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Abstract. Can we find the family trees, or pedigrees, that relate the haplotypes of a group of individu-
als? Collecting the genealogical information for how individuals are related is a very time-consuming and
expensive process. Methods for automating the construction of pedigrees could stream-line this process.
While constructing single-generation families is relatively easy given whole genome data, reconstructing
muti-generational, possibly inbred, pedigrees is much more challenging.

This paper addresses this central question by introducing two multi-generational pedigree reconstruction
methods: one for inbreeding relationships and one for outbreeding relationships. In contrast to previous
methods that focused on the independent estimation of relationship distances between every pair of
typed individuals, here we present methods that aim at the reconstruction of the entire pedigree. We
show that both our methods out-perform the state-of-the-art and that the outbreeding method is capable
of reconstructing pedigrees at least six generations back in time with high accuracy.

1 Introduction

Pedigrees are important in computer science and in genetics. Even thirty years after the development
of some of the first pedigree algorithms [15, 9], pedigree graphical models continue to be a challenging
graphical model to work with. Known algorithms for likelihood calculations are either exponential
in the number of individuals or exponential in the number of loci [16]. There have been numerous
and notable attempts to increase the speed of these calculations [20, 1, 10, 5, 11, 17, 7]. Recent work
from statistics has focused on fast and efficient calculations of linkage that avoid the likelihood
calculations [3, 25]. Recent contributions to genetics from pedigree calculations include fine-scale
recombination maps for humans [6], discovery of regions linked to Schizophrenia [18], discovery of
regions linked to rare Mendelian diseases [19], and insights into the relationship between cystic
fibrosis and fertility [12].

There are both well established and recent practical methods to reconstruct pedigrees from human
data. The current state-of-the-art method is an HMM-based approximation of the number of meioses
separating a pair of individuals [21]. In this approach the hidden states of the HMM represent the
identity-by-descent (IBD) of a pair of individuals. Two individuals are identical-by-descent for a
particular allele if they each contain a copy of the same ancestral allele. The probability of the
haplotype data is tested for a particular type of relationship. The main draw-back of this approach
is that it may estimate a set of pair-wise relationships that are inconsistent with a single pedigree
relating all the individuals.



One of the oldest pedigree reconstruction methods is essentially a structured machine learning
approach where the aim is to find the pedigree graph that maximizes the probability of observing
the data [24]. It should be noted that this approach is limited to extremely small families since the
algorithms for computing the likelihood of a fixed pedigree graph are exponential and there are an
exponential number of pedigree graphs to consider [22].

Thatte and Steel [23] examined the problem of reconstructing arbitrary pedigree graphs from a
synthetic model of the data. Their method used an HMM model for the ancestry of each individual
to show that the pedigree can be reconstructed only if the sequences are sufficiently long. Notice
that this paper uses an unrealistic model of recombination where every individual passes on a trace
of their haplotypes to all of their descendants. For single-generation relationship estimation and for
animal microsatellite data, Berger-Wolf’s method generates relationship constraints by considering
the combinatorial options for IBD [2, 4].

Our contribution to pedigree reconstruction is two algorithms that avoid the exponential likelihood
calculations. We do this by estimating the length of genome regions that are shared identical-by-
descent. In two related individuals, a region of the genome is identical-by-descent (IBD) if and
only if a single ancestral haplotype sequence was the source of the sequence inherited in the two
individuals. The length of IBD regions gives a statistic that accurately detects sibling relationships
at multiple generations. We have two algorithms: one for constructing inbred pedigrees (CIP) and
one for constructing outbred pedigrees (COP). For our outbreeding algorithm the statistic is testable
in polynomial time. For our inbreeding algorithm, the statistic is computable in time dependent on
the number of meioses in the predicted pedigree. Our outbreeding method works to reconstruct
at least six generations back in time. Both methods are more accurate than the state-of-the-art
method by Stankovich, et al [21].

2 A Lower Bound for Out-breeding

In order to shed light on the problem we first provide a lower bound on the best that one could
do in pedigree reconstruction. Speed and others [21] have been able to detect up to 3rd cousins (or
relationships of 8 total meioses). We claim that this should be near optimal in the case of an infinite
population size. Notice that in the infinite population size, there is no inbreeding. Therefore, the
graph relating people has a path-like subgraph connecting every pair of individuals (i.e. the subgraph
is either a path with a single founder or almost a path having exactly two founders whose adjacent
edges can be contracted to form a simple path). This implies that in order to improve on this we
need to use the fact that there is inbreeding, multiple offspring and/or that the population size is
small; we will exploit these characteristics in the following sections where we develop our algorithms.

In an infinite population, consider two individuals i, and j, where their most recent common ancestor
is g generations ago. For instance, if g = 1 they are siblings. Note that they have two common
ancestors in this case. For general g, each individual has 2g ancestors, where exactly two of them
are shared across i and j; this is where we use the fact that the population is infinite, since the
probability of having more than two shared ancestors is zero.

Each of the ancestors of i and j has two haploids. Each of the haploids arrived from a different
pedigree. Consider only the haploids that arrived from the shared pedigree (the case g = 1 is
different since there there is IBD sharing on both haploids of i and j). These haploids of i and j are



generated by a random walk over the ancestors of i and j in the gth generation. The total number
of haploid ancestors in that generation is 2g for each of i and j. Out of those, four are shared across
i and j (two shared ancestors, each has two haploids). Let k be the number of meioses separating
individuals i and j, where k = 2(g − 1). For this reason, the expected number of bases shared
between i and j is 4L

2k = L
2k−2 , where L is the length of the genome.

On the other hand, we can calculate the average length of a shared region between the two haploids.
The number of recombinations across all generations is Poisson distributed with parameter krL,
where r is the recombination rate, L is the length of the genome. Let C = rL be the expected
number of recombinations after one generation (C ≈ 30). Now, the length, X, of a shared region
that originated from one of the four shared haploids is X1+X2 where Xi ∼ exp(kr). So the expected
length, E[X], is 2

kr
. Since the probability to move from one shared haploid to another is negligible,

we get that this is the expected length of a shared region.

Now, if tk is the expected number of regions shared between two individuals separated by k meioses,
we know that tk

2
kr

= L
2k−2 , and therefore, tk = krL

2k−1 . Therefore, t10 < 1, and it is impossible to detect
a pair-wise relationship with high probability between 4th cousins.

3 Algorithm for Constructing Inbred Pedigrees (CIP)

Given a set of extant individuals with haplotype information available, we want construct a pedigree,
using the assumption that individuals are possibly inbred. This algorithm will be referred to as CIP.
We construct the pedigree recursively, one generation at a time. For example, the first iteration
consists of deciding which of the extant individuals are siblings. The next iteration would determine
which of the parents are siblings (yielding cousin relationships on the extant individuals).

Clearly, we can obtain any pedigree by making the right decisions at each generation. Here we
define a “regular” pedigree as one where mating options are restricted to individuals in the same
generation. From this point on, we assume that the pedigree is regular and monogamous.

Let us consider the first generation of relationship decisions (i.e. full siblings). We build a compati-
bility graph where the nodes are individuals and edges represent possible sibling relationships. We
then use a heuristic to partition the graph into disjoint sets of vertices with the property that each
set in the partition has many edges connecting its vertices while there are few edges connecting
vertices from separate sets in the partition. This is somewhat similar to the approach taken by
Berger-Wolf, et al [2], where they tried to partition the graph in order to maximize the size of the
sibling groups.

For successive generations of decisions, we also employ the compatibility graph. But now the edges
are given by comparing two test results. For individuals k and l in generation g, and their respective
descendants i and j, we consider one case (see Figure 1). The triangles represent the inferred sub-
pedigree containing all the descendants of the individual at the point of the triangle, and individuals
at the base of the triangle are extant individuals. Note that the triangles may overlap, indicating
shared ancestry at an earlier generation (i.e. inbreeding).

Let Xi,j be the length of a shared region based on the pedigree structure of the model. In order
to estimate this quantity, we can sample random walks in the space of inheritance possibilities.
Specifically, consider the inheritance of alleles at a single position in the genome. When there are n



Fig. 1. Test Case. Specific individuals in the pedigree are indicated with either circles or squares. The triangle
represents all the descendants of a particular individual. This represents the case where individuals i and j are cousins
via the oldest generation.

non-founder individuals, define an inheritance vector as a vector containing 2n bits, where each pair
of bits, 2i and 2i + 1, represents the grand-parental origin of individual i’s two alleles. Specifically,
bit 2i represents the maternal allele and is zero if the grand-paternal allele was inherited and is
one otherwise. Similarly, bit 2i + 1 represents the paternal allele of individual i. The set of possible
inheritance vectors comprise the 22n vertices of a 2n-dimensional hypercube, where n is the number
of non-founders in the pedigree. A random walk on the hypercube represents the recombination
process by choosing the inheritance vectors of neighboring regions of the genome.

Given an inheritance vector, we can model the length, in number of positions, of the genomic region
that is inherited according to that inheritance vector. The end of that genomic region is marked
by a recombination in some individual, and constitutes a change in the inheritance vector. The
random walk on the hypercube models the random recombinations, while the length of genomic
regions are modeled using an exponential distribution. This model is the standard Poisson model
for recombinations. Details can be found in Section 3.1. There is an analytical approach to obtaining
the distribution of Xi,j using eigen-vectors and eigen-values. However, the analytical calculation is
at worst exponential. We choose to simulate the random walk and estimate the distribution.

Let ŝij be the observed average length of shared segments between haplotyped individuals i and
j. This can be computed directly from the given haplotype data and need only be computed once
for all generations. Now, for a pair of individuals k and l in the oldest reconstructed generation,
recall that Xi,j is the random variable for the length of a shared region for individuals i, j under
the model. Now, consider the test value

vk,l =
1

|D(k)||D(l)|

∑

i∈D(k)

∑

j∈D(l)

(ŝij − E[Xij])
2

var(Xij)
(1)

where D(k) is the set of extant individuals descended from ancestor k. We compute vk,l, making
edges when vk,l < c for all k, l in the oldest generation, g, for some threshold c. Now, we proceed
to greedily assign parents to the individuals in generation g by iteratively finding clusters of nodes
in the graph, making that cluster a set in our partition, and removing those nodes from the graph.
This process results in a partition of the graph into sibling groups. We choose the the threshold,
c, empirically by simulating many pedigrees and choosing the threshold which provides the best
reconstruction accuracy.



The random-walk simulation which allows for inbreeding causes this algorithm to have an exponen-
tial running-time. The number of states in the IBD process is exponential in the number of meioses
in the graph relating individuals i and j. So, the random-walk simulation is exponential in the size
of the inferred pedigree.

3.1 Sampling Details

Given a pedigree and individuals of interest i and j, we will compute the distribution on the length
of shared regions. Here we mean sharing to be a contiguous region of the genome for which i and j
have at least one IBD allele at each site.

Poisson Process We can model the creation of a single zygote (i.e. haplotype) as a Poisson pro-
cess along the genome where the waiting time to the next recombination event is exponentially
distributed with intensity λ = −ln(1 − θ) where θ is the probability of recombination per meiosis
(i.e. per generation, per chromosome) between a pair of neighboring loci. For example, if we think
of the genome as being composed of 3000 blocks with each block being 1MB in length and the
recombination rate θ = 0.01 between each pair of neighboring blocks. Then we would expect 30
recombinations per meiosis, and the corresponding intensity for the Poisson process is λ = 0.01.

Now, we have 2n meioses in the pedigree, with each meiosis creating a zygote, where n is the
number of non-founder individuals. Notice that at a single position in the genome, each child has
two haplotypes, and each haplotype chooses one of the two parental alleles to copy. These choices
are resented in an inheritance vector, a binary vector with 2n entries. The 22n possible inheritance
vectors are the vertices of a 2n-dimensional hypercube. We can model the recombination process as
a random walk on the hypercube with a step occurring each time there is a recombination event.
The waiting time to the next step is drawn from exp(2nλ), the meiosis is drawn uniformly from
the 2n possible meioses, and a step taken in the dimension that represents the chosen meiosis. The
equilibrium distribution of this random walk is uniform over all the 22n vertices of the hypercube.

IBD Process Recall that we are interested in the distribution of the length of a region that is
Identical-by-Descent (IBD). IBD is defined as the event that a pair of alleles are inherited from the
same founder allele. For individuals i and j, let D be the set of hypercube vertices that result in
i and j sharing at least one allele IBD. Given x0 a hypercube vertex drawn uniformly at random
from D, we can compute the hitting time to the first non-IBD vertex by considering the random
walk restricted to D ∪ {d} where d is an aggregate state of all the non-IBD vertices. The hitting
time to d is the quantity of interest. In addition, we also need to consider the length of the shared
region before reaching x0, which is the time reversed version of the same process.

The transition matrix for this IBD process is easily obtained as Pr[xi+1 = u|xi = v] = 1
2n

when
vertices u and v differ by exactly one coordinate, and Pr[xi+1 = u|xi = v] = 0 otherwise. Transitions
to state d are computed as Pr[xi+1 = c|xi = u] = 1 −

∑

v∈D Pr[xi+1 = v|xi = u].

Now we can either analytically compute the hitting time distribution or estimate the distribution
by simulating paths of this random walk. Since the number of IBD states may be exponential, it
may be computationally infeasible to find eigenvectors and eigenvalues of the transition matrix [8].



We choose to simulate this random walk and estimate the distribution. This simulation is at worst
exponential in the number of individuals.

4 Algorithm for Constructing Outbred Pedigrees (COP)

Given a set of extant individuals with haplotype information available, we want construct a pedigree,
using the assumption that individuals are outbred. This algorithm will be referred to as COP. Again,
we construct the pedigree recursively, one generation at a time.

Following on the pedigree reconstruction algorithm given in [13], we discuss an algorithm that
assumes out-breeding and monogamy. In that paper, the author discussed the equivalence between
a labeled pedigree graph and the posets of the pedigree graph. We can define a partial ordering of
the individuals in a pedigree as follows. For every individual, make a list containing itself and all its
descendants; this is a descendant set for that person. These descendant sets and the subset operator
give a partial ordering on the vertices. If we have the descendant sets for all the individuals, the
pedigree graph can be reconstructed since there is a fixed in-degree of two for every node in the
graph. Notice that this property holds for any graph having a fixed in-degree.

The algorithm we propose now is one that builds the descendant sets at each generation with the
assumption that there is a single path between each ancestor and its descendants. The challenge is
to find descendant sets that are consistent with one pedigree graph.

At each generation, g, build a graph Hg of descendant relationships where the nodes of the graph are
extant descendants and the edges indicate a relationship between a pair of individuals at generation
g. Once we obtain such a graph, we employ a partitioning method similar to the one used for the
previous algorithm. To obtain the edges in the graph, we do a test for relationship-pairs of the form
shown in Figure 2. If a pair of extant individuals are related at generation g via a single ancestor
at that generation, then the length of the regions they share IBD will be distributed according to
the sum of two exponential variables, specifically, exp(2(g − 1)λ). This is the waiting time, where
time corresponds to genome length, for a random walk to leave the state of IBD sharing.

g generations

with 2g − 2 meioses
between i and j

i j

Fig. 2. Pair of Individual Related at Generation g. To test whether individuals i and j are related at generation
g, we again look at the distribution on the length of genetic regions shared IBD.

Notice that if we are able to get ’exact’ answers for the relationship-pair test, the outbred, monog-
amous pedigree will have connected components in each graph Hg, and the connected components
from generations Hg−1 will be nested inside those from graph Hg. Until we reach generation c, for



which the entire graph Hc is a connected component representing the most recent common ancestor
of all the extant individuals. This follows directly from the nesting property of the descendant sets.

Due to the nesting, rather than consider graph Hg with nodes being extant individuals, we construct
graph Gg where the nodes are the individuals at generation g, as was done in the CIP algorithm.
algorithm. For Gg, we take all the edges that pass a test based on Fig. 2. Specifically, the test is

wk,l =
1

|D(k)||D(l)|

∑

i∈D(k)

∑

j∈D(l)

(ŝij − E[X])2

var(X)
(2)

where X = X1 + X2 where Xi ∼ exp(2(g − 1)λ). Here wk,l < c for some threshold c means that
there is an edge between k and l in the graph. Again, we set the threshold empirically with a fixed
value for all the generations.

The next step is to partition the vertices of the graph. For each set in the partition, assume that
it represents two monogamous parents. To guarantee that we produce descendant sets that are
compatible from generation to generation, similar to the CIP algorithm, we cluster the individuals
at generation g.

A heuristic algorithm is used to partition the vertices, V (Gg), of graph Gg, into a partition P =
P1, P2, ..., Pk, where Pi ∩ Pj = ∅ for all i, j, and V (Gg) = ∪k

i=1Pi. For a given partition set, let Ei

be the edges of the subgraph induced by vertices Pi. We wish to find a partition such that each set
in the partition is a clique or quasi-clique of vertices. The objective function is to find a partition
that maximizes

∑k
i=1 a|Ei| −

(|Pi|
2

)

where a = 0.1 is a parameter of the algorithm.

First, we partition the graph randomly such that within each set of the partition every vertex has a
path length at most two to other vertices within the set. Then three heuristics are implemented to
improve the score of the partition: (1) vertices are moved between sets; (2) sets are merged or split if
necessary; and (3) if several sets in the partition have many edges between them, (for example, sets
Pi and Pj have the edges induced by Pi∪Pj after excluding Vi and Vj), then a dynamic programming
algorithm is used to redistribute the vertices into an equivalent number of new clusters that optimize
the objective function.

These three heuristics are applied iteratively until there are no further improvements in the score.
We assessed the accuracy of this method for identifying distorted cliques. Graphs of disjoint cliques
were simulated and edges were randomly removed and added with some probability. This heuristic
partition method was able recover the original cliques in 90% of the simulations.

The running-time of this graph-partitioning heuristic largely determines the running-time of the
pedigree reconstruction algorithm. The partitioning algorithm runs in polynomial time in the size
of the graph, if the size of each set in the partition is constant. The step of creating the graph is
polynomial in the size of the previous generation graph. Clearly it is possible, if no relationships are
found, for the size of the graph at each generation to double. So, in the worst case, this algorithm is
exponential. However, in practice this method performs quite well for constructing eight-generation
pedigrees on large inputs.
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Fig. 3. Reconstruction under High Inbreeding. Here the pedigrees were simulated with a fixed population size of
n = 10 individuals per generation. Over multiple generations, this results in a high level of inbreeding. (Reconstruction
accuracy of 50 simulated pedigrees were averaged.)

5 Results

Pedigrees were simulated using a variant of the Wright-Fisher model with monogamy. The model
has parameters for a fixed population size, n, a Poisson number of offspring λ, and a number of
generations g. In each generation g, the set of ng individuals is partitioned into ng/2 pairs, and
for each pair we randomly decide on a number of offspring using the Poisson distribution with
expectation 3.

The human genome was simulated as 3,000 regions, each of length 1MB, with recombination rate
0.01 between each region and where each founder haplotype had a unique allele for each region.
The two assumptions here are 1) if two haplotypes share the same alleles in a mega-base region,
then that region is identical by descent, and 2) haplotypes can be obtained for input to the pedi-
gree reconstruction methods. Notice that Stankovich, et al. also require haplotype input to their
method [21]. The requirement that haplotypes are given is not highly restrictive since our algorithms
search for haplotype regions that are shared between individuals, and since we consider regions of
length 1Mb (typically > 1000 SNPs), it is quite easy to determine whether two individuals have a
shared haplotype across 1Mb.

In each experiment we end up having the true pedigree generated by the simulation, as well as an
estimated pedigree. We evaluate the accuracy of the estimated pedigree by comparing the kinship
matrices of the two pedigrees. Kinship is a model-based quantity defined as the frequency of IBD
allele-sharing between a pair of individuals in a pedigree (averaged over the alleles of each individ-
ual). Since both pedigrees have the same set of haplotyped individuals, the comparison is actual
and L1 distance between the kinship estimate of those individuals. Let KP and KQ be the kinship
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Fig. 4. Reconstruction under Less Inbreeding. Pedigrees here were simulated with a population size of n = 50.
(Reconstruction accuracy of 50 simulated pedigrees were averaged.)

matrices of the actual pedigree P and the estimated pedigree Q, respectively. Then the evaluation
method is:

∑

i<j

|KP
i,j − KQ

i,j|

for haplotyped individuals i and j.

We compare the COP and CIP methods on inbred pedigree simulations with high and moderate
inbreeding, respectively n = 10 and n = 50, in Figures 3 and 4. These figures show the kinship-based
inaccuracy on the y axis and the number of generations in the reconstructed pedigree on the x axis.
As the depth of the estimated pedigree increases the error in the kinship of the estimated pedigree
increases. However the accuracy is still much better than the accuracy of a randomly constructed
pedigree, which is the highest, i.e. worst, line in each figure. Both methods perform better on the
smaller population size.

Both the COP and CIP methods can reconstruct pedigree with four generations. The COP method
for outbred pedigrees can reconstruct pedigrees going back to the most-recent common ancestor
of the extant individuals. Provided with enough individuals, the method can construct pedigrees
many generation deep. For example, given 400 individuals the method can construct 6 generations.
As Figure 5 shows, the performance relative to a random reconstruction method is very good, and
so is the variance of the COP reconstruction method.

We compare our two methods with the state-of-the-art method, called GBIRP, by Stankovich, et
al [21]. Since GBIRP is limited to small pedigrees, we compare the methods on three-generation
simulated pedigrees with population size n = 10. GBIRP predicts meiosis distance, gij , between pairs
of individuals, i, j, without inferring pedigree relationships. In order to compare GBIRP with the
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Fig. 5. Reconstruction for Deep Pedigrees. Pedigrees here were simulated with a population size of n = 400.
(Reconstruction accuracy of 400 simulated pedigrees were averaged.)

actual pedigree, we extract the minimum number of meiosis, aij , separating every pair of individuals
i and j in the simulated pedigree. From our predicted pedigrees, we again extract a minimum meiosis
distance pi,j. Now can compute L1 distances between the actual and predicted meiosis distances.
These quantities are

∑

i<j:gi,j 6=∞ |ai,j − gi,j |, and
∑

i<j:pi,j 6=∞ |ai,j − pi,j|. These two quantities are
plotted above the line y = 0 in Figures 6 and 7. We plot the number of unpredicted relationships
below the line y = 0. Specifically this is

∑

i<j:gi,j=∞ 1, and
∑

i<j:pi,j=∞ 1. Notice also that under
this measure of accuracy, CIP performs better than COP, whereas the kinship accuracy would lead
to the impression that COP performs better than CIP.

Figure 6 was done with the simulation method described above. However, in Figure 7, to obtain
pedigrees with even more outbreeding, a large population size was simulated and a sub-pedigree
with the desired number of extant individuals was extracted from the large simulation. Notice that
with more inbred pedigrees, under this measure of accuracy, the CIP algorithm performs superior
to both the COP and the GBIRP methods. The accuracy of all of the methods improve when given
outbred simulation data, with both CIP and COP performing very well. However, COP performs
the best with outbred input data, as expected by the modeling assumptions of the method.

Taking haplotype data from HapMap, we ran the COP algorithm on unrelated individuals. Given
the parents of the CEU and YRI trios, the algorithm discovers no relationships for eight generations.
The CIP algorithm, on a subset of the CEU and YRI individuals (due to running time constraints),
similarly finds no relationships for three generations. Taking the individuals from the Wellcome
Trust data that have at least 85% IBS with some other individual, we ran COP to construct an
eight-generation pedigree. There were no relationships inferred for the first seven generations, and
there were several relationships inferred at the 8th generation (i.e. seventh cousin relationships).
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Fig. 6. Comparison with GBIRP on Inbred Simulations. The three-generation pedigrees here were simulated
with a population size of n = 10, since GBIRP could not process larger pedigrees. The accuracy of 1000 simulated
pedigrees were computed and plotted.

6 Discussion

The reconstruction of pedigrees from haplotype data is a undoubtedly a natural question of interest
to the scientific community. Reconstructing very small families, or first generation relationships is
a relatively easy task, but the reconstructing a full inbred pedigree involving a few generations is
inherently difficult since the traces left in our genomes by an ancestor drops exponentially with the
distance to the ancestor. Here, we proposed a reconstruction method for pedigrees given haplotype
data from the most recent generation. We use a generation-by-generation pedigree reconstruction
approach that takes haplotype data as input and finds the pedigree(s) that relate the individuals.
Notably, our methods are the first to reconstruct multi-generational pedigrees, rather than a set of
pair-wise relationships which may not be consistent with each other.

We present two methods of inferring the pedigrees that relate the input haplotypes. Both our
methods proceed from the bottom of the pedigree towards the top. The main difference between
our methods is that in CIP we assume an inbreeding model, and in COP we assume an outbreeding
model. We show that our methods perform considerably better than the state of the art.

One of the basic questions that we ask is how many generations back would it be possible to
reconstruct a pedigree. By simulations, we show that one can reconstruct at least fifth cousins with
some accuracy. Furthermore, we obtain a lower bound showing that given two individuals with the
most-recent-common ancestor being five generations back there is a constant probability for the two
not to share any genomic region inherited from the common ancestor. This bound obviously does
not apply to inbred pedigrees or to multi-way relationships (i.e. rather than pair-wise relationships,
consider relationships on a set of individuals). One of the open problems naturally arising from this is
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Fig. 7. Comparison with GBIRP on Outbred Simulations. The three-generation pedigrees here were simulated
with a population size of n = 10, since GBIRP could not process larger pedigrees. The accuracy of 1000 simulated
pedigrees were computed and plotted.

whether our lower bound can be extended to the case of inbreeding and to multi-way relationships.
More generally, a major challenge would be to understand what are the limitations of pedigree
reconstruction and under which conditions.

We note that our methods and analysis are limited to a restricted scenario in which there is
monogamy and the generations are synchronous. If monogamy is broken then our approach will
not work since the partition of the sibling relationship graph at each level will not be a simple
partition. It is plausible that a different graph formulation may still provide an accurate solution to
more complex pedigrees, however the exact formulation that will resolve such pedigrees is currently
unknown and is left as an open challenge.

There are significant open challenges with pedigree reconstruction. For example, it would be nice
to obtain confidence values on the inferred pedigree edges. However this seems very difficult, even if
we can draw pedigrees from the posterior distribution of pedigree structures given the data. Since
edges in a pedigree are not labeled, obtaining confidence values for a pedigree P would translate to:
drawing pedigree samples, Q, from the distribution, identifying the edges in P and Q that provide
the same relationships, and scoring the edges of P according to the probability of pedigree Q. As
discussed in the companion submission to RECOMB [14], the second step, identifying the edges in
P and Q that provide the same relationships, is a hard problem.
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