

Tractable Probabilistic Circuits

Guy Van den Broeck

FOCS 2023 Workshop: Algorithmic Aspects of High-Dimensional Probabilistic Models - Oct 3 2023

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials*

$\Pr(X) = \sum_{Y} \Pr(X, Y)$

High-dimensional probabilistic models take various forms: classically-studied models such as multivariate Gaussians and Erdős-Rényi graphs, models with roots in statistical physics such as stochastic block models and Ising models, probabilistic graphical models such as Bayesian networks and Markov random fields, as well as the class of implicit generative models, such as generative adversarial networks and large language models 🦊

more tractable

$\Pr(X) = \sum_{Y} \Pr(X, Y)$

High-dimensional probabilistic models take various forms: classically-studied models such as multivariate Gaussians and Erdős-Rényi graphs, models with roots in statistical physics such as stochastic block models and Ising models, probabilistic graphical models such as Bayesian networks and Markov random fields, as well as the class of implicit generative models, such as generative adversarial networks and large language models 🦊

computational graphs that recursively define distributions

computational graphs that recursively define distributions

 \Rightarrow

mixtures

computational graphs that recursively define distributions

 \Rightarrow if you prefer arithmetic circuit syntax with one single input X_1

Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Likelihood $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Tractable marginals

A sum node is *smooth* if its children depend on the same set of variables.

A product node is *decomposable* if its children depend on disjoint sets of variables.

decomposable circuit (=syntactically multilinear)

Smoothness + decomposability = tractable MAR

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children

Smoothness + decomposability = tractable MAR

If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

 \Rightarrow integrals decompose into easier ones

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR

inear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0

leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

ChatGPT

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

 \bigcirc

That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.

Here's the correct sentence: The <u>dog caught</u> the <u>frisbee</u> in mid-air, showing off its amazing catching skills.

ChatGPT

ChatGPT

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.

Here's the correct sentence: The <u>dog caught</u> the <u>frisbee</u> in mid-air, showing off its amazing catching skills.

A <u>frisbee</u> is <u>caught</u> by a <u>dog</u>.

A pair of <u>frisbee</u> players are <u>caught</u> in a <u>dog</u> fight.

ChatGPT

ChatGPT

GeLaTo

What do we need?

Prefix: "The weather is"

Constraint α: text contains "winter"

Model only does p(next-token|prefix) =

cold	0.05
warm	0.10

We need

$$p(ext{next-token}| ext{prefix}, lpha) = -$$

cold	0.50
warm	0.01

$$\propto \sum_{ ext{text}} p(ext{next-token, text, prefix, } lpha)$$

CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords, in any order and any form of inflections. e.g.,

Input: snow drive car

Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

Constraint α in CNF: (w

Each clause represents the inflections for one keyword.

Distill an HMM p_{hmm} that approximates p_{qpt}

- 1. HMM with 4096 hidden states and 50k emission tokens, minimizing KL($p_{apt} // p_{HMM}$)
- 2. Leverages latent variable distillation for training PCs at scale [ICLR 23].
- 3. <u>Efficient algorithm</u> for computing $p(\alpha | x_{1:t+1})$ with constraint α in CNF: For m clauses and sequence length n, time-complexity for HMM generation is O(2^{|m|}n)

Control p_{gpt} via p_{hmm}

Language model is fine-tuned to perform constrained generation (e.g. seq2seq)

we view $p_{HMM}(x_{t+1} | x_{1:t}, \alpha)$ and $p_{gpt}(x_{t+1} | x_{1:t})$ as classifiers trained for the same task with different biases; thus we generate from their <u>weighted</u> <u>geometric mean</u>:

 $p(x_{t+1}|x_{1:t}, \alpha) \propto p_{hmm}(x_{t+1}|x_{1:t}, \alpha)^{w} \cdot p_{gpt}(x_{t+1}|x_{1:t})^{1-w}$

Mathad	Generation Quality						Constraint Satisfaction					
Method	ROU	GE-L	BLE	EU-4	CIE	DEr	SPI	CE	Cove	erage	Succes	s Rate
Supervised	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
NeuroLogic (Lu et al., 2021)	-	42.8	-	26.7	(C)	14.7	2	30.5	_	97.7	_	93.9 [†]
A*esque (Lu et al., 2022b)	-	43.6	-	28.2		15.2	-	30.8	-	97.8	-	97.9 [†]
NADO (Meng et al., 2022)	44.4 [†]	-	30.8	-	16.1^{\dagger}	-	32.0 [†]		97.1	-	88.8^{\dagger}	-
GeLaTo	46.0	45.6	34.1	32.9	16.7	16.8	31.3	31.9	100.0	100.0	100.0	100.0

Advantages of GeLaTo:

- 1. Constraint α is <u>guaranteed to be satisfied</u>: for any next-token x_{t+1} that would make α unsatisfiable, $p(x_{t+1} | x_{1:t}, \alpha) = 0$.
- 2. Training p_{hmm} does not depend on α , which is only imposed at inference (generation) time.
- 3. Can impose <u>additional tractable constraints</u>:
 - keywords follow a particular order
 - keywords appear at a particular position
 - keywords must not appear

Conclusion: you can control an intractable generative model using a tractable probabilistic circuit.

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0\\ 0.9 & 0.97 & 0.96 & 0\\ 0.8 & 0.96 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Global Negative Dependence

Diversity in recommendation systems

Tractable likelihoods and marginals

$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$

Are all tractable probabilistic models probabilistic circuits?

Are all tractable probabilistic models probabilistic circuits?

A separation between PCs and DPPs

Theorem (Martens and Medabalimi, 2014). Let P_n be the uniform distribution over spanning trees on K_n . For $n \ge 20$, the size of any smooth and decomposable PC that represents P_n is at least $2^{n/30240}$.

Theorem (Snell, 1995). The uniform distribution over spanning trees on the complete graph K_n is a DPP over $\binom{n}{2}$ edges.

Probabilistic Generating Circuits

A Tractable Unifying Framework for PCs and DPPs

Probability Generating Functions

X_1	X_2	X_3	\Pr_{β}
0	0	0	0.02
0	0	1	0.08
0	1	0	0.12
0	1	1	0.48
1	0	0	0.02
1	0	1	0.08
1	1	0	0.04
1	1	1	0.16

$$g_{\beta} = \underbrace{0.16z_1z_2z_3}_{+ 0.48z_2z_3} + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 + 0.48z_2z_3 + 0.12z_2 + 0.08z_3 + 0.02z_1$$

Probability Generating Functions

Probabilistic Generating Circuits (PGCs)

- Sum nodes with weighted edges to children.
- 2. Product nodes 🚫 with unweighted edges to children.
- 3. Leaf nodes: z_i or constant.

PGCs Support Tractable Likelihoods

How to extract the right monomial's coefficient?

PGCs Support Tractable Likelihoods

0.8

 z_3

1.0

0.2

1.0

0.1

6.0

 z_2

How to extract the right monomial's coefficient?

$$\Pr(X_1 = 1, X_2 = 0, ...) =?$$

-0.4

 (z_2)

complexity O(circuit size x degree)

$$p(t) = \alpha_k t^k + \dots + \alpha_1 t$$

- Monomials setting to true variables that must be false are 0-ed out
- Only the monomial that sets all required variables to true has max degree.

PGCs Support Tractable Marginals

How to sum the right monomial's coefficients?

PGCs Support Tractable Marginals

0.8

1.0

0.2

1.0

0.1

6.0

 z_2

How to sum the right monomial's coefficients?

$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

$$\Pr(X_1 = 1, X_2 = 0, ...) = ?$$

-0.4

 z_2

$$p(t) = \alpha_k t^k + \dots + \alpha_1 t$$

- Monomials setting to true variables that must be false are 0-ed out
- Other monomials contribute to result.
- Only monomials that set all required variables to true have max degree.

Example
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

Example
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

Example
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

X_1	X_2	X_3	\Pr_{β}
0	0	0	0.02
0	0	1	0.08
0	1	0	0.12
0	1	1	0.48
1	0	0	0.02
1	0	1	0.08
1	1	0	0.04
1	1	1	0.16

Probabilistic circuits are probabilistic generating circuits

PCs represents probability mass functions:

$$\begin{split} m_{\beta} &= 0.16X_{1}X_{2}X_{3} + 0.04X_{1}X_{2}\overline{X_{3}} + 0.08X_{1}\overline{X_{2}}X_{3} + 0.02X_{1}\overline{X_{2}}\overline{X_{3}} \\ &+ 0.48\overline{X_{1}}X_{2}X_{3} + 0.12\overline{X_{1}}X_{2}\overline{X_{3}} + 0.08\overline{X_{1}}\overline{X_{2}}X_{3} + 0.02\overline{X_{1}}\overline{X_{2}}\overline{X_{3}} \end{split}$$

PGCs represent probability generating functions:

$$g_{\beta} = 0.16z_1z_2z_3 + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 + 0.48z_2z_3 + 0.12z_2 + 0.08z_1z_3 + 0.02z_1$$

Given a smooth & decomposable PC, by setting $\overline{X_i}$ to 1, and X_i to z_i , we obtain an equivalent PGC

DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel L is given by:

$$g_L = \frac{1}{\det(L+I)} \det(I + L \operatorname{diag}(z_1, \dots, z_n)).$$

We need it as a sum of products to obtain a Probabilistic Generating Circuit

DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel *L* is given by:

$$g_L = \underbrace{\frac{1}{\det(L+I)}\det(I + L\operatorname{diag}(z_1, \dots, z_n))}_{\operatorname{Constant}}$$

We need it as a sum of products to obtain a Probabilistic Generating Circuit

DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel L is given by:

Probabilistic **generating** circuits seem awfully general.

Are all tractable probabilistic models probabilistic **generating** circuits?

Beyond marginal probabilities

systematically derive tractable inference algorithm of complex queries

	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x})\log q(oldsymbol{x})\mathrm{d}\mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
Ρέννι Εντροργ	$(1-lpha)^{-1}\log\int p^lpha(oldsymbol{x})d\mathbf{X}, lpha\in\mathbb{N}$	SD	#P-hard w/o SD
KENTT ENTROPT	$(1-lpha)^{-1}\log\int p^lpha(oldsymbol{x})d\mathbf{X}, lpha\in\mathbb{R}_+$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int p(oldsymbol{x},oldsymbol{y}) \log(\hat{p}(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
RÉNVI'S AIDHA DIV	$(1-lpha)^{-1}\log\int p^{lpha}(oldsymbol{x})q^{1-lpha}(oldsymbol{x})\;d\mathbf{X},lpha\in\mathbb{N}$	Cmp, q Det	#P-hard w/o Det
KENTI 5 ALPHA DIV.	$(1-lpha)^{-1}\log \int p^{lpha}(\boldsymbol{x})q^{1-lpha}(\boldsymbol{x}) d\mathbf{X}, lpha \in \mathbb{R}$	Cmp, Det	#P-hard w/o Det
Itakura-Saito Div.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})d\mathbf{X}}{\sqrt{\int p^2(oldsymbol{x})d\mathbf{X}\int q^2(oldsymbol{x})d\mathbf{X}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \ \mathbf{X}$	Cmp	#P-hard w/o Cmp

Conclusions

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials*

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/