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Abstract 

Introduction 

TM generalized deka w,e for network learning has received a 
great deal 01 attention recently. The generalized deka rule is a 
baming procedure for associative netwohs which contain hiiden 
Un,,s. II is a significant advance over previous network learning 
pocedures which either (1) were limited to two-layer, networks 
,231 which are incapable of solving a number 01 Interesting 
poMem5 [t2). or (2) required stochastic un%* [9] and a large 
UJVX~~ of computation for each learning cycle. 

INPUT HIDDEN OUTPUT 

FkWel: A muIt,-layer netwolk which contains bldde” 
lml1.s 

The generalized delta rule indicates how the weight wji on the 
connection from unit i to unit j should be changed aher 
presentation 01 an input pattemp: 

0;r~L~o; 

S,aJ-oJcS,-, % j is an hidden uni! 

where 11 is a parameter which controls the learning rate; $I is the 
target output for unit j with input pattern p: 5,, is the error 
propagated back to unit j from a unit L whose input is 4: and w is 
the weight of the connection from unit j to unR li. The interes ed f 
reader is referred to [IS] 10, a derivation of the generalized deka 
rue. 

The concept identification task [3] has been extensively studied 
in psychology. In this paper. we review a number of findings on 
concept identification in human subjects. and compare these 
findings to network learning with the generalized dena We. In a 
typical concept identification experiment, a subject is shown a set 
of cards with ditterent objects on them. The cards are presented to 
the subject one at a time in a random order and the-subject is to 
determine whether the card belongs to the class to be learned. 
Afier each presentation. the subject is given teedback on the 
correctness of his response. Typically. the subject is told which 
attributes of the objects on the card (e.g., the number of objects, 
the shape 0, the objects. and the color 01 the objects) are 
potentially relevant. The trials continue until the subject makes M 
WVXs. 

The concept identification task seems idea, tar network learning. 
The attributes on the card are treated as input to the networlc. In 
most ot the experiments. the attributes are two valued. so a binary 
encoding 01 the input is possible (e.g., tar shape 1 = square and 0 
= circle). The output of the nehnolk is 1 if the card is an instance 01 
the concept and 0 othemise. After the network classifies an input 
pattern. it is given teedback on the correctness of hs output so that 
the weights on connections between units can be modified. 

For a,, 01 the simulations. the netwoti learning algorithm is 
simulated on a Symboliis 3600. To ensure that the algorithm has 
been mrrectly implemented. we have run I on many Of the 
examples in [t6] and obtained similar results. 

The issue addressed in this paper is an evaluation of what mght 
be called the strong PDP hypothesis: that a!! cognitive processes 
are realized directly in a homogeneous netwo& of connected uni?s. 
This hypothesis has been entertained by Churchland [5]. At the 
other extreme is the physical symbol system hypothesisI141: that 
all cognitive processes are symbolic manipulations of the sod in 
logic and lisp. 
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In between these two extremes. there are a w&r of po%sibb 
hypotheses. After presenting the rexwits ol wr slmu!ations. we 
shall comment on other a,temative hypotheses. 

Relative easa of concept ldentlficatlon 

mere have been a $rge number 01 experiments investf9atl~ 
the *as* of leamlng combinatkm of anributes. For example. Bowef 
and Trabasso [2] have reported that concept identfffcatbn by B 
single affirmative attribute (e.g., blue) is easier than Conceal 
klentifwfbn on a conjunction of (*I** (e.g., blue and SQJare). 
ahers (3] have found that con]“nclive concepts am easier than 
disjuwtive concepts (e.g.. blue or square) and that dfs!unctb* 
concepts are easier than exc!us)ve di*]uwtlve concepts (e.g., blue 
or square but not blue and square) [22]. FinallY, p+mo~PhOus 
concepts, also called mout-of-n, (e.g.. at least two Of square. bfue 
and symmetric) have been round lo be mara dmicufl than 
disjunctive concepts [n. To our knowledge. there has been Ty) 
comparison ot po,ymorphous and exclusive di*]unctive concepts: 
both are more diftwl than di*]unctiie. Pique 2 summarizes the 
relative ease of acquiring concepts. 

f *.Hirmltion I 
i: 
3. 
4. 

Conjunction XAY 
Disiuwfbn XVY 
Exclusive Disjunction X@Y 
POlymOlphoUS 2at-of-3(X,YJ) 

Flg”re2: Relatl”e ease Of concept MentlflCatlOn, 811 
determIned by the number of trfals MuIred to 
learn the concept 

We te*t*d the generalized deha NIB In a large number of 
dierent netwotir and conditions. In ail of the tests, there were 
three Input units, one outpn “nit. and a number 01 hidden units 
conne**d to the output unit. me to,bwing parameter8 were vadsd 
in the Ida,*: 

. Number of hidden “nits: two. eight, and hventy-fwr. 

. Connections between “nils: For al, of the te*ts each inpn “nil 
was connecled to every hikXf*n “nit. In additbn. In the case 01 
the twetiy-four hidden “nit test. random conneztbm between 
the inplt and hidden “nits were tested. 

. me value of q: varied lmm .f to .* in increments 01 .l. 
me weights w. w*re *et to random numbers b&ween -5.5 and 
5.5. The thres 

% 
Id 9 of the hkfden “nits were also *a to Tim 

w&es between -5. and 5.5 s”b]ect to.tha constraint that the 
outpa was never more than than .995 or less than .005 lor any 
input combination.’ An output value of greater than .65 was 
considered to be 1, and less than .I5 wa* mnsMered to be 0. For 
each condiibn, live concepts corresponding to one of the class** 
of concepts were learned lmm ,000 random initial condlbns and 
the number of presentat,ons of each input panem was recorded. 

In the condition* tested, the number of hidden “rifts and the 
v&e of q dii not *fled the relative ordering of the ease of concept 
identifbatbn cowld*rably. ResMs from severa, slmulatbns are 
stwn in F@~re 3. For all of the slnwlatbns. 1 the network failed lo 
learn after 5OOil presentatbns 01 each inpal pattern. the Sinulation 
was terminated. 

There am several conclusbns which can be drawn from this 
SlmMtbn. 
. A”b”atbn b always easier ,han other Classes of concepts (p 

< .OOi). This resuil is kfentiil lo the res”R with human 
subiacts. 

. Usually, there Is h) s!gn&anf difl*retx* between con]“tive 
di*]“nnive. and polymaphous mncepfs.2 This resuii differs 
from the findings on human sub]ecfs [22]. A bit 01 analysis 
indicates why conjunctin and disjunction are equally diiiwit, 
skxe by Interchanging 1’6 and o’s the disjunctian hecOmSS 
mn]uwtiin (Le., In digital circuits, an or-gate in positive logic 
is an andgate in negative bgb). Btwer[3] has argued that 
di*$mctiin is more Mfiin for human subjects because they 
liti I more diMcuk to wlk with negative imtarws. The 
gene,&ed de”* t”le do88 rat *hare this d,Wicuky. 

a Exduske dtsjwctbm were always SignMcanfly (p < ,001) 
more difficult than dis@Xbns. This res”I is identical to the 
rest~l witf! human wb]eds. 

. The average number of presentatbns required for learning in 
all condiifns Is nwch greater than that required by human 
s”b]ects. For example, in (7). wi?h three two-valued attributes 
the mean mmixr 01 cards presented was nine lor mnjunclive. 
twenty-eight for disjtmctive, and lady lor pDlymorpho”* 
concepts. Note that in Fiiure 3. the results are reported in 
decks 01 card* (i.e.. presentations of all eipht inplt panems). 
The resuhs In Rgum 3 must b+ nwniplied by eight befOr* 
being compared to human performance on this task. 

Redundant relevant cues 

BOWer and Tmbasso have extewivef, investiiafed ConcePt 
identifkxtbn when there are redundant anributes (21. For example. 
1 two attrsutes always vary together. (I.e. squares are ahvays blue. 
and blue thing* are always squares), then human sub@% fall info 
three classes: those that “se one of the &v*ti atributes (e.g.. 
btw). those that “se fhe other relevant &tribute (e.g., *q”*re) ad 
those that us* both [Z]. Since Bower and Trabassn were pdm**ilY 
concerned with dstenining whether or wat s”b@fs attended to 
both *itributes, they group together those subjects who 
~~n~nclhr*~Y *nd disjwctffety ccmbfned the redundam atbibutes. 

Encouraged by the res”n* in the *arller s,n-&f~n where fh* 
value of q dM mf aner the result, In these *irml*tlons we did nOf 
vary the value of I, (.25). We simulated networks wlh 8 ati ’ 
hidden “nit(s)*. In this simulatbn them were three input andbut**. 
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&‘Fd’. 1 me value Of I WaS ahSayS the same 88 tfle value Of X. 
flraSt@n cl tix lw ,npl( pattamS were repeated until the 
nno” wtd respond with 1 tin x (and, themfore. z) wss f and 
~ O 0,hS~ise. After ihe nehvcfk had learned this concepf. n was 
+” w,,h all ebht p0SS[blS input patterm. The output value 
d ms nS,,,ak detetined what fuMbn ft had leam~d. For 
m&e. ” the nehuork repOdSd 1 only when x wss 1, then I had 
@& ,hSt IWa8 the mwm attribute. 

,” ,h,S *,~,*!l0”. for 801118 lnpaf patterns which were never 888” 
~ outpuf VS~~e might twt be greater tf!an .65 (which we mnslder 
,, gT ‘,SS !hS” .15 which we Co,t+k!er 0. In their slmuht,CnS C” 

~~,SlllS,~n, Rum~lhat. Hfnton. and WUliims (161 Scrap, a value 
sr +S, ,hS” 0‘ SW*, 10 .5 f0‘ 1, and ISSS (hen .5 10‘ 0. WS SlSC 

_,,d ,h,S Srate,y. The results cl these sl”uatbnS a‘* In 

Fo-‘” 4. 

F”Cdl00 6 hidden unfts 1 hfddo” unit 

* 
I 
I”* 119 252 
= 97. 179 

Them are siXteen po~sfble boolean fuwfbns 00nSktent wfth the 
four input patterns whkh were presented. a **Se. hlman 
SubjeCtS only repxf the flmt four Z, x. P and XVI in Faure 4. In 
human sub@cB. the attdtwte which is not at all mnelated with the 
output (y] is net consfdered refevam. me exam distdhufiin among 
the four IuM~IIS depends on a number fadon such as the 
saliency Of the wS*. In the TrabaSSa and Bower expedment. 34% 
classified on one andtat*. 51% da~siffed on ancther. and 15% 
classified on both attributes. In netwcti leaminp with eight hidden 
units, the rule learned to classify th* concept comaIns the lnelevam 
andbute (y) sligMly more than 50% cl the time. WGh ]ust one 
hidden unY, the lnele”a”t attribute was included more than 25% cl 
the time. 

The resufts cl this sinwlati~n quenbn the ability d the 
generalized deBa ale to arrive at a reasonable genemlhatbn when 
SOmS inplt ConfQwafbns have nut presented. The concept 
descdptiins cl fwman sub@XS in the mdundam relevam cue 
SXpBd”JS”,S are Simpler than IhoSe tibh are learned by th* 
gS~er*lilSd delta NIB. Owam’s mzor favors S simpler hypothesis 
we* a more complex hypofhSSfS when both are conskstem with the 
da,*. Note that ‘slmp!# k dafined Symlwlicalfy. A dktdbuted 
n*twolk which mmpvtes x 18 fist a complex as one that mmpnes 
av~qz. 

Discussion 

In the fwchcbw liter&wee. tfw mud& cf the concept 
idemffibn IaSk (e.g., (2, lln are mmIstent tih the physical 
Symbol System hypothesis. These mOdek po~&,t~tS that wb,enS 
gen*‘*!* a potSn(Y mncept deScd+Xbn in an all-x-none fashfon 
and then Mnfi”” (Or reject) the pOten,fal concept description wfth 
future exarrples. When learning sir@* affirmative concepts, in’ 
which only one andbule k relevant (Le.. dlsdmlnatlcn leamir,~) the 
pafem cl perfonance rem&w at chance for a period cf time and 
then suddenfy bnps to perkxt (2O]. These resuns are h 0crdrast 
with the strong PDP hypothesis. 

SOme have cdtfdied the mncept idemfflcation task baause the 
adSgodS* learned are adffkal[f7J. Many nStwal CstqafSS MI* 
a* “games’ cb net appear to have a set 0f necessary and adficlenf 
features. Instead, il k argu~d[24] that many wncapt~ am 
polynwrpfwus. One encarraplng result of our slrulatbn k that the 
p0lym0lpha”s concepts BrS nc harder IO‘ me generalized dell* NtS 
to learn than mn~wfive or dk~wffve con~epts.~ Hcwever. a full 
model Of concept ldemiiicaion should be aMe tc &xaJll, IO‘ thS 
acqulsiibn ol sinple concepts like ~Squ’square’ which have fww~afy 
and suffw3m leatures. 

others have wifkized the mfwpt ld*nfUiMicn task because the 
teaming takes p&x in an adffiilal emimnment wnhoti mgard to 
the leameh goals or prkx knmvledge(13, to]. For example. 
mnsfder the lotlowing more realistii redundant mfevant CUB 
experimem. Someone familiar with many sports but who haa never 
sea a game of basketball nctices that there are live p(ayers wah 
green shirk, blond hair, and various ccbr sneaker. When one cf 
these players has the ball, all the players run to one end of the 
mud. Five other players have yellow shids, black hak, and vadmt~ 
mbr sneakers. When one of these players has thy half, everyone 
runs to the other end cf the cwrt.S Two oppcsicg players collide. 
and am injured. Two replac*mems come In. one with a green shirt 
and black hair. the Other with a yellow shirt and bbnd hair. The 
new player wilh the green shkf and black hair g*tS thy ball. To 
which end will evmycne run? An intdli~enf person would “Se hk 
pfbr knowledge of qats (i.e.. players on the Same team wear the 
same mbr uniform) to detenine that *hid color 1s relevant and 
hair mbr Is not relevant and make Me cam0t predfdbn. TMs k in 
sharp mIltlast to an atiial Snuafiin Ill which a learner MS, 
decide whether the mbr or the size cl S redanple IS relevant. 
However. the nalllre of the concept fdentlffcatbn task makes IY) 
diierence to the nebvcrks we have been sim&tlng. On, way to 
bias the saliency of SnributSs In natwrk leamlnp Is 10 Set the hH&l 
wefglns dieremiy (e.g., shirt color is Innlally snonger than ha,* 
oobr). However. a simpf~ b&as m)ukl not suffka lo, aa pobfems. 
To sS* this, consider the lolbwiw dinerem task: One o( the 
players with the green shirt and blond hair also endorses hair 
produds. He Is arreSted on drug chames and the company 
d&des to lind another basketball player 10 represent their 
prcducis. In this sihlation. hair c&r may be mare Important than 
unilon cclcr. Instead of always lavcring one attribute ever 
another, a more complex process is r~quimd which takes into 
Sccount the goals of the learner. 

In our simulakms. nebvc& leamiw with the genwatized delta 
rule tailed to exhbft a number of simlladfies wtih human teaming on 
a number Cl concept IdSmnkai0n tasks. This k in contrast Wilh 
the r*esuiis ct nefwcrk learning on other tasks, wch ss da&xl 
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conditimiw i” animals [l] and human ski8 learning (61, Mod& 
*cch **these seem to weaken suppcn for the strongest versicn cl 
the physical symbol system hypothesis. 

Conclusion 

Human learning is a very complex process and 8 is not clear that 
any Single line or strategy can *cam! for all human learning [Is]. 
Tubing (211 has diStingUished three types of human memory, each 
w%h its own type of teaming (following Rumelhad and Norman (IS]) 
and retrieval: 

. In procedural memory. which retains ConneCtiOnS between 
stimuli and respcnses, the learning mechanism is tuning. 
Retrieval from pmcedural memory is by performing (i.e.. acting 
or perceiving). 

. In semantic memory. which represents knowledge cl the 
world, the learning mechanism is called resfmcfwing. 
Rehievaf from semamic memory is called knowing. 

. In episodic memory, which represents knowledge about 
personally experienced events. the learning mechani*m is 
tened accretion. Retrieval from epitiic memory is called 
remembedng. 

The generalized deha rule seems to correspond men direnly 
with tuning. Indeed, A has been most successful at simulating the 
learning cl those activities of humans and animals which improve 
gradually over time. 

1. Lcok for network archiiectwes which implement “virtual 
machines’ which manipulate symbols 118, 191. This approach 
ackcwledges that humans have “ccnnecikmist” hardware, but 
admits that (at least by adu,thwd) humans have buiiI up some 

‘~v$?iRies which are better characterized at the symbolic 

2. Look for network archtiectures and kaming mles which 
explain intelligent behaviors WithcUt reference to symbols (41. 
For example. it is possible that such an architectllre can follow 
Occam’s razcr w~hout explicitly representing hypotheses as 
symbols and Occam’s razor as a rule. 
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