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The generalized delta rule (which is also knpwn as error back-
agation) is a significant advance over previous procedures _for
network learning. I this paper, we compare network learning
using the generalized delta rule to human learning on two concept
wentification tasks:
« Relative ease of concept identification

. Generalizing from incomplete data

Introduction

The generalized delta rule for network leaming has received a
great deal of attention recently. The generalized delta rule is a
lpaming procedure for associative networks which contain hidden
gnits. 1t is a significant advance over previous network learning
procedures which either (1) were limited to two-layer networks
123] which are incapable of solving a number of interesting
peoblems (12], or {2} required stochastic unils {9] and a large
amount of computation for each learning cycle.
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Figure 1: A multi-layer network which contalns hidden
units

_Figure 1 presents a simple network with two input units, three
hidden umt_S. and one output unit. For each unit j in a network, the
output o, given an input pattern p is:
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wheare Wy is the weight from unit i to j and B,- is a "threshold" for unit
I
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The generalized delta rule indicates how the weight w, on the
connection from wunit i to unit j should be changed after
presentation of an input pattern p:

prjf__ﬂsmopi

where

Spjzopj(l—o Pj)(zpj—opj) if § is an output unit

and

8pj=o”(l—opj)25 Ly 118 an hidden unit
where 11 is a parameter which controls the learning rate; ¢ . is the
target output for unit j with input pattern p; Spk is the error
propagated back to unit j from a unit k whose input is o, and w; is
ihe weight of the connection from unit j to unit k. The interested
reader is referred to [16] for a derivalion of the generalized defta
rule.

The concept identitication task [3] has been extensively studied
in psychology. in this paper, we review a number of findings on
concept identification in human subjects, and compare these
findings to network learning with the generalized defta rule. In a
typical concept identification experiment, a subject is shown a set
of cards with different objects onthem. The cards are presented to
the subject one al a time in a random order and the subject is to
determine whether the card belongs to the class o be learned.
After each presentation, the subject is given feedback on the
correctness of his response. Typically, the subject is told which
aftributes of the objecis on the card (e.g., the number of objects,
the shape of the objects, and the color of the objects) are
potentially relevant. The trials continue until the subject makes no
errors.

The concept identification task seems ldeal for network leaming.
The aftribuies on the card are treated as input to the network. In
maost of the experiments, the attributes are two valued, se a binary
encoding of the input is possible {e.g., for shape 1 = square and 0
= gircle). The output of the network is 1 if the card is an instance of
the concept and 0 otherwise. After the network classifies an input
pattern, it is given feedback on the correctness of s output so that
the weights on connections between units can be modified.

For all of the simulations, the network leaming algorithm is
simuiated on a Symbolics 3600. To ensure that the algorithm has
been correctly implemented, we have run it on many of the
examples in [16] and obtained similar results.

The issue addressed in this paper is an evaluation of what might
be called the strong PDP hypothesis: that all cognitive processes
are realized directly in a homogeneous network of connected units.
This hypothesis has been enlertained by Churchland [5]. At the
other exireme is the physical symbol system hypothesis [14]: that
alt cognitive processes are symbolic manipulations of the sort in
logic and lisp.

The most fundamental contribution so far of anificial
intelligence and computer science to this joint enterprise has
been the notien of a physical symbol system. This concept of a
broad class of systems that is capable of having and
manipulating symbols, yet is also realizable within our physical
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universe, has emerged from our growing experience and

analysis of the computer and how 1o program it to perform

intellactuai and perceptual tasks. The notion of symbol that it

defines Is internal to this concept of a system. Thus, K is &

hypothesis that these symbols are In fact the same symbols that

we humans have and use averyday of our lives. Stated ancther

way, the hypothesis Is that humans are instances of physical

symbol systems. [14}

In between thase two extremes, there are a number of possible

hypotheses. After presenting the results of our simulations, we
shall comment on other atternative hypothesas.

Relatlve ease of concept identification

There have been a large number of experiments Investigating
the ease of laaming combination of attributes. For example, Bower
and Trabasso [2] have reported that concept identification by a
single affirmative attribute (e.g., blue) is easler than concept
identification on a conjunction of cues {e.g., blue and square).
Others [3) have found that conjunctive concepts are easier than
disjunctive concepts (e.g., blue or square} and that disjunctive
concepts are easler than exclusive disjunctive concepts (e.g., blue
or square but not biue and square) [22]. Finally, polymorphous
concepts, also catled m-out-of-n, (e.g., at ieast two of square, blug
and symmetric) have been found to be more difficult than
disjunctive concepts [7). To our knowledge, there has been no
comparison of polymorphous and exclusive disjunclive concepts;
both are more difficult than disjunctive. Figure 2 summarizes the
relative ease of acquiring concepts.

1. Affirmation X

2. Conjunction XAY

3. Disjunction Xvy

4. Exclusive Disjunction xXey
Polymorphous Z-out-0f-3x.y,2)

Figure 2: Relative ease of concept Identification, as
determined by the number of trials required to
learn the concept

We tested the generalized delta wmile in a large number of
different networks and conditions. In ail of the tests, there were
three Input units, one output unit, and a number of hidden units
connected to the output unit. The following parameters were varied
in the trials:

« Number of hidden units: two, eight, and twenty-four,

» Connections between units: For all of the tests each input unit
was connected to every hidden unit. In addition, in the case of
the twenty-four hidden unit test, random connections between
the input and hidden units were tested.

» The value of n: varied from .1 to .8 in increments of .1.

The weights w;, were set to random numbers between -5.5 and
5.5. The threshold ; of the hidden units were aiso set o random
values between -5.5 and 5.5 subject to the constraint that the
output was never more than than .985 or less than .005 for any
input combination.! An output value of greater than .85 was
considered to ba 1, and less than .15 was considered to be 0. For
gach condition, five concepts corresponding to one of the classes
of concepts were leamed from 1000 random initial conditions and
the number of presentations of each input pattern was recorded.

In the conditions tested, the number of hidden units and the
value of 7 did not affect the relative ordering of the ease of concept
identification considerably. Results from several simulations are
shown In Figure 3. For all of the simulations, if the network falled 10
leam after 5000 presentations of each Input pattern, the simulation
was terminated.

"The rationale for constraining the threshold value was to increase the rate of
learning. From the generalized delta rule, it is easy to see that leaming is slowest
when the output approaches 0 or 3.
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Hidden units: ] 8 24 24

. H . 0.2 0.8 0.2 0.6
Affirmation 449 133 97 90

" Conjunction 581 211 215 174
Disjunctien 560 191 229 134
Polymorphous 611 229 229 120

i Exclusive Disjunction 764 324 450 25

Figure 3: Mean number of presentations of each Input
pattern befors correctly Identifying the concept.

There are several conclusions which can be drawn from this
simulation.

« Affirmation is always easler than other classes of concepts (p
< .001). This result is identical to the result with human
subjects.

« Usually, there is no significant difference between conjunclive
disjunctive, and polymorphous concepts.? This result differs
from the findings on human subjects [22]. A bit of analysis
indicates why conjunction and disjunction are equally difficult,
since by interchanging 1's and 0's the disjunction becomss
conjunction {L.e., in digital circuits, an or-gate in positive logic
is an and-gate In negative logic). Bruner [3) has argued thal
disjunction is more difficul for human subjects because they
find t more difficult to work with negative instances. The
generalized delta rule does not share this ditficulty.

» Exclusive disjunctions were aways signifficantly (p < .001)
more difficult than disjunctions. This result is identical 1o the
rasult with human subjects.

« The average number of presentations required for learning in
all conditions is much greater than that required by human
subjects. For exampla, in [7], with three two-valued attributes
the mean number of cards presented was ning for conjunctive,
twenty-gight for disjunctive, and forty for polymorphous
concepts. Note that in Figure 3, the results are reported in
decks of cards {i.e., presentations of all eight input patterns).
The results in Figure 3 must be multiplied by eight before
being compared to human performance on this task.

Redundant relevant cues

Bower and Trabasso have exiensively investigated concepl
identification when there are tedundant attributes [2]. For example,
if two attributes always vary together, (l.e, squares are always blue,
and blue things are always squares), then human subjects fall into
three classes: those that use one of the relevant attributes (e.g.,
biue), those that use tha other refevant attribute {e.g., square) and
those that use both [2]. Since Bower and Trabasso were primardly
concerned with determining whether or not subiecls attended 10
both afiributes, they group together those subjects who
conjunctively and disjunctively combined the redundant attributes.

Encouraged by the results in the earlier simulation where the
value of 1 did not alter the resull, in these simulations we did not
vary the value of n (.25). We simulated nretworks with 8 and 1
hidden unit(s). In this simulation there were three input aftributes,

ZAlthough with twenty-four hidden units and n=.6, conjunction was significantly (P
<.05) more difficult than disjunction and polymorphy.

3he networks generalize bettor with fewer hidden units. If there a large nurl"_b"’io
of hidden units, thare can be ona hidden unit unit which *locks for” each possid
input combination.



4 The value of z was always the same as the value of x.
4y 9 Ztion of the four input pattems were repeated until the
prestls id respond with 1 when x (and, therefore, z) was 1 and

¢ otherwise. After the network had leamed this concept, it was

od with afl eight possible input pattems. The output value

s natwork determined what function it had fearmed. For

d‘?:p;e it the network reported 1 only when x was 1, then it had
(Lt

4

med that x was the relevant attribute.

n this simulation, for some input patterns which were never seen
putpul value might not be greater than .85 (which we consider
“o, lgss than .15 which we consider 0. In their simulations on
neralization, Rumethart, Hinton, and Williams [16) accept a value
greater than of equal to .6 for 1, and less then .5 for 0. Wa also
o ed this strategy. The results of these simuiations are In

“wfa 4
8 hidden units 1 hidden uni?

Functlon

: 269 300
x 267 313
vi 119 252
- ” 79

FVI 91 52
gvz 65 49
vy 73 55
avyz 85 57
xIvyz 70 42
xvyz 87 41
xyvaz 57 37
Fve 86 29
XYVYI 38 32
XIVAFVYZ 40 3
uvIFvyz 86 3
XIVIYVYZ 36 2

Figure 4: Distribution of concepts learned when there are
redundant relevant cues.

There are sixteen possible boolsan functions consistent with the
four input patterns which were presented. Of these, human
subjects only report the first four z, x, xz and xvz in Figure 4. In
hurnan subjects, the attribute which is not at all correfated with the
autput () Is not considered relevant. The exact distribution among
the four functions depends on a number factors such as the
saliency of the cues. In the Trabasso and Bower experiment, 34%
classified on one aftribute, 51% classified on another, and 15%
classified on both attributes. In network leaming with eight hidden
units, the rule learned to classify the concept contains the irrelevant
attribute (y) slightly more than 50% of the time. With just one
hidden unit, the irrelevant attribute was included more than 25% of
the time.

The results of this simulation quastion the ability of the
generalized delta rule to arrive at a reasonable generalization when
some input configurations have not presented. The concept
descriptions of human subjects in the redundant relevant cue
expariments are simpler than those which are leamed by the
generalized delta ruls. Occam's razor favors a simpler hypothesis
over a more complex hypothesis when both are consistent with the
data. Note that "simpler Is defined symbolically. A distributed
network which computes x is just a complex as one that computes
XIvXY VY.

‘h&nemedmomﬁmhumnwﬂm.meNpmmushapaMﬁo—m
and 1 « circle, y might represent color with 0 = red and t = biue, and z might
Wmnl:lzewlﬁm-bigu\dl-ml.

Discusslon

In the psychology literature, the models of the concept
identitication task (e.g.[2, 11]) are consistent with the physical
symbol system hypothesis. These models postulate that subjects
generate a potential concept description in an all-or-none fashion
and then confirm (or reject) the potential concept description with
future examples. When learning simple affirmative concepts, in’
which only one attribute is relevant (ie., discrimination leaming) the
pattern of performance remains at chance for a pariod of time and
then suddenly jumps to perfect [20]. These resufts are in contrast
with the strong PDP hypolhesis.

Soma have criticized the concept identification task because the
categories leamed are arlificial [17). Many natural categories such
as "games” do not appear to have a set of necessary and sufficient
teatures. Instead, it is argued [24] that many concepts are
polymorphous. One encouraging result of our simulation is that the
polymorphous concepts are no harder for the gensralized delta rule
to lsarn than confunctive or disjunctive concepts.> However, a full
modal of concept identification should be able to account for the
acquisition of simple concepts like "square” which have necessary
and sufficlent features,

Others have criticized the concept identification task because the
learning takes place in an artificial environment without regard to
the learner's goals or prior knowledge {13, 10]. For example,
conslider the following more realistic redundant relevant cue
experiment. Someone familiar with many sports but who has never
seen a game of basketball notices that there are five players with
green shirts, blond hair, and various color sneakers. When one of
these players has the ball, all the players run 10 one end of the
court. Five other players have yellow shirts, black hair, and various
color sneakers. When one of these players has the ball, everyone
runs to the other end of the court® Two opposing players collide,
and are injurad. Two replacements come in, one with a green shirt
and black hair, the other with a yellow shirt and blond hair. Tha
new player with the green shirt and black hair gats the ball. To
which end will everyone run? An inteliigent person would use his
prior knowlaedge of sports {Le., players on the same team wear the
same color uniform) to determine that shirt color Is relevant and
hair color is not relevant and make the comrect prediction. This is in
sharp contrast to an artificial situation In which a leamer must
decide whether the color or the size of a rectangle is relevant,
However, the nature of the concept identification task makes no
difference to the networks we have been simulating. One way to
bias the saliency of attributes in network learning is to set the inttial
weights differently (e.g., shirt color is initially stronger than hair
color). However, a simple blas would not suffice for all problems.
To see this, consider the following different task: One of the
players with the green shint and blond hair also endorses hair
products. He Is arrested on drug charges and the company
decides to find another basketbail player to represemt their
products. In this situation, hair color may be more important than
uniform color. Instead of always favoring one attribute over
another, a more complex process is required which takes into
accourt the goats of the leamer.

in our simulations, network learning with the generalized delta
rule fafled to exhibit a number of simliarities with human learning on
a number of concept Identification tasks. This Is in contrast with
the rasults of network leaming on other tasks, such as classical

SHowever, it should be noled that the results on the relative easa of conoept

identification assume that the learmer has no prior knowledge. A which

explains a particular combinasion of features facilitmies leaming. For example, when

causal expianations are present, linearly separable calegories are easier 1o leam
separable when

than nonlinearty . The reverse is wue there is no
oxplanation [13]. It is not clesr how these results could be modeled directly in
rk approaches pt leaming, since the generalized deita rule is not

affected by the abillty to construct a caussl explanation.
®Some may recognize this as a Lakers-Calics game.
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conditioning in animals {1} and human skilt learning [6]. Models
such as these seem to weaken suppon for the strongest version of
the physical symbol system hypothesis.

Conclusion

Human learning is a very complex process and it is hot clear that
any single rule or strategy can account for all human lgarning [15].
Tulving [21] has distinguished three types of human memory, each
with its own type of tearning {following Rumelhart and Norman [15])
and retrieval:

» In procedural memory, which retains connections between
stimuli and responses, the learning mechanism is tuning.
Retrieval from procedural memory is by performing (i.e., acting
Or perceiving).

*In semantic memory, which represents knowledge of the
world, the leaming mechanism is called restructuring.
Retrieval from semantic memory is called knowing.

«in episodic memory, which represents knowledge about
personally experienced events, the leaming mechanism is
termed accretion. Retrieval from episodic memory is called
remembering.

The generalized delia rule seems to comespond most directly
with tuning. Indeed, it has been most successiul at simulating the
leaming of those activities of humans and animals which improve
gradually over time.

We conclude that although (1) manipulating symbolic
rebresentation is pot a necessary condition for intelligent behavior

[8], and (2} the symbolic level is not the best level of description for
some intelligent behaviors, the symbolic level is the appropriate
level of description of other human behaviors. For example, in the
redundant relevant cue experiment, human subjects consistently
generate concept definitions which are simpler symbolicaily. There
are two possible ways of unifying these different levels of
description within the parallel distributed processing framework:

1. Leok for network architectures which implement "virtual
machines" which manipulate symbols [18, 19]. This approach
ackowledges that humans have "connectionist” hardware, but
admits that (at least by adulthood) humans have built up some

‘capabilities which are belter characterized at the symbolic
level.

2. look for nelwork architectures and learning nies which
explain intelligent behaviors without reference to symbois [4].
For example, it is possible that such an architecture can follow
Qccam’s razor without explicitly representing hypotheses as
symbols and Ogcam's razor as a rule,
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