

Symbolic Reasoning about Large Language Models

Guy Van den Broeck

Apple Workshop on Reasoning and Planning - Jul 23 2025

Reasoning with Symbolic Al

- Logic and probabilistic
- Deductive reasoning algorithms
- Correct on all problems
- Limited scope
- Intractable

Reasoning with Transformers

- Build chains of thought
- Inductive reasoning from data
- Correct on many problems
- Unlimited scope
- Tractable

Do deductive reasoning algorithms still have a purpose in the age of transformers?

Symbolic Probabilistic Reasoning About All Future Tokens

Reasoning about all Future Tokens: Constraints

 $p(\text{next-token} \mid \alpha, \text{ prefix})$

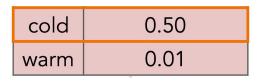
Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

Lexical Constraint α : sentence contains keyword "winter"

Reasoning about all Future Tokens: Constraints

$p(\text{next-token} \mid \alpha, \text{ prefix})$

cold	0.025
warm	0.001


 $\propto p(\text{next-token} \mid \text{prefix})$

cold	0.05
warm	0.10

Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

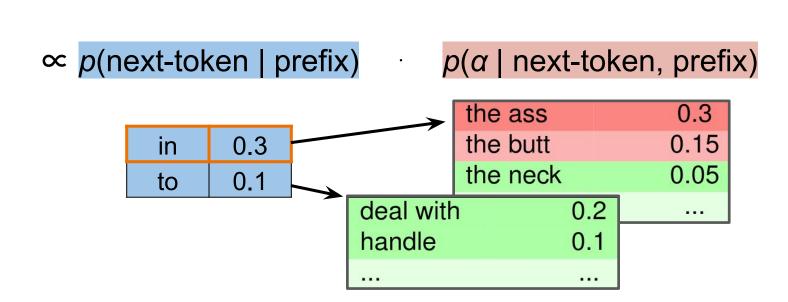
Lexical Constraint α : sentence contains keyword "winter"

 $p(\alpha \mid \text{next-token, prefix})$

Reasoning about all Future Tokens: Alignment

 $p(\text{next-token} \mid \alpha, \text{ prefix})$

Prefix: It's a pain ...


Constraint α: non-toxic

Reasoning about all Future Tokens: Alignment

 $p(\text{next-token} \mid \alpha, \text{ prefix})$

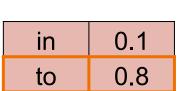
Prefix: It's a pain ...

Constraint α: non-toxic

Reasoning about all Future Tokens: Alignment

 $p(\text{next-token} \mid \alpha, \text{ prefix})$

in	0.03
to	0.08


∞ p(next-token | prefix)

in	0.3
to	0.1

Prefix: It's a pain ...

Constraint α: non-toxic

 $p(\alpha \mid \text{next-token, prefix})$

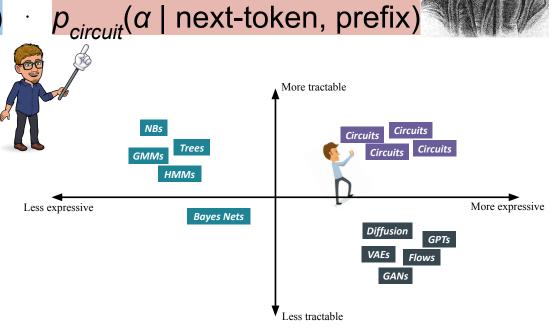
Reasoning about all Future Tokens

 p_{lm} (next-token | α , prefix)

Using Bayes rule,

 $\propto p_{lm}$ (next-token | prefix) $p_{lm}(\alpha \mid \text{next-token, prefix})$

Intractable


Reasoning about all Future Tokens

 p_{lm} (next-token | α , prefix)

Abusing Bayes rule,

 $\propto p_{lm}$ (next-token | prefix)

Use a **tractable** probabilistic **circuit** language model distilled from the transformer language model...

Reasoning about all Future Tokens: Constraints

 p_{lm} (next-token | α , prefix)

Abusing Bayes rule,

 $\propto p_{lm}$ (next-token | prefix) $p_{circuit}(\alpha | next-token, prefix)$

Theorem. Given

- a deterministic finite automata constraint a with m edges and
- <u>probabilistic circuit</u> p(.) with h hidden states (representing a Hidden Markov Model),

computing $p(\alpha \mid x_{1:t})$ over a sequence of n future tokens takes $O(nmh^2)$ time.

Interactive Text Editing

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

Interactive Text Editing

User: given the following context, generate infilling text for [BLANK] using key phrases "alien mothership", "far from over"; generated text must contain 25 - 30 words.

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

"First they've defeated a small squad of aliens, then a larger fleet of their ships. Eventually they've even managed to take down the alien mothership. But their problems are far from over. There are few humans left, and despite their magical power, their numbers are getting fewer."

Interactive Text Editing with key phrase (K) or length (L) constraints

	K&L	L	K	None	
					Quality
→ How many stars by humans?	2.74	2.78	2.64	2.68	TULU2
,	2.31	2.27	2.22		GPT3.5
	3.10	3.53	3.33	3.79	GPT4
	3.59	3.73	3.56	3.77	Ctrl-G

Interactive Text Editing with key phrase (K) or length (L) constraints

	None	K	L	K&L	
Quality					
TULU2	2.68	2.64	2.78	2.74	→ How many stars by humans?
GPT3.5	2.27	2.22	2.27	2.31	,
GPT4	3.79	3.33	3.53	3.10	
Ctrl-G	3.77	3.56	3.73	3.59	
Success					
TULU2	-	12%	20%	3%	→ Follows instructions?
GPT3.5	-	22%	54%	10%	
GPT4	-	60%	20%	27%	
Ctrl-G	_	100%	100%	100%	

Interactive Text Editing with key phrase (K) or length (L) constraints

		JUAULI			_
	None	K	L	K&L	
Quality					
TULU2	2.68	2.64	2.78	2.74	→ How many stars by humans?
GPT3.5	2.27	2.22	2.27	2.31	the state of the s
GPT4	3.79	3.33	3.53	3.10	
Ctrl-G	3.77	3.56	3.73	3.59	
Success					
TULU2	-	12%	20%	3%	→ Follows instructions?
GPT3.5	_	22%	54%	10%	
GPT4	_	60%	20%	27%	
Ctrl-G	_	100%	100%	100%	
Overall					
TULU2	-	7%	10%	1%	$\rightarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow $
GPT3.5	-	0%	5%	2%	- I onewe mediatione.
GPT4	-	41%	17%	14%	
Ctrl-G	-	76%	78%	82%	→ Ctrl-G based on Llama2-7B wipes the floor
	-	100 1000 1000 1000	30.00000 0920000	99000-932-95	•
					with GPT4, which is a >100x bigger LLM

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

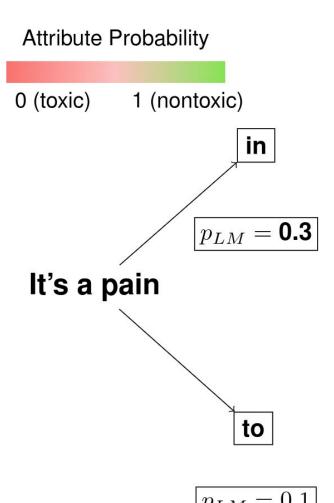
Ctrl-G Answer: The second glass costs 5 * .6 = \$3. So each set of two glasses actually costs 5 + 3 = \$8. He wants 16 / 2 = 8 sets of two. That means he needs to pay 8 * 8 = \$64. So the answer is 64.

Which constraint improves accuracy?

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.


Ctrl-G Answer: The second glass costs 5 * .6 = \$3. So each set of two glasses actually costs 5 + 3 = \$8. He wants 16 / 2 = 8 sets of two. That means he needs to pay 8 * 8 = \$64. So the answer is 64.

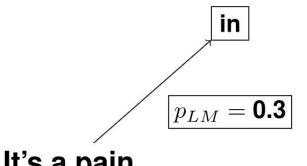
Use all the numbers in the problem statement!

Advantages of Ctrl-G:

- 1. Constraint α is guaranteed to be satisfied: if x_{t+1} makes α unsatisfiable, $p(x_{t+1} \mid x_{1:t}, \alpha) = 0$.
- 2. Generalizes well to <u>unseen reasoning tasks</u>, because all tasks are unseen :-) (training on a distribution over tasks is slow and brittle!)
- 3. Bayesian = goal-oriented (← structured generation tools)

You can control an intractable generative model using a generative model that is *tractable for symbolic reasoning*.

future text	$p_{LM}(x_{>t} \mid x_{\leq t})$
the ass	0.3
the butt	0.15
the neck	0.05
***	***

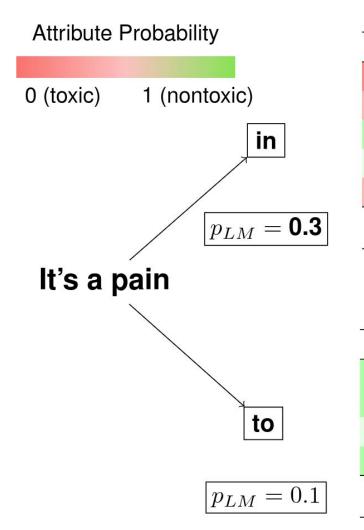

Intractable to know future expected attribute probability (EAP)

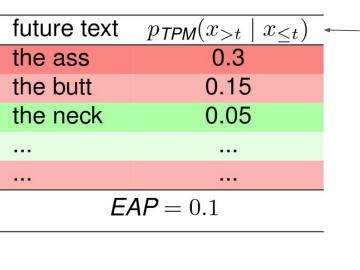
future text	$p_{LM}(x_{>t} \mid x_{\leq t})$
deal with	0.2
handle	0.1

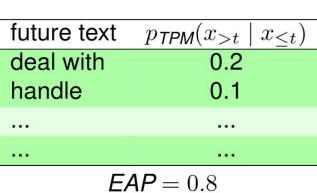
Attribute Probability

0 (toxic) 1 (nontoxic)

future text	$p_{TPM}(x_{>t} \mid x_{\leq t})$
the ass	0.3
the butt	0.15
the neck	0.05


Tractable Prob.
Circuit Model

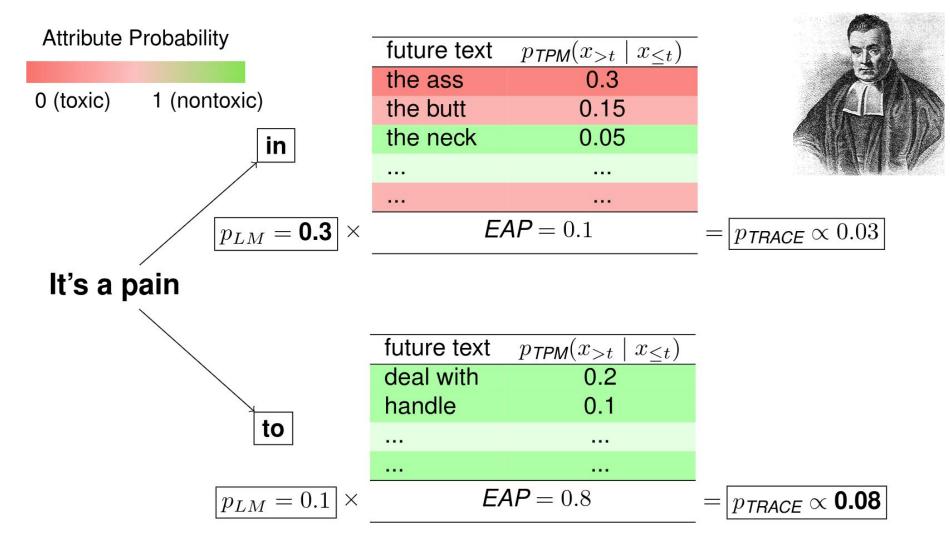



+ Log-Linear Attribute Classifier

to

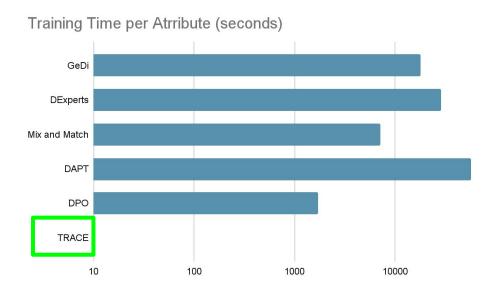
future text	$p_{TPM}(x_{>t} \mid x_{\leq t})$
deal with	0.2
handle	0.1

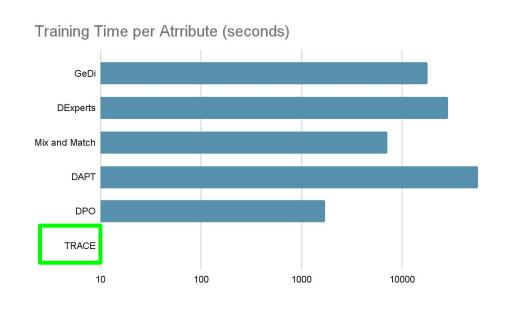
Efficient Expected Attribute Probability!

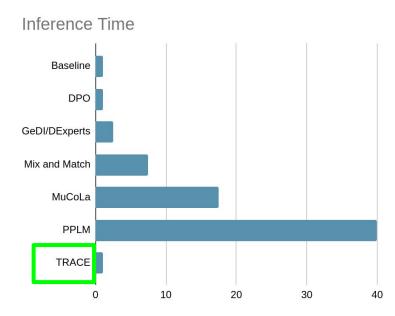

Attribute Classifier

Tractable

+ Log-Linear


Probabilistic Model


TRACE is Blazingly Fast


Given a language model, and its tractable proxy model, train log-linear attribute classifier

TRACE is Blazingly Fast

Given a language model, and its tractable proxy model, train log-linear attribute classifier, then use Bayesian logits at decoding time

State-of-the-art LLM Detoxification

Model	Toxicity (↓)		Approach Type			
	avg. max.	prob.				
GPT-2 Large Results						
GPT2	0.385	0.254	Baseline			
DAPT ⁽¹⁾	0.428	0.360	Finetuning			
GeDi ⁽²⁾	0.363	0.217	Decoding (Trained Guide)			
FUDGE ⁽³⁾	0.302	0.371	Decoding (Trained Guide)			
DExperts ⁽⁴⁾	0.314	0.128	Decoding (Trained Guide)			
PPLM ⁽⁵⁾	0.520	0.518	Decoding (Logit Control)			
MuCoLa ⁽⁶⁾	0.308	0.088	Decoding (Sampling)			
$PPO^{(7)}$	0.218	0.044	RL			
Quark ⁽⁸⁾	0.196	0.035	RL			
$DPO^{(9)}$	0.180	0.026	RL			
TRACE	0.163	0.016	Decoding (HMM Reasoning)			
Gemma-2B Results						
Gemma-2B	0.359	0.23	Baseline			
DPO ⁽⁹⁾	0.222	0.06	RL			
TRACE	0.189	0.02	Decoding (HMM Reasoning)			

State-of-the-art LLM Detox

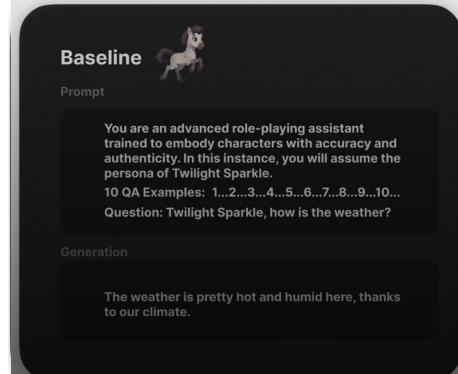
Model	Toxicity (↓)		Diversity (↑)		GP12-large	
	avg. max.	prob.	dist-2	dist-3	DPO	
GPT-2 Large	Results	DIO				
GPT2	0.385	0.254	0.87	0.86	TRACE	
$DAPT^{(1)}$	0.428	0.360	0.84	0.84	500 10 0 10 0 1 10 0 10 0 10 0 10 0 10	
GeDi ⁽²⁾	0.363	0.217	0.84	0.83	Decoding (Trained Guide)	
FUDGE ⁽³⁾	0.302	0.371	0.78	0.82	Decoding (Trained Guide)	
DExperts ⁽⁴⁾	0.314	0.128	0.84	0.84	Decoding (Trained Guide)	
PPLM ⁽⁵⁾	0.520	0.518	0.86	0.86	Decoding (Logit Control)	
MuCoLa ⁽⁶⁾	0.308	0.088	0.82	0.83	Decoding (Sampling)	
$PPO^{(7)}$	0.218	0.044	0.80	0.84	RL	
Quark ⁽⁸⁾	0.196	0.035	0.80	0.84	RL	
$DPO^{(9)}$	0.180	0.026	0.76	0.78	RL	
TRACE	0.163	0.016	0.85	0.85	Decoding (HMM Reasoning)	
Gemma-2B Results						
Gemma-2B	0.359	0.23	0.86	0.85	Baseline	
$DPO^{(9)}$	0.222	0.06	0.74	0.77	RL	
TRACE	0.189	0.02	0.86	0.85	Decoding (HMM Reasoning)	

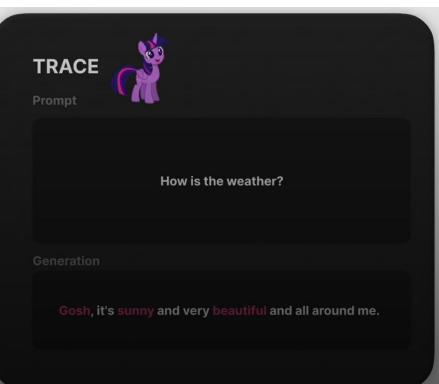
 Method
 Entropy (↑)

 GPT2-large
 52.06

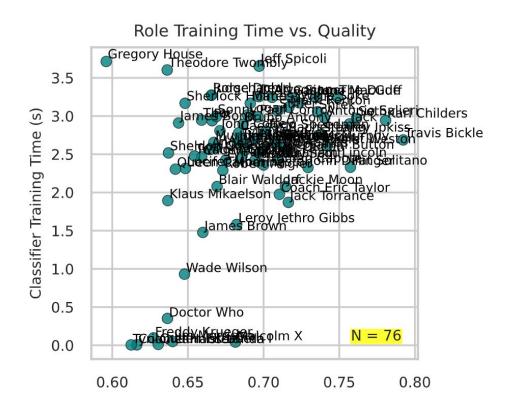
 DPO
 39.52

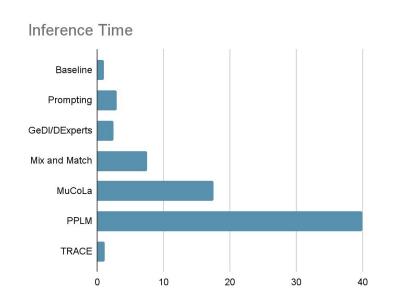
 TRACE
 52.54




State-of-the-art LLM Detoxification

Model	Toxicity	Гохісіty (↓)		sity (†)	Fluency (\dagger)	Approach Type
	avg. max.	prob.	dist-2	dist-3		
GPT-2 Large	Results					
GPT2	0.385	0.254	0.87	0.86	25.57	Baseline
DAPT ⁽¹⁾	0.428	0.360	0.84	0.84	31.21	Finetuning
GeDi ⁽²⁾	0.363	0.217	0.84	0.83	60.03	Decoding (Trained Guide)
FUDGE ⁽³⁾	0.302	0.371	0.78	0.82	12.97 *	Decoding (Trained Guide)
DExperts ⁽⁴⁾	0.314	0.128	0.84	0.84	32.41	Decoding (Trained Guide)
PPLM ⁽⁵⁾	0.520	0.518	0.86	0.86	32.58	Decoding (Logit Control)
MuCoLa ⁽⁶⁾	0.308	0.088	0.82	0.83	29.92	Decoding (Sampling)
$PPO^{(7)}$	0.218	0.044	0.80	0.84	14.27*	RL
Quark ⁽⁸⁾	0.196	0.035	0.80	0.84	12.47 *	RL
$DPO^{(9)}$	0.180	0.026	0.76	0.78	21.59 *	RL
TRACE	0.163	0.016	0.85	0.85	29.83	Decoding (HMM Reasoning)
Gemma-2B Results						
Gemma-2B	0.359	0.23	0.86	0.85	15.75	Baseline
DPO ⁽⁹⁾	0.222	0.06	0.74	0.77	14.39*	RL
TRACE	0.189	0.02	0.86	0.85	17.68	Decoding (HMM Reasoning)


Personalized Language Model: Twilight Sparkle



76 Personalized Language Models

Role Quality

1. Do deductive reasoning algorithms still have a purpose in the age of transformers?

2. Where did reasoning algorithms go wrong?

What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers? Yes, more cool applications of reasoning algorithms than can fit on these slides!
- 2. Where did reasoning algorithms go wrong?

What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers?
 Yes, more cool applications of reasoning algorithms than can fit on these slides!
- 2. Where did reasoning algorithms go wrong?
 Learn at scale, be tractable
 What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers? Yes, more cool applications of reasoning algorithms than can fit on these slides!
- 2. Where did reasoning algorithms go wrong?
 Learn at scale, be tractable
 What should they look like today?
 Circuits! Circuits! Circuits!

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu