wsmoothgsmooth<N> + wnormgnorm(N)-
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Esrs(N) is the shape-from-shading cost represented ugingorder spherical harmon-

ics. It constrains the normal according to the shading eleskin the RGB image:

Esps(N) = Z Z (L — pi,kﬁiTMkﬁi)2 (6.10)

To resolve bas-relief ambiguity,,,...(N) constrains the normals to be similar to the
prior normals computed from the repaired Kinect depth map (&gure6.4). Denote

the prior normal as;:

1
Eprior(N) = Zoosal Z i — n;HQ (6.11)

Esmootn (V) IS @ smoothness term with respectit-order neighbors. For the set of

1st-order neighbordi,, i, }, we have:

1
Esmooth(N) = Zrotel E [ri, — ni2||2' (6.12)
oM i in}

Finally, &0 (V) is the norm regularization which constrains the normalstofunit

length:

Enorm(N) = > (nfni—1)% (6.13)

The total energy functio& (V) is a weighted sum of the four energy terms, with the
weights fixed tow, s = 1.0, Wprior = 0.1, Wmoorn = 0.05 andwy,e,,, = 0.05. The total
energy function, which is non-linear in terms of normaJsis optimized by the trust-

region-reflective algorithm. We initialize the normals@o0, 1]7, facing the camera.
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Figure 6.8: Light estimation experiment. (a) Input scene. (b) Clustarered for
illustration. (c) Ground truth environment map. (d) Groutrdth 2nd-order SH. (e)
Estimation by red cluster in (b). (f) Estimation by greenstér. (g) Estimation by blue
cluster. (h) Estimation by all regions in the MST. Brackatedhbers show RSME.

B RANENENE

initialization iteration 2 iteration 3 iteration 4 iterati 5

(0.3416) (0.2465) (0.2458) (0.2454) (0.2451)

Figure 6.9: Iterative refinement of light estimation throughout AO. &mted numbers

show RMSE, which is converging.
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Figure 6.10: Normal estimation of a Lambertian ball in the scerjeans (a) Input

(©)

image. (b) Ground-truth normal map. (c) Raw normal map. (Qui&@ed error map
of raw normals (RMSE=0.5178), (e) Estimated normal mapS¢{iared error map of

estimated normals (RMSE=0.1401).

6.4 Results

6.4.1 Lighting Estimation

In Figure 6.8, we investigate our approach’s ability to estimate enviment light in

an indoor scene, by comparing it to ground truth obtainedgusi mirrored sphere
convolved with 2nd-order spherical harmonics. It can beeoled that using more
clusters and normals, which is made possible by the relatlvedo estimation, leads
to more accurate and robust light estimation. As the northatgighout the MST are
used, the major light directions and intensity resembledbgined from the mirrored
sphere. Figurd.9 also shows iterative refinement of light estimation thraughthe

alternating optimization process. We note that inconsisten the environment light

across the scene due to non-distant light sources will itrérto error.

6.4.2 Ground Truth Comparison

Next we validate our approach by conducting an analytigaégrent in which we esti-

mate normals of a Lambertian ball in an indoor scene (ngeaatsin the supplement).
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Figure 6.11: Kinect scenes repaired by our approach.

Figure6.10shows the results of our approach in refining the raw normaisputed
directly from the depth map. The RMSE is improved from 0.57®.140%. The
more apparent error along the sphere boundary is due to #aegrnoise in Kinect

RGB images near object boundaries.

6.4.3 Repairing Kinect Scenes

We tested our approach on four indoor scenes captured bycKinamely,library,
bedroom shoe cabineandwardrobe These are common indoor scenes with shading
detail that our approach can make use of to refine the recmtstt surface. Figur@ 11
shows the results. Ihbrary, the structural holeson the books and shelf are repaired

by the propagated patches, and the round surface of theistoell reconstructed by

2While the RMSE of relative light intensity is in the range 1], the RMSE of normals is in the range
[0,2], as the squared error of normals is in rarfi@et]. For example, normal®, 0, 1] and|0,0, —1]7
result in a maximum squared error of 4.
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Figure 6.12: Zoom-in Views.
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shading despite the presence of noise and holes in the imgpiih dnd normal map.

In bedroom details of the pillow are faithfully reconstructed, e.the crease at the
top-right corner. Inshoe cabinetstructural propagation enables the proper repair of
the hole at the corner, which provides a correct shape pdorpared to smoothing
(see also Figuré.7). To this, shading adds further details, e.g., the mark$ershoe.
Finally, inwardrobe shape-from-shading significantly improves the surfacerehery
fine details such as the folded collar and button regions eandarly seen. Please refer

to the supplementary materials for three additional result

6.4.4 Comparison with Other Methods

To demonstrate the possible improvements obtainable vaibyrKinect depth data
in our method, we compare our depth-assisted approach vgitiite-of-the-art shape-
from-shading algorithmRarron and Malik 2012, which operates with only an RGB
image using generic albedo and illumination priors. As show Figure6.13 our

depth-assisted method achieves significantly bettersirfarmal reconstructions. We
believe that the priors used iB&rron and Malik 2012 may be more appropriate for
single objects than for full scenes that are captured by ad{irin this comparison, we
used the code provided iB&rron and Malik2012 with the default parameters. Our
approach uses only the regions with the highest-confidezlatve albedos (from the
MST) for lighting estimation, rather than the entire imageur supplement contains

additional results.

Figure6.14compares our albedo normalization result with the statéefart intrinsic
image separation technique ake et al, 2012, which also makes use of Kinect depth
data. The result ofL{ee et al, 2012 was provided to us by the authors. Their work
assumes the input to be a nearly flawless depth map obtaioedvideo streams of
a moving Kinect, and does not operate as well with a noisytdeyap available from

a single Kinect image. In contrast, our technique perforrmseneffective albedo nor-
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(a) (b) (©) (d) (e) ®) (9)
Figure 6.13: Comparison to SfS technique 8&fron and Malik 2012. (a) Input RGB

image. (b-d) Our recovered normals and two normal mapshaded as\N - L with
L = (—7 75" andL = (5, o=, 5=)". (e-g) Recovered normals and shaded
images of Barron and Malik 2012 using generic albedo and illumination priors.

malization because the relative albedos are obtained gthelp of estimated lighting.

This results in more refined shading details, e.g., on the bed

High-quality normals are vital prerequisites for differgmactical applications. Fig-
ure6.15shows a point cloud significantly refined with our resultamtmals using the
method of [u et al, 20100. In addition, the resultant normals enable realistic re-

lighting and high-quality 3D surface reconstruction.

6.5 Summary, Discussion, and Future Work

In this chapter, we presented a useful postprocessing hédhmprove the quality of
surface normals obtained from Kinect. When used with thestaiinect, which has
higher resolution in RGB than in depth, the proposed metloodtcalso be utilized for
the problem of depth map denoising and upsamplian et al, 2007 Dolson et al,
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Figure 6.14: Left: albedo normalization result of Figuré.8 by (Lee et al, 2012.

Right: our result.

Figure 6.15: Left: raw point cloud. Right: point cloud refined with our tdgnt

normals.
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201Q Park et al.2011), since the geometry is solved at the RGB image resolutidn an

its use of shading significantly reduces the effects of deptfsor noise.

Like other patch-based image completion methods, theteféaess of our patch-based
hole repairing step is subject to the quality and compattytolf the surrounding known
patches. While the RGB data is in general of higher qualéytine depth data, its noise
can still affect the quality of shape-from-shading. Fomsasewith local light sources,
the environment light may differ significantly in differeparts of the scene. This issue
could potentially be addressed by solving for the environinight separately among

local regions.

In future work, we plan to consider the lighting visibilityf scene points based on
the depth map, as this should improve the estimation ofihightelative albedos, and

shape-from-shading.
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CHAPTER 7

Conclusion

7.1 General Summary

This dissertation has demonstrated how data-driven opdithoin approaches can be ap-
plied to tackle the modeling problem. From the graphicsestve, novel approaches
have been proposed for virtual world modeling, virtual eltéer modeling, and interac-
tive indoor scene modeling. The proposed approaches diagdt/antage that useful
relationships are learnt from real-world or human-anmatatata, which can then be
used to guide the optimization, or provide useful suggastia the user interface, in
order to accomplish the modeling task. This results in theeggtion of different realis-
tic models that can be used for 3D graphics applicationsmRhe vision perspective,
novel approaches were proposed to enable accurate 3D eudaonstruction from
real-world data. The approaches enable photometric steree performed outdoors,
and the use of a single RGB-D image captured with a low-cgsthdeamera to obtain

a high quality 3D surface showing subtle details througlisigaanalysis.

7.2 Future Trends in Data-Driven 3D Modeling

Recent R&D advances in 3D scanning, 3D display, and 3D pgritiave made these
technologies increasingly accessible to the general publrough data-driven mod-

eling approaches, such data can be readily utilized to etggh-quality 3D models
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for various applications. With a 3D display, one can visz&l8D models like real-
world physical objects. Advances in haptic devices may aw us to touch and
feel these virtual 3D objects. Furthermore, one can oftailyetabricate physical 3D
objects using a 3D printer, so that everyone can become aigrddsigner as well as
a manufacturer. This possibility is very exciting as it vaden up many opportunities

for research into and applications of data-driven 3D modgl

Low-cost depth cameras (e.g., Microsoft’s Kinect, whicimes with the Xbox game
console) have already become widely available. Equippédl suich devices, one can
readily acquire 3D data at home. In the near future every dtmld will likely be
equipped with a 3D scanner, a 3D display, and a 3D printer #s Tas will probably

transform human-computer interaction, as well as hometairienent and manufactur-

ing.

These trends foretell an even stronger future role for dateen 3D modeling. The
widespread popularity of 3D data acquisition devices mehaswe will have more
and more 3D data, analogous to how we now have copious @sabiti2D image data
thanks to the widespread availability of digital camerakisTprovides good grounds
for data-driven modeling approaches. On the other handaydsed 3D models will no
longer reside solely in the 2D display screen. The demandtalize, touch, and feel
the created 3D objects will lead to a higher expectation ergimality of the 3D mod-
els and additional factors to be considered. For exampéefatbrication of 3D models
must satisfy important physical, material, and mechamogperties to sustain physical
and usability requirements in the real-world, which aremarimally considered in con-
ventional 3D geometric modeling. This is exciting as it apep many opportunities
for researchRrévost et a).2013 Skouras et a].2013 Coros et al.2013 Zhu et al,
2012. Our research on data-driven modeling interfaces intérfde general users,
which ease the 3D modeling process, also closely alignstivtirend of personalized

product design and home manufacturing. Such promisingl$renll also give impetus

159



to more sophisticated creative activities at the housesodtsmall business levels; e.g.,

to create video games, movies, products, and other 3D apiphs.
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