Lifted Inference for
Probabilistic Logic Programs*

Wannes Meert!, Guy Van den Broeck!?, and Adnan Darwiche?

1 Computer Science Department,
KU Leuven, Belgium
2 Computer Science Department
University of California, Los Angeles

Abstract. First-order model counting emerged recently as a novel rea-
soning task, at the core of efficient algorithms for probabilistic logics such
as MLNs. For certain subsets of first-order logic, lifted model counters
were shown to run in time polynomial in the number of objects in the
domain of discourse, where propositional model counters require expo-
nential time. However, these guarantees apply only to Skolem normal
form theories (i.e., no existential quantifiers). Since textbook Skolemiza-
tion is not sound for model counting, these restrictions precluded efficient
model counting for directed models, such as probabilistic logic programs,
which rely on existential quantification. Recently, we presented a novel
Skolemization algorithm for model counting problems that eliminates ex-
istential quantifiers from a first-order logic theory without changing its
weighted model count. Our Skolemization procedure extends the appli-
cability of first-order model counters to probabilistic logic programming.
For the first time, this enables lifted inference with these representations.

Keywords: Lifted probabilistic inference, Probabilistic logic programs,
Skolemization

1 Introduction

A number of inference algorithms for probabilistic logic programs are based on
weighted model counting (WMC). In model counting one counts the number
of satisfying assignments of a propositional sentence. In WMC, each assignment
has an associated weight and the task is to compute the sum of the weights of all
satisfying assignments. For example, exact inference algorithms for ProbLog [10]
encode probabilistic inference as a WMC task, which can then be solved by
knowledge compilation [6] or exhaustive DPLL search [19].

WMC plays an important role in inference for first-order probabilistic repre-
sentations in general. These became popular in recent years, in statistical rela-
tional learning [12] and probabilistic logic learning [7], which are concerned with

* This is a technical summary of Van den Broeck, Meert, and Darwiche [22], which
was published at the 14th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, extended with an experimental evaluation.

2 Lifted Inference for Probabilistic Logic Programs

modeling and learning complex logical and probabilistic interactions between
large numbers of objects. Efficient algorithms reduce exact probabilistic infer-
ence to a WMC problem on a propositional knowledge base [3,11, 10]. Encoding
first-order probabilistic models into propositional logic retains a key advantage
of the Bayesian network algorithms: WMC naturally exploits determinism and
local structure in the probabilistic model. A disadvantage is that the high-level
first-order structure is lost. Poole [18] observed that knowing the symmetries
that are abundant in first-order structure can speed up probabilistic inference.
Lifted inference algorithms reason about groups of objects as a whole, simi-
lar to the high-level reasoning of first-order resolution. This has lead Van den
Broeck et al. [2] and Gogate and Domingos [13] to propose weighted first-order
model counting (WFOMC) as the core reasoning task underlying lifted infer-
ence algorithms. WFOMC assigns a weight to interpretations in finite-domain,
function-free first-order logic, and computes the sum of the weights of all models.

Counting models at the first-order level has computational advantages. For
certain classes of theories, knowing the first-order structure gives exponential
speedups [21]. For example, counting the models of a first-order universally quan-
tified CNF with up to two logical variables per clause can always be done in time
polynomial in the size of the domain of discourse. In contrast, a propositionaliza-
tion of these CNFs will often have a treewidth polynomial in the domains size,
and propositional model counting runs in exponential time. One major limita-
tion, however, is that lifted model counters require input in Skolem normal form
(i.e., without existential quantifiers). This makes it inefficient to apply them to
probabilistic logic programs.

In this paper we show how a recently introduced Skolemization procedure
[22] can be used to apply WFOMC to probabilistic logic programs and thereby
perform lifted probabilistic inference for probabilistic logic programs.

2 Background

In this section, we briefly review first-order logic and model counting.

2.1 First-order logic

Throughout this paper, we will work with the function-free finite-domain frag-
ment of first-order logic (FOL). An atomP(t1, .. .,t,) consists of predicate P/n of
arity n followed by n arguments, which are either constants from a finite domain
D = {A,B,...} or logical variables {x,y,...}. We use y to denote a sequence
of logical variables. A literal is an atom or its negation. A formula combines
atoms with logical connectives and quantifiers 3 and V. A logical variable x is
quantified if it is enclosed by a Vx or Jz. A free variable is one that is not quan-
tified. A sentence is a formula without free variables. A formula is ground if it
contains no logical variables. A clause is a disjunction of literals and a CNF is
a conjunction of clauses. The groundings of a quantifier-free formula is the set

Lifted Inference for Probabilistic Logic Programs 3

of formulas obtained by instantiating the free variables with any possible combi-
nation of constants from D. The grounding of Vz, ¢ and dz, ¢ is the conjunction
resp. disjunction of all groundings of ¢.

2.2 'Weighted First-order Model Counting

We will now introduce the Weighted First-order Model Counting (WFOMC)
task [2]. Given (i) a sentence A in FOL containing predicates P, (ii) a set of
constants D, including the constants in A, and (iii) a pair of weight functions
w, W : P — R, the weighted first-order model count (WFOMC) is

WFOMC(A,D,w,w) = > [] w(pred(1)) J] w(pred(1)),

wkEpA l€wg l€wy

where wg and w; consist of the true, respectively false, literals in the model w,
and pred maps literals to their predicate.

The weight functions assign a weight to each predicate. The weight of a
positive (negative) literal is the weight of its predicate in w (W). The weight of a
model is the product of its literal weights. Finally, the total count is the sum of
the weights of all Herbrand models of A. Note that we permit predicate weights
to be negative numbers, which is crucial for the Skolemization algorithm.

3 Skolemization for WFOMC

A sentence without existential quantifiers is typically obtained using Skolemiza-
tion, which eliminates existential quantifiers from a sentence by replacing exis-
tentially quantified variables by Skolem constants and functions. The result is
not logically equivalent to the original formula, but only equisatisfiable (i.e., sat-
isfiable precisely when the original formula is satisfiable). Because it introduces
functions, WFOMC cannot be applied to the resulting sentence.

In this section we repeat the novel Skolemization technique for WFOMC
introduced in [22]. Tt takes as input a triple (A, w,w) whose A is an arbitrary
sentence and returns a triple (A’, w/, w’) with the same weighted model count
and whose A’ is in Skolem normal form (i.e., no existential quantifiers). Such a
A’ can then be turned into first-order CNF using standard transformations and
passed on to WFOMC. The proposed technique does not introduce functions.

The algorithm eliminates existential quantifiers one by one?. Its basic build-
ing block is the following transformation.

Definition 1. Suppose that A contains a subexpression of the form Iz, ¢(x,y),
where ¢(x,y) is an arbitrary sentence containing the free logical variables x and
y. Let n be the number of variables in y. First, we introduce two new predicates:

3 The Skolemization algorithm is implemented in the WFOMC system: http://dtai.
cs.kuleuven.be/wfomc

4 Lifted Inference for Probabilistic Logic Programs

the Tseitin predicate Z/n and the Skolem predicate S/n. Second, we replace the
expression Jx, p(x,y) in A by the atom Z(y), and append the formulas

vy, Vz, Z(y) vV —¢(z,y)
Yy, S(y) Vv Z(y)
Vy,Vz, S(y)V —¢(z,y).

The functions w' and W' are equal to w and W, except that w'(Z) = w'(Z) =
w'(8) =1 and w'(8) = —1.

In the resulting theory A’; a single existential quantifier is now eliminated. This
building block can eliminate single universal quantifiers as well. When A contains
a subexpression Vz, ¢(z,y), we replace it by -3z, ~¢(x,y), whose existential
quantifier can be eliminated with Definition 1.

The repeated application of Definition 1 comprises a modular Skolemiza-
tion algorithm. It will terminate with a sentence in Skolem normal form and,
moreover, this can be achieved in time polynomial in the size of A.

4 Skolem Normal Form Encoding of Probabilistic Logic

We will ilustrate in this section how the proposed Skolemization technique can
extend the scope of first-order model counters to probabilistic logic programs.
For this paper, we explain lifted inference for the ProbLog language [8,10]. The
results, however, generalize to other probabilistic logic languages, such as PRISM
[20] or Primula [14].

Consider a probabilistic logic program that induces the distribution Prp(.)
for domain D. A WFOMC encoding of this model is a triple (A, w, W) which
guarantees that for any sentence ¢ (usually a conjunction of literals) and domain
D, we have that

pro(s) — WFOMC(A A 6,D, w, w)
oI = TWFOMC(A, D, w, w)

ProbLog Representation ProbLog extends logic programs with facts that
are annotated with probabilities. A ProbLog program @ is a set of probabilistic
facts F' and a regular logic program L. A probabilistic fact p::a consists of a
probability p and an atom a. A logic program is a set of rules, with the form
Head:-Body, where the head is an atom and the body is a conjunction of literals.
For example, the program

0.1 :: Attends(x).
0.3 :: ToSeries(x).
Series:-Attends(z), ToSeries(z).
expresses that if more people attend a workshop, it more likely turns into a series

of workshops. The first two lines are probabilistic facts F', and the last line is
the logic program L.

Lifted Inference for Probabilistic Logic Programs 5

The semantics of a ProbLog program & are defined by a distribution over the
groundings of the probabilistic facts for a given domain of constants D .* The
probabilistic facts p; :: a; induce a set of possible worlds, one for each possible
partition of a; in positive and negative literals. The set of true a; literals with the
logic program L define a well-founded model. The probability of such a model
is the product of p; for all true a; literals and 1 — p; for all false a; literals.

For the domain D = {A, B} (two people), the above first-order ProbLog
program represents the following grounding:

0.1 :: Attends(A).

0.1 :: Attends(B).

0.3 :: ToSeries(A).

0.3 :: ToSeries(B).
Series:-Attends(A), ToSeries(A).
Series:-Attends(B), ToSeries(B).

This ground ProbLog program contains 4 probabilistic facts which corresponds
to 24 possible worlds. The weight of, for example, the world in which Attends(A)
and ToSeries(A) are true would be 0.1-(1 —0.1) - 0.3- (1 —0.3) = 0.0189 and
the model would be {Attends(A), ToSeries(A),Series}.

Encoding a ProbLog Program The transformation from a ProbLog program
to a first-order logic theory is based on Clark’s completion [4]. This is a transfor-
mation from logic programs to first-order logic. For certain classes of programs,
called tight logic programs, it is correct, in the sense that every model of the logic
program is a model of the completion, and vice versa. Intuitively, for each pred-
icate P, the completion contains a single sentence encoding all its rules. These
rules have the form P(x):-b;(x,y;), where b; is a body and y; are the variables
that appear in the body b; but not in the head. The sentence encoding these
rules in the completion is Vx, P(x) < \/, Jys, bi(x,y;). If the program contains
cyclic rules, the completion is not sound, and it is necessary to first apply a
conversion to remove positive loops [16].

Definition 2. The WFOMC encoding (A, w, W) of a tight ProbLog program has
A equal to Clark’s completion of L. For each probabilistic fact® p::a we set the
weight function to w(pred(a)) = p and w(pred(a)) =1 — p.

Again, a Skolem normal form is required to use WFOMC. However, we get
this form only when the variables that appear in the body of a rule also appear

4 Our treatment assumes a function-free and finite-domain fragment of ProbLog.
Starting from classical ProbLog semantics, one can obtain a finite function-free do-
main for a given query by exhaustively executing the Prolog program and keeping
track of the goals that are called during resolution.

5 If multiple probabilistic facts are defined for the same predicate, auxiliary predicates
need to be introduced.

6 Lifted Inference for Probabilistic Logic Programs

in the head of that rule. This is not the case for most Prolog programs. For
example, if we apply Definition 2 to the example above, an existential quantifier
appears in the sentence:

Series < Jx,Attends(z) A ToSeries(x).

Furthermore, w maps Attends to 0.1 and ToSeries to 0.3, and W maps Attends
to 0.9 and ToSeries to 0.7. Both w and w are 1 for all other predicates. This
example is not in Skolem normal form and requires Skolemization before it can
be processed by WFOMC algorithms. Therefore, current algorithms resort to
grounding the quantifier which removes part of the first-order structure and
makes the WFOMC encoding specific to the domain D.

Applying Skolemization Skolemization followed by CNF conversion gives a
A’ equal to

Series V —Z

—SeriesV Z

YV, ZV -Attends(z) V —ToSeries(z)
ZV 8
Va, SV -Attends(z) V —ToSeries(z)

This sentence is in Skolem normal form and can now be processed by WFOMC
algorithms.

A simple ProbLog program as the one above is identical to a noisy-or struc-
ture [5], popular in Bayesian networks. Negative parameters have also come
up for optimizing calculations for the noisy-or structure [9] and this particular
structure has been lifted to the first-order case by Kisynski and Poole [17]. The
approach followed by Kisynski and Poole [17] can be considered a special case
of the Skolemization algorithm applied to a noisy-or structure.

Inference Given the resulting CNF, we computed the probability of Series
using both propositional WMC and lifted WFOMC. The results are depicted in
Fig. 1a and show a significant speedup for the lifted approach with respect to
propositional inference.

If we extend the example to express that we are mainly interested in attendees
that have joint publications, we obtain:

0.1 :: Attends(z).
0.3 :: ToSeries(x).
Series:- Attends(z), Coauthor(z,y), Attends(y), ToSeries(z, y).

Lifted Inference for Probabilistic Logic Programs 7

which after Skolemization and conversion to CNF becomes:

Series V —Z
—Series V Z
Yz, ZV —Attends(z) V —-Coauthor(z,y) V —Attends(y) V —ToSeries(z,y)
ZV3S
Vz, S8V —Attends(z) V —Coauthor(z,y) V —Attends(y) V —ToSeries(z,y)
Because of the extra logic variable, propositional inference becomes exponen-

tial in the size of the domain (see Fig. 1b). Lifted inference on the other hand is
polynomial in the size of the domain resulting in an exponential speedup.

16° Total time 168 Total time
e-e Propositional i e-e Propositional
mm Lifted = ° m-m Lifted
10° : /! H 10 ;‘
P . g
g, 2
~ 10 ~ 10
o o |
E £ [
“ - d
10° y : ; ; | 10 ; SO S S T |
i Lot
4./I/.- o 1
?II“.——-—-—
10 10
] 100 200 300 400 500 600 700 800 900] 10 20 30 40 50 60 70 80 90
Number of people Number of peopnle
(a) For the workshop example. (b) For the extended workshop example.

Fig. 1: Computing the probability of Series.

5 Conclusions

In this paper we show how a recently introduced Skolemization procedure [22)
can be used to apply WFOMC to probabilistic logic programs and perform
lifted inference, which is potentially exponentially faster. The liftability theorems
that define classes of theories for which WFOMC is domain-liftable [15] and
approaches for lifted learning [1] are now also applicable to probabilistic logic
programs.

References

1. Van den Broeck, G., Meert, W., Davis, J.: Lifted generative parameter learning.
In: Statistical Relational AI (StaRAI) workshop (2013)

2. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted
Probabilistic Inference by First-Order Knowledge Compilation. In: Proceedings of
IJCAL pp. 2178-2185 (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Lifted Inference for Probabilistic Logic Programs

Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks
for exact inference. International Journal of Approximate Reasoning 42(1-2), 4-20
(May 2006)

Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning. pp. 311—
325. Morgan Kaufmann Publishers (1978)

Cozman, F.G.: Axiomatizing noisy-or. In: Proceedings of European Conference on
Artificial Intelligence (ECAI). pp. 979-980 (2004)

Darwiche, A.: A logical approach to factoring belief networks. Proceedings of KR
pp. 409-420 (2002)

De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic induc-
tive logic programming: theory and applications. Springer-Verlag, Berlin, Heidel-
berg (2008)

De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its
application in link discovery. In: Proceedings of IJCAL vol. 7, pp. 2462-2467 (2007)
Diez, F.J., Galan, S.F.: Efficient computation for the noisy max. International
Journal of Intelligent Systems 18(2), 165-177 (2003)

Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic pro-
grams using weighted Boolean formulas. Theory and Practice of Logic Program-
ming (2013)

Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference
in probabilistic logic programs using weighted CNF’s. In: Proceedings of UAI pp.
211-220 (Jul 2011)

Getoor, L., Taskar, B. (eds.): An Introduction to Statistical Relational Learning.
MIT Press (2007)

Gogate, V., Domingos, P.: Probabilistic theorem proving. In: Proceedings of UAI.
pp. 256-265 (2011)

Jaeger, M.: Relational Bayesian networks. In: Proceedings of the 18th Conference
on Uncertainty in Artificial Intelligence (UAI). pp. 266-273 (2002)

Jaeger, M., Van den Broeck, G.: Liftability of probabilistic inference: Upper and
lower bounds. In: Proceedings of StarAl (2012)

Janhunen, T.: Representing normal programs with clauses. In: Proceedings of Eu-
ropean Conference on Artificial Intelligence (ECAI). vol. 16, p. 358 (2004)
Kisynski, J., Poole, D.: Lifted aggregation in directed first-order probabilistic mod-
els. In: Proceedings of IJCAI pp. 1922-1929 (2011)

Poole, D.: First-order probabilistic inference. In: Proceedings of IJCAI pp. 985-991
(2003)

Sang, T., Beame, P., Kautz, H.: Solving Bayesian networks by weighted model
counting. In: Proceedings of AAAIL vol. 1, pp. 475-482 (2005)

Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP). pp. 715-729 (1995)

Van den Broeck, G.: On the completeness of first-order knowledge compilation
for lifted probabilistic inference. In: Advances in Neural Information Processing
Systems 24 (NIPS). pp. 1386-1394 (2011)

Van den Broeck, G., Meert, W., Darwiche, A.: Skolemization for weighted first-
order model counting. In: Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR) (2014)

