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ChatGPT

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight.

ChatGPT

GeLaTo



Train some              for a specific task distribution
   (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train

What do we have?

Prefix: “The weather is”

Constraint α: text contains “winter”

Model only does



What do we need?

Prefix: “The weather is”

Constraint α: text contains “winter”

Marginalization!

Generate from



e.g., efficient marginalization:

Easily understood as tractable probabilistic circuits.

For now… keep it simple… just a Hidden Markov Model (HMM)

pTPM(3rd token = frisbee, 5th token = dog)

Tractable Probabilistic Models

Tractable Probabilistic Models (TPMs) 
model joint probability distributions 
and allow efficient probabilistic inference.

HCLT

Mixture of Trees

DPP
SPN

HMM

Probabilistic (Generating) Circuits

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Step 1: Distill an HMM phmm that approximates pgpt

1. HMM with 4096 hidden states and 50k emission tokens

2. Data sampled from GPT2-large (domain-adapted), minimizing KL(pgpt∥pHMM)

3. Leverages latent variable distillation for training at scale [ICLR 23]. 
(Cluster embeddings of examples to estimate latent Zi)

Anji Liu, Honghua Zhang and Guy Van den Broeck. Scaling Up Probabilistic Circuits by Latent Variable Distillation, 2023. 

http://starai.cs.ucla.edu/papers/LiuICLR23.pdf


CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords, 
in any order and any form of inflections. e.g.,

 Reference 1: A car drives down a snow covered road.

 Input: snow drive car

 Reference 2: Two cars drove through the snow. 

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

Each clause represents the inflections for one keyword.

Constraint α in CNF:



Computing p(α | x1:t+1)

For constraint α in CNF:

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

e.g.,  α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Efficient algorithm: 
For m clauses and sequence length n, time-complexity for HMM generation is O(2|m|n)

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


GeLaTo 
Overview
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Language model is not 
fine-tuned/prompted to satisfy constraints

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Language model is fine-tuned to perform 
constrained generation (e.g. seq2seq)

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Advantages of GeLaTo:

1. Constraint α is guaranteed to be satisfied: 
for any next-token xt+1 that would make α unsatisfiable, p(xt+1 | x1:t, α) = 0.

2. Training phmm does not depend on α, 
which is only imposed at inference (generation) time. 

3. Can impose additional tractable constraints:
○ keywords follow a particular order
○ keywords appear at a particular position
○ keywords must not appear

Conclusion: you can control an intractable generative model 
using a tractable probabilistic circuit.
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Declarative Knowledge of the Output

Neural Network

y
How is the output structured?
Are all possible outputs valid?

                                  vs.

How are the outputs related to each other?

Learning this from data is inefficient
Much easier to express this declaratively

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf


pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf
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PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)
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pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)
pylon derives the gradients
(solves a combinatorial problem)

3

 

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf
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a) A  network  uncertain  over both valid 
& invalid predictions

c) A network allocating most of
its mass to models of constraint

S
em

antic Loss

Probability of satisfying 
constraint α after sampling from 

neural net output layer p

Do this probabilistic-logical reasoning 
during learning in a computation graph

In general: #P-hard ☹



Probability

- log(      ) Semantic Lossα:   A ∧ B => C

p
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Semantic Probabilistic Layers

● How to give a 100% guarantee that Boolean constraints will be satisfied?

● Bake the constraint into the neural network as a special layer

● Secret sauce is again tractable circuits – computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

https://arxiv.org/abs/2206.00426
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Autoregressive distributions are hard…

Pr(α) is computationally hard, even when α is trivial:
What is prob. that LLM ends the sentence with “NeurIPS”?



Autoregressive distributions are hard…

Pr(α) is computationally hard, even when α is trivial:
What is prob. that LLM ends the sentence with “NeurIPS”?

Why did it work before?

Probability of satisfying constraint α 
after sampling from neural net output layer p
ASSUMING INDEPENDENT BERNOULLI'S



Basic Idea: 

Use how likely a constraint is to be 

satisfied around a model sample (x) 

as a proxy for how likely it is to be 

satisfied under the entire distribution. 

Average over many such samples.



Formally, minimize the pseudo-semantic loss 

x
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Formally, minimize the pseudo-semantic loss 

How good is this approximation?
● Local: 

~30 bits entropy vs ~80 for GPT-2. 
● Fidelity: 

4 bits KL-divergence from GPT-2.

x

x



How to compute pseudo-semantic loss?



Sudoku



Detoxify LLMs by disallowing bad words 

Constraint α is a list of 403 toxic words
Evaluation is a toxicity classifier
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Thanks

This was the work of many wonderful 
students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/ 

Honghua                  Kareem                    Zhe                    Meihua                    Anji

http://starai.cs.ucla.edu/publications/

