Automated and Interactive Debugging of Big Data Analytics

Muhammad Ali Gulzar
University of California, Los Angeles
Big Data Debugging in the Dark

1. Develop locally
2. Hope it works
3. Run in cloud
4. Bug!
5. Guesswork

Google
Map Reduce

Hadoop
Spark
Hive
• Interactive Debugging Primitives for Big Data Processing in Spark

• Automated Debugging in Data Intensive Scalable Computing Systems

• White-box Testing of Data Intensive Scalable Computing Applications with user defined functions
Why Traditional Interactive Debugging is Hard for Apache Spark?

Enabling interactive debugging requires us to re-think the features of traditional debugger such as GDB

- Pausing the entire computation on the cloud could reduce throughput
- It is clearly infeasible for a user to inspect billion of records through a regular watchpoint
- Even launching remote JVM debuggers to individual worker nodes cannot scale for big data computing
Interactive DISC Debug Primitives [ICSE ‘16, FSE’16 Demo, SIGMOD’17 Demo]

1. Simulated Breakpoint

2. On Demand Guarded Watchpoint

3. Crash Culprit Identification

4. Backward and Forward Tracing
Our Insights for Interactive DISC Debugging

- We do not pause program execution but simulate a breakpoint through on-demand state regeneration.
- We deliver selected program states to a user in a streaming processing fashion.
- We re-architect the underlying big data system runtime with native in-memory data provenance support.
What is the performance overhead of debugging primitives?

<table>
<thead>
<tr>
<th>Program</th>
<th>Dataset size (GB)</th>
<th>Max</th>
<th>Max w/o Latency Alert</th>
<th>Watchpoint</th>
<th>Crash Culprit</th>
<th>Tracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordCount</td>
<td>0.5 - 1000</td>
<td>2.5X</td>
<td>1.34X</td>
<td>1.09X</td>
<td>1.18X</td>
<td>1.22X</td>
</tr>
<tr>
<td>Grep</td>
<td>20 - 90</td>
<td>1.76X</td>
<td>1.07X</td>
<td>1.05X</td>
<td>1.04X</td>
<td>1.05X</td>
</tr>
<tr>
<td>PigMix-L1</td>
<td>1 - 200</td>
<td>1.38X</td>
<td>1.29X</td>
<td>1.03X</td>
<td>1.19X</td>
<td>1.24X</td>
</tr>
</tbody>
</table>

Max : All the features of BigDebug are enabled

BigDebug poses at most 2.5X overhead with the maximum instrumentation setting.
ICSE ’16
• Interactive Debugging Primitives for Big Data Processing in Spark

SoCC ’17
• Automated Debugging in Data Intensive Scalable Computing Systems

Ongoing
• White-box Testing of Data Intensive Scalable Computing Applications with user defined functions
Motivating Example

• Alice writes a Spark program that identifies, for each state in the US, the delta between the minimum and the maximum snowfall reading for each day of any year and for any particular year.

• An input data record that measures 1 foot of snowfall on January 1st of Year 1992, in the 99504 zip code (Anchorage, AK) area, appears as

99504, 01/01/1992, 1ft
Problem Definition

- Using a test function, a user can specify incorrect results

Given a test function, the goal is to identify a minimum subset of the input that is able to reproduce the same test failure.

```scala
def test(key: String, delta: Float): Boolean = {
  delta < 6000
}
```
Existing Approach 1: Data Provenance for Spark
[VLDB 2015]

It over-approximates the scope of failure-inducing inputs i.e. records in the faulty key-group are all marked as faulty
Existing Approach 2: Delta Debugging [Zeller 1999]

- Delta Debugging performs a systematic binary search-like procedure on the input dataset using a test oracle function.

It does not prune input records known to be irrelevant because of the lack of semantic understanding of data-flow operators.
Automated Debugging in DISC with BigSift [SoCC 2017]

Input: A Spark Program, A Test Function

Output: Minimum Fault-Inducing Input Records

Data Provenance + Delta Debugging

- Test Predicate Pushdown
- Prioritizing Backward Traces
- Bitmap based Test Memoization
Optimization 1: Test Predicate Pushdown

- **Observation:** During backward tracing, data provenance traces through all the partitions even though only a few partitions are faulty.

If applicable, BigSift pushes down the test function to test the output of combiners in order to isolate the faulty partitions.
Debugging Time

On average, BigSift takes 62% less time to debug a single faulty output than the time taken for a single run on the entire data.
ICSE ’16
• Interactive Debugging Primitives for Big Data Processing in Spark

SoCC ’17
• Automated Debugging in Data Intensive Scalable Computing Systems

Ongoing
• White-box Testing of Data Intensive Scalable Computing Applications with user defined functions
Testing Challenges of Big Data Analytics

- How can we select a **minimal sample** from a complete dataset to perform efficient testing of DISC applications?
- How can we generate a data that **exercises all execution paths** in a DISC application to facilitate complete testing?
- Due to **dataflow operators** and complex **user defined functions** in DISC application, it is extremely hard to answer the two mentioned questions.

```scala
sc.textFile("hdfs://...")
  .flatMap(s => s.split("."))
  .map(s => (s,1))
  .reduceByKey((a,b) => a+b)
```

Dataflow Operators

User defined functions
Ongoing work: White-box Testing of DISC Applications

1. A DISC application is decomposed into UDFs and dataflow operators.

2. Each complex UDF is symbolically executed in isolation with bounded path exploration.

3. UDF Path constraints are integrated w.r.t the logical specifications of data flow operators.

4. Path constraints are converted into SMT2 which is used to generate test data theorem solver.

<table>
<thead>
<tr>
<th>Path Constraint</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>X>5 & y= ..</td>
<td>z = x*...</td>
</tr>
<tr>
<td>X<3 & y>...</td>
<td>z = x/...</td>
</tr>
</tbody>
</table>

Java Path Finder

Z3

Test Data
BigTest outperforms previously known technique and provides 100% JDU path coverage is almost every benchmark program.
Conclusion

• By synthesizing insights from software engineering and database systems, we can design **scalable, interactive, and automated debugging** algorithms for big data analytics.

• Demo: Debugging Big Data Analytics in Spark with BigDebug
 https://www.youtube.com/watch?v=aZ91EyC5-Yc

• Demo: Automated Debugging of Big Data Analytics with BigSift
 https://www.youtube.com/watch?v=_HR3VJ2dPbE
Optimization 2: Prioritizing Backward Traces

- **Observation**: The same faulty input record may contribute to multiple output records failing the test.

In case of multiple faulty outputs, BigSift overlaps two backward traces to minimize the scope of fault-inducing input records.
BigTest generates testing data of size that is several orders of magnitude (10^6-10^{10}) smaller than the original input dataset.
BigDebug: Interactive Debugger [FSE 2016 Demo, SIGMOD 2017 Demo]

- BigDebug is publicly available at https://sites.google.com/site/sparkbigdebug/
BigSift leverages DD after DP to continue fault isolation, achieving several orders of magnitude 10^3 to 10^7 better precision.