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We introduce a novel framework for advanced behavioral modeling in virtual humans
that features the first application of decision network techniques to computer graphics
and addresses the challenging open problem of simulating the complex interactions of
real people in urban settings. Based on hierarchical decision networks, our behavioral
modeling framework handles uncertainty, interprets perceptual information, incorporates
personality traits, and facilitates the autonomous control of behavior. Combining proba-
bility, decision, and graph theories, our framework yields autonomous human characters
that can make nontrivial interpretations and arrive at intelligent decisions that depend
on multiple considerations.

Unlike prior work in so-called “crowd simulation”, we develop complex autonomous in-
dividuals that, in addition to motor and perceptual components, include broad behavioral
repertoires that are much more challenging to model. In particular, our self-animating
pedestrians can independently assess the interrelationships among all the relevant factors
to make rational decisions in the presence of uncertainty.

Within our framework, we develop an emergency response behavior model, which
enables virtual pedestrians to respond to an emergency situation in a variety of ways. We
also develop a behavior model for establishing partnering relationships, an acquaintance
behavior model enabling two characters to greet one another, and a collision avoidance

model, all of which take into consideration personality traits, internal factors, and the
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interpretation of intentions.

Our virtual human simulator, which includes the aforementioned behavioral mod-
els, can automatically animate pedestrians in a large urban environment that interact
with each other in a realistic manner. We demonstrate the potency of our decision net-
work framework in several behavioral animation scenarios involving interactions between
autonomous pedestrians, including an elaborate, automatically-generated emergency re-

sponse animation.
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Chapter 1

Introduction

Virtual human modeling has numerous applications ranging from entertainment (inter-
active games and movie special effects), to architecture and urban planning, to human
factors analysis, to archeology, to clinical diagnosis. Creating autonomous agents that
are able to reproduce human-like behaviors has been a challenging objective, which has
attracted many researchers from different disciplines. From modeling the motor system,
human behaviors, to modeling facial expression, speech recognition and generation, etc.,

each of these important components has spawned significant research of its own.

The work presented in this dissertation addresses advanced behavioral systems for
virtual humans. By a behavioral system, we mean the level of decision-making that al-
lows the characters to react appropriately to the perceived environment, including other
virtual humans. We focus on the action selection component of a behavioral system; that
is, we are concerned with simulating how humans decide what to do at any given time.
In particular, we introduce a decision network framework for specifying human behav-
iors that is easy to define, easy to modify, scalable, and mimics the way humans make
decisions; for instance, in the automatically generated “emergency response” animation

depicted in Figure 1.1.

Decision networks are a decision theoretic generalization of Bayesian networks [Pearl
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Figure 1.1: Still frames from an emergency response animation. (a) A female character
passed out on the floor in the concourse of a virtual train station. (b) Commuters gather
around to attend to the patient; a woman runs for help. (c¢) The woman finds a law
enforcement officer in the main waiting room of the station. (d) The officer attends to
the patient.

1988], also known as probabilistic graphical models, which combine probability theory
and graph theory to capture uncertain knowledge in a natural and efficient way. The
decision network is a powerful tool for modeling decision making under uncertainty. It
provides an elegant mathematical structure for modeling complicated relationships among
random variables and an intuitive visualization of these relationships via the graphical
structure, thus facilitating comprehension and debugging. Furthermore, the modularity
of a decision network facilitates the intuitive subdivision of a complex behavior model
into manageable components. We use decision networks as the basis of our framework
which addresses several tough challenges in behavior modeling, which we will discuss

next.
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1.1 The Behavior Modeling Challenge

Human behavior modeling and simulation is a challenging problem. The framework
that we develop in this thesis aims to handle uncertainties, facilitate the simulation of
character interactions, incorporate the simulation of perceptual focus of attention, and

facilitate the specification of behavior rules.

Uncertainty: When people know enough facts about their environment, logic will in
principle enable them to derive plans that are guaranteed to work. Unfortunately the
real world is fraught with uncertainty and we almost never have access to the whole truth
about our environment. One source of uncertainty is the limitation in our perception, not
only because we often have incomplete knowledge of the environment, but also because
of our inability to understand all of its complexities and how they affect one another.
For example, we may not be certain if it is going to rain, but we may assess that the
probability of rain at 70%, and base our decision to carry an umbrella on this assessment.
The role of uncertainties becomes even more apparent during interaction between people,
as one person’s decision is often based on the other person’s reactions, which cannot fully
be known in advance. We observe the world and take action based on our observations.
However, our perception of the world may or may not be an accurate account of the
state of our surroundings, and our decisions are made based on our assessment of our
environment in consideration of our intentions, goals, personality, etc. In fact, we often
face the need to make an unclear choice among a set of unclear alternatives. In reality,
uncertainty exists everywhere, so in order to truly simulate human behaviors realistically,

uncertainty is an important factor that must be addressed.

(Mis)Interpretation and Interaction: We do not act directly on the stimuli that
come to the attention of our sensory organs, but on our mind’s interpretation of these

stimuli. That is, we make decisions based on our impression or interpretation of the
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world around us, not necessarily on the objective existence of things in our surroundings.
This becomes more important when we think about the interaction among characters.
In the real world, when people interact with each other, there is a perpetual process
of interpreting each other’s intention, we either react to it or take initiative and start
some action. The interpretation in this case is a conclusion we draw about the other
person’s intention, emotion, etc., based on observed cues about the other person. This
interpretation may or may not be accurate, but it will influence our reaction. In the
real world, it is impossible to know the exact feelings and intentions of the other person,
and interesting behavior patterns arise as a result of misinterpretation. For example,
occasionally when trying to avoid collisions, two opposing pedestrians will move in the
same direction almost simultaneously, then again to the opposite direction at the same
time, which results in a temporary deadlock, until one party decides to stop and allow
the other to proceed to one side. For the sake of realism, it is important to model such

misinterpretations.

Decision Specification: Decisions are often made among competing goals. The greater
the number of possible goals and actions we take into consideration, the harder it becomes
to define rules for deciding what to do. In simulating human behaviors, we naturally try
to mimic real human behavior, albeit in a highly simplified way. We humans have an
established common sense about how people normally do things, and we have gained
some understanding through our experiences and observations. Hence, an important
factor to consider when designing a behavior system is how easily and intuitively to
make the transition from the knowledge we have gained about how people behave, to the

representations that the system uses to determine how characters make decisions.

Controllability: When an animator designs a character, he/she may want to have a
certain level of control over the character’s actions. There is always a tradeoff between

autonomy and directability. For example, it was reported in the popular press that
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when making the motion picture trilogy “The Lord of the Rings”, during early tests in
creating the battle scenes using the Massive system (www.massivesoftware.com), some
of the soldier characters “decided” to flee the battle rather than to fight fiercely as the
director intended them to do. This element of surprise can be interesting, but it can also
be frustrating when the animator has strict requirements for the characters. Although we
want to simulate autonomous characters, we also want to provide the animator with an

intuitive mechanism for directing these characters by adjusting how they make decisions.

Extensibility: Another factor to consider is how to make the behavior system easily
extensible. Often we need to make adjustments to the specifications, whether to add in
another attribute or to add a new behavior routine to extend the character’s function-
ality. The system needs to be flexible and self-consistent so that modifications can be
easily incorporated without having to make large changes to the specifications of existing

behavior routines. The system should also facilitate the testing of new specifications.

1.2 Contributions

Unlike so-called “crowd simulation”, which has been intensively studied by the computer
animation research community, we concentrate on simulating individual behaviors. In
conventional crowd simulation, the characters in a crowd follow one another according
to predefined procedures that are based on simple rules. This thesis focuses on simu-
lating autonomous individuals whose behaviors are much more complex to model. The
decision process can no longer be accomplished with a centralized system. It requires
the characters to independently sort through the complicated interrelationships among
all relevant factors. Our more sophisticated model affords the characters the capability
of performing a variety of activities, including acting as a group. We have implemented a
system, which simulates the appearance, locomotion, perception, behavior and cognition

of pedestrians in an indoor urban environment, although the behavior framework that
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we develop can be applied more generally to other human simulation scenarios.

Our primary contribution in this thesis is the introduction and development of a new
framework for simulating human behaviors. Our framework features the first application
of decision networks to computer graphics. More specifically, it addresses the challenges in
human behavior modeling identified in the previous section. Hence, it offers the following

advantages over prior behavioral animation methods:

1. Our framework enables graphical characters to reason with preferences and to make
rational decisions in the presence of uncertainties. Uncertainty has largely been

ignored in previous human behavior models.

2. Our framework facilitates the encoding of common sense knowledge into the behav-
ior specifications, which determine how decisions are made. In particular, complex
interrelationships among factors in an advanced behavior model can be represented
systematically and explicitly in the decision network’s graphical representation,

which simplifies the specification, communication, and debugging of the models.

3. The modularity of a decision network enables the intuitive division of a complex

behavior model. This simplifies the extension and fine tuning of a behavior model.

4. Unlike prior techniques, our decision network framework offers a systematic and
powerful interpretation mechanism, which facilitates the simulation of interactions

by enabling characters to interpret one another’s intentions.

5. Our framework models the effects of personality and internal factors on decision
making, thus enhancing the realism of human behavior simulation. We have also in-
corporated the simulation of perceptual focus of attention in our virtual pedestrian

model.

We introduce four specific behavior models that are implemented within our frame-

work:
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1. Emergency response behavior model: This high-level model enables the characters
to respond to an emergency situation in a variety of ways. Some may come over
to investigate, some may fetch help and some may simply avoid the situation,
depending on how serious they think the incident is, their own personalities and

conditions, and what they perceive others are doing about it.

2. Partnering behavior model: This model enables the characters to form partnerships
with each other. The establishment of a partnering relationship requires consent
from both participants, where each character is making its decision based on not
only its own desires but also on its interpretation of the potential partner’s willing-

ness to cooperate.

3. Acquaintance model: This model enables two characters who encounter each other
to decide how to greet one another. The decision depends on each character’s
attraction and feeling towards the acquaintance, as well as its interpretation of the

acquaintance’s intention.

4. Collision avoidance behavior model: In this novel low-level model, in addition to
analyzing the potential obstacle’s walking direction and speed in relation to the
character’s own goal, the character also takes consideration of its interpreted ob-

stacle’s avoidance strategy.

Using our virtual pedestrian system, which includes the above models, we create
several new automatically-generated animations of virtual humans that demonstrate the

effectiveness of our framework.

1.3 Thesis Overview

The remainder of this dissertation is organized as follows:



Chapter 2 reviews related prior work. In addition to a general literature review of
prior research on behavior modeling and human behavior modeling in particular, previous
uses of Bayesian networks in other areas of computer graphics are also covered.

Chapter 3 provides background information on Bayesian networks, and it formulates
decision networks and their inference processes.

Chapter 4 presents a rationale for choosing decision networks as the basis of our
framework and provides an overview of the framework.

Chapter 5 presents an overview of our virtual human model and the environment
model in which the virtual pedestrians are situated.

The main technical portion of the thesis, Chapters 6 and 7, develops the behavior
models that we have implemented within our decision network framework, which include
(high-level) emergency response behavior, partnering behavior, acquaintance behavior,
and (low-level) collision avoidance behavior. Chapter 6, overviews these behavior models,
while the network structures and parameter settings are detailed in Chapter 7, which also
illustrates the modeling of personality and internal factors affecting decisions.

Chapter 8 presents and discusses selected animation results.

Finally, Chapter 9 draws conclusions and proposes promising avenues for future work.



Chapter 2

Related Work

In this chapter, we review prior work in the field of behavior modeling, which is the focus
of this thesis. Behavioral animation focuses on modeling the behavior of the character,
rather than its shape or physical properties. Reynolds [1987] introduced the term and the
concept of behavioral animation. He used a particle system to simulate realistic polarized,
aggregate motion, such as that of flocks, herds and schools. The model simulates the
behavior of each bird-like “boid” independently. The boids try to group together and at

the same time avoid collision with each other and other objects in the environment.

Since then, behavioral animation has attracted many researchers. In this thesis, we
will focus on the action selection aspect of behavioral modeling. That is, we are concerned
with how the synthetic actors decide what to do at any given time. There is a tradeoff
between directability and autonomy. When a character is scriptable, it will do what the
animator specifies, but then the animator must specify everything, which is inappropriate
for spontaneous interaction. By contrast, when a character is autonomous, it saves work
for the animator and is good for interaction, but the characters may be hard to control
and may not always do what the animator desires. Three categories of techniques are
described in the following sections: script based methods, reactive/motivational behavior

methods, and cognitive modeling, in order of increasing autonomy.
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2.1 Script-Based Methods

In the “Improv project” [Perlin and Goldberg 1996|, the authors use scripts to control
the decisions made by the character’s mind. The scripts are organized into groups, and at
any time, only one script within a group can be running. Generally, a group will contain
scripts specifying alternative modes in which an actor can be at some level of abstraction.
Improv also enables the user to handle nondeterministic behaviors by associating weights
with actions or scripts, and creating decision rules to specify how relevant information
influences the weight associated with each choice. This approach gives the animator the
control over the character, and is capable of handling interactive applications, but the
animator must give detailed specifications, including timing information for each action,
etc. Therefore, this approach becomes impractical for producing complex autonomous
behaviors or a large variety of behaviors. Unlike our approach, script-based methods are

hard to specify and cannot easily be extended or modified.

2.2 Reactive/Motivational Behavior Methods

Another approach is to make reactive and motivational decisions based on the character’s
internal state and its perception of external stimuli. Drawing on ideas from the field of
ethology, Tu and Terzopoulos [1994] implement an ethological behavior model and an
intention generator for their artificial fishes. At each time step, the intention generator
issues an intention based on the fish’s habits, mental state and incoming perceptual
information. Appropriate behavior routines arranged in a loose hierarchical structure
are then invoked to satisfy this intention.

Blumberg and Galyean [1995] present a related computational model of action se-
lection. They organize activities in loosely overlapping hierarchies with more general
activities at the top and more specific activities at the leaves. A value is computed for

each activity based on external factors and internal factors. All the constituent parts of
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a behavior are accessible at runtime, and the user can direct the autonomous animated
creatures at multiple levels. In their recent work [Blumberg et al. 2002], the authors have

used reinforcement learning to train an autonomous animated dog.

Bates et al. [1994] set up a plan memory where one or more plans are stored for each
goal. These plans are ordered or unordered collections of subgoals and actions that can be
used to accomplish the invoking goal. When there are multiple plans for a given goal, one
will be chosen at execution time based on perception, emotional state, behavior features
and other aspects of internal state. When one plan fails, the system will backtrack and
choose another to accomplish the invoking goal. A priority number is assigned to each
instance of a goal, which is used to determine which goal to follow next. Their text based
system combines emotion with behaviors and it modeled some interesting cat behaviors.

Our approach is also reactive and motivational, but the behavioral modeling frame-
work that we develop in this thesis enables our characters to make inferences about their
surroundings, a capability which was lacking in previous methods. In addition, we focus

on the ability to handle uncertainties, which is not addressed in previous techniques.

2.3 Cognitive Modeling

Previous methods focus on how to make characters react appropriately to perceived en-
vironmental stimuli, whereas the work of Funge et al. [1999] concentrated on modeling
what a character knows, how that knowledge is acquired, and how it can be used to plan
actions over longer time frames. The authors develop a cognitive modeling language,
CML, and use the logic-based situation calculus formalism from artificial intelligence to
perform the reasoning. Their model is deliberative rather than reactive. It successfully
modeled herding behaviors and intelligent evasion behaviors for a merman in shark in-
fested waters, and it was also used for camera control. However, as human reasoning is

exceedingly complex, it is unclear how well this method will be able to model the full
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range of human cognition. Rather than focusing on planning, our technique focuses on
allowing the characters to make rational decisions in action selection in the presence of

uncertainties.

2.4 Virtual Human Behavior Modeling

In the previous subsections, we reviewed past work on modeling animal behaviors. Hu-
man behaviors are much more complex and are affected by many factors. Virtual human
modeling is a broad topic that includes many aspects. This thesis work will mainly
address the behavior modeling of virtual humans. More specifically, it will concentrate
on characters that perform autonomously in a virtual world. Hence, the research will
concentrate more on the character’s interaction and autonomy in the virtual environment
and less on dialog or natural verbal communication.

Researchers at the University of Pennsylvania developed the Jack software, which
is used worldwide for human figure animation and human factors analysis. They have
designed a Parameterized Action Representation (PAR) [Badler et al. 2002], which in-
cludes specifications for low-level animation concepts, such as kinematics and dynamics,
as well as descriptions for primitive or complex actions. Selection of actions in the sys-
tem (PARSYYS) is based on the applicability conditions (Boolean expression), preparatory
specifications (conditions-and-actions sequence) and termination conditions (Boolean ex-
pression) specified in the corresponding PAR structure.

Silverman et al. [2006] made use of human performance moderator functions in their
PMFserv architecture to simulate virtual humans. It uses three value trees, the Goal
Tree, the Standards Tree, and the Preference Tree (referred to as GSP trees) and their
weights (utilities) to represent the character’s knowledge. Using an OCC emotion model,

the characters select action(s) based on the utilities in their GSP trees.

Devillers et al. [2002] developed a programming environment including Hierarchical
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Parallel Transition Systems (HPTS), a behavioral programming language, and a scenario
language for behavioral animation. HPTS is a formalism that can be used to address
hierarchical concurrent behaviors. It has a reactive and a cognitive model, which can
be viewed as a multi-agent system in which agents are organized as a hierarchy of state
machines. The behavioral programming language fully implements the HP'TS formalism
and is used to give behavior descriptions. The scenario language describes scenarios in a

hierarchical manner and schedules them at simulation time.

Noser and Thalmann [1996] use a timed, conditional, stochastic, parametric and
environmentally sensitive L-system to describe and animate autonomous actors which
are completely defined by production rules. Musse and Thalmann [1997] simulated crowd
behavior by modeling the relationship between autonomous virtual humans in a crowd
and the global effect that emergent from local rules. Each virtual human is given a
set of parameters, with rules defining how these parameter values can change during
the simulation, and there are also rules defining how these parameters drive the group’s
behavior. Ulicny and Thalmann [2001] simulated crowd behavior for interactive virtual

environments using behavior rules and hierarchical finite state machines.

As part of the Virtual Theater project, Doyle [1999] embeds necessary knowledge
including appropriate responses and emotions into the virtual environment through an-
notation, so that the agents can extract it and use it for guidance as they decide what
to do. This makes the agents appear expert on the local content of the world and can

react appropriately when the world changes around them.

Johnson’s [1995] WavesWorld equips each character with goal, sensor and skill, and
then uses an action selection network to connect these components together. The action
selection algorithm is an extension of Maes’ algorithm with competence modules [Maes

1989).

Bates et al. built “broad agents”, which aim at producing a broad range of abilities

that are integrated into a coherent system rather than to perfect any individual aspect
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of the agents. As part of the Oz project [1995], Reilly and Bates simulate a negotiation
behavior over trading cards, by including as many responses as possible and the ability
to interrupt behaviors with other behaviors. They also tried to incorporate emotion and
personality into the behavior, the emotions generated depend on several factors including
the importance of success, the importance of not failing, a likelihood of success function,
a likelihood of failure function, a function to determine who is responsible if the goal
succeeds, and a function to determine who is responsible if the goal fails. The behaviors

themselves are specified with rules and condition statements.

VRaptor developed by Shawver [1997] is a VR system for situational training. The
virtual world is populated by actors under the control of trainer-defined scripts, while
the trainees are represented by avatars. Each actor uses a modified version of the NYU
KPL language interpreter to govern its behaviors. A hostage rescue scenario was enacted

with this system.

Shao and Terzopoulos [2005] developed an autonomous pedestrian model in the setting
of a virtual train station. Their virtual pedestrians combine behavioral and cognitive
modeling, and are capable of performing a variety of activities. Their behavior model is

based on that of Tu and Terzopoulos [1994].

Most behavioral systems for virtual human modeling are rule based, but as will be ex-
plained in Section 4.1, rule based systems are not appropriate for handling uncertainties.
Neither can they easily make inferences based on observations. Our approach aims to

address both issues, which are vital for enhancing the realism of autonomous characters.

Some researchers have studied the social aspect of virtual humans. Cassell et al. [1999]
explored autonomy that comes from underlying models of social and linguistic intelligence
for their embodied conversational characters. These characters respond to interactional
cues such as gestures and audio input based on a set of states and are able to participate
in face-to-face conversation with a human. The system used a uniform knowledge rep-

resentation format throughout. Guye-Vuillieme and Thalmann [2001] used a role-based
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organization to give their characters the ability to perform some social reasoning. For
example, their characters are able to greet one another differently based on their gender,

etc.

Some researchers have addressed the simulation of attention and gaze behavior.
Chopra-Khullar and Badler [2001] proposed a computational framework for generat-
ing visual attending behavior of virtual human characters, which controls eye and head
motions. They drew upon empirical and qualitative observations from psychology and
implemented behaviors as parallel, executing finite state machines. Peters and Sulli-
van [2003] implemented a system to automatically generate bottom-up visual attention
behavior for virtual humans. Their system comprises a visual sensing component to per-
ceive the virtual world, an attention component for early processing of perceived stimuli,
a memory component to store previously sensed data, and a gaze generation component

for the generation of resultant behaviors.

There are many efforts on behavior modeling in Robotics research as well, such as
Mataric’s [1997] work on behavior-based control and Brook’s [1999] work on humanoids
robots. Lebeltel et al. [2004] established a new method to program robots based on
Bayesian inference and learning. They have tested their system with a two-wheeled
mobile robot. Breazeal [2003] developed an expressive anthropomorphic robot that is
capable of generating emotions in response to visual and auditory stimuli provided by
humans who are interacting with it, and expressing that emotion through face and body
posture. Due to robot mobility limitations, behavior modeling in this area is mainly con-
cerned with robotic movements; thus far, it has not addressed the emulation of realistic

high-level human behaviors, which is the theme of this dissertation.
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2.5 Interpersonal Understanding

Humans have the ability to understand others as intentional agents. As there is no
objective way to ascertain other people’s consciousness or to assess their motivations and
desires, people can only guess at these things when they interact with each other, trying
to interpret what they know, think, or feel. There can be quite a few aspects to how one
interprets the actions and intentions of other people. Baron-Cohen [1995] approached the
question with the notion of intentionality, which may be primarily inferred on the basis
of motion. It can be categorized along an intensity dimension from “carrying out routine
but generally goal-directed activities” to “desperately wanting to achieve a certain goal.”
Blakemore and Decety [2001] studied how humans have an inherent tendency to infer

other people’s intentions from their actions.

The detection of eye direction is another cue that can be utilized to infer what an-
other person is likely to do. Baron-Cohen [1995] found that infants are very sensitive to
eye direction, particularly for eye-contact detection. In practice, eye-contact detection
appears to trigger a variety of responses. For example, Brooks [1999] and his students
built a robot “Cog” with video-camera eyes. Brooks reported! that a woman who knew
quite a bit about Cog’s construction found herself involuntarily flattered that the robot
followed her with its eyes as she crossed the room. In another situation, she might have
felt threatened. Peters [2005] used Bayesian networks to calculate the likelihood that
another character wants to engage in a conversation based on a character’s current di-
rection of attention, short term history of attention, and any directed gestures made. A
character that shows a high interest in the subject is perceived to be likely to engage in

further conversation. The agent’s behavior is guided by a finite state machine.

Shared attention refers to the re-orientation or re-allocation of attention to a target

because it is the object of another person’s attention. It plays a critical role in many

'In a November 1997 talk at the Society for Literature and Science in Pittsburgh.
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social activities, such as learning and drawing inferences about other people’s current
and future activities. Gaze following is one of its manifestations.

One’s emotion can be communicated through words, gestures, body language, facial
expressions, etc. Multiple emotions play a role in regulating cooperative behaviors. For
example, in a social setting, one’s emotions may indicate a willingness or unwillingness
to cooperate. Baron-Cohen et al. [1996] inferred emotions from facial expressions.

The research on interpersonal understanding of mental states serves as the basis for
determining how the characters can draw interpretations about others based on limited
cues. In our current system, gaze direction is used as an important cue in making

inferences.

2.6 Decision Theory

Almost everything that a human does involves decisions. Decision making is the reasoning
process which determines a final choice among alternatives. The choice made can be an
action or an opinion. The particular type of human activities we are interested in are
goal-directed behaviors in the presence of options.

Decision theory is a theory about decision making. As developed by philosophers,
economists, and mathematicians for over three hundred years, decision theory has de-
veloped many powerful ideas and techniques that have had a major influence across the
cognitive and social sciences. Decision theory can be classified as normative or descrip-
tive. Normative decision theory is concerned with identifying the best decision to make,
i.e., how decisions should be made, whereas a descriptive decision theory attempts to
describe how decisions are actually made.

Most decisions take time and can be divided into phases or stages. As part of his
motivation for the French constitution of 1793, Condorcet [1793] gave the first general

theory of the stages of a decision process. He divided the decision process into three
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stages. In the first stage, one “discusses the principles that will serve as the basis for
decision in a general issue; one examines the various aspects of this issue and the con-

" In the second stage, the decision is

sequences of different ways to make the decision.’
reduced to a choice between a manageable set of alternatives. In the third stage, the

actual choice between these alternatives is made.

The starting point for modern decision theory is generally taken to be Dewey’s [1910]
decomposition of the decision process into five stages. Simon [1960] modified it to com-
prise three principal phases: “finding occasions for making a decision; finding possible
courses of action; and choosing among courses of action.” The focus of this thesis is on
the last phase of this decision process decomposition. Dewey’s and Simon’s models are
both sequential as they have divided decision processes into parts arranged in the same
sequence. A criticism for it is that a more realistic model should allow various parts of
a decision process to be executed in different orders for different decisions. Mintzberg,
Raisinghani, and Theoret [1976] subsequently proposed a non-sequential model, in which
they used the same three major phases as Simon, but divided each phase into two routines

and gave a circular instead of a linear relationship between these phases and routines.

Utility was first formalized by Leon Walras, and was improved by Ramsey [1931], and
later by von Newmann and Morgenstern [1944]. Utility is a measure of the happiness or
satisfaction gained from performing a certain action. It is the mathematical represen-
tation of an individual’s preferences over alternatives. Von Nuemann and Morgenstern
extended this concept to establish the modern theory of choice under uncertainty—the
theory of expected utility. In the context of expected utility, the utility of an agent facing
uncertainty is calculated by considering utility in each possible state and constructing a

weighted average. The weights are the agent’s estimates of the probability of each state.

Decision theory combines probability theory with utility theory. It provides a formal
and complete framework for decisions made under uncertainty. A good decision should

identify an alternative that is at least as good as any other alternative actions. The
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orthodox approach to decision theory is to define rational decision makers as those that
always maximize expected utility. Bayesianism assumes that choices between alternative
courses of action under uncertainty can be decided by expected utility [Ramsey 1931;
de Finetti 1937; Savage 1954]. There are also approaches that adopt non-probabilistic
notions of belief, different notions of worth, or criteria other than expected utility maxi-
mization [Doyle and Thomason 1999]. For example, many contributions have been made
in qualitative decision theory [Doyle 1980; Bacchus and Grove 1996; Doyle and Thoma-
son 1999] to handle decisions where the decision maker is thinking in categories (“likely”,

“unlikely”, etc.) instead of exact probabilities, generic preferences, and generic goals.

2.7 Bayesian Networks in Computer Graphics

Ball and Breese [2000] encoded emotions and personality with Bayesian networks. In
their architecture for a character-based user interface, they used a Bayesian network to
estimate the likelihood of specific body postures and gestures for different personality
types and emotions in generating responses to the user’s interaction. Their emphasis is
on conversational agents with speech recognition and generation. Kshirsagar [2002] also
used a Bayesian network to model personality and mood for their chat application. Egges
et al. [2003] used a Bayesian network to model mood based on the agent’s current mood,
expected mood and changed mood for their conversational agent. In the computer vision
system of Oliver et al. [2000], they used a Bayesian approach to detect and recognize
different human behaviors and interactions in a visual surveillance task. Their work

concentrated on computer vision and machine learning rather than behavior modeling.

To our knowledge, the work closest to our own includes the work of [Hy et al. 2004]
on using Bayesian networks to simulate simple behaviors for a first person shooter game
character. In their paper, the authors used a Bayesian network to specify finite state

machine-like behavior selection, and to learn by imitating a human player. However they



did not use Decision networks, nor did they simulate any human interactions. To the
best of our knowledge, no prior behavior system has been built in the field of computer

graphics that uses decision networks as its fundamental base.



Chapter 3

Background on Bayesian and

Decision Networks

3.1 Bayesian Networks

Bayesian networks, also known as “belief networks” or “probabilistic graphical models”,
combine probability and graph theory to capture uncertain knowledge in a natural and
efficient way [Pearl 1988]. Bayesian networks are directed acyclic graphs in which each
node represents a random variable, arcs represent direct causal influence between the
linked variables, and the strengths of these influences are quantified by conditional prob-
abilities. Probabilistic beliefs about the connection strength are updated automatically
as new information becomes available.
As a mathematical basis for Bayesian networks, Bayes’ theorem states that

PX)P(Y]X)

PXIY) = =g

(3.1)

where P(X|Y) is the posterior probability, or the probability of X given the observation
Y, where P(X) is the prior probability and P(Y'|X) is the likelihood, or the probabil-
ity of the observed information Y given a particular event X. The quantity P(Y) is

the unconditional probability of the data, also called the normalizing constant or prior

21
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Figure 3.1: A sample Bayesian network

predictive distribution.

The topology of the network; i.e., the set of nodes and links, specifies the conditional
independence relationships among the variables. The topology along with the conditional
probability distribution defined for each variable given its parents, suffice to represent
the dependencies among the random variables and to specify (implicitly) the full joint
distribution for all the variables.

Figure 3.1 shows a sample Bayesian network with five discrete variables. Each variable
has two possible values. For example, variable C' has one parent and one child node,
whereas variable F has two parents and zero children. The joint probability of a Bayesian

network is defined as the product of local conditional probabilities:

P(Xy,Xo,...,X,) = /n P(X;|Parents(X;)). (3.2)

i=1
So, for example, the joint distribution corresponding to the network of Figure 3.1 is given

by:
P(A,B,C,D,FE)= P(A)P(B|A)P(C|A)P(D)P(E|C, D). (3.3)

The semantics of a Bayesian network is that each node is conditionally independent
from its non-descendants given its parents. More generally, two disjoint sets of nodes
X and Y are conditionally independent given E, if E d-separates X and Y, where d-

separation is defined as follows:
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Definition. d-separation: A set of nodes E d-separates two other sets of nodes X and
Y if every path from a node in X to a node in Y is blocked given E [Korb and Nicholson
2004].

A path and a blocked path are defined as follows:

Definition. Path (Undirected Path): A path between two sets of nodes X and Y is any
sequence of nodes between a member of X and a member of Y such that every adjacent
pair of nodes is connected by an arc (regardless of direction) and no node appears in the
sequence twice.

Definition. Blocked path: A path is blocked, given a set of nodes FE, if there is a node
Z on the path for which at least one of three conditions holds: Z is in F and Z has one
arc on the path leading in and one arc out (chain). Z is in F and Z has both path arcs
leading out (common cause). Neither Z nor any descendant of Z is in E, and both path

arcs lead in to Z (common effect).

3.1.1 Construction

A Bayesian network can be regarded as a representation of the joint probability dis-
tribution, and it gives a complete description of the domain. This view is helpful in
understanding how to construct networks. Every entry in the full joint probability dis-
tribution can be computed based on information provided in the network. The value of
any generic entry in the joint distribution is given by:

P(xzy,...,2,) = H P(xz; | Parents(X;)), (3.4)

i=1
where Parents(X;) denotes the specific values of the variables in the parent nodes of X.

Thus, each entry in the joint distribution can be represented by the product of associated

elements in the conditional probability tables (CPTs) in the Bayesian network.

The joint distribution can be rewritten in terms of a conditional probability using the
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product rule P(a Ab) = P(a | b)P(b) as
P(zy,...,x,) = P(zp | ®p_1,. .. ,21)P(Tp_1,... ,21).

As we repeat this process of reducing each conjunctive probability to a conditional prob-

ability and a smaller conjunction, we end up with

n

P(xy,... ,ZL‘n):HP(ZL‘Z- | @i, ..., xq). (3.5)

i=1
This identity is known as the chain rule, and it holds true for any set of random variables.

Comparing equation 3.5 with equation 3.4, it can be shown that the specification of
the joint distribution is equivalent to the following equation for every variable X; in the

network:

P(XZ | Xl',l, e ,Xl) = P(Xl | Parents(XZ-)),

provided that Parents(X;) C {X;_1,...,X;}. This means that in order for the Bayesian
network to give a correct representation for the domain, each node must be conditionally
independent of its predecessors in the node ordering, given its parents. Hence, in con-
structing a network, we need to choose parents for each node according to this property.
An intuitive way to think about this is that the parents of node X; should contain all
those nodes in X,...,X;_; that directly influence X;. A correct construction of the
network will have the network topology to reflect the direct influences with the appro-
priate set of parents, and allow the minimum number of nodes and links necessary to
represent the domain. The correct order to add nodes is to “add the ‘root causes’ first,
then the variables they influence, and so on, until we reach the ’leaves’, which have no

direct causal influence on the other variables” [Russell and Norvig 2003].

3.1.2 Inference

When data of interest cannot be observed directly, then an inference procedure is typically

required to determine them. This involves calculating marginal probabilities conditional
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on the observed data using Bayes’ theorem, which is diagrammatically equivalent to
reversing one or more of the Bayesian network arrows.
The probability of any event A can be computed by conditioning it on any set of

exhaustive and mutually exclusive events B;,1 =1,2,... ,n:
P(4) = [ P(AIB) P(B) 36)

With a Bayesian network, we can compute any conditional probability; hence, we
can answer all possible inference queries by marginalization (summing out over irrele-
vant variables). However, the number of variables involved in computing the conditional
probabilities is exponential, and the complexity for general querying of a Bayesian net-
work is complete for #P [Roth 1993]. Much research has been done in finding efficient
inference methods, such as variable elimination [Aji and McEliece 2000; Kschischang
et al. 2001], the junction tree algorithm [Cowell et al. 1999; Huang and Darwiche 1994],
and a variety of approximation methods [Jordan et al. 1998; Jaakkola and Jordan 1999].
These algorithms run in exponential-time in the worst case, but when the treewidth w of

0M)20(w) where n is the number

the network graph is small, they run in time and space n
of nodes in the network [Bacchus et al. 2003]. Most of the networks involved in our work

have low treewidth, hence inferencing does not pose a problem.

3.2 Decision Networks

It is often said that “Decision Theory = Probability Theory + Utility Theory”. Proba-
bility theory describes what an agent should believe based on evidence gathered about
the current state, while utility theory describes what an agent wants. Decision theory
combines the other two theories together to describe what an agent should do. A decision
network (also called an inference diagram (ID)) [Howard and Matheson 1981; Shachter
1990] extends a Bayesian network by adding actions and utilities, where utility node(s)

will have as parents all the attributes (random variables) on which they depend as well as



CHAPTER 3. BACKGROUND ON BAYESIAN AND DECISION NETWORKS 26

action node(s), since the utility depends both on the state of the world and the action we
perform. According to Russell and Norvig [2003], “Utility is a function that maps from
states to real numbers.” The utility function captures the agent’s preferences between
world states and assigns a number to express the desirability of a state.

A decision network encapsulates information about the agent’s current state, possible
actions, the state that will result from the agent’s action, and the utility of that state.
There are three types of nodes in a decision network, namely the chance nodes (ovals),
which represent random variables and each current-state chance node can be part of a
Bayesian network; the decision nodes (rectangles), which represent the choice of actions
the agent can make; and the utility nodes (diamonds), which represent the agent’s utility
function. In this thesis, we will use a simplified form [Russell and Norvig 2003] in which
the chance nodes that describe the outcome state are omitted and the utility nodes are
connected directly to the current-state nodes and the decision node. Hence, the utility
node will represent the expected utility (EFU(A|E)) associated with each action (A) given
the evidence (E) as defined by

EU(A|E) =) P(result;(A)|Do(A), E)U (result;(A)), (3.7)

where result(A) represents possible outcome states of action A.

An action-utility table is associated with each utility node to specify the corresponding
expected utility values and reflect any changes in circumstances which affect the outcome
state, as well as changes in the weight associated with the utility functions. Decision
networks can be used to compute the optimal (sequence of) action(s) to perform so as
to maximize expected utility, although this is computationally intractable for all but the
smallest problems.

A decision network can have multiple action and utility nodes; however, it does not
have a temporal component like a dynamic Bayesian network does. The dynamic decision

network is essentially an augmented dynamic Bayesian network with utility nodes and
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decision nodes for actions. It provides a general, concise, more structured representation

for large, partially observable Markov Decision Processes [Tatman and Shachter 1990].

3.3 Netica Software

In implementing our decision network framework, there is no need to reinvent the wheel.
We have made use of a commercial Bayesian and decision network software package
supplied by Norsys Software Corp. called Netica (www.norsys.com). The role played by
Netica in this thesis is no different than the role played by, say, Matlab and Maya in
many CG research projects.

Netica serves simply as a software tool. We use the Netica API to construct, compile,
perform inference and evaluate the networks. The Netica software provides a user inter-
face for drawing the networks, which gives a graphical view of the network. We use it to
generate belief-bar diagrams, which will be used in Chapter 7 to illustrate our network
structure and evaluation results. The relationships between variables can be entered as
individual probabilities in the form of equations or learned from data files. In our system,
we specify them as individual probabilities.

Netica uses the junction tree algorithm; hence, the constructed networks must first
be compiled into a junction tree of cliques for fast inference. When we are certain that
a variable is in one of its states, this observation can be entered into the network as
hard evidence. When we are not completely sure about particular findings, they can be
entered as likelihood. The likelihood is a vector containing one probability for each state
of the corresponding node. Each component of this vector is between 0 and 1 inclusive,
but they are not required to sum to 1. Once the findings are entered, the network will
be updated.

Compiled nets can be queried to obtain posterior probabilities for any node. Deci-

sion networks are solved using the junction tree algorithm to find optimal decisions and



conditional plans. In our system, we use Netica APl commands to carry out relevant

operations.



Chapter 4

Decision Network Framework

A decision network extends a Bayesian network by including utilities and actions. It
enables rational decisions based on what the agent believes and what it wants, whereas
a logical agent would not be able to handle uncertainty combined with conflicting goals
[Russell and Norvig 2003]. Our framework exploits decision networks as the basic repre-
sentation. In our application, not every decision need take all sensory and internal factors
into consideration. Hence, to avoid the potential intractability of computing large de-
cision networks, we build our behavioral models as hierarchical collections of smaller
decision networks. At the lower level, a separate, smaller decision network structure
is implemented for each decision item, while at the higher level(s) the decision network
structure at each node represents how a decision is made based on results from its children

nodes.

4.1 Rationale for Choosing Decision Networks

Current behavioral modeling techniques are largely rule-based. Rule-based systems have
three desirable properties, namely, locality, detachment, and truth-functionality. With
locality, given a rule of the form A — B, whenever evidence A is given, one can conclude

B without worrying about any other rules. This avoids complex interactions. With de-

29
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tachment, propositions are detached from their justifications and can be used regardless
of how they were derived. With truth-functionality, the truth of a complex sentence
can be computed from the truth of its subsentences. However, these properties are
not appropriate for reasoning in the presence of uncertainty [Russell and Norvig 2003].
They include degrees of belief, which has serious implications when applied to uncertain
problems. The truth-functionality property includes rules for intercausal reasoning, and
forward and backward chaining, which cause serious conflicts when dealing with uncer-
tainties, as propagation of evidence is not tracked. For example, if we have the rule
HighUV +— BringUmbrella (allowing one to compute the belief in bringing an umbrella
for protection as a function of the belief in the rule and the belief in the UV index being
high on the day), and the rule BringUmbrella — Rain. In a truth-functional system,
when HighUYV is true, chaining forward through the rules, it increases the belief that one
will bring an umbrella, which in turn increases the belief that it is raining. However, in
reality, the fact that UV is high already explains away the need to bring umbrella; hence,

it should reduce the belief in it being a rainy day.

As we were searching for a framework that is capable of dealing with uncertainties,
we considered some alternatives. Neural networks [McCulloch and Pitts 1943; Bishop
1995; Fausett 1994] have been successfully applied to pattern recognition problems, and
they are good at representing complicated, nonlinear functions. However, the approach
relies on the concept of training an initially random network to correctly map inputs
to outputs. In our application, it is difficult to obtain sufficient data to train neural
networks. Furthermore, neural networks do not give explicit knowledge representation
in easily interpretable forms. The model is implicit, hidden in the network structure and
optimized weights; i.e., one would have little or no idea how it reaches a conclusion, which
makes it harder to identify the cause of an inappropriate decision outcome and tune the
network. Compared with neural networks, Bayesian networks also have the advantage

that an expert can provide knowledge in the form of causal structures.
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Another alternative is fuzzy logic[Zadeh 1988], which really handles degree of truth,
not uncertainty. As a truth-functional approach, it is not capable of taking into account
the correlations or anticorrelations among component propositions[Russell and Norvig
2003]. Due to vagueness, it can be harder to attribute an outcome to the inputs that
generated it.

In comparison, Bayesian networks have several advantages in general. An attractive
feature of the Bayesian network is that it provides an elegant mathematical structure
for modeling complicated relationships among random variables while employing a rel-
atively simple visualization of these relationships. This makes it easier to comprehend
and debug. In addition, Bayesian networks are easier to maintain given the modular
representation of uncertain knowledge, and they are more readily extensible. Given a
hierarchical structure, the addition of a new piece of evidence may require only the ad-
dition of a fairly small number of probabilities, in addition to a small number of edges
in the graph. Bayesian networks are direct representations of the world, not of the rea-
soning processes. Unlike rule-based systems and neural networks, the arrows in Bayesian
network diagrams represent causal connections and not the flow of information during
reasoning. Reasoning processes can operate on Bayesian networks by propagating infor-
mation in any direction; hence, they are capable both of making predictions based on

some evidence and of explaining some observations that we make about the world.

4.2 Addressing the Identified Issues

We will now explain how our proposed framework addresses the issues identified in Sec-

tion 1.1.

Uncertainty: The uncertainties associated with various variables of interest are repre-
sented by the probability distributions encoded in the decision network. These probability

distributions are updated as time progresses. In essence, the probabilities in the networks
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are measures of our belief given the current state of knowledge. Things that are known
for certain by the character, such as its internal states are entered as evidence into the
network. Preferences and priorities in certain circumstances are encoded in the utility

functions of the decision network.

(Mis)Interpretation: Bayesian and decision networks are direct models of the world.
The reasoning processes can operate on these networks by propagating probabilistic in-
formation in any direction; hence, they are capable both of making predictions based on
some evidence and of explaining some observation we make about the world. The infer-
ence that the character makes about its environment and other characters are inferences
made by probabilistic (Bayesian) reasoning processes in the network. The probability
distributions within the network can be adjusted to increase or reduce the chance of

making an accurate interpretation.

Decision Specification: A decision network encodes events, represented by nodal
variables, and causal relationships between them represented by directed edges. The
network encodes information about the character’s current state, possible actions, the
state that will result from the character’s action, and the utility of the resulting state.
This is particularly desirable for defining behavior rules, since the decision making pro-
cess can be viewed as a causal relationship—certain circumstances and intentions lead to
certain decisions. The decision network provides an elegant mathematical structure for
modeling complicated causal relationships among events while providing an informative
visualization of these relationships. Thinking about causal relationships is more intuitive.
We simply need to consider the relevant factors, express their relative importance by as-
signing corresponding conditional probabilities, and specify the desirability of possible
courses of action in the utility functions. Regarding the concern about where to obtain
prior probabilities, in our application this mainly relies on the character designer’s com-

monsense knowledge. These priors need not be exact to be useful. They can be adjusted



and fine-tuned further if necessary.

Controllability: The use of decision networks provides a convenient way to control
how the character makes decisions. Adjusting the conditional probabilities and the utility
functions will influence how the decision gets made. Another way to exert control is to
adjust internal parameters, which will be monitored by the network during the simulation
in order to make inferences and assessments. For example, if boldness is a deciding factor,
increasing the boldness parameter on the fly, will transform the character from being a

timid character to a bold one, and its subsequent decisions will reflect this change.

Extensibility: Decision networks are easier to maintain given the modular represen-
tation of uncertain knowledge. By virtue of the hierarchical structure, the addition of
new evidence usually requires the addition of only a fairly small number of probabilities
and edges in the graph. Since it is easy to map a decision network structure into corre-
sponding code, debugging and modification becomes a matter of adjusting the directed
graph associated with a decision network and the corresponding utility values and/or

conditional probabilities.



Chapter 5

System Overview

5.1 Virtual Human Model

To evaluate our framework, we have implemented a virtual human model based on the
autonomous pedestrian software that was developed by Shao and Terzopoulos [2005],
including their virtual environment model of the original Pennsylvania Train Station in
New York City. Figure 5.1 illustrates the architecture of the virtual pedestrian character.
Like real pedestrians, the synthetic humans sense the virtual environment around them,
interpret the sensory stimuli, make decisions based on their perceptual interpretations,
and act in accordance with their decisions. The major advance in our human model
relative to that in [Shao and Terzopoulos 2005] is our behavior submodel, in which we
exploit decision networks to simulate the interactions between multiple pedestrians and
to model the effect of different personalities on their decisions, as will be detailed in the

next section.

5.1.1 Motor System

Following [Shao and Terzopoulos 2005, we use Boston Dynamics Inc.’s DI-Guy API,

which provides a variety of textured geometric models of humans and motion libraries
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Figure 5.1: Autonomous virtual human model.

105 * 75t
"
£ !
¥ i
[ !
135 ° Y ; 45 *
'\ Sectord r 5
Jector 5 v i
. 3 ¢ Bectord L7
- &z ' e
bl A r e
185 ° Sectord A = S
; AL v ¢ 7 Sectord N
-__‘__‘-_‘- “\ : lln'l'ﬂ r__-d_-’
W .
10 - Sector 7 e —= =" Bector 1 o-

Figure 5.2: Field of view of a virtual pedestrian.

capable of generating some basic human motions such as walking and running. Unfortu-

nately, DI-Guy characters have certain limitations both in their appearance and in their

motor skills. For example, they are incapable of quickly changing speeds like real hu-

mans, which limits the quality of their collision avoidance behavior. Unfortunately, this

detracts from the realism of our animations. However, our higher-level behavior model

is designed to be independent of the lower-level motor system.
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5.1.2 Perception System

The perception system of the virtual human is responsible for sensing and interpreting
the world. Each pedestrian has a 180° field of view, which is divided into seven sectors
(Figure 5.2). An occupancy index value, which combines a dynamic obstacle occupancy
index and a static obstacle occupancy index, is computed for each sector to indicate how
crowded it is. The dynamic obstacle occupancy index is calculated based on how far away
the dynamic obstacle is, and if the obstacle is moving in the same or opposite direction
of the character. The static obstacle occupancy index mainly depends on how far away

the obstacle is.

People are aware of things around them only if they attend to them. When something
falls into our attention, we notice it and then process or interpret it. Attention can shift
rapidly, switching from one object of interest to another. Two classes of mechanisms
exist to control attention: top-down or goal-driven and bottom-up or stimulus-driven
[Egeth and Yantis 1997]. Some visual attention shifts are initiated voluntarily on the
basis of a particular goal (hence the term “goal-driven control of attention”), as when we
look for a water fountain. Other shifts appear to be triggered reflexively in response to a
sudden stimulus event (hence the term “stimulus-driven control of attention”), as when

our attention is grabbed by a cat that suddenly jumps onto the sidewalk.

Through focus of attention, we decide what to attend to and what to ignore. We
used the aforementioned two mechanisms to simulate focus of attention. In the absence
of a sudden stimulus, the character will focus on the objects of interest to fulfill its goal;
otherwise, a sudden stimulus has priority. The attention focus in turn determines the

gaze direction for the character.

Objects that enter into the pedestrian’s attention are what it actually perceives at the

moment. Hence, further processing is conducted on these objects to effect perception.
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5.1.3 Behavior System

As is shown in Figure 5.1, the behavior system mediates between the perception and
motor systems. The behavior system of our virtual human model comprises a set of
behavior routines, an intention generator, and a decision maker that is based on decision
networks. Chapters 6 and 7 present the details of our decision network based behavior
models for virtual pedestrians.

The limitations of the motor system pose a challenge to the behavior system, however.
Although the decisions made by our decision network framework are general, there is a
limited variety of motions available from the DI-Guy motion library that can be used
to represent corresponding actions. We have designed behavior routines to meaningfully
couple the decisions made to the DI-Guy motor system.

In order for one virtual human to interpret the behavior of another, it has to make
observations. Since facial expression and gestures are highly constrained in the motor
system, currently there are only a limited set of cues upon which our virtual humans
can base their observations. These include change in direction, change in speed, gaze
direction, and orientation. Change in speed is an especially unreliable visual cue as the

DI-Guy motor system lacks the ability to change speed very quickly.

Personality

Another important aspect of our behavior system is a model of individual personality. In
psychology, personality is considered a collection of emotional, behavioral, and thought
patterns unique to a person that remains consistent over time, and is what differentiates
one individual from another. According to the Diagnostic and Statistical Manual of the
American Psychiatric Association [American Psychiatric Association 1994], personality
traits are “prominent aspects of personality that are exhibited in a wide range of im-

7

portant social and personal contexts;” i.e., that a person’s personality influences his/her

behavior. To simulate human behaviors realistically, one must consider the effects of
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personality in decision making.

After decades of research, the scientific community is reaching consensus on a general
taxonomy of personality traits, the “Big Five” model [Goldberg 1981], which posits that
human personality can be described along five broad dimensions, regardless of language
or culture. These fives dimensions, Extroversion, Agreeableness, Conscientiousness, Neu-
roticism, and Openness, were derived from the analysis of empirical data collected from
thousands of answers to hundreds of questions. Extroversion refers to the degree to which
a person can tolerate sensory simulation from people and situations. High extroversion
makes one tend to be social, friendlier, and talkative, whereas low extroversion makes one
tend to be private, serious, and skeptical. Agreeableness concerns cooperation and social
harmony. An agreeable person is considerate, friendly, generous, helpful and willing to
compromise his/her interests in consideration of the interests of others. Disagreeable
individuals tend to be unconcerned with the well-being of others, and place self-interest
above getting along with others. Conscientiousness refers to the way people control,
regulate and direct their impulses. Conscientious persons tend to show self-discipline,
act dutifully and aim for achievement. Neuroticism refers to the tendency to experience
negative feelings. It is related to the ability to handle pressure and stress. Those scoring
high on neuroticism tend to respond with more intense emotion than normal and are
more likely to interpret ordinary situations as threatening. Openness to experience dis-
tinguishes imaginative, creative people from down-to-earth, conventional people. A more

open person is more prone to boredom and curiosity, and tends to be more artistic.

Three of the personality traits described in the Big Five model are especially relevant
to our behavior system—extroversion, agreeableness, and conscientiousness. The extro-
version trait is considered in the acquaintance model to decide how a character should
greet to another known character, as well as in the partnering model, since it affects
how the character interacts with others. The agreeableness trait is modeled in the emer-

gency response model as it concerns with how caring the character is about others. The
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conscientiousness trait is considered when the character tries to decide if it should end
its emergency response behavior, as a patient character may not mind hanging around
longer as much as an impatient one would. The other two traits in the Big Five model
are not directly relevant to the behaviors we model, and hence are not explicitly modeled

in our current system.

Internal Factors

In addition to personalities, internal factors also affect how the characters behave, as to-
gether with external stimuli, they describe the full circumstance under which the decision
has to be made. For example, whether the character is in a hurry or how friendly it feels
towards a particular character are among the internal factors that affect the character’s
decision.

Given the same external stimuli, characters with different personality and internal
factors may arrive at different decisions. Our framework is able to simulate the influence

these factors have on behaviors.

Memory

Our autonomous characters can perform many activities. In the train station setting, for
example, a character can stop to buy a ticket, or stop to talk with a friend on his way
towards the platform, or watch a performance while waiting for his train. At any given
time, the character may have multiple goals in mind. While carrying out the sequence
of goals, the character may be interrupted with some sudden event with which he must
deal before continuing his original plan, such as to avoid a collision, or to encounter a
friend, etc. The character must remember the sequence of tasks it wants to do as well
as sudden intermediate goals that attract the character’s attention. For this purpose, we
implement a memory in the character’s behavior system as was done in Shao’s system

[Shao and Terzopoulos 2005].
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We use a stack as the data structure for implementing memory. At any given time, the
item at the top of the stack list is being processed. This restriction deprives the character
from being able to perform multiple tasks in nondeterministic order. However, this
limitation has little noticeable effect on the character’s observable behaviors. Instead, the
stack implementation has the advantage of taking constant time for operations regardless
of stack size. This property is particularly desirable for simulating large numbers of

characters.

With their memory, the characters can remember their tasks, and hence maintain
persistence in their behaviors. Intermediate tasks can be added without causing the
characters to forget what they originally planned to do. The stack memory operates
as follows: At any given time, the top goal on the stack is processed. If the goal is
accomplished or expires', it is removed from the stack. If there is a sudden event, which
requires the character’s immediate attention, such as collision avoidance or response to an
emergency situation, the corresponding task is added to the top of the memory stack as
an intermediate task with an appropriate expiration time. Hence, after this intermediate
task is completed, the original goal will be on top of the stack again and will be processed,

allowing the character to resume its course of action before the interruption.

When the top goal requires multiple sub-tasks to accomplish, a plan is made for
it based on the current situation, which consists of a sequence of sub-tasks, each with
appropriate expiration times. Instead of replacing the original goal with this new sub-task
sequence, the first sub-task in the list is added to the memory stack, and the original goal
is updated with parameters indicating the goal decomposition status. The reason for this
is that the goal decomposition is often a dynamic process that depends on environmental
conditions at the time. If we simply replace the original goal with the decomposed sub-

tasks, it limits the character to completing the task with the original decomposition done

LGoals are given an expiration time limit, as there are some tasks that take long and cannot be
completed, they should be given up after being pursued for a certain period of time
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at the beginning, even though during the process of completing the task, the real-time
situation may render it no longer an optimal solution. Thus, only the first sub-task is
added to the memory stack and, by the time it is completed, the original goal will be
processed again, and the goal decomposition can be performed based on the then current
situation, hence improving the character’s ability to adapt to the changing environment.

The characters also have a short term memory to remember the observations that
they have made regarding the objects of their attention from the previous time step.
These include the gaze direction, walking direction, and walking speed of the character
in its focus, and the character’s own interpretation of the other character’s intentions.
These data in memory assist a character in judging if the other character had changed

gaze direction, walking direction, or speed, and reassessing its intentions.

5.2 Environment Model

The virtual environment provides a synthetic world in which the virtual humans are
situated and can interact. The environment model used by our system is the virtual
train station model described in Shao [2005]. This section provides a brief overview of
this model.

The virtual environment is a reconstructed 3D model of the original Pennsylvania
Train Station of New York City. Figure 5.3 shows a cutaway side view of the rendered
train station geometric model with the long shopping arcade at the left, the main waiting
room at the center, and the two-level concourse over the train tracks at the right. Geo-
metrically, the station is a 3D space whose dimensions are 200m (length) x 150m (width)
x 20m (height), featuring a total of over 500 objects, including levels of floors, stairs,
walls, doorways, big columns, ticket booths, platforms, train tracks, lamps, a fountain,
benches, vending machines, tables, sporadic trash on the floors, etc. Figure 5.4 shows

two views of the populated virtual Penn Station.
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Figure 5.3: A cutaway side view of the Penn Station model. The main waiting room is
at the center, the arcade at the left, and the concourses on the right with the train tracks
underneath them.

The virtual environment is represented by a hierarchical collection of maps. At the
top level, a topological map is used to represent the topological relations between different
parts of the virtual world. Its nodes correspond to environmental regions, where each
region is a bounded volume in 3D space, including all the objects inside that volume. It
is assumed that the 3D space of a region can be effectively mapped onto one or more
horizontal planes. The nodes also include precomputed path-to-via information, which
indicates the path of minimal cost that goes from one point to another via this region.
Hence an entry in the path-to-via information V (A, T) answers the question of to which
region should the character go, and what cost should it expect if it is currently at A
and wants to reach 7. The edges in the topological map represent accessibility between
regions. Linked within each node of the topological map are perception maps and path

maps.

The locations of stationary objects and mobile objects are represented in two separate

perception maps. For stationary objects, the region is rasterized into a uniform grid,
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Figure 5.4: Autonomous pedestrians in the virtual Penn Station. Concourse area (top)
and the waiting room (bottom).

where each cell corresponds to a small area of the region, and identifiers of all the objects
that occupy that small area are stored in the corresponding cell. The visual sensing
query simply shoots out a fan of rays and interrogates the grid cells along each ray
for their associated object information. The length of these line segments reflects the
desired perceptual range, while the density reflects the desired perceptual acuity. In our

simulation, the typical cell size of perception maps for stationary object perception is 0.2



to 0.3 meters.

For mobile objects, a 2D grid map is used in which each cell stores and updates the
identifiers of all the characters currently within its area. Queries about finding pedestrians
near a given character within its sensing range can be answered efficiently by examining
this map.

Two types of path maps, namely the grid maps and the quadtree maps, are used and
they are differentiated by their data structures. One can always find the shortest path
on a grid map; hence, grid maps are used whenever a detailed path is needed and they
are also used for short-range path planning. The quadtree maps support the execution of
several variants of the A* graph search algorithm, and are used for global and long-range
path planning.

At the lowest level of the environment hierarchy are specialized objects such as the
Ground, the Seat, and the Waiting-line, etc. They efficiently provide query information

that higher level perception maps cannot.



Chapter 6

Behavioral Modeling Using Decision

Networks

We have applied our decision network framework to the development of interaction models
between virtual humans, guided by our commonsense knowledge of how real humans
behave in similar circumstances. In the following sections, we present four behavior
models that we have developed—specifically emergency response behavior, partnering
behavior, acquaintance behavior, and collision avoidance behavior—ordering them in
top-down fashion, from high to low level. This chapter presents an overview of these
behaviors models, while Chapter 7 will present their complete details. The emergency
response behavior will serve as a concrete example for us to describe in detail how the
networks are constructed, how the network parameters are adjusted and, subsequently,
how we can obtain various possible decisions automatically from them and even extend

them.

6.1 Emergency Response Behavior

Our highest-level and most elaborate behavior model is the emergency response behavior,

which simulates how people might respond to an emergency situation in a public space

45



CHAPTER 6. BEHAVIORAL MODELING USING DECISION NETWORKS 46

like the train station.

6.1.1 Network Construction

Regardless of the methodology that one uses to design a behavior model, be it rule-based
or probabilistic, it is natural for the designer to think in terms of what factors cause
what effects and eventually lead to a decision underlying action selection. For human
character animation, it often suffices to use common sense and imagine how one would
consider various factors to make the appropriate decision when encountering the scenario
in real life. Decision networks provide a natural mapping of this thought process to the
behavior model representation.

Although the order of variables in the decision network structure is important to
ensure a correct model, in practice a proper ordering can be readily determined by
asserting causal relationships among variables in the domain. The correct ordering is
achieved by simply instantiating arcs from cause variables to their immediate effects, and
one can start this process by considering the root cause. As soon as we have determined
the variables representing the factors we would like to consider and the causal relationship
among them figured out, we effectively have designed the network topology. It then
remains to complete the network by filling in the associated probability or utility values.
Hence, the process of constructing the decision networks starts with a consideration
of what choice of actions we want our characters to have and what decision(s) they
need to make. We then need to consider what factors influence such decisions and
what interpretations must be made that affect the decisions. Once we establish the
causal relationships, the character’s preferences, and how the character should weigh each
influencing factor, we can construct the networks by naturally following our intuitions.
The Netica software provides a graphical user interface for defining the networks, enabling
the user easily to create nodes, set their corresponding probabilities, insert links, and

make modifications. The GUI also offers a graphical view of the network, so that one
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can clearly see its structure. The constructed networks can then be saved in a Netica
recognizable format, which can be read by the Netica API into our animation system

software.

In the current context, our goal is to model how people respond to an emergency
situation. We approach the task by considering what possible reactions we might see
in people encountering such a situation. When someone collapses in a public place,
those who witness the event may react in different ways. Some people may approach to
investigate, while others may prefer to avoid the situation and carry on with what they
were doing. Of the people who do decide to approach the scene, the more concerned will
run over, while the less concerned will walk over. These are the three initial reactions we
wish to model, so they will be the three possible actions from which our virtual pedestrian

character can select.

Next, we consider the factors that affect the action selection decision. Three main
factors come to mind. The first is how serious the character thinks the situation is. The
second is how much the character wants to help others. A third contributing factor is
how courageous the character is. A timid character may lack the courage to confront a
potentially unpleasant scene at close range, hence shy away from an emergency situa-
tion. Having selected these three factors as those that contribute to the action selection
decision, we simply use a variable to represent each factor, and create a chance node for
each variable. Each factor is represented by a binary variable, as both the seriousness
measure and whether the character is helpful can take the value of either yes or no, while
the variable representing the character’s courage can take on values of either strong or
weak. The action selection decision is represented with a decision node, whose value can
take on one of the three possible actions. We also need to add a utility node to indicate
the character’s preferences over the three input factors on the decision. Figure 6.1 shows
the decision network comprising these nodes. The links between nodes indicate causal

relationships. Since the three factors contribute to the decision, we have added an arc to
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link from each of these three factors to the decision node. An arc is also added to link
from each of the three factors and the decision node to the utility node, as all are inputs

for the utility table to be specified at this node.
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Figure 6.1: Network to determine how to respond to the emergency. In the CPT, Sr: how
serious the situation is, Help: how much the character wants to help others, Courage:
how courageous the character is, which can take on the values of strong (s) or weak (w).
The parameters he and n are the character’s corresponding personalities. The character’s
decision Dec can take on the values of ig (ignoring the incident), run (running over to
check out the situation), or obs (walk over to observe).

To complete the network, we must define the prior probabilities for the three chance
nodes. The seriousness of the situation must be assessed, so its value should be set based
on the interpretation result. To keep the network structure modular and hierarchical, the
interpretation result can be obtained from a separate network. The prior probabilities for
the help and the courage nodes are set directly based on the character’s internal factors
and personality. For example, if the character’s willingness to help others is 0.6 in a range

from 0.0 to 1.0, the priors for the corresponding node Help are set to 0.6 for the yes state
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Figure 6.2: Network to assess the seriousness of the situation. In the CPTs, the symbol
Sr denotes the perceived seriousness of the situation. For the node representing the
patient’s age, the states y, p, o correspond to young, prime age, and old, respectively.

and 0.4 for the no state. Similarly the priors for the Courage node are set based on how
courageous the character is. The utility table entries are set based on our intuition about
the character’s preference over the three possible actions given the state of the input
factors. For example, for a strong, helpful character, when the situation is considered
serious, the character is most likely to run over and investigate, less likely to walk over
and check out the situation, and least likely to ignore it. The corresponding utility values
are accordingly set for this input combination, with the highest utility assigned to the run
over action, a smaller one assigned to the walk over action and the lowest assigned to the
ignore action, since the network evaluation will pick the action with the highest utility

value. More details about how the utility values are assigned are given in Chapter 7.

As we mentioned previously, the seriousness node represents the character’s interpre-
tation of the emergency scene that it saw. This interpretation process is captured by a
separate network (Figure 6.2). To select appropriate variables, we first consider the cues
people look for when they try to judge whether a situation is serious. We then select those
that can be observed in our characters, given their limited DI-Guy motor system. In our
current implementation, we selected the age and gender of the patient. The agreeableness

personality trait of the Big Five Model concerns how caring the character is about others.
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This trait affects how characters will judge the seriousness of the situation. To model its
effect, we create a chance node for each variable; namely, the seriousness, the age of the
patient, the gender of the patient, and how caring the character is. The seriousness can
take two states, yes or no, whereas the age of the patient can take three possible states,
young, prime age or old. The gender of the patient can be either male or female, and the
caring personality can be either yes or no. Since the assessment of the seriousness of the
situation can explain observations being made about the age and gender of the patient
as well as the character’s caring personality, we add an arc from the seriousness node to
the other three chance nodes. This completes the network structure. The conditional
probabilities are set based on the seriousness judgement and what are the chances that
the corresponding cues will be observed. That is, when the situation is deemed serious,
how likely each possible state of the patient’s age and gender will be, and how likely will
the character be a caring one. For example, assuming the character generally regards the
situation most serious when an old female patient is involved, the corresponding condi-
tional probabilities need to be set higher than the ones for the other observation states.
Following this intuition, P(Age = old |Sr = yes) is assigned the highest probability,
while P(Age = young | Sr = yes) is set lower, and P(Age = prime | St = yes) is set the
lowest. Similarly, P(Gender = female | Sr = yes) and P(Care = yes | St = yes) are set to

be higher than P(Gender = male | St = yes) and P(Care = no | Sr = yes), respectively.

The aforementioned procedure constructs the networks needed to decide the initial
reaction to an emergency situation. After the characters get close to the scene and
investigated the situation, the more resourceful ones may decide to call for help from
a law enforcement officer, or call on others to help. We approach this by considering
what are the factors important to this decision making. The seriousness of the situation,
how resourceful the character is, whether the character knows the whereabout of a law
enforcement officer and whether the character believes help has already been called sprang

to mind. So a chance node is set up for each of these four variables as depicted in
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Figure 6.3. The possible actions in this case are not to call for help, or call others to
help, or to fetch a police officer for help. A decision node needs to be added to represent
this action selection, and a utility node is needed to specify the character’s preferences.
Arcs are added to link the four chance nodes to the decision and the utility node, and to
link the decision node to the utility node similar to the network of Figure 6.1. The priors
for the seriousness node comes from the evaluation of the network of Figure 6.2, whereas
the priors for the variable representing if help has been fetched is again an interpretation
result which can come from a separate network. The prior settings for the rest of the
variables depend on the character’s corresponding personality and internal factor, and the
utility values are specified according to the designer’s common sense (more explanations

available in Chapter 7).

For a character to assess if someone else is fetching help, we need to think about
the observable cues upon which one can base this judgment. Though our framework is
general and can accommodate any available cues, we are limited by the possible motions
that can be exhibited by the DI-Guy motor system. One indication of someone is fetching
help is that they are running away from the scene. However, if the character is closer to
the police or can run faster, then the character may still decide to go fetch help as it can
reach help sooner. Therefore, whether another character, who is fetching help, is likely
to summon help more quickly is also a relevant cue. Hence, we construct the network
(Figure 6.4) by putting each of these three variables in chance nodes, and adding arcs
from the Called node, which is to be interpreted, to the two nodes representing the cues
to be observed. The corresponding conditional probabilities are set based on when help
is called and the likelihood of observing the corresponding cues. The evaluation result

obtained from this network is then inputted to the decision network in Figure 6.3.

Finally, for the characters who decide to observe the scene from close up, we must
model when they will grow impatient and decide to leave. The factors to consider in

reaching this decision include how patient the character is, whether the character is in
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Figure 6.3: Network to decide whether to go fetch a police officer. In the CPTs, Sr:
the seriousness of the situation, the parameter sr is the assessment made by the network
shown in Figure 6.2, Resource: how resourceful the character is in finding help, Called:
whether someone else is already seeking assistance, the parameter c is the assessment
made by the network shown in Figure 6.4, Saw: if the character has noticed a law
enforcement officer earlier, the parameter s is the character’s corresponding state when
this network is invoked. In the utility table, the character’s decision Dec can assume the

values of no (not calling for help), ca (call on passers-by to help), cp (go fetch a police
officer).

haste, how long the character has been inactive at the scene with nothing they can do
to help, whether someone else has already attempted to get help, and how much the

character cares about others. Again, we build the network (Figure 6.5) by representing
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P(Called)
yes no
0.5 0.5

P(R) P(B)
Called yes no yes no
yes 0.8 0.2 0.9 0.1
no 0.1 0.9 0.1 0.9

Figure 6.4: Network to assess if someone else is summoning the police. In the CPTs,
R: whether someone else is running away from the scene, apparently to summon help,
B: whether there are other characters who are also summoning help and are likely to
summon help more quickly.

P(Patience) P(Haste) P(Inaction) P(Handled) P(Care)
yes no yes no 1 s yes no yes no
1.0-p h 1.0-h c 1.0-c

0.5 0.5 0.5 0.5
@ Handled @

P=yes P(End) P=no P(End)
Haste 1 H C yes no Haste I H C yes no
yes 1 yes yes 0.7 0.3 yes 1 yes yes 0.9 0.1
yes 1 yes no 0.8 0.2 yes 1 yes no 1.0 0.0
yes 1 no yes 0.6 0.4 yes 1 no yes 0.8 0.2
yes 1 no no 0.7 0.3 yes 1 no no 0.9 0.1
yes s yes yes 0.5 0.5 yes s yes yes 0.6 0.4
yes s yes no 0.6 0.4 yes s yes no 0.7 0.3
yes s no yes 0.3 0.7 yes s no yes 0.4 0.6
yes s no no 0.4 0.6 yes s no no 0.5 0.5
no 1 yes yes 0.6 0.4 no 1 yes yes 0.7 0.3
no 1 yes no 0.7 0.3 no 1 yes no 0.8 0.2
no 1 no yes 0.51 0.49 no 1 no yes 0.6 0.4
no 1 no no 0.6 0.4 no 1 no no 0.7 0.3
no s yes yes 0.4 0.6 no s yes yes 0.45 0.55
no s yes no 0.4 0.6 no s yes no 0.45 0.55
no s no yes 0.0 1.0 no s no yes 0.2 0.8
no s no no 0.1 0.9 no s no no 0.3 0.7

Figure 6.5: Network for deciding to end the emergency response behavior. In the CPTs,
P: how patient the character is, Haste: if the character is in haste, I: how long has the
character been present and unable to do much to help, assuming the values of long (1)
or short (s), H: whether the situation has already been attended to, C: how much the
character cares for others. The parameters p, h, ¢, are the character’s corresponding
personality traits and internal factors.
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each variable with a chance node. In this case, since the decision is a simple yes/no
decision whether to leave the scene, we can simplify the network by omitting the util-
ity and decision node, and represent the decision with a chance node, specifying the
preferences with the associated conditional probabilities. For example, since the charac-
ter absolutely prefers to leave the scene when it is impatient, in a hurry, has not been
able to do much to help for a long time and does not care for others that much, and
when someone else has already fetched help, the corresponding conditional probability
P(End = yes | Patience = no, Haste = yes, Inaction = long, Handled = yes, Care = no)
is assigned a value of 1.0, while other conditional probabilities are set based on the
designer’s common sense. Chapter 7 provides additional details.

Thus, we have constructed all the networks our virtual characters use to decide how to
respond to emergency situations. The probability and utility parameters in the networks
are set based on the designer’s intuitions, but they may need to be fine-tuned to truly
reflect how the designer wants the characters to make decisions. In the next section, we

will describe how this process can be completed.

6.1.2 Network Parameter Adjustments

The Netica software provides a GUI for defining and evaluating the networks. Hence,
once the networks have been constructed, one can easily fine tune the parameter values
through the GUI by trying various input combinations and observing the corresponding
evaluation results in order to make the necessary adjustments.

Since our framework makes it easy to trace how a conclusion is drawn, when we see
an undesirable result, we can quickly identify the cause and fix it. For example, consider
the network of Figure 6.2. Suppose that we initially assigned P(Care = yes |Sr = yes) =
0.6 and P(Care = yes|Sr = no) = 0.4. As shown in Figure 6.6(a), trying the input
combination of a male patient in his prime and a fully caring character, the situation

is interpreted to be not serious. This is undesirable, since the character is caring and
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still considers the situation not to be serious, then for this kind of patient, no character
will consider it serious. We want the fully caring character to consider the case serious
even when the patient is a male in his prime. This evaluation result shows that we have
not given enough influence to the caring variable. We need to increase the probability of
observing this trait when the situation is considered serious, and similarly increase the
probability of seeing no trace of this trait when the situation is considered not serious.
Next, we try to assign P(Care = yes | Sr = yes) = 0.8 and P(Care = yes | Sr = no) = 0.2
(Figure 6.6(b)). We see that the probability for seriousness has increased for the same
input combination, but not enough for the character to deem it serious, so we need to
adjust the probabilities further. Finally, trying P(Care = yes|Sr = yes) = 0.9 and
P(Care = yes|Sr = no) = 0.1 (Figure 6.6(c)), we obtain the desirable result. We can
test this further on uncertain inputs. As illustrated in Figure 6.6(d) and 6.6(e), when
there is some uncertainty in the caring variable (i.e., the character is somewhat caring,
but not fully caring), the character may or may not regard the case involving a male

patient in his prime as serious depending on the extent of the character’s caring trait.

Our experience shows that a range of parameter values will work for the same decision
process; that is, the probabilities do not have to be set precisely for the system to work
well. To follow the same example, if we have set P(Care = yes|Sr = yes) = 0.95 and
P(Care = yes|Sr = no) = 0.05, we can still obtain desirable results. The difference is
that with this setting, the character tends to think the situation as serious for a lower
degree of caring trait. As shown in Figure 6.6(f), to obtain with this setting roughly
the same seriousness assessment as in Figure 6.6(e), the caring quality needed is lower
than with the previous setting, but they are both within a reasonable range. Therefore,
the network works with a range of parameter settings, and our experience shows that
fine tuning the parameters in this way is a quick and intuitive process. One can easily
observe the result for each input combination and quickly identify the cause of problems

if any, as it is easy to determine what contributes to the solution.
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Figure 6.6: Parameter settings for the seriousness assessment network.

People think differently; even when making rational decisions, different people may
have different standards for what is considered rational, and there are people who tend
to act irrationally. Within our framework, the designer can easily shape their character’s
behaviors by changing the parameter settings. With the same network structure, by
modifying various conditional probability and utility parameter settings, we can create a
variety of characters that will decide to take quite different actions when faced with the
same internal and external factors, even including “irrational characters” if that is what
the designer wants. For example, if we want a strange character, who tends to ignore
the situation when it is serious, and when the character really wants to help others and
is courageous (i.e., the opposite of what a character with our current setting will choose

to do), all we need to do is reverse the utility table entries to reflect this (i.e., give higher
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utility values to the ignore action and lower utility values to the run over and walk over
actions, when Serious and Help nodes are in the yes state, and when Courage is in the

strong state).

6.1.3 Network Flow

Given the defined networks, the decision process flows as follows: The character first
uses the network shown in Figure 6.2 to assess the seriousness of the situation. Once this
assessment is made, the character uses the decision network shown in Figure 6.1 to decide
how to react. The more serious the character’s assessment of the situation and the more
altruistic the character, the more concerned the character will be about the incident,
hence the stronger its reaction. The character’s courage plays a role in determining if it
can come close to the emergency scene. A timid character may choose not to get closer
to the scene, and thus appear to ignore the incident.

The possible responses our model is capable of generating include: ignoring the inci-
dent, walking over to investigate, running over to investigate, and fetching help. Among
the characters who have chosen to investigate, some may decide to seek assistance using
the decision network shown in Figure 6.3. This decision depends on how serious the char-
acter regards the situation and how resourceful the character is in finding help, including
whether or not the character has noticed a law enforcement officer earlier and can esti-
mate the officer’s whereabouts, and the character’s assessment if someone else is already
seeking assistance. This assessment is made by observing if someone else is running away
from the emergency site and if it seem likely that the character can summon help more
quickly (Figure 6.4).

Some characters may choose to leave the site of the incident after being present for
some time and being unable to do much to help, a decision process implemented by the
network of Figure 6.5. The contributing factors include how impatient the character is,

if the character is in a hurry, the time that it has been idling at the scene, if someone is
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already summoning help, and how altruistic the character is.

6.1.4 Network Capabilities

Once the networks have been constructed as we have discussed in the previous sections,
corresponding decisions based on various input combinations are automatically gener-
ated. Regardless of the number of influencing factors and how many possible states each
factor can take, for any possible combination of them, the network is able to draw a
corresponding conclusion. Moreover, our framework includes theoretically sound infer-
ence algorithms. They allow one to make interpretations based on evidence collected,
including uncertain evidence.

Input factors include observations made about the character’s environment and the
character’s own internal factors and personality traits. Differences in these factors lead
to different decisions. For example, with the same networks, when the patient is a
young female, a caring character believes that the situation is serious, and since the
character is quite willing to help others and has strong courage, it decides to run over to
investigate. When the patient is a male in his prime age, a non-caring character deems the
situation as not serious and, being unwilling to help others, it chooses to ignore the case.
There can be so many possible input factor combinations, but the same networks can
automatically accommodate them. Table 6.1 shows the decisions generated for various
input combinations obtained from the network of Figure 6.1.

In the network of Figure 6.1, all the input factors are binary. When we know for
certain which state they are in, they are entered as hard evidence, and Table 6.1 illus-
trates the decisions made for such cases. However, most of the time, these factors are
not strictly in one state or another. The assessment for seriousness that comes from the
network of Figure 6.2 is represented with probability values to indicate different extents
of seriousness. In the real world, people can vary in their willingness to help others and

their level of courage, unlike a strictly binary classification. In our network, these assess-
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Sr | Help | Courage || Decision
yes | yes strong run
yes | yes weak observe
yes | no strong observe
yes | no weak ignore

no | yes strong run
no | yes weak observe
no no strong ignore
no | no weak ignore

Table 6.1: Emergency response decisions based on various input combinations.

ments can be represented on a continuous scale from 0.0 to 1.0, and entered as the prior
probability for their corresponding nodes. The network is capable of drawing inferences
and making decisions incorporating these uncertainties. Hence, we can automatically
obtain solutions with these uncertain data using our networks.

Figure 6.7 shows two examples where different decisions are made when the input
factors take on different values. If we consider a value over 50% as being affirmative, in
both cases illustrated here the situation is judged to be serious, the character is willing
to help others, and has high courage. The only difference is the extent of wanting to
help others, the one to the right having a higher degree, yet they end up choosing to
act differently. The character to the left decides to walk over to investigate, while the
more helpful character to the right decides to run over. The richness in various inputs
that can be incorporated and the ability to handle uncertainties comes naturally with

the networks constructed.

6.1.5 Network Extension

Since our framework offers a modular representation, it is easy to make extensions. When
we need to add a factor that is to be considered in a decision process, we must add a node
for it in the corresponding network. For our applications, the addition of a variable can
be regarded as the consideration of additional causal relationships associated with this

new variable. By connecting this new variable with arcs corresponding to these causal
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Figure 6.7: Emergency response decision with different degrees of input factors.

relations, the network structure will not be violated. This extension process is a natural
mapping of the designer’s intuition and commonsense knowledge. If a variable that is
added to the network is not connected to any utility node, there is no need to modify
the utility values in the network. Even if it is connected to a utility node, it may not
be necessary to modify all existing utility values, as we will demonstrate in an example
below. If the added variable is a leaf node, only conditional probabilities for it given its
parents need be specified. If it is a node parenting to others, then in addition to its own
conditional probabilities, the conditional probabilities for the children nodes of this new
node must be adjusted to reflect the change. In both cases, only variables with links to

the new variable are affected, which is typically a small part of the entire network.

For example, suppose we want to consider the effect of emotion on the emergency
response behavior. A depressed character that is feeling quite low may lose interest in
other things, including helping others, when normally the character would. This involves
adding to the network of Figure 6.1 a new chance node, Depress, to model the emotional
depression. This node can take a value of yes or no. As shown in Figure 6.8, links to the
utility and decision nodes are added for Depress, since it is also an input factor for the
decision process. When Depress is added in the Netica software, Netica automatically
updates the utility table with this additional variable and duplicates the original entries

to accommodate the additional entries brought by the new variable. That is, for both
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values of Depress, the corresponding utility values are copied from the original entry
when Depress was absent. To complete the extension, the designer just needs to adjust
these utility values to reflect the effect of the added emotional component. Assuming that
when the character is not depressed, it should act the same as before we included this
emotional factor, hence the utility values when Depress = No should remain the same,
we only need to update the utility values when Depress = Yes. As shown in the utility
table of Figure 6.8, we assume that when the character is depressed, it tends to respond
less actively; hence, there is a generally higher chance of ignoring the scene rather than
reacting more responsively such as running over to investigate. The belief-bar diagram in
Figure 6.9 illustrates a case where under the same conditions for seriousness assessment,
how helpful the character is and how strong the character’s courage is, without consid-
ering the emotional depression, the character decides to walk over to the scene, whereas
with the added emotional factor, a depressed character chooses to ignore the incident.
If the designer wants a character, who would become more sympathetic towards others
when feeling depressed, and hence become more inclined to respond actively regarding
an emergency situation, one need only modify the corresponding utility values to reflect
this; i.e., when Depressed is in the yes state, give higher utility values to the run and obs

actions and lower utility value to the ig action.

Suppose that we want to model multiple emotional factors. We can reduce the number
of entries need to be added to the utility table by building a subnetwork, where an overall
effect from the emotional components is assessed first, and only add that effect to the
utility table. For example, if we want to consider anger and happiness in addition to
depression, we can set up a chance node corresponding to each emotion, and introduce
an additional chance node to represent the overall effect these emotional factors will have
on the final decision, which can take on the state of Active (prompting the character to
be more active in responding to the emergency situation) and Inactive (prompting the

character to be less active in responding). This overall effect node is then linked to the
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P(Sr) P(Help) P(Courage) P(Depressed)
yes no yes no s w yes no
ST 1.0-sr he 1.0-he n 1.0-n d 1.0-d
Dec
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Depressed = No Depressed = Yes
(these entries are copied from the original table before extension) (these entries are added for extension)
Sr=yes Sr=no Sr=yes Sr=no

Help Courage Dec Util Help Courage Dec Util Help Courage Dec Util Help Courage Dec Util
yes s ig -10 yes s ig -5 yes s ig 0 yes s ig 7

yes s run 8 yes s run 5 yes s run 5 yes s run -5
yes s obs 6 yes s obs 3 yes s obs 6 yes s obs 5

yes w ig -8 yes w ig 3 yes w ig 3 yes w ig 8

yes w run 6 yes w run 2 yes w run 0 yes w run -6

yes w obs 7 yes w obs 4 yes w obs 4 yes w obs 2

no s ig 1 no s ig 5 no s ig 7 no s ig 9

no s run 3 no s run 1 no s run -5 no s run -8

no s obs 5 no s obs 2 no s obs 2 no s obs -3

no w ig 3 no w ig 6 no w ig 9 no w ig 10
no w run 1 no w run 0 no w run -6 no w run -10
no w obs 2 no w obs 2 no w obs 0 no W obs -4

Figure 6.8: Extension of the network of Figure 6.1 to include modeling of the depressed
emotion. The necessary work involves adding the node Depressed, and its associated
links. The corresponding addition to the conditional probability table and the utility
table are listed to the right of the triple column separator, whereas the original entries
are listed to the left. The parameter d is an indication of how depressed the character
is, it is scaled from 0 to 1.

utility and the decision node, in place of the node representing the depressed emotion,

as shown in Figure 6.10.

To ensure the compact size of individual networks in order to facilitate extension and
modification and to keep the computation cost at bay, we arrange the networks hierarchi-
cally. Any self-contained network structure, such as the assessment of the seriousness of
an emergency situation, can be implemented as a separate network and its result reused in
any other network involving this factor. In our experience, the size of every network that
we have needed to implement is small, so the specification for the conditional probability
distributions and the utility values was by no means time consuming. Extension can be

easily accomplished as the changes needed are isolated to the concerned network(s), with
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Figure 6.9: Belief-bar diagram to illustrate the effect of the Depressed emotion.
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P(Sr) P(Help) P(Courage) P(Depressed) P(Anger) P(Happy)
yes no yes no s w yes no yes no yes no
ST 1.0-sr he 1.0-he n 1.0-n d 1.0-d a 1.0-a h 1.0-h
Dec Depressed Anger
@ Courage

Depressed=yes P(Emotion) Depressed=no P(Emotion)
Anger Happy Inactive Active Anger Happy Inactive Active

yes yes yes yes

yes no yes no

no yes no yes

no no no no

Emotion = Inactive Emotion = Active

Help Courage Dec Util Help Courage Dec Util Help Courage Dec Util Help Courage Dec Util
yes s ig yes s ig yes s ig yes s ig
yes s run yes s run yes s run yes s run
yes s obs yes s obs yes s obs yes S obs
yes w ig yes w ig yes w ig yes w ig
yes w run yes w run yes W run yes w run
yes w obs yes w obs yes w obs yes w obs
no s ig no s ig no s ig no s ig
no s run no s run no s run no s run
no s obs no s obs no s obs no s obs
no w ig no w ig no w ig no w ig
no w run no w run no W run no w run
no w obs no w obs no W obs no W obs
Figure 6.10: Extension of the network of Figure 6.1 to include modeling of the depression,

anger, and happiness emotions. The necessary work involves adding the three nodes and
a Emotion node to assess the overall effect of the emotional components combined, their
associated links and conditional probabilities, and the update to the utility table entries.
The parameter d is an indication of how depressed the character is, a is how angry the
character is, and h is how happy the character is. The unfilled table entries indicate the
ones need to be filled or adjusted to complete the extension.
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P(GD) P(H) P(F1) P(S) P(F) P(D)
yes no yes no yes no yes no yes no yes no
0.5 0.5 h 1.0-h fl 1.0-f s 1.0-s f 1.0-f d[partner] 1.0-d[partner]

P(Percep) P(Dom)
yes no unknown Perception yes no
0.3 0.3 0.4 dom 1.0-dom
Join
GD=yes P(GM) GD=no P(GM) S=yes P(Internal) S=no P(Internal)
H F1 yes no H F1 yes no F D yes no F D yes no
yes yes 0.5 0.5 yes yes 0.5 0.5 yes yes 1.0 0.0 yes yes 0.9 0.1
yes no 0.2 0.8 yes no 0.0 1.0 yes no 0.2 0.8 yes no 0.1 0.9
no yes 1.0 0.0 no yes 0.9 0.1 no yes 0.3 0.7 no yes 0.2 0.8
no no 0.8 0.2 no no 0.1 0.9 no no 0.05 0.95 no no 0.0 1.0
Dom=yes Dom=no
Per GM Int Join Util Per GM Int Join Util
yes yes yes yes 10 yes yes yes yes 8
yes yes yes no -10 yes yes yes no -8
yes yes no yes -1 yes yes no yes 2
yes yes no no 5 yes yes no no 6
yes no yes yes -3 yes no yes yes -1
yes no yes no 5 yes no yes no 3
yes no no yes -9 yes no no yes -4
yes no no no 9 yes no no no 4
no yes yes yes 6 no yes yes yes 1
no yes yes no 3 no yes yes no -1
no yes no yes -10 no yes no yes -6
no yes no no 9 no yes no no 6
no no yes yes 1 no no yes yes -5
no no yes no 6 no no yes no 5
no no no yes -10 no no no yes -10
no no no no 10 no no no no 10
uk yes yes yes 9 uk yes yes yes 8
uk yes yes no -7 uk yes yes no -6
uk yes no yes -5 uk yes no yes -2
uk yes no no 6 uk yes no no 5
uk no yes yes 2 uk no yes yes 1
uk no yes no 4 uk no yes no 3
uk no no yes -7 uk no no yes -4
uk no no no 7 uk no no no 4

Figure 6.11: Network to decide whether to form a partnership. In the CPTs, GD: if
character A’s goal direction and character B’s walking direction is within certain range,
H: if A is in haste, F1: if A is flexible in changing its current goal, S: if A is social, F:
A’s friendliness with B, D: A’s desire to partner with another character, Percep: A’s
perception of whether B wants to partner with A, which can take on the values of yes,
no, or unknown, Dom: if A is a dominant character, GM: if A feels its goal matches that
of B, Internal: if A is intended to partner with B. The parameters h, fl, s, d[partner| and
dom are A’s corresponding internal factors and personality traits.

the addition of the corresponding nodes and links. We believe that it is a much more

systematic and quicker process than trying to obtain something similar with rules.
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6.2 Partnering Behavior

It is natural for friends meeting unexpectedly to form partnerships if circumstances per-
mit. We have developed a partnering model that simulates such behavior.

There are several possible scenarios: when a character sees a friend character ahead,
it needs to decide whether to catch up and try to partner with the other character. Then,
the other character has to decide whether to accept the advance. When two characters
happen to run into each other, they may have a chat and then decide if they want to
partner. In the first case, the initiating character A must first decide if it wants to
approach and try to form a partnership with the friend character B. This decision must
take into consideration A’s intention, personality, if A feels its goal matches that of B,
and its perception of B’s intention. Figure 6.11 shows the decision network for deciding
whether or not to form a partnership with the potential partner.

Once A decides to form a partnership with B, it will try to approach and make its
partnership advance. Then B must decide whether to accept the advance. As shown in
Figure 6.12, how friendly B feels about A, if B is social, and B’s desire, all affect the
decision. In addition, how persistent B is in pursuing its own intention and how long A
has persisted in making the advance also influence B’s reaction.

As B decides, A observes B and assesses if B has accepted its advance. Figure 6.13
shows the network that makes this interpretation. Not all the observed data have equal
reliability. For example, when trying to interpret B’s response to an advance, B turning
to look at A and stopping are much stronger cues than B simply glancing at A. When
B accepts A’s request, B may or may not choose to face A directly. To accommodate
this difference in reliability of the observed data, adjustments are made in the network,
hence the presence of the additional reliability chance node.

If B accepts A’s request, the two characters will form a partnership and proceed.
Should B refuse the request, A must then decide how it will deal with the rejection—give

up or continue its persuasion effort (Figure 6.14). This cycle of A making an advance,
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P(Friend) P(Social) P(Desire) P(Req,time) P(Persist)
yes no yes no yes no s yes no
f 1.0-f s 1.0-s desire[partner] 1.0-desire[partner] 0.5 per 1.0-per

@@@@

Friend=yes P(Internal) Friend=no P(Internal)
S D RT P yes no S D RT P yes no

yes yes 1 yes 0.9 0.1 yes yes 1 yes 0.2 0.8
yes yes 1 no 1.0 0.0 yes yes 1 no 0.3 0.7
yes yes s yes 0.8 0.2 yes yes s yes 0.1 0.9
yes yes s no 0.9 0.1 yes yes s no 0.1 0.9
yes no 1 yes 0.6 0.4 yes no 1 yes 0.0 1.0
yes no 1 no 0.7 0.3 yes no 1 no 0.1 0.9
yes no s yes 0.3 0.7 yes no s yes 0.0 1.0
yes no s no 0.4 0.6 yes no s no 0.0 1.0
no yes 1 yes 0.7 0.3 no yes 1 yes 0.1 0.9
no yes 1 no 0.7 0.3 no yes 1 no 0.2 0.8
no yes s yes 0.7 0.3 no yes s yes 0.0 1.0
no yes s no 0.7 0.3 no yes ] no 0.1 0.9
no no 1 yes 0.1 0.9 no no 1 yes 0.0 1.0
no no 1 no 0.2 0.8 no no 1 no 0.1 0.9
no no s yes 0.1 0.9 no no S yes 0.0 1.0
no no s no 0.1 0.9 no no s no 0.0 1.0

Figure 6.12: Network to assess whether to accept a partnering request. In the CPTs, S:
how social the character is, D: B’s desire to form a partnership, RT: how long the other
character has persisted in making the partnership advance, which can take on the values
of long (1) or short (s), P: how persistent the character is in pursuing its own intention.
The parameters f, s, desire[partner|, and per are the character’s corresponding internal
factors and personality traits.

B deciding whether to accept it, A’s interpretation of B’s response, and decision about
what to do next continues until either B is persuaded to accept the partnership offer or

A gives up.

Personality and other internal factors, such as haste, play an important role in the
decisions we make as humans. The decision network framework provides a convenient
formalism for incorporating such factors and enabling them to influence behavior. Con-
sider the partnership decision, for example. To infer whether the character feels that its
goal matches that of its potential partner, beyond their immediate goals, internal factors
such as whether or not the character is in a hurry and how flexible the character is in

changing its current goal to accommodate its potential partner’s also play a role. The
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P(R)
yes no
0.5 0.5

Response

P(LA) P(ST)

yes 0.8 0.2
no 0.2 0.8

yes 0.8 0.2
no 0.2 0.8

P(FA)
Rel yes no
yes 0.8 0.2
no 0.55 0.45
yes 0.2 0.8
no no 0.45 0.55

Reliability

LA=yes P(Reliability) LA=no P(Reliability)
ST yes no ST yes no
yes 1.0 0.0 yes 0.0 1.0
no 0.0 1.0 no 0.0 1.0

Figure 6.13: Network to interpret potential partner’s response to A’s partnering request.
In the CPTs, R: interpreted response, LA: if B is looking at A, ST: if B has stopped, FA:
if B is facing A, Rel: the reliability factor.

character’s own intention of whether to form a partnership depends on how social the
character is, how much desire it has in joining a partnership and how friendly it feels
about the potential partner. If the character has a dominant personality, it tends to
weigh its own intention and desire more heavily when making a decision. So, it is less
likely for a dominant character than a submissive one to form a partnership when it feels
its goal does not align with that of its potential partner. Similarly, how persistent a
character is and how well it takes rejection affect the character’s reaction to the potential
partner’s refusal. If the character is quite stubborn and can take rejection well, it will

insist on making partnership requests; otherwise, it will give up more easily.

6.3 Acquaintance Behavior

Interpretation becomes more important in interactions between pedestrians. For exam-
ple, when two acquaintances meet on the street, how they react to one another depends

not only on their own intentions, but also on their interpretation of what the other will
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P(TT) P(Reject) P (Persist) P(Internal)
yes no yes no yes no yes no
05 05 r 1o0r | p 10p | 05 05

TT=yes P(TR) TT=no P(TR)
R P Int yes no R P Int yes no
yes yes yes 0.0 1.0 yes yes yes 1.0 0.0
yes yes no 0.0 1.0 yes yes no 0.3 0.7
yes no yes 0.0 1.0 yes no yes 0.6 0.4
yes no no 0.0 1.0 yes no no 0.2 0.8
no yes yes 0.0 1.0 no yes yes 0.5 0.5
no yes no 0.0 1.0 no yes no 0.3 0.7
no no yes 0.0 1.0 no no yes 0.5 0.5
no no no 0.0 1.0 no no no 0.1 0.9

Figure 6.14: Network to assess how to take rejection. In the CPTs, TT: if the time that
the character has been making partnership advance has exceeded certain time threshold,
R: if the character can take rejection well, P: if the character is persistent in pursuing
its current goal, Int: if the character’s intention in forming a partnership with B is
strong, TR: how the character should deal with the rejection, yes means the character
will continue its persuasion effort, no means the character will give up. The parameters
r and p are the character’s corresponding personality traits.

do. We have implemented an acquaintance behavior model to simulate this interaction.

When two acquainted characters meet, they will choose among talking to each other,
acknowledging one another without stopping to chat, or ignoring one another. For the
acquaintance model, two pedestrians cannot talk with each other unless both are will-
ing to talk; hence, a reasonably accurate interpretation is needed. Given the current
limitations of DI-Guy, for now the characters are mainly observing each other’s walking

direction, speed change, and gaze direction to make the judgment.

Character A’s interpretation of character B’s intention is divided into an assessment
of whether or not B is just starting to engage with character A (showing an intention
to talk, or to greet), or was already in the process of engaging with A, as they exhibit
different cues. When B is just starting to engage with A, then B would be looking at A;

if B wants to talk with A, then B would most likely start to walk towards A and slow
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[ P(SAC=yes) [ P(SAC=no) | [ P(OCA=yes) | P(ICA=no) |
[ 0.50 I 0.50 | 0.50 I 0.50

P(CD) P(CS) P(FO)
SAC ICA yes no yes no yes

yes  yes | 050 050 | 050 0.50 | 0.50  0.50 P (Previn
yes no 0.80 0.20 0.80 0.20 0.80 0.20 ICA vos o
no yes 0.20 0.80 0.20 0.80 0.50 0.50 os 0.80 0.20
no no 0.50 0.50 0.50 0.50 0.25 0.75 Y ’ ’
no 0.20 0.80

Figure 6.15: Network to assess if the other character is starting to avoid a collision or is
already in collision avoidance. The meanings of the symbols in the CPTs are as follows:
SAC: the interpretation that the other character is starting to avoid a collision, ICA: is
already in collision avoidance, CD: changing direction, CS: changing speed, FO: facing
an obstacle. Prev Interp denotes the interpretation the character made previously about
the other character regarding if it is already in collision avoidance.

down. The absence of these cues is evidence that B intends to ignore A. When B is in the
process of carrying out its intended action with A (for example, trying to talk with A)
B may already be walking towards A, hence does not change direction at the moment.
The prerequisite is that the previous interpretation already indicated that B intended to

engage with A.

The difficulty in making such an interpretation is further complicated by the fact
that B may intend to engage with A, but is temporarily interrupted by the need to avoid
collisions with third parties. Hence, an assessment is required first of whether or not B
is in collision avoidance mode. Such an assessment is made based on change in direction,
change in speed, whether B is facing obstacles, and determination if B is just starting
to avoid collision or is engaged in collision avoidance. B talking with a third party will
also prevent B from talking with A. Figs. 6.15, 6.16, and 6.17 show the networks for

interpreting B’s current action, whether it be meeting with others, avoiding collision, or
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just walking.

Once this interpretation is made, further decisions are made based on it. If B is talking
with a third party, no further action is taken (in future work, it should be straightforward
to implement the possibility of A joining the conversation). If B is engaged in avoiding
a collision, the prior interpretation for B is maintained. In the absence of any special
action detection, A will continue to assess B’s intention (Figure 6.18). In addition, A
evaluates its own intended action based on its friendliness with B, its haste, and how

much it desires to greet or talk to B.

Figure 6.19 depicts the decision network that determines the action to be taken. The
distance factor is added since the character may be uncertain about the interpretation
and, hence, may take several time steps to decide. In the meantime, it is not committing
to any action. However, as the two characters approach each other to within a certain
proximity, a decision must be made based on the information available at the time. The

distance factor indicates if this proximity threshold has been met. The utility function

[ P(SMeet=yes) | P(SMeet=no) | [ P(IMeet=yes) | P(IMeet=no) |
[ 0.50 I 0.50 | 0.50 I 0.50 |

P(Toward)
SMeet yes no

yes 0.80 0.20
no 0.20 0.80

.@

Face Agt Prev Interp

P(Dir) P(ST) P(FA) P(Previn)

IMeet yes no yes no yes no yes no

P(Look) P(Slow) yes 0.80 0.20 | 0.70 0.30 | 0.80 0.20 | 0.90 0.10

SMeet  IMeet yes no yes no no 0.20 0.80 | 0.30 0.70 | 0.20 0.80 | 0.05 0.95
yes yes 0.80 0.20 0.65 0.35
yes no 0.60 0.40 0.80 0.20
no yes 0.70 0.30 0.55 0.45
no no 0.20 0.80 | 0.20 0.80

Figure 6.16: Network to assess if the other character is starting to meet another character
or is already meeting another character. In the CPTs, SMeet: the interpretation that
the other character is starting to meet a third party, IMeet: is already meeting a third
party, ST: is stopped, and FA: is facing another character in a certain proximity. Prev
Interp denotes the interpretation the character made previously about the other character
regarding if it is meeting another character.
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P(SAC) [

P(ICA)

P(SMeet)

[ P(IMeet)

yes [

no [ yes

no

yes [

no

yes no

0.50 | 0.50 | 0.50 | 0.50

0.50 | 0.50 | 0.50 | 0.50

P(CA)
SAC ICA yes no
yes yes 1.0 0.0
yes no 1.0 0.0
no yes 1.0 0.0
no no 0.0 1.0

SMeet
yes
yes

no

P(Meet)
IMeet yes no
yes 1.0 0.0
no 1.0 0.0
yes 1.0 0.0
no no 0.0 1.0

B’s behav
P(BH)
CA Meet mo ca na
yes yes 0.0 1.0 0.0
yes no 0.0 1.0 0.0
no yes 1.0 0.0 0.0
no no 0.0 0.0 1.0
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Figure 6.17: Network to interpret the behavior in which the other character is engaged.
In the CPTs, CA: the interpretation of whether the other character B is in collision
avoidance, Meet: the interpretation of whether B is meeting other characters, and BH:

(mo: meeting other characters, ca: in collision
avoidance, na: not in any special action).

the behavior that B is engaged in.

balances the internal desire with the interpreted intention of the other party. The decision

can be to talk, greet, or ignore the other party, or uncertain, which means that further

observation is necessary.
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P(SMA) P(IMA)
talk [ ack [ ig talk [ ack [ ig
0.30 | 0.30 | 0.40 0.30 | 0.30 | 0.40

P(SA) D(TA)
SMA yes no yes P(Prev) P(DTA)
talk | 09 0.1 | 0.9 Toward_-A IMA | talk ack ig | yes no
ack | 0.9 0.1 | 0.4 talk | 06 03 0.1 | 09 0.1
ig 05 05 | 01 0.9 ack | 0.3 05 02| 04 0.6
ig 03 03 04| 01 09

P(LA) P(SD) P(BI)
SMA IMA yes no yes no talk ack ig
talk talk 0.9 0.1 0.9 0.1 1.0 0.0 0.0
talk ack 0.7 0.3 0.7 0.3 0.7 0.3 0.0
talk ig 0.3 0.7 0.5 0.5 0.6 0.3 0.1
ack talk 0.7 0.3 0.6 0.4 0.5 0.4 0.1
ack ack 0.6 0.4 0.5 0.5 0.0 1.0 0.0
ack ig 0.5 0.5 0.3 0.7 0.2 0.5 0.3
ig talk 0.55 0.45 0.6 0.4 0.6 0.2 0.2
ig ack 0.5 0.5 0.3 0.7 0.1 0.5 0.4
ig ig 0.1 0.9 0.1 0.9 0.0 0.0 1.0

Figure 6.18: Network to interpret the other character’s intended action. In the CPTs,
SMA : B is starting to engage with character A, which can take on the values of talk
(stopping to chat), ack (acknowledging) or ig (ignoring), SA : B has seen character A,
TA : B is turning towards A, LA : B is looking at A, SD : B is slowing down, BI : B’s
intent, IMA: B is already engaged with A, Prev : previous interpretation of B’s intent,
DTA : B is walking towards A.
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P(Friendly) P(Haste) P (Desire)
yes no yes no talk ack ig
f 1.0-f h 1.0-h desire[talk] desire[ack] 1.0-desire[talk+ack]

A’s Decision

P(Int)
F H D talk ack ig
yes yes talk 0.5 0.4 0.1
yes yes ack 0.1 0.8 0.1
yes yes ig 0.1 0.6 0.3
yes no talk 0.8 0.1 0.1
yes no ack 0.3 0.6 0.1
yes no ig 0.1 0.4 0.5
no yes talk 0.2 0.4 0.4
no yes ack 0.1 0.5 0.4
no yes ig 0.1 0.1 0.8
no no talk 0.3 0.4 0.3
no no ack 0.2 0.5 0.3
no no ig 0.1 0.2 0.7
Dis=yes Dis=no
BI Int Dec Util BI Int Dec Util
talk talk talk ut+10 talk talk talk ut+10
talk talk ack ua-+5 talk talk ack ua-+5
B(Dis) talk ack talk ut+7 talk talk obs 7
talk ack ack ua+10 talk ack talk ut+7
yes no talk ig talk ut talk ack ack ua+9
0.5 0.5 talk ig ack ua+3 talk ack obs 10
talk ig ig 5 talk ig talk ut
ack talk talk ut+3 talk ig ack ua+2
ack talk ack ua+6 talk ig ig 5
ack ack talk ut talk ig obs 8
ack ack ack ua+10 ack talk talk ut+5
ack ig talk ut ack talk ack ua+5
ack ig ack ua ack talk obs 10
ack ig ig 6 ack ack talk ut
ig talk talk ut ack ack ack ua+10
ig talk ack ua+8 ack ack obs 6
ig talk ig 3 ack ig talk ut
ig ack talk ut ack ig ack ua
ig ack ack ua-+5 ack ig ig 6
ig ack ig 6 ack ig obs 8
ig ig talk ut ig talk talk ut—+2
ig ig ack ua ig talk ack ua-+4
ig ig ig 10 ig talk ig 3
other combinations 0 ig talk obs 10
ig ack talk ut
ig ack ack ua+4
ig ack ig 6
ig ack obs 8
ig ig talk ut
ig ig ack ua
ig ig ig 10
ig ig obs 4
other combinations 0
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Figure 6.19: Network to decide the action to be taken by A with B. In the CPTs, F: A’s
friendliness with B, H: if A is in haste, D: how much A desires to talk to or greet a friend,
Int: the character A’s intended action, which can take on the values of talk (stopping to
chat), ack (acknowledging) or ig (ignoring). The parameters f, h and desire[action to be
taken| are character A’s internal factors. In the utility table, Dis: if A is within a certain
proximity of B, BI: interpretation of B’s intended action with A, Dec: A’s decision in its
action with B, which can take on the values of talk, ack, ig, or obs (undecided as A is
uncertain about the interpretation made about B), Util: the utility value which takes on
the parameters ut and ua. The parameters ut and ua are weights for the talking and the
acknowledging actions respectively, which are set based on what actions the character A
has already taken, hence giving higher priority to keep A’s action consistent.
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P(AAS)
na su [ sd [ st [ T [ r
0.20 [ 0.16 [ 0.16 | 0.16 | 0.16 | 0.16

@ Ch_Speed

P(SM) P(CD) P(CS)

AAS yes no 1 r nc f s st nc
na 0.50 0.50 0.10 0.10 0.80 0.10 0.10 0.10 0.70
su 0.90 0.10 0.20 0.20 0.60 0.90 0.00 0.05 0.05
sd 0.90 0.10 0.20 0.20 0.60 0.00 0.90 0.05 0.05
st 0.90 0.10 0.10 0.10 0.80 0.03 0.03 0.90 0.04

1 0.90 0.10 0.90 0.05 0.05 0.20 0.20 0.10 0.50
r 0.90 0.10 0.05 0.90 0.05 0.20 0.20 0.10 0.50

Figure 6.20: Network for interpreting adversary’s avoidance strategy. The Conditional
Probability Tables (CPTs) show the prior probabilities of adversary’s avoidance strategy
(AAS) and the probability of observed information given AAS. (na: no avoidance; su:
speed up; sd: slow down; st: stopped; 1: left; r: right; nc: no change; f: faster; s: slower).

6.4 Collision Avoidance Behavior

In the previous sections, we have seen how our decision network framework can be applied
to high level behaviors. We will now show that it is also readily applicable to low-
level collision avoidance behaviors. Much behavioral animation research has focused on
collision avoidance, but implementing a strategy that is capable of averting potential
collisions from arbitrary directions within a confined space in a realistic, humanlike way
remains a challenge. Our framework facilitates the incorporation of common sense into
the collision avoidance strategy.

The character first tries to avoid any static obstacles. The avoidance strategy includes
the options of steering to the left or right, or stopping when in imminent danger of
collision. For dynamic obstacles, a collision potential value is computed for each obstacle
and the one with the highest potential receives priority. In any given situation, the
optimal strategy can be one of the following: no avoidance, speed up, slow down, stop,
steer left, steer right, steer left with a speed change, steer right with a speed change, stop

while steering left, and stop while steering right. The utility values are weights associated



CHAPTER 6. BEHAVIORAL MODELING USING DECISION NETWORKS 75

P(AAS)
na su sd st 1 [ T l
0.20 [ 0.16 [ 0.16 [ 0.16 [ 0.16 [ 0.16 l

& )

P(SA=na) | P(SA=]) | P(SA=r) |
0.40 030 | 030 |

Avoidance Strategy
SA=na SA=1 SA=r
AAS AS Util AAS AS Util AAS AS Util
su na wt[i]-0.1 na na -10 na na -10
su su f(wt[i]-0.3) na su -10 na su -10
su sd wt[i]+0.1 na sd -10 na sd -10
sd na wt[i]-0.1 na r wt[i]-wt[l na 1 wt[i]-wt[r
sd su wt[i]+0.1 na sr wt[i]-wt[1 na sl wt[i]-wt[r
sd sd f(wt[i]-0.3) na str wt[i]-wt [l na stl wt[i]-wt[r
st na -10 su na -10 su na -10
st sd wt[i]-0.1 su su -10 su su -10
st st -10 su sd -10 su sd -10
1 na wt[i]+0.2 su r wt[i]-wt[l su 1 wt[i]-wt[r
1 1 f(wt[i]-0.3) su sr w[i]-wt [l su sl wt[i]-wt[r
1 sl f(wt[i]-0.3) su str wi [i]-wt[l su stl wt[i]-wt[r
1 stl f(wt[i]-0.3) sd na -10 sd na -10
r na wt[i]+0.2 sd su -10 sd su -10
r r f(wt[i]-0.3) sd sd -10 sd sd -10
r ST f(wt[i]-0.3) sd r wt[i]-wt[l sd 1 wit[i]-wt[r
r str f(wt[i]-0.3) sd sr wt[i]-wt[l sd sl wt[i]-wt[r
others wtl[i] sd str wt[i]-wt[l sd stl wt[i]-wt[r
st na -10 st na -10
st su -10 st su -10
st sd -10 st sd -10
st st -10 st st -10
st T wt[i]-wt [l st 1 wt[i]-wt[r
st sr wt[i]-wt[l st sl wt[i]-wt[r
st str wt[i]-wt[l st stl wt[i]-wt[r
1 na -10 1 na -10
1 su -10 1 su -10
1 1| f(wt[i]-0.3) 1 1 -10
1 r wt[i]+0.1 1 r wt[i]+0.1
1 sl | f(wt[i]-0.3) 1 sl -10
1 sr wt[i]+0.1 1 ST wt[i]40.1
1 stl f(wt[i]-0.3) 1 stl -10
1 str wt[i]+0.1 1 str wt[i]40.1
r na -10 T na -10
T su -10 r su -10
r sd -10 r sd -10
r 1 wt[i]+0.1 r 1 wt[i]+0.1
r r -10 r r f(wt[i]-0.3)
r sl wt[i]+0.1 r sl wt[i]+0.1
r sr -10 r sr f(wt[i]-0.3)
r stl wt[i]+0.1 r stl wt[i]+0.1
r str -10 r str f(wt[i]-0.3)
others wli] others wtli]

Figure 6.21: Avoidance strategy network. In the CPTs, the symbols AAS and SA stand
for Adversary’s Avoidance Strategy and Static Avoidance, respectively. In the utility
table, the avoidance strategy (AS) can take on the values of no avoidance (na), speed up
(su), slow down (sd), stop (st), steer left (1), steer right (r), steer left with a speed change
(sl), steer right with a speed change (sr), stop while steering left (stl), and stop while
steering right (str). The parameter wt/i] is the weight associated with the corresponding
avoidance strategy; for example, when AS=sd, for its utility value wtf[i] is the weight
associated with the slow down avoidance strategy. This weight parameter is determined
based on the character’s relationship with the adversary in terms of their position, ori-
entation and speed, as well as if there are other characters and static obstacles around
the character. The function f(x) for any given value of AS, say as, will return the value
x if the character has previously decided to take avoidance strategy as or has not taken
any action to avoid the obstacle, and will return the value -10 otherwise to signal an
inappropriate avoidance strategy.
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Occupancy Index

Avoidance Sector

(a)

SD P(SD) utility (sector_weight[i],boundary_sec)
T 5 if ((SD==1) and (boundary_sec > i)) or
r 5 ((SD==r) and (boundary_sec < i)) then
utility = -100
(b) else if boundary_sec = i then
utility = -sector_weight[i] + bonus

else
utility = -sector_weightl[i]

()

Figure 6.22: (a) Network for determining avoidance angle sector. (b) Prior probabilities
of steering direction (l: left, r: right). (c) Occupancy index utility function to assess
the desirability of each sector for the current avoidance strategy; the one with the lowest
utility value will be chosen (sector_weightli] is the weight value for sector i based on
how crowded sector i is, boundary_sec is the sector corresponding to the closest possible
avoidance direction; it depends on the location of the obstacle). A small constant bonus
is subtracted to give a slightly higher priority to the closest avoidance direction.

with these avoidance strategy options. The weights are determined by our observations
of how real humans balance avoidance choices under different circumstances. Due to
the limitations of the DI-Guy virtual human motor system, a speed change command
has a delayed effect, thus we currently do not use the speed change options, but have

incorporated them in case a better motor system becomes available.

To avoid a decision network that is too large and intractable, we devise a hierarchical
network structure to specify the collision avoidance strategy. A decision is made through
the following series of decision networks. First the network depicted in Figure 6.20 is
used to infer the dynamic obstacle character B’s intended avoidance strategy of character
A, based on A’s perception of whether or not B sees it; if B is perceived to be changing
direction or changing speed. Then the decision network depicted in Figure 6.21 is used
to decide an avoidance strategy based on the inferred adversary’s avoidance strategy, the

static avoidance decision made earlier, and the utility values. Finally, should the decision



in the previous step be to steer, the decision network in Figure 6.22 is used to determine

the steering angle based on the sectoral occupancy index values.



Chapter 7

Behavioral Modeling: Additional

Details

This chapter continues the presentation in Chapter 6, presenting the full details of our four
decision network behavior models. The subsections parallel those in the previous chapter,
but are presented bottom-up, in reverse order, beginning with the most recently discussed

collision avoidance behavior and concluding with the emergency response behavior.

7.1 Collision Avoidance Behavior Model Details

The environment model provided by Shao [2005] provides the location of static obstacles
and path planning information. The smallest angle away from the character’s current
heading direction that is free of static obstacle and close to the goal direction is chosen
to avoid a static obstacle. This decision, which can lead to steering towards the left or

right, is taken into account when the character must avoid dynamic obstacles.

78
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Figure 7.1: A sample belief-bar diagram generated for the network in Figure 6.20 to inter-
pret an adversary’s avoidance strategy. This illustrates the case in which the observation
is entered into the network that the adversary has noticed the character, has changed its
direction towards the left, and has not changed its speed. The network concludes that
the adversary is turning left to avoid A, as state 1 has the highest probability.

7.1.1 Procedure Details

For each dynamic obstacle within character A’s field of view (Figure 5.2), A first deter-
mines if it might collide with the obstacle. This is determined based on the position,
speed, and orientation relationship between A and the corresponding obstacle. Within
its field of view, character A also observes each dynamic obstacle’s speed, orientation
and gaze direction for two consecutive time steps. For each dynamic obstacle that may
potentially collide with A, character A compares its observation of the adversary in the
current and previous time steps in order to judge if this potential adversary has noticed
character A, the adversary has no direction change or is steering left or is steering right,
and if it has increased its speed, decreased its speed, has stopped, or has no speed change.
These assessments are then entered as evidence in the network shown in Figure 6.20. Fig-
ure 7.1 shows a sample belief-bar diagram generated for the network in Figure 6.20. The
diagram illustrates the case for which the observation is entered into the network that the
adversary has noticed A, has changed its direction towards the left, and has not changed

its speed. The interpretation made by the network concludes that the adversary is turn-
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ing left to avoid A, as the state of the corresponding node has the highest a posteriori
probability.

Once the adversary’s intended avoidance strategy is assessed, a collision potential
value is calculated based on the interpretation, the proximity of the adversary, and the
proximity of the anticipated collision. The closer the adversary and the anticipated
collision, the higher the potential value. The collision potential will be higher if the
adversary is interpreted to make no avoidance attempt or has stopped, in which case A has
to take avoidance measures. For persistence, a small bonus value is associated with the
adversary that A was trying to avoid in the previous step. The dynamic obstacle with the

highest collision potential value is further processed for avoidance strategy determination.

Given the existing steering direction associated with static obstacle avoidance and
the assessment made about the dynamic obstacle with the highest collision potential, the
network depicted in Figure 6.21 determines the character’s final avoidance strategy. The
utility table values for this decision depend on the weight parameter wt[i] where i is the
index for the possible avoidance strategy, which can be as follows: no avoidance, speed
up, slow down, stop, steer left, steer right, steer left with a speed change, steer right with
a speed change, stop while steering left and stop while steering right. The weights are
set in accordance with commonsense considerations about how people normally avoid
collisions. They are initialized to 0. Preferred options are given positive values, with
higher values for greater preference. Given the delayed speed change of the underling
motor system, the speed up, slow down, steer left with a speed change, and steer right
with a speed change options are not used; hence, their weights remain 0. The remaining
weights are set based on Algorithm 1 in which wst is the weight for stopping, wl is the
weight for steering left, wr is the weight for steering right, wstl is the weight for stopping

while steering left, and wstr is the weight for stopping while steering right.

The strategy with the highest utility value will be chosen. Figure 7.3 shows a sample

belief-bar diagram for this network to illustrate the case when the adversary’s avoidance
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Algorithm 1 Weight settings for avoidance strategies
wst=0; wl = 0; wr=0; wstl = 0; wstr = 0;
if (static avoidance strategy = steer left) then
wl = 1.0
if (avoidance strategy = steer right) then
wr = 1.0
if (character is very close to a non-stopping obstacle) then
wst = 1.5
if (number of obstacles to left > right) then
wr += 0.1
else
wl += 0.1
if (very close to static obstacle on the left and have right side free) then
wl -= 1.0; wr += 0.2;
else if (very close to static obstacle on the right and have left side free) then
wr -= 1.0; wl += 0.2;
else if (both sides are tight) then
wst += 2.0;
if (character is running into a head-on collision case) then
weight for the non-obstacle side += 0.2;
if (obstacle is a distance away and is going to cross character’s path as illustrated in 7.2(a)) then
weight for the obstacle side += 0.5;
if (obstacle is a distance away and is going to cross character’s path as illustrated in 7.2(b)) then
weight for the non-obstacle side += 0.5; (to avoid colliding with the obstacle)
if (close to dynamic obstacle) then
weight for non-obstacle side += 0.2; weight for obstacle side -= 2.0;
if (one side is heavily crowded judging by having high sectoral occupancy index values to one side) then
weight for tight side -= 1.0; weight for free side += 0.1;
else if (both sides are heavily crowded) then
wst += 3.0;
if (neither side is heavily crowded) then
weight for less crowded side += 0.2;
if (neither side is tight) then
weight for previous avoidance direction += 0.6; (to maintain consistency)
weight for direction closer to goal += 0.2;
if (direction closer to goal is not heavily crowded) then
weight for direction closer to goal += 0.2; (favor goal direction even more)
if (character is now avoiding a different obstacle from the previous timestep) then
weight for direction closer to goal += 0.3;
(avoid turning further and further away from goal direction when need to avoid one dynamic obstacle after another)
if (character is turning over 90° away from the goal direction) then
weight for direction closer to goal += 0.5; (avoid going in opposite direction from the goal direction)
if (wl = wr) then
if (character has been avoiding collision since last timestep) then
weight for previous collision avoidance direction += 0.1; (to break the tie)
else
weight for direction to the goal += 0.2;
if (character is stopped and very close to obstacle ahead) then
exchange values for wstl and wl; exchange values for wstr and wr; (favor stop and steering direction instead)

strategy is interpreted to be turning towards the character’s left and the character plans
to turn right to avoid a static obstacle. With the weight parameter values shown in the
diagram, the avoidance strategy of turning right has the highest utility value and hence

will be chosen.

If steering is required in the decision, the network in Figure 6.22 is used to determine

the avoidance sector. The weight for sector i, sector_weight|i], used in the utility function
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Figure 7.2: (a) Character A anticipates collision with either obstacle 1 or 2 when A
catches up and the obstacle crosses its path (the arrows indicate the walking direction).
In order to avoid colliding with the obstacle, the character should turn away from the
current obstacle. (b) Character A anticipates collision with either obstacle 1 or 2 as they
cross each other’s path. In order to avoid colliding with the obstacle, the character should
turn to the non-obstacle side. (c¢) Character A is not likely to collide with characters
whose position and direction are similar to B or C.
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Algorithm 2 Weight settings for perceptual sectors

sector_weight[0]=0; sector_weight[1]=-0.5;
sector_weight[2]=-1.0; sector_weight[3]=-1.5;
sector_weight[4]=-1.0; sector_weight[5]=-0.5; sector_weight[6]=0;
(these initializations are made to give increasingly higher preference to sectors with smaller angles away from the
character’s current direction. The smaller the weight value, the higher the preference)
for (each character in view) do
if (walking ahead of the character and is going in similar direction) then
if (distance extremely close) then
weight for the sector in which that character locates sector_weight[i]+=10;
else if (distance quite far) then
sector_weight[i]+=0.2;
else
sector_weight[i]+=0.1;
if (walking towards the character) then
if (distance extremely close) then
sector_weight[i] +=10;
else if (distance quite far) then
sector_weight[i]+=0.2;
else
if (is not likely to collide with the character as illustrated in Figure 7.2(c)) then
sector_weight[i]+=(distance_threshold-distance to the character)*0.2;
(in this case, weight depends on distance from the character)
else
sector_weight[i]+=(distance_threshold-distance to the character)*0.2+4(direction difference)*0.02;
(in this case, also consider collision potentials)
for (each static obstacle ahead) do
if (distance extremely close) then
all sectors in which the obstacle occupies sector_weight[i]+=10;
else if (distance quite far) then
sector_weight[i]+=0.1;
else
sector_weight[i]+=0.5;

is determined by Algorithm 2.
The sector with the lowest sector weight value is the least crowded one. Since we pick
the state with the highest utility value, we use the negated sector weight values in our

utility table in the network. The sector with the highest utility value is associated with
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Figure 7.3: A sample belief-bar diagram generated for the avoidance strategy network in
Figure 6.21.

the best steering direction, and hence it will be chosen as the avoidance angle to take.
Figure 7.4 shows the belief-bar diagram, where the steering direction is turning left, and
the sectoral weight values are as shown in the Avoidance_Sector table. Sector III yields
the highest utility value and hence will be chosen as the preferred steering direction to

avoid the obstacles.

7.1.2 Prior Probability and Utility Settings

In assessing the adversary’s avoidance strategy (Figure 6.21), all the possible strategies
are equally likely before any observation is made, with the “no avoidance” strategy being
given slightly higher prior probability, as this will be the default strategy if no evidence
can be collected. When the adversary character B is actively avoiding character A, the

implication is that B must have noticed A; hence, we assign a high probability of 0.9
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Figure 7.4: A sample belief-bar diagram generated for the network in Figure 6.22 to
determine avoidance angle sector.

to the yes state of the conditional probability for Saw_A given that B is taking any
avoidance action. When B is not taking any avoidance action, it is possible that B has
not yet noticed A. It is also possible that B saw A, but chose not to take any action.
Hence, the conditional probability for Saw_A given AAS=na is assigned 0.5 for both
states. As for the observation of a change in direction, unless the adversary B is making
a direction change to avoid A, character A will most likely see no direction change in B.
Similarly for a speed change, unless B’s avoidance strategy involves a change in speed,
A is less likely to observe any speed change in B. The conditional probabilities for these

two chance nodes are assigned in order to reflect this.

For the network in Figure 6.21, the weight associated with each potential avoidance
strategy wt[i] already captures the character’s preference based on how crowded A’s path
is, without considering the interpreted adversary’s avoidance strategy or its own planned
static avoidance direction. The utility settings in Figure 6.21 follow these preferences,

except for the cases where the combination of evidence for AAS and SA makes it necessary
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to make an adjustment. For example, a low utility value of -10 is assigned to make
sure that impossible combinations are precluded.! For combinations where turning in a
particular direction contradicts evidence observed about AAS and SA to some extent,
the weight for this direction minus that for the opposite direction is set as the utility
value. Thus, unless the weight for this proposed direction outweighs twice the weight for
the other direction, the corresponding option will not be selected; for example, steering
towards the left when B is interpreted as not taking any avoidance action and when
A needs to turn right to avoid a static obstacle. There are also cases in which the
avoidance option is generally inappropriate, but if the character has already been taking
this strategy since the previous time steps, in order to maintain consistency, this option
will be given the benefit of the doubt by assigning the utility function f(wt[i] — 0.3),
where the definition of the function f is given in the caption of Figure 6.21. If the
combination of the AAS and SA observations makes the avoidance option less preferred,
0.1 is deducted from the weight preference wti]. For example, when there is no need to
avoid any static obstacle and the adversary is perceived to be speeding up, choosing to
take no avoidance action belongs to this category. For cases in which the combination of
the AAS and SA observations makes the avoidance option preferable, a small constant
ranging from 0.1 to 0.3 is added to wti]. For example, when the adversary is perceived

to be speeding up, then slowing down is the preferred action.

The steering direction chosen by the network in Figure 6.21 will be given as evidence
for the Steer Dir variable (SD) in the network of Figure 6.22. To avoid collision, character
A will then try to find a turning angle that is as small as possible. In order to turn away
from the obstacle, A needs to take the direction to the obstacle as the reference angle

when searching for the appropriate steering angle. In this network, the state with the

'Examples of impossible combinations are when B is stopped and A proposes not to take any avoid-
ance action, which will result in A crashing into B, or when A needs to turn left to avoid a static obstacle
while B is turning to A’s left in order to avoid A and A proposes to speed up, so that A will collide with
the static obstacle sooner.
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highest utility value will be chosen; hence, the negated values of the sector weights are
used in the utility table. The situation becomes complicated in a crowded space where
turning a certain angle will help the character successfully avoid the obstacle, but will
make it vulnerable to collisions with another characters walking nearby. In such a case,
the character needs to widen its turning angle to avoid both characters. The sector
weights give the character a sense of how crowded its surroundings are. The higher the
weight value, the more crowded the corresponding sector is. Given the sector containing
the obstacle, the smallest turning angle will be the one in the same sector; hence, a small
constant is added in the utility table to the sector weight for the corresponding sector
in order to give it a slightly higher preference. The sectors in the opposite direction of
the intended steering direction are obviously inappropriate; hence, they are ruled out by

giving them a low utility value of —100.

7.2 Acquaintance Behavior Model Details

When a character encounters another character that it recognizes, the acquaintance be-
havior model is invoked to simulate interaction between these two characters. In ac-
quaintance behavior, it is important for each character to interpret the other character’s
intended action. In real life, the interpretation is aided by numerous observable cues,
such as body language, gestures, facial expressions, etc. Unfortunately, because of the
limitations of the DI-Guy API, only a limited number of cues can be observed by our
characters. Our framework is general, however, and it can easily incorporate additional
observable traits should they become available. This simply requires the addition in the
network of a chance node for each trait variable, its associated CPT, and corresponding

links to indicate its relationship with existing nodes in the network.
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7.2.1 Procedure Details

The three possible actions in our current acquaintance behavior model (Section 6.3) are
(i) the two characters talk with each other, (ii) acknowledge each other without stopping
to chat, or (iii) ignore each other.

First character A must assess the action in which the other character B is engaged.
For example, if B is avoiding an obstacle, A cannot easily interpret B’s intended action
with A during obstacle avoidance, so A can only refer to the previous interpretation that
it made before B starts to avoid the collision. Otherwise, if no such interpretation had
been made, A must wait until B finishes collision avoidance to assess B’s intention. If
B is meeting other characters, A will give up its attempt to interact with B, since B is
preoccupied.

In assessing if B is in collision avoidance, two cases must be considered. The first
is when B initiates collision avoidance, in which case, B would be changing directions,
and possibly also changing speed. The second is when B is in the midst of avoiding
a collision, in which case, B may have already finished turning towards its intended
steering direction, and hence does not appear to be changing its direction or speed from
the previous time step. In the absence of these two cues, A can refer to the previous
interpretation it has made about B to see if B is engaged in collision avoidance. For both
cases, an important indicator will be whether B has any potential obstacle in its path.

Figure 7.5 shows a belief-bar diagram illustrating the case when there is no change
detected in the direction or speed of B, but B appears to be dealing with obstacles,
the network determines that B is not starting to avoid a collision. Given A’s previous
interpretation that B is in collision avoidance, the network assesses that B is not starting
to avoid collision, but is already engaged in collision avoidance. The judgment made in
this case depends heavily on the previous interpretation, since almost all other relevant
cues are absent. To avoid locking into an interpretation in the absence of other relevant

cues, the previous interpretation value is set to yes the first time A detects that B is in
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Figure 7.5: A sample belief-bar diagram generated for the network in Figure 6.15 to
assess if the other character is engaged in collision avoidance.

collision avoidance, and this setting will expire after a time limit, during which all other
relevant cues remain absent, then the previous interpretation value will be reset to no.
By that time, if A still sees no change in speed or direction in B, then B is likely to
have finished avoiding the collision, and A will interpret B as no longer being engaged in

collision avoidance.

When starting to meet a third party, character C, character B is likely to change
direction as it turns towards C, and to look at C and slow down. If B is in the process
of walking towards C with the intention of chatting with C, B will be walking directly
towards C. This is captured by the chance node Dir in the network in Figure 6.16. B
will also be slowing down and looking at C. If B is already chatting with character C,
B will be stationary and facing C within a certain proximity (which is captured by the
chance node Face_Agt). Both cases belong to the category that B is in the process of
meeting another character C, which the previous interpretation made about B should have
indicated already. The belief-bar diagram in Figure 7.6 shows the case when all relevant

cues are absent. A will conclude that B is not starting to meet another character C,
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Figure 7.6: A sample belief-bar diagram generated for the network in Figure 6.16 that
assesses if the other character is meeting a third party.

nor is it in the process of meeting C. The interpretations resulting from the networks in
Figure 6.15 and Figure 6.16 are then entered as evidence into the network of Figure 6.17.
The belief-bar diagram in Figure 7.7 illustrates the final interpretation A makes about
B, i.e., that B is engaged in collision avoidance, when the interpretations obtained from
the networks in Figure 7.5 and Figure 7.6 are entered as evidence. Hence, A will refer
to the previous interpretation it made about B’s intended interaction with it or wait for

the next time step to reassess the situation.

If B is perceived not to be engaged in any particular action at the moment, A will
continue its assessment of B’s intention using the network in Figure 6.18, which evaluates
whether B intends to talk to A, acknowledge A without chatting, or ignore A. This
assessment is mainly based on observing cues, which would indicate that B intends to
stop chatting with A. In the absence of these cues, A will try to determine if B is going
to greet A without stopping. If B has the intention of talking to A, it may be just staring
to walk towards A or could already be approaching A. These two stages exhibit different
traits. When starting to walk towards A, character B should have at least seen A, and
be turning towards A, which is captured by the chance node Toward_A in the network of

Figure 6.18. While in the process of approaching A, character B will have finished turning
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Figure 7.7: A sample belief-bar diagram generated for the network in Figure 6.17 that
interprets the behavior in which the other character is engaged.

and is walking directly towards A (captured by the node Dir_to_A), but only assuming
that the previous interpretation already showed a trace of such intention (captured by
the node Prev intent). Both cases rely on whether B is looking at A and slowing down.

Figure 7.8 shows the belief-bar diagram for this network given evidence that B has
seen A, B is not turning towards A, B is looking at A, B is not slowing down, B is walking
towards A and the previous interpretation of B’s intention was to talk. The posterior
probabilities in the network indicate that B intends to talk to A and is already in the
process of approaching A. As for any given node, the state with the highest posterior
probability is taken as the chosen state.

After inferring B’s intent, A must consider its own intention in order to decide how
to interact with B. As shown in Figure 6.19, A’s own intention is based on how friendly
A feels about B, whether A is in a hurry, and the strength of A’s desire to talk to
somebody or just acknowledge a friend. There is uncertainty in the interpretation about
B’s intention because of the lack of or inaccuracy of the observed cues. While A and B are
separated by a certain distance, A may choose to continue making observations to ensure
it has not misinterpret B’s intention; hence, the decision node for B’s intent includes

observation as one of its possible states. However once A and B are closer than a certain
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Figure 7.8: A sample belief-bar diagram generated for the network in Figure 6.18 to
interpret the other character B’s intended action with A.

distance, A will have to decide, otherwise it will walk past B without having expressed
its intended interaction with B. The belief-bar diagram in Figure 7.9 illustrates that with
B’s intent interpreted earlier entered as evidence, A’s internal friendliness towards B,
whether it is in a hurry, its desire to interact with another character, and whether the
distance between A and B is within the separation threshold, the decision state with the
highest utility value, talk with B, is chosen. For this example, the parameters ut and ua
are both 0. Since A’s intended action is to talk with B and it perceives B as having the

same intention, talking is the natural decision.

Should A’s intention differ from its inference of B’s intent, a tradeoff must be made.

How this is done depends on the utility values, which will be explained in the next section.
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Figure 7.9: A sample belief-bar diagram generated for the network in Figure 6.19 to
decide the action to be taken by A with B.

7.2.2 Prior Probability and Utility Settings

For nodes such as SAC, ICA, SMeet, IMeet, Start Meet, and In Meet, which represent
data to be interpreted, there is initially no evidence to support any particular state, so
their prior probabilities are equally divided among their possible states, with the excep-
tion of Start Meet and In Meet, which have three possible states, talk, acknowledgement
and ignore, necessitating that a slightly higher prior probability be assigned to the ignore
state, which is the assumed state in the absence of any observations. The conditional
probabilities are assigned based on how the behavior designer chooses to weigh these
variables. For SAC, when ICA is in the no state, the more indicative factor is whether
character B has any potential obstacle with which it could collide. Other relevant fac-
tors are whether B is changing direction or speed, which often serve as cues that B is
starting to avoid a collision. However, the absence of these cues is not as indicative, so
they have been assigned a conditional probability of 0.5 when both SAC and ICA are in
the no state. For ICA, the more indicative factor is the previous interpretation of B’s

behavior. When the character already starts to avoid the collision, whether B still has
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any potential obstacle with which it could collide becomes less indicative as it is possible
that with the avoidance strategy B is taking, it is no longer in danger of colliding with
any other character. Hence, the conditional probability for this variable given that the
character is already in collision avoidance is 0.5. After B starts to avoid collision, before
it finishes turning and changing speed, it is possible that both SAC and ICA will be
interpreted as being positive. In this case, the variables Ch_Dir, Ch_Spd and Face Obs
are not as indicative; hence, they are assigned a conditional probability of 0.5. After
an initial set of prior probabilities has been assigned, the designer can use the Netica
GUI to enter various evidence combinations and observe the resulting interpretations or

decisions produced by the networks and make adjustments if necessary.

When it is just starting to meet another character, B is likely to be turning towards
that character, looking at it, and slowing down. When it is already in the process of
meeting another character, B is more likely to be looking at that character. When it is
not meeting the other character, B is not likely to be looking at the character. When B
just starts to avoid another character, it is more likely to slow down compared to when
it is already meeting another character, as it may have already stopped to have a chat.
The conditional probabilities reflect these scenarios. For IMeet, the most indicative cue
is the previous interpretation being made. Other relevant factors include whether B is
directed towards a character it may be meeting with, B has stopped, and B is facing
a character it may be chatting with in close proximity. When B is not meeting others,

these cues are likely to be absent.

Once the assessment of SAC and ICA are done, inferring whether B is in collision
avoidance is made simple, because when either SAC or ICA is true, B is perceived to
be in collision avoidance, otherwise B is perceived not to be preoccupied with collision
avoidance. Similarly the inference of whether B is meeting another character is made
based on the SMeet and IMeet assessments made earlier. The behavior in which B is

engaged is deduced from these two assessments. When both CA and Meet are true,
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this indicates an inaccurate interpretation, in which case B is assumed to be in collision
avoidance, since in this case A would refer to the previous interpretation it made or try

to observe again and make another assessment at the next time step.

The process of assessing A’s intention toward B (Figure 6.18) is similar to assessing if
B is meeting a third party, except that instead of just monitoring two states, yes and no,
we are now concerned with three possible states: talking with A, acknowledging A, or
ignoring A. The conditional probabilities are assigned based on the following observations.
When B wants only to acknowledge A, B is less likely to be walking towards A or be
oriented towards A. It is also less likely to be slowing down, but B should still have
noticed A and be looking at A. The variable Prev intent is more indicative than other

factors affecting the assessment for In Meet.

Once A finishes inferring B’s intention, it needs to decide, based on its own intention,
how to interact with B (Figure 6.19). A’s intended action with B depends on how friendly
it feels towards B, whether A is in a hurry, and A’s intrinsic desire to interact with others.
Among these factors, A’s desire plays a key role. However, in the case when A tends
to ignore others yet feels very friendly towards B, A may still intend to acknowledge B.
When A has a strong desire to talk with others, but is in a hurry and does not feel so
friendly towards B, it may intend only to acknowledge B or ignore B. The conditional

probabilities for the chance node Internal reflect these scenarios.

In view of the uncertainties involved in the assessment of B’s intention, when A and
B are separated by a certain distance, A has the time to verify its interpretations by
continuing to observe B. The observing action is denoted by the obs state in the decision
node. Once A and B approach a certain separation threshold, A must make a decision
about its interaction with B. Hence, in this case, the obs state is assigned a utility value
of 0 in order to rule it out. The final decision is the state with the highest utility value.
To maintain consistency, the parameters ut and ua for the utility table are set based

on the action that the character A has already taken. Should A’s previous decision be
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to talk or acknowledge, ut and ua are set to be 5 and 5 respectively, otherwise they are
assigned a value of 0. The bonus values ut and ua are set to 0 when the previous intention
was to ignore, since the ignoring action means that character A has not yet started to
interact with B as of last time step. Should the decision at this time step be to start
talking or acknowledging B, then A can start that action without having to worry about
keeping consistency with any interaction strategy used in the previous time step. Hence,
no bonus value is needed in this case.

The constants added in the utility table are used to specify preference depending on
A’s intention, B’s inferred intention, and the distance factor. When B’s inferred intention
matches A’s, the corresponding interaction state is given a bonus of 10 in order to make
it the preferred action to take. When the distance threshold has not yet been met, and
B’s intent differs from A’s own intention, a relatively high utility value is assigned for the
obs state in order to allow A to make further observations and try to decide later. When
the distance threshold is reached, the basic scheme for assigning preference is that when
B’s intent is to talk, A will follow its own intention more closely. When B’s intent is not
to talk, then even if A wants to talk, it will not be productive to do so, so the talk state

will be given lower preference than other states.

7.2.3 Personality Simulation

The network of Figure 6.19 is used in the acquaintance model to decide the action to
be taken when character A encounters another known character B. How friendly A feels
about B and whether A is in a hurry affects how A might want to acquaint with B. A’s
extroversion personality trait determines how talkative A is and how much A wants to be
around people. This is reflected in the desire variable that indicates the strength of A’s
desire to greet B in the corresponding way. Table 7.1 shows that when the observation of
B’s intent and the Distance variable remain the same, different settings for the personality

and internal factors alone will lead to different decisions, analogous to real humans. For



CHAPTER 7. BEHAVIORAL MODELING: ADDITIONAL DETAILS 96

Friendly | Haste | Desire | Internal | A’s Decision
yes yes talk talk talk
yes yes ack ack ack
yes yes ig ack ack
yes no talk talk talk
yes no ack ack ack
yes no ig ig ack
no yes talk ack ack
no yes ack ack ack
no yes ig ig ig
no no talk ack ack
no no ack ack ack
no no ig ig ack

Table 7.1: These data are generated by the network of Figure 6.19 when B_intent is talk
and dis takes the value of yes.

example, when A thinks that B intends to chat, and they are approaching one another, A
chooses to ignore B when it dislikes B, is in a hurry, and has low desire to greet anyone;
however, when A has a low desire to greet anyone, A will acknowledge B when A feels

friendly towards B and is not in a hurry.

7.3 Partnering Behavior Model Details

When two friends going in opposite directions see one another, they would normally
approach each other and chat prior to deciding whether to proceed in partnership. Hence,
when a character sees another character that it recognizes approaching, it will first employ
the acquaintance model to decide how to interact with the character. Should they decide
to have a chat, while talking they may decide to form a partnership. Another possible
scenario is when a character sees another character walking ahead, if it has an interest
in forming a partnership with that character, it would have to decide whether to make
an effort to catch up to that character and make a partnering request. We will focus on

the latter in explaining our model.
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Haste | Flexible | Social | Friend | Desire | Dominant | Goal Match | Internal | Join
yes yes yes yes yes yes yes yes yes
yes yes yes yes yes no yes yes yes
yes yes yes yes no yes yes no no
yes yes yes yes no no yes no no
yes yes yes no yes yes yes no no
yes yes yes no yes no yes no no
yes yes yes no no yes yes no no
yes yes yes no no no yes no no
yes yes no yes yes yes yes yes yes
yes yes no yes yes no yes yes yes
yes yes no yes no yes yes no no
yes yes no yes no no yes no no
yes yes no no yes yes yes no no
yes yes no no yes no yes no no
yes yes no no no yes yes no no
yes yes no no no no yes no no
yes no yes yes yes yes no yes yes
yes no yes yes yes no no yes yes
yes no yes yes no yes no no no
yes no yes yes no no no no no
yes no yes no yes yes no no no
yes no yes no yes no no no no
yes no yes no no yes no no no
yes no yes no no no no no no
yes no no yes yes yes no yes yes
yes no no yes yes no no yes yes
yes no no yes no yes no no no
yes no no yes no no no no no
yes no no no yes yes no no no
yes no no no yes no no no no
yes no no no no yes no no no
yes no no no no no no no no
no yes yes yes yes yes yes yes yes
no yes yes yes yes no yes yes yes
no yes yes yes no yes yes no no
no yes yes yes no no yes no no
no yes yes no yes yes yes no no
no yes yes no yes no yes no no
no yes yes no no yes yes no no
no yes yes no no no yes no no

Table 7.2: A’s decision to form a partnership with B affected by personality and internal
factors. This data is generated by the network of Figure 6.11 when Goal Dir is set to be
yes, and Perception assumes the state of unknown.
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7.3.1 Procedure Details

The two main considerations character A makes before deciding to catch up to character
B and initiate a partnering request are its own intention and whether it feels that its
goal is compatible with that of the potential partner B. When A’s goal direction and B’s
walking direction are consistent, then A is likely to feel there is a compatibility. When
A is not in a hurry and is fairly flexible about changing its current goal direction to
accommodate its potential partner’s, it may feel there is a compatibility even if its goal
direction differs significantly from that of B’s walking direction. A’s intention depends
on how social it is, how friendly it feels about B and how much it desires to pair up with
someone. When A’s intention is to form a partnership with B but does not feel its goal is
compatible with that of B’s, a dominant character is less likely to bend and initiate the
request. The perception in Figure 6.11 denotes A’s perception of B’s intention. When B
is walking ahead, A cannot tell B’s intention yet, so it will take on the state of unknown
for this case. When A and B meet fact to face, this judgment usually comes from their
conversation.

Figure 7.10 shows the belief-bar diagram for the network in Figure 6.11. The obser-
vation that B’s walking direction is within 45° of A’s goal direction is taken to mean
that their goal directions agree, and this information is entered as evidence for the Goal
Dir node. A’s internal factors are entered as prior probabilities for the Haste, Flexible,
Social, Friend, Desire, and Dominant nodes. As B is walking ahead, the state of the
Perception node is unknown. As shown in this figure, A feels that its goal is compatible
with that of B and it intends to form a partnership, so the final decision is the state with
the highest utility value, which is to join B.

Once A decides to join B, it will speed up and walk towards B. When it approaches B,
it will initiate a partnering request. B then must consider how it feels about this request.
Since the initiating request comes from A, character B need not be concerned about goal

compatibility, but need only consider its own desire and internal factors. There are two
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Figure 7.10: A sample belief-bar diagram generated for the network in Figure 6.11 to
decide whether to form a partnership.

more factors B must take into consideration: one is the length of time that A has been
making the request. If B had initially rejected the advance, but A repeated the request, B
may be persuaded to change its mind. The other factor is how persistent B’s personality
is. B may be persuaded to change its mind more easily when A continues repeating its
advance request and when B is not so persistent in its initial decision. An example set
of parameters are given in Figure 7.11. As illustrated in this belief-bar diagram, given
a low desire in forming a partnership, B rejects A’s advance even though it feels quite

friendly towards A.

Once B decides to reject the advance, it would continue walking. A must observe B’s
reaction to interpret B’s response. The motor system provides only limited cues that A
can observe, so we included only three observable variables in the network in Figure 6.13.
When B receives the partnering request, should it choose to accept, B would typically
turn to look at A in order to talk with A and is likely to stop and chat with A before
carrying on. B may also choose to turn to face A while talking, which is a less reliable
indicator than the previous two. The reliability node is added in the network to represent

this. The belief-bar diagram shown in Figure 7.12 demonstrates that after having entered
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Figure 7.11: A sample belief-bar diagram generated for the network in Figure 6.12 to
assess whether to accept a partnering request.

as evidence the observation that B is looking at A, but has not stopped or turned to face

A, A concludes that B has rejected its request.

How A responds to the rejection depends on how well A can take rejection, how
persistent it is in pursuing its own goal, and the strength of its intention to form a
partnership, as well as how long it had been attempting to make the request. The
value for the chance node Internal comes from the corresponding node in the network of
Figure 6.11 after interpretation. The observation that the time A has spent in making
the request has not yet exceeded a threshold has been entered as evidence. A’s internal
factors of being able to take rejection well and being quite persistent have been entered
as the prior probabilities for the corresponding nodes. The assessment of the internal
intention generated by the network in Figure 7.10 is entered as likelihood for the node
Internal, since the posterior probabilities for this node in the network of Figure 7.10
indicate how inclined A is to form a partnership with B given the evidence presented.
As a result, A decides it can tolerate the rejection and will continue its persuasion effort.
Hence, there will be another cycle of A making the advance, B deciding whether to accept
it, A interpreting B’s reaction, and deciding what to do about it. This loop will end only
when either B is persuaded to accept the request, in which case A and B will pair up, or

when A gives up on B and they go their separate ways.
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Figure 7.12: A sample belief-bar diagram generated for the network in Figure 6.13 to
interpret potential partner’s response to A’s partnering request.
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Figure 7.13: A sample belief-bar diagram generated for the network in Figure 6.14 to
assess how to take rejection.

7.3.2 Prior Probability and Utility Settings

The character’s personality and internal factors determine the prior probabilities for the
nodes. The priors of unknown variables are set to make each possible state equi-probable.
However, the unknown state in the Perception node in the network of Figure 6.11 is given

a slightly higher probability as this is the assumed state when no evidence is available.

The conditional probabilities are set in an intuitive manner. In the network of Fig-

ure 6.11, for the variable Goal Match, the most favorable scenario is when A’s goal
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direction is compatible with that of B and when A is not in a hurry and is fairly flexible
about changing its current goal, hence P(GM |GD = yes, H = no, Fl = yes) is set to
1.0 for GM = yes, and 0.0 for GM = no. The opposite is equally true: When A’s goal
does not match B’s and when A is in a hurry and not flexible about changing its goal,
then A is least likely to find a goal match; hence, P(GM |GD = no, H = yes, Fl = no)
is set to 1.0 for GM = no, and 0.0 for GM = yes. The remaining CPT entries are set
somewhere in between these two extreme cases depending on how favorable the asso-
ciated condition is for finding a goal match. Similarly for variable Internal, the most
favorable condition is when A is social, feels friendly towards B, and has a desire to
form a partnership, hence P(Internal|S = yes, F = yes, D = yes) is set to 1.0 for
Internal = yes, and 0.0 for Internal = no. The least favorable scenario is when A
is not social, feels hostile towards B, and has no desire to form a partnership. In this
case, P(Internal |S = no, F = no,D = no) is set to 1.0 for Internal = no, and 0.0
for Internal = yes. The remaining CPT entries are set somewhere in between these
two extreme cases, depending on how favorable the associated condition is for A to be

inclined to form a partnership with B.

The utility table considers relevant factors including the Goal Match, the percep-
tion of B’s reaction, A’s internal inclination for partnering with B, and A’s personality
dominance. It specifies A’s preference for each of the possible combinations of these
contributing factors. The higher the utility value, the higher the preference. The most
preferred combination of contributing factors for a given decision is given the highest
utility value of 10, and the least preferred combination is given the lowest utility value
of -10. For example, the combination when A is dominant, finds a goal match with
B, intends to partner with B and B is perceived to want to join partnership too, is a
preferred scenario for A to decide to partner with B; whereas the combination of the
same conditions, but with A deciding to not to partner with B is considered one of the

least likely combinations, and hence is assigned a utility value of -10. Similarly, other
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combinations are assigned utility values between -10 and 10 depending on how likely the

behavior designer feels each combination would be.

In the network of Figure 6.12, the CPT entries for the Internal variable are set based
on how likely the corresponding combinations of contributing factors would lead to B
inclining to accept A’s request to form a partnership. For example, the most likely
combination is when B feels friendly towards A, is social, has the desire to form a part-
nership, A has requested to partner for some time, and B is not persistent, so in this
case P(Internal = yes|Friend = yes,S = yes, D = yes, RT = |, P = no) is set to
1.0. The combination of B feels hostile towards A, is not social, has no desire to form
a partnership, A has not been requesting a partnership for long, and B is persistent, is
one of the least likely combinations, and hence P(Internal = yes| Friend = no,S =
no,D = no, RT = s, P = yes) is set to 0.0. The remaining entries are assigned in a

similar fashion.

In the network of Figure 6.13, the CPT entries for the variables Look and Stopped
represent the likelihood that the corresponding variable state would be observed given
the response. For example, if B’s response is to accept A’s request, it is more likely that
B will be looking at A and will be stopped. Since B turning to face A is not as reliable
an indicator as B looking at A and B stopping, the variable Reliability is added. When
B accepts A’s request, then B is less likely to exhibit the cue of turning to face A rather
than stopping and looking at A. Character B can only turn to face A when B is stopped
and looking at A; hence, the cue of facing A is only valid when the other two cues are
present. We have added the reliability node to the network to reflect this. Hence the
CPT entries for the Reliability variable are set such that the reliability value is set to yes
only when LA = yes and ST = yes, and is set to no in all other cases. The conditional
probabilities for the variable Face A (FA) are set such that when Reliability is true, FA
is more indicative and hence has higher probability of being present when B’s response

is yes than when Reliability is false.
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For the network of Figure 6.14, a yes value for the Take Reject node means A will
continue its persuasion effort by reiterating its partnering requests to B, whereas a no
value means A will give up. We assume that A will give up when the time it has spent
making unsuccessful advances has exceeded a time threshold. Hence, when TT = yes,
P(TR = yes) is set to 0.0, and P(TR = no) is set to 1.0. When TT = no, the
other factors Reject, Persist and Internal have an effect. The most likely internal factor
combination for A to continue its effort is when A can take rejection well, is persistent,
and really wants to form a partnership with B, hence P(TR = yes|TT = no,R =
yes, P = yes, Int = yes) is set to 1.0. The least likely combination is when A cannot
take rejection well, is not persistent, and has a low desire to form a partnership with
B; hence, P(TR = yes|TT = no,R = no,P = no,Int = no) is set to 0.1. The
remaining conditional probabilities are set somewhere in between these two extreme cases
depending on how likely the behavior designer feels the corresponding combinations of

internal factors would result in A wanting to continue making advances.

7.3.3 Personality Simulation

The partnering model uses the network of Figure 6.11 to determine if the character
wants to form a partnership. In this decision process, the internal factors of whether
the character is in a hurry and how flexible it is about its current goal, how friendly it
feels towards this potential partner, and the strength of its desire to form a partnership
with this potential partner are all factors that the character must consider. The social
characteristic of the extroversion personality trait and the dominance characteristics of
the character also play a role. Tables 7.2 and 7.3 demonstrate how these factors affect the
decision making, all other factors remaining the same. Posterior probabilities evaluated
by the network are compared, and the state with the highest posterior probability is
taken as the decision. For illustration purposes in the table, instead of the posterior

probability value, we record only the state with the highest posterior probability value
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Haste | Flexible | Social | Friend | Desire | Dominant | Goal Match | Internal | Join
no yes no yes yes yes yes yes yes
no yes no yes yes no yes yes yes
no yes no yes no yes yes no no
no yes no yes no no yes no no
no yes no no yes yes yes no no
no yes no no yes no yes no no
no yes no no no yes yes no no
no yes no no no no yes no no
no no yes yes yes yes yes yes yes
no no yes yes yes no yes yes yes
no no yes yes no yes yes no no
no no yes yes no no yes no no
no no yes no yes yes yes no no
no no yes no yes no yes no no
no no yes no no yes yes no no
no no yes no no no yes no no
no no no yes yes yes yes yes yes
no no no yes yes no yes yes yes
no no no yes no yes yes no no
no no no yes no no yes no no
no no no no yes yes yes no no
no no no no yes no yes no no
no no no no no yes yes no no
no no no no no no yes no no

Table 7.3: A’s decision to form a partnership with B affected by personality and internal
factors (Continued).

for the corresponding node in order to demonstrate the final decision being made. For

example, a social character who has the urge to form a partnership with someone, but is

in a hurry and is not flexible in changing its current goal will not join another character

who is going in the same direction but towards which it does not feel friendly; however,

it will choose to form a partnership if it feels friendly towards the other character.

7.4 Emergency Response Behavior Model Details

In the event of an emergency, everyone who becomes aware of it will first perform a mental

evaluation of the seriousness of the situation. One normally considers many factors in the
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Figure 7.14: A sample belief-bar diagram generated for the network in Figure 6.2 to
assess the seriousness of the situation.

assessment; however, in view of the limited cues that our characters can observe given
the current underlying motor system, we have chosen to consider three traits, namely

the age and gender of the patient and how caring the character is.

7.4.1 Procedure Details

Figure 7.14 shows a sample belief-bar diagram for the network in Figure 6.2, where
the patient is a young female and the character is quite caring about others, hence the
assessment is that the situation is fairly serious.

This evaluation is then entered as prior for the node Sr in the network of Figure 6.1,
since the posterior probabilities for this node in the network of Figure 7.14 indicate the
likelihood that the character believes the emergency situation is serious. The response of
the character to the emergency depends on how altruistic the character is and its courage.
An altruistic character is more inclined to investigate the situation and determine if there
is anything that it can do to help. Even though it may want to help, a cowardly character
may choose not to approach the scene for fear that it may be too horrific. The possible
reactions that are simulated include ignoring, running over to check, and walking over
to take a look at the scene. For the ignoring action, the character would turn its head
to look in the direction of the emergency, but keeps walking on. Concerned characters

will want to investigate the emergency scene. The more concerned will run over, while
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Figure 7.15: A sample belief-bar diagram generated for the network in Figure 6.1 to
determine how to respond to the emergency.

the less concerned will walk over. The belief-bar diagram in Figure 7.15 shows that a
relatively helpful character with less courage, who considers the situation to be quite

serious, would choose to walk over to investigate the emergency scene.

Among the characters who are circling the emergency site and investigating the sit-
uation, the more resourceful ones may decide to fetch help. The possible actions at this
stage include not fetching help, calling out to nearby people for help, and actively finding
a law enforcement officer to inform them of the situation. This decision depends on how
serious the character believes the situation is, how resourceful the character is in finding
help, its observation whether there are other people already summoning help, and if the
character had noticed a law enforcement officer previously and therefore knows a likely
place to find one. Faced with a serious situation, a resourceful character may choose to
find a police officer that it saw earlier if there is no one else fetching help. If it does
not know the whereabouts of a law enforcement officer, it may also choose to call out to
nearby characters for help. The belief-bar diagram in Figure 7.16 shows the case where a

resourceful character, who believes that the situation is serious, and did not see anyone
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Figure 7.16: A sample belief-bar diagram generated for the network in Figure 6.3 to
decide whether to fetch a police officer.
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Figure 7.17: A sample belief-bar diagram generated for the network in Figure 6.4 to
assess if someone else is summoning the police.

else fetching for help, but had seen a police officer earlier, decides to go to find the officer
and request assistance.

The assessment of the seriousness of the situation results from the network of Fig-
ure 6.2, and the interpretation of whether someone else had called for help is made by
the network of Figure 6.4. A person in the process of fetching help will typically be run-
ning away from the scene, hence this is included as a cue to be observed in making the
interpretation. In the case where others appear to be calling for help, but the character
believes that it can find a police officer sooner, the character may still decide to take
action. The belief-bar diagram in Figure 7.17 illustrates the case where the character

interprets that no help has been summoned yet, since it did not see any other character
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Figure 7.18: A sample belief-bar diagram generated for the network in Figure 6.5 to
decide to end the emergency response behavior.

running away from the scene, and neither does there seem to be a character in a better
position than itself to obtain assistance.

Characters investigating the emergency scene that have not gone to fetch assistance,
may choose to leave the scene after a span of time during which they have not been able
to do anything to help. The network of Figure 6.5 is used to make this decision. It
looks at whether the character is patient, is in a hurry, how altruistic the character is, if
someone else has taken action to handle the emergency, and how long the character has
been standing by and unable to help. The belief-bar diagram in Figure 7.18 illustrates
the case where with someone else already handling the emergency, a caring but relatively
impatient character, who is not in a hurry but has been idling for a long time, has decided

to end its emergency response behavior, and resume the pursuit of its original goal.

7.4.2 Prior Probability and Utility Settings

The prior probabilities of nodes representing the character’s personality or internal fac-
tors are set according to the character’s characteristics. The priors for unknown variables,
such as the Sr node in the network of Figure 6.2 are set so as to give each state equal pos-
sibility, as initially there is no evidence favoring any particular state. Other conditional

probabilities are set based on the behavior designer’s intuitions.

In the network of Figure 6.2, the CPT entries for the nodes Age, Gender and Care are
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assigned based on the seriousness of the given emergency situation and how likely it is to
observe the corresponding states of these variables. Assuming that when the situation is
serious, the patient is most likely to be elderly, less likely to be a child, and least likely
to be in the prime of age, the probability of P(Age = o|Sr = yes) is set higher than
P(Age = y| Sr = yes), which in turn is set higher than P(Age = p|Sr = yes). People
tend to think that females are more vulnerable and consequently judge the situation
to be more serious when a female patient is involved. So the probability P(Gender =
female | St = yes) is set much higher than P(Gender = male | Sr = yes). An altruistic
character will also tend to consider a situation more serious than a non-caring one, so the

probability P(Care = yes | Sr = yes) is set much higher than P(Care = no | Sr = yes).

In deciding how to react, the assessment of the seriousness of an emergency, which
is obtained from the network of Figure 6.2, is entered as prior for the node Sr in the
network of Figure 6.1. We set the utility table to specify the character’s preference over
the possible combinations of relevant factors. The higher the utility value the higher the
preference. The most unlikely combination, a helpful and courageous character choosing
to ignore a serious emergency situation, is given a low utility value of -10. On the contrary;,
the same character choosing to run over and investigate is given the highest utility value
of 8. Other utilities are set similarly, depending on how plausible the corresponding

combination is.

For concerned characters who already approached and investigated the emergency
scene, the network of Figure 6.3 enables them to decide whether they want to summon
help. The utility table links the relevant factors with the decision and specifies the
preference. The most favorable combination is given the highest utility value of 10, while
the least favorable one is assigned 0. For example, when the situation is serious, and
nobody has called for help yet, a resourceful character who saw a law enforcement officer
a short while ago will most likely go contact the officer rather than take no action. Hence

the utility for the former combination is assigned 10, whereas it is assigned 0 for the
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latter. Similarly if the character has not seen a police officer earlier, hence does not know
where to find one, it is more likely to call out for help than to search for an officer; hence,
the utility for the call action is assigned 10 instead.

In the network of Figure 6.4, when assessing if someone else had called for help, the
CPT entries for the variable Run_away and Better are set based on how likely it is to
observe the corresponding state given the condition of the Called variable. For example,
when a character is seeking assistance, it is more likely to see that character running
away from the emergency scene. It is also important for that character to be in a better
position to get the required help. Since this interpretation will be used in the network
of Figure 6.3 to decide whether to summon help, it is assumed for simplicity that, even
if another character is attempting to contact police, if one is actually in a position to
summon help more quickly, for example, by being closer to the officer or by being able
to run faster, etc., the character will regard this as no help is being fetched. Hence the
conditional probabilities of P(B = yes | Called = yes) and P(R = yes | Called = yes) are
both given high values, while P(B = yes | Called = no) and P(R = yes|Called = no)
are set low. Because even when someone is running away to get help, that person must
also be in a better position than the character itself to get help in order for the character to
interpret the situation as help being fetched, the probability of P(B = yes | Called = yes)

is given slightly higher value than P(R = yes | Called = yes).

7.4.3 Personality Simulation

The agreeableness personality trait plays a role in the emergency response model, as an
agreeable person tends to be more caring about others, so does the patience characteristic
of the conscientiousness trait. A patient character may not mind lingering at the scene
as much as an impatient character would. When a character tries to determine whether
to end its own emergency response behavior and leave the accident site, internal factors

such as whether the character is in a hurry also has an influence. Table 7.4 shows data



Patience | Haste | Care | End
yes yes yes no
yes yes no | yes
yes no yes no
yes no no no

no yes yes | yes
no yes no | yes
no no yes no
no no no no

Table 7.4: This data are generated by the network of Figure 6.5 when Inaction takes the
state of short and Handled is of value no.

obtained from the network of Figure 6.5 to illustrate how these factors affect the decision
when no one had taken concrete action to handle the emergency yet and the character
has not been present at the scene for long. For example, a character in a hurry who
cares for others and is patient decides to stay longer, while a non-caring though patient

character in a hurry chooses to leave.



Chapter 8

Results

Taking advantage of our decision network framework’s ability to handle uncertainty and
complexity, we have used it to equip our virtual human model with the aforementioned
behavior models. As described earlier, the collision avoidance model incorporates antici-
pation of the opposing character’s avoidance strategy and makes a decision accordingly.
In addition to simulating the interpretations a character draws about its environment and
about its potential partner’s intentions, the acquaintance, partnership, and emergency
response models also take into account the effect that personality and internal factors
have on decision making. Decisions are made based on observations and the analysis of
objects that fall within the character’s focus of attention.

Our pedestrian animation system enables us to run simulations of autonomous, mutu-
ally interacting pedestrians in large-scale urban environment without human intervention.
The automatically generated behavioral animations demonstrate the effectiveness of our

decision network framework.

8.1 Pedestrians in Penn Station

We have used the Penn Station virtual environment model developed by Shao [2005] as

the platform for our pedestrian simulation. There are two main areas in the station,

113
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the main waiting room and the concourse, where most activities take place. These two
areas are connected through a passage. At run time, the environment model requires
approximately 90MB of memory to accommodate the station and all the objects.

As in Shao [2005]’s system, we also use a text configuration file to initialize the pedes-
trians. Individual differences are reflected in these specifications. They include motion
preference data such as preferred walking speed and maximal angular speed during turn-
ing, geometric appearance related data such as the character type and their dress style,
and decision related personality traits and internal factors. The decision related param-
eters include whether the character is in a hurry, how social it is, its flexibility about
the goal that it is pursuing, how dominant it is, if it is persistent, how well it can take
rejections, how much it cares about others, how helpful it is, how courageous it is, how
resourceful it is, and what other characters the character knows, and how friendly it feels
towards each of them, in particular, its desire to greet, chat with, and form a partnership
with someone.

We have populated the train station mostly with commuters plus a few law enforce-
ment officers. Though our system is capable of generating crowd behaviors, we concen-
trate on simulating individual behaviors, more specifically detailed interactions between
two characters. While acting autonomously, each character observes its surroundings,
makes interpretations about its observations, and acts based on common sense rules and

its own impression about nearby characters and other objects.

8.2 Control Flow in the Autonomous Characters

Each character acts autonomously inside the virtual environment. Let us follow a char-
acter, call it Jane, to illustrate how the system is integrated together. At any given time,
Jane’s intention generator processes her internal attributes and memory to assess what

Jane’s current intention is, for example, Jane may want to buy a ticket or go to Platform
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3 to catch a train, or simply wonder around the train station to kill some time. Jane’s
eyes observe her environment and determine what objects are within Jane’s 180-degree
field of view through querying the database. This includes a list of static objects and a
list of other characters within Jane’s field of view. The perception data Jane can gather
from querying the database includes position, speed and orientation of the objects in the
environment, including other characters. Jane can also observe the gaze directions of

other characters.

Jane’s attention filter examines these sensory data and assesses what object(s) fall
into her focus of attention. This depends on which objects are of interest to Jane’s current
intention, or if there is any object that makes a sudden, rapid move, as such an object
tends to grab one’s attention. When Jane sees in her focus of attention a character she
recognizes, or a character she may have an interest to interact with, or when there is a high
collision potential with some character, Jane draws inferences about them through her
interpreter in her perception system. The interpreter applies the interpretation capability
of our framework to make inferences about others’ intentions; hence, Jane can decide how

to interact with them.

Jane’s decision maker takes in the interpreted perceptions, while taking into account
Jane’s current intention to make a decision. This decision making process is accomplished
with our behavioral framework. Each character is equipped with the four behavioral mod-
els we have built, which were described in Chapters 6 and 7. These models are event
triggered—i.e., whenever the circumstances give rise to certain behaviors, the correspond-
ing networks are evaluated to make necessary decisions. For example, when Jane bumps
into another known character, her acquaintance behavior model is invoked to help her
decide how to greet her friend, whereas if she sees an emergency situation, her emergency
response behavior becomes active. The networks associated with each behavior model

are only invoked on a need-to-use basis.

Each character possesses a set of behavior routines that allow them to carry out
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primitive actions, such as walking to certain locations, stopping to chat, etc. The basic
motions involved are provided by the motor system. Once an action selection decision
is made, the corresponding behavior routines are called to carry out the necessary ac-
tions. For example, if Jane saw an emergency situation and decides to get help from a
police officer she saw earlier, Jane’s behavior routine will communicate with the motor
system and allow Jane to run to the position where she last saw the police officer. In
the meantime, if Jane detects any potential collision, her collision avoidance behavior
model will be invoked to assess the potential obstacle’s avoidance strategy and make an
avoidance decision based on that. This decision may temporarily interrupt the running
motion Jane was engaged in and cause her to take a detour before resuming calling the
police. The motor system is responsible for carrying out the actual primitive movements

such as walking and running.

As another example, when Jane decides to form a partnership with Lisa, who is
walking ahead. The corresponding behavior routine will allow Jane to walk faster and
catch up with Lisa. Then Jane will stop and make an advance request. If Lisa’s partnering
model decides to accept Jane’s request, Lisa’s behavior routine will make Lisa stop to

look at Jane and they chat briefly before walking on together.

Our behavioral framework is applied mostly in the interpreter and the decision maker,
while behavior routines to carry out the corresponding decisions are implemented to make
the decisions realizable. The object that catches most of the character’s attention, which
is determined by the attention filter, is used to direct the character’s gaze direction.
When there is no particular object of interest, the character will look forward at where

it is going.
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8.3 Animation Samples

Our most complex animation is the “emergency response” animation illustrated in Figs.
8.1, 8.2 and 8.3. A young female commuter feels ill, staggers, and then faints to the floor
of the concourse area in the virtual Penn Station. Some commuters around her turn their
heads to look, but keep walking on. Others walk over to see what happened. The most
concerned run over to take a closer look. After checking the patient, a woman commuter
recalls seeing a law enforcement officer in the main waiting room of the station and,
hoping that he is still around, decides to run over there and ask him to help. While she
is gone, some of the commuters attending to the patient at the scene decide to leave as
they determine that they cannot do much now that someone is already seeking assistance,
while other passers-by approach to take a closer look at the scene. The law enforcement
officer who was summoned by the woman eventually reaches the scene, examines the

patient and decides to radio paramedics to provide further assistance.

Our shorter simulations demonstrate the functionality of the partnering behavior
model, differing only by internal factor and personality settings. One animation (Fig-
ure 8.4) shows a pedestrian A who notices a friend B walking ahead, catches up, and tries
to partner with B, who initially refuses the advance, but reconsiders upon A’s insistence,
and then permits A to partner and walk/talk together. A second animation (Figure 8.5)
shows a male pedestrian eventually giving up on his attempts to partner with a female
stranger, after repeatedly being shunned. The third animation (Figure 8.6) shows two
female friends who unexpectedly encounter one another. They stop to have a chat. Then
one of them decides to join the other for a walk since she has some spare time and nothing

better to do.



8.4 Performance

Our decision network behavior framework is efficient. An autonomous pedestrian evalu-
ates the relevant networks at each step of the animation only when an associated decision
must be made. On an Intel Xeon 3.2GHz PC with 1GB RAM, the behavior system for
a single pedestrian usually takes under 1msec to execute. The most frequently invoked
networks are those for collision avoidance. The network depicted in Figure 6.21, which
has the largest utility table, takes from 1-2msec to set up and compile in Netica and usu-
ally less than 1msec to evaluate. The emergency response network shown in Figure 6.1
takes about lmsec to compile and 1msec to evaluate.

The behavior models are event triggered, so these networks are invoked only when
their corresponding decisions or interpretations need to be made. When the emergency
response model is invoked, the total simulation time involved, including the network
evaluation time, the execution time for the corresponding behavior routines, and the
time for sensing the environment is about 10msec total. The network related simulation
time is less than half of this. When no decision needs to be made, and the character

simply carries out what it is doing, the simulation time is about 6msec.



Figure 8.1: Emergency Response.



Figure 8.2: Emergency Response (continued).
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Figure 8.3: Overview of the emergency site while a character runs to fetch help.



Figure 8.4: Partnering behavior model: accepting the request.



Figure 8.5: Partnering behavior model: rejecting the request.



Figure 8.6: Partnering behavior model: run into each other.



Chapter 9

Conclusion

9.1 Summary

This thesis has introduced a novel framework for advanced behavioral modeling in virtual
humans, which addresses the challenging open problem of simulating complex interac-
tions between people in urban settings. Based on hierarchical decision networks, our
framework has aspired to handle uncertainties, model perceptual focus of attention, in-
corporate personality traits, and facilitate the encoding of behavior rules. Combining
probability, decision, and graph theories, it enables us to create autonomous characters
that can make nontrivial interpretations and arrive at intelligent decisions dependent
on multiple considerations. We demonstrated our framework in behavioral animation
scenarios involving interactions between autonomous pedestrians, including an elaborate

emergency response animation.

To our knowledge, ours is the first attempt to design a virtual human behavior mod-
eling system and architecture based on decision networks, and the first use of decision
networks in computer graphics. Differentiating from traditional crowd simulation, we
have concentrated on modeling individual behaviors, which requires that the character

be capable of making rational decisions based on the independent assessment of its own
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environment. This tends to be more complicated and it is hard to achieve using the typ-
ical approach of a rule-based system. To achieve this goal, we have developed a decision
network framework, which offers several advantages. It can handle uncertainties, which
are largely ignored in previous behavior models. Having the characters act based on
possibly imprecise interpretation of their surroundings rather than on exact information
gained through querying the world database yields automatic animation that more real-
istically approximates how real people behave, including nontrivial interactions between
autonomous characters.

As decision networks offer a compact, informative representation of the world and
the behavior system, our framework makes it easier for character designers to encode
commonsense knowledge into behavior rules that govern the characters’ decisions. It also
facilitates modifications, such as adding new parameters to behavior models. Different
personality traits and weight settings for relevant factors in the decision making process
lead to different behaviors. Observation of the behavior resulting from various personal-
ity and internal factor settings can help in validating the decision networks. Our results
demonstrate the effectiveness of our framework. Its hierarchical structure keeps the com-
putational complexity at bay, and its clarity provides insights into behavior mechanisms

and facilitates the design, implementation, and debugging of behaviors.

9.2 Advantages

Our new framework has several advantages over existing behavioral modeling techniques
including scripts and finite state machines, which are mostly rule based and use condi-
tional statements to specify behavior rules.

In order to construct behavior models in general, one has to consider what decisions
need to be made, what factors we want to model, how much each of them should influ-

ence the final decision, and how they influence each other. This is a necessary exercise
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regardless of the behavioral modeling approach. Our framework provides a clear, sys-
tematic way to represent the fundamental considerations, because as we think about the
decision making process, it is natural to chart the relevant causal relationships. Decision
networks offer a natural, graphical network structure representation and visualization of

these relationships.

Our framework also provides a rigorous and elegant mathematical structure to orga-
nize the complicated relationships among the relevant variables in the behavioral model.
The weight each input factor carries on the final decision, and the character’s preferences
can be easily scaled and specified as probability values and utility values. By contrast, to
represent the same relationships in terms of conditional statements, one has to explicitly
define a rule for each possible relationship. The specification of all the interrelationships
among variables using rules is much more tedious and difficult, and the nested conditional
statements can be sensitive to the order of the rule specification, as a specific order may

create certain bias in the final decision.

Moreover, the reasoning structure behind the rules are much more difficult to visual-
ize and communicate than with a graphical model. Additionally, with decision networks,
all the preferences and influencing factors are kept in clearly defined and compact struc-
tures. Given the same network topology, we can have characters reasoning and acting
quite differently by specifying different probability and utility settings. This cannot be
accomplished as easily with rule-based systems, including scripts and finite state ma-

chines.

Decision networks have mathematically sound inference algorithms, and provide mod-
ular representation of uncertain knowledge. With these capabilities, the characters act
based on their interpretations about their environment and about each other, rather than
exact information extracted from the direct querying of the database, hence making the
simulation more realistic. As explained in Chapter 4, rule-based systems cannot handle

uncertainties, and they lack the powerful inferencing capabilities that decision networks
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have.

As shown in Section 6.1.4, once the networks are constructed, they can automatically
generate results for all possible input parameter combinations, including uncertain in-
puts, which are represented with probabilities. This makes the behavioral model flexible
and able to respond sensibly to a wide range of changes in the character’s internal and
external environment. The network specification and evaluation can be carried out with
commercially available software. Specifying rules with conditional statements that can
cover the same wide range of potential inputs is difficult and time consuming.

As was discussed in Section 6.1.2, decision networks facilitate parameter fine tuning
and debugging. It is easy to identify what contributes to the final decision, and modifica-
tions take only minutes to complete, as the structure is so clear, compact and modular.
However, debugging with rule-based systems tend to be a painful process. The more
complicated the relations that need to be represented, the more error prone and difficult
to debug the corresponding rule-based system becomes.

Adding a factor to the networks, may it be a new cue observable or an additional
personality trait to be considered, simply requires the addition of a new node plus the
corresponding link(s) indicating its relationship with other nodes in the network, as well
as its associated probabilities. Examples given in Section 6.1.5 illustrate how easy it is to
add emotional components to an existing network. With rule-based systems, extension
can easily involve changes to many rules. Identifying all the rules that will be affected

by the extension alone can be challenging.

9.3 Applications

Although this thesis is an initial attempt to introduce decision networks to behavioral
modeling in the field of computer graphics, we have seen great potential in its applica-

tion. Computer games are a fast growing industry with more and more emphasis given
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to gameplay. How to make computer-controlled characters seem more “intelligent” and
“engaging” is an important dimension in the success of a game. Our framework’s ease
of behavior specification and power in making interpretations will facilitate the creation
of game characters responsive to their environment and to each other. These charac-
ters will be able to make rational decisions based on their uncertain perception of their
surroundings and their assessment of the player’s intentions. Through varying network
parameter settings and/or varying input parameters to the networks, one can quickly
create characters that react quite differently even when faced with the same scenario,

hence enriching the player’s gaming experience.

Computer graphics is playing an increasingly important role in the motion picture
industry. Another potential application for our framework is in movie and special effects
production. For example, crowd behavior generation is often needed in these applications.
Empowered by the ability to simulate personality and emotional effects, our framework
can serve to give the characters that are following a crowd an individual touch. While

being a member of a large group, the character can still preserve individual differences.

Urban planning is concerned with the design and social environment of municipalities
and communities. Populating an urban design with virtual characters to simulate how
real humans will use the space can help to test the design and identify potential problems.
It is much easier and less expensive to fix the design than to make modifications during or
after physical construction. Our framework can be exploited in such applications to take
advantage of the ease with which designers can guide the virtual characters following
commonsense heuristics about people’s general preferences and habits for using such
places. Given the decisions that can be made based on a wide range of input parameters,
the autonomous characters can be made sensitive to certain aspects of their environments,

hence supporting focused testing of required aspects of the urban design.

Virtual human modeling can also assist training. It is often better to give the trainee

an interactive and immersive experience to achieve the best results. Our framework



CHAPTER 9. CONCLUSION 130

facilitates the simulation of interaction among characters, and consequently it potentially
offers a good platform for building training scenarios. It can be helpful to analyze and
even predict the trainee’s behaviors for the instructor to improve a training plan. The
decision networks’ ability to make both interpretation and prediction makes it a good

candidate to fulfill this task.

9.4 Limitations

Using our novel framework, we have developed several behavior models that demonstrated
nontrivial interactions between virtual pedestrians. However, real human interaction is
of course much more complicated and diverse. Thus, this thesis should be viewed as
an initial attempt in applying the decision network framework to computer graphics
for human behavior modeling. We will discuss the possible expansion of the behavior
repertoire momentarily.

In our probabilistic approach, the full joint probability distribution can answer any
possible queries, but the large computation required would make it intractable to handle
complex problems.

The compactness of the decision network makes it feasible to handle domains with
many variables. However, the decision network is a correct representation of a domain
only if each node is conditionally independent of its predecessors in the node ordering,
given its parents. For domains in which each variable can be influenced directly by all
other variables, the specification for conditional probability tables will be the same as
specifying the full joint probability distribution. Hence, the decision network may not
be suitable for handling domains with co-related decision factors [Jensen 2001]; i.e., it is
difficult to apply decision networks to problems with many non-independent factors.

As the decision network is an acyclic graph, it is not an appropriate solution for

problems that must be represented with cycles or that involve the modeling of loops or
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repetitions. Any behavior that involves cyclic causal chains or recursive plans fall into
this category. For example, suppose we want to model a character in a pub. When the
character is unhappy, it drinks heavily, but when the character drinks heavily, it feels even
more unhappy. So the emotion unhappiness and the drinking behavior form a vicious
circle. They are mutually causal, but with an acyclic graph, we cannot represent such
a cycle. Given the strength in uncovering information from conditional probabilities, we
can try to focus on time series of such problems, and regard the causation as a temporal
phenomenon; i.e., assuming one thing causes another by preceding it. By doing so,
inferring mutual causation and recursion becomes intractable, but for animation purposes
we can still have the characters make reasonable decisions. In this example, we will break
them into two separate networks, one has a link from unhappiness to drinking indicating
this causal relationship, and the other has a link from drinking to unhappiness. The
designer must specify which network should precede the other in the order of evaluation.
Given the acyclic nature, the relationships that can be represented at any given time must
be either one-way causal influences, or net influences on steady-state conditions over a
given time frame [Borsuk et al. 2004]. One way to represent feedback within the system
is to employ dynamic decision networks, which supports the modeling of probabilistic

relationships for variables within and between time steps.

9.5 Future Work

Our framework offers several opportunities for future research, among them the expan-
sion of the behavioral repertoire, the user interface, improving the motor system, adding
a temporal component, and performing sequential decisions, prior and conditional prob-
ability settings, and Bayesian parameter learning, each of which we will now discuss in

turn.
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Expansion of the Behavioral Repertoire: A natural avenue of future work within
our framework is to develop additional behavior models. An expanded behavioral reper-
toire can enrich the complexity and enhance the realism of the interaction between virtual
humans. For example, a behavior model can be developed that enables the characters
to interact not only pairwise, but also in larger groups. We can expand our interaction
models to simulate more sophisticated coordination and cooperation behaviors among

multiple characters.

Another direction for expansion is to extend the existing behavior models. Human be-
haviors involve a complicated decision process, which often has to take many factors into
consideration, including external stimuli, internal factors, and personality. Personality is
multifaceted. In 1936, Allport and Odbert [1936] extracted 4,500 personality-describing
adjectives out of 18,000 personality-describing words that they found in two of the most
comprehensive English dictionaries available at the time, which they regarded as de-
scribing observable and relatively permanent traits. Many traits may work together to
influence a particular decision. In our behavior models, we have tried to simplify the
decision process by considering only a few traits that cause prominent effects. Our simu-
lation results demonstrate that our models are capable of producing a variety of different
reactions due to individual differences. More elaborate models would necessitate the con-
sideration of additional factors, which would require an expansion of existing behavior

models.

Another potential motivation for model expansion is the fact that the limitations of
the motor system restricts the available cues that the characters can observe to make
interpretations of their surrounding environment. As the motor system improves, more
cues may become available and they can easily be incorporated into the models. Hence,

the framework should be easily expansible to accommodate this need.

The hierarchical structure of our framework keeps the components of the decision

making process modular. Components are kept in separate networks and the connection
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between them are clearly expressed by how they are linked together in the higher level
network. This facilitates communication as it provides a clearer view of how the decision
is made. Expansion of the model need only involve the lower level networks associated
with the components concerned. Networks corresponding to other components need not
be changed. Higher level networks in the hierarchical structure need only be updated
when it has been necessary to add lower level networks corresponding to new components

that must be considered in the decision process.

Adding a User Interface: In our current system, the parameters associated with
the virtual characters, including their characteristics, are specified in a configuration
file, which is loaded before the simulation begins. An intuitive user interface should be
developed to facilitate the graphical construction of behavior models. The user should
also be able to input personality parameters and internal factors on the fly, and their
values will be entered as evidence within the behavior models such that the simulation will
immediately reflect the modifications. This sort of interactivity will enable animators to
more easily detect potential problems with the behavior model by making adjustments on
the fly and observing the resulting behavior. It can also potentially support personality
studies, as users could try different personality settings more easily and observe their

effects on human behaviors.

Improving the Motor System: Though our framework is general in nature, the
limitations of our current DI-Guy-based motor system constrains the observable cues
that are available in making interpretations; hence, the quality of the animations that
can be generated. With a more advanced motor system that is capable of generating more
detailed human movements, including facial expressions, and affords more precise control
over motor movements, our decision network framework can access more observable cues
in making interpretations over the character’s environment, especially its assessment of

other characters’ intentions. This will in turn enhance the character’s decision making.
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Adding a Temporal Component: In our current framework, we assume that the
decision at any time step depends only on observations made at that time step or at most
in the previous time step. Some complex decisions, however, may depend on a substantial
history of previous observations. Moreover, in the current system we concentrate on
making episodic decisions; i.e., decisions made in one shot, where the utility for the
outcome of each action is well defined. For sequential decisions, the utilities actually
depend on a sequence of decisions. To model such decisions, it will be necessary to
augment our model with a temporal component. A possible extension to our current
framework, which should preserve its ability to handle partially observable, uncertain

environments and unexpected observations, is to use dynamic decision networks [1990].

Training the Network from Data: The prior and conditional probability distri-
butions are currently set by designers subject to commonsense considerations. While
facilitating the behavior model specification, they may be more arbitrary than desirable.
As data become available from human behavior studies, they can potentially be used
to enhance the probability distribution settings for the models. Techniques have been
developed in training Bayesian networks from data. They can be applied to enhance the
quality of the probability distribution settings, which will in turn lead to more accurate

behavior models.

Bayesian Parameter Learning: Intensive research has been done on learning Bayesian
networks. These techniques can potentially be applied to improve the probability distri-
butions further. For example, the accuracy of the interpretations needed to arrive at a
decision depends on the associated network structure and its probability distributions.
By querying the system database directly, we can determine the exact answers to what
needs to be interpreted. These exact answers can then be compared with the interpre-
tation results to fine tune the associated probability distributions and even the decision

network structures if necessary. The improvements made in the networks will in turn



improve the quality of behaviors being simulated.

In closing, this thesis has demonstrated for the first time that decision networks can
be a powerful framework for developing behavior modeling systems for autonomous vir-
tual humans. Given the further development of our framework in the above suggested
directions, one should be able to populate virtual worlds with human characters capa-
ble of making complex, perceptually-motivated decisions and exhibiting realistic mutual
interactions, while at the same time being amenable to the input of an animator who
wishes to direct their behaviors. These smart characters will also be capable of learning

from their experiences, thereby improving their decision-making skills.
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