
Neuro-Symbolic AI with Tractable
Deep Generative Models

Guy Van den Broeck

NeurIPS MATH-AI Workshop - Dec 15 2023

Computer
Science

1. Language generation with constraints

2. Structured output learning with constraints

3. Autoregressive model learning with constraints

Outline

1. Language generation with constraints

2. Structured output learning with constraints

3. Autoregressive model learning with constraints

Outline

ChatGPT

ChatGPT

ChatGPT

ChatGPT

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight.

ChatGPT

GeLaTo

Train some for a specific task distribution
 (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train

What do we have?

Prefix: “The weather is”

Constraint α: text contains “winter”

Model only does

What do we need?

Prefix: “The weather is”

Constraint α: text contains “winter”

Marginalization!

Generate from

e.g., efficient marginalization:

Easily understood as tractable probabilistic circuits.

For now… keep it simple… just a Hidden Markov Model (HMM)

pTPM(3rd token = frisbee, 5th token = dog)

Tractable Probabilistic Models

Tractable Probabilistic Models (TPMs)
model joint probability distributions
and allow efficient probabilistic inference.

HCLT

Mixture of Trees

DPP
SPN

HMM

Probabilistic (Generating) Circuits

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf

Step 1: Distill an HMM phmm that approximates pgpt

1. HMM with 4096 hidden states and 50k emission tokens

2. Data sampled from GPT2-large (domain-adapted), minimizing KL(pgpt∥pHMM)

3. Leverages latent variable distillation for training at scale [ICLR 23].
(Cluster embeddings of examples to estimate latent Zi)

Anji Liu, Honghua Zhang and Guy Van den Broeck. Scaling Up Probabilistic Circuits by Latent Variable Distillation, 2023.

http://starai.cs.ucla.edu/papers/LiuICLR23.pdf

CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords,
in any order and any form of inflections. e.g.,

 Reference 1: A car drives down a snow covered road.

 Input: snow drive car

 Reference 2: Two cars drove through the snow.

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

Each clause represents the inflections for one keyword.

Constraint α in CNF:

Computing p(α | x1:t+1)

For constraint α in CNF:

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

e.g., α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Efficient algorithm:
For m clauses and sequence length n, time-complexity for HMM generation is O(2|m|n)

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf

GeLaTo
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf

GeLaTo
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf

Language model is not
fine-tuned/prompted to satisfy constraints

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf

Language model is fine-tuned to perform
constrained generation (e.g. seq2seq)

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf

Advantages of GeLaTo:

1. Constraint α is guaranteed to be satisfied:
for any next-token xt+1 that would make α unsatisfiable, p(xt+1 | x1:t, α) = 0.

2. Training phmm does not depend on α,
which is only imposed at inference (generation) time.

3. Can impose additional tractable constraints:
○ keywords follow a particular order
○ keywords appear at a particular position
○ keywords must not appear

Conclusion: you can control an intractable generative model
using a tractable probabilistic circuit.

1. Language generation with constraints

2. Structured output learning with constraints

3. Autoregressive model learning with constraints

Outline

Declarative Knowledge of the Output

Neural Network

y
How is the output structured?
Are all possible outputs valid?

 vs.

How are the outputs related to each other?

Learning this from data is inefficient
Much easier to express this declaratively

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf

pylon

PyTorch Code

for i in range(train_iters):
 ...
 py = model(x)
 ...
 loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
 ...
 return isValid

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf

pylon

PyTorch Code

for i in range(train_iters):
 ...
 py = model(x)
 ...
 loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
 ...
 return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf

pylon

PyTorch Code

for i in range(train_iters):
 ...
 py = model(x)
 ...
 loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
 ...
 return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)
pylon derives the gradients
(solves a combinatorial problem)

3

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf

without constraint with constraint without constraint with constraint

a) A network uncertain over both valid
& invalid predictions

c) A network allocating most of
its mass to models of constraint

S
em

antic Loss

Probability of satisfying
constraint α after sampling from

neural net output layer p

Do this probabilistic-logical reasoning
during learning in a computation graph

In general: #P-hard ☹

Probability

- log() Semantic Lossα: A ∧ B => C

p

without constraint with constraint without constraint with constraint

Semantic Probabilistic Layers

● How to give a 100% guarantee that Boolean constraints will be satisfied?

● Bake the constraint into the neural network as a special layer

● Secret sauce is again tractable circuits – computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

https://arxiv.org/abs/2206.00426

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

https://arxiv.org/abs/2206.00426

1. Language generation with constraints

2. Structured output learning with constraints

3. Autoregressive model learning with constraints

Outline

Autoregressive distributions are hard…

Pr(α) is computationally hard, even when α is trivial:
What is prob. that LLM ends the sentence with “NeurIPS”?

Autoregressive distributions are hard…

Pr(α) is computationally hard, even when α is trivial:
What is prob. that LLM ends the sentence with “NeurIPS”?

Why did it work before?

Probability of satisfying constraint α
after sampling from neural net output layer p
ASSUMING INDEPENDENT BERNOULLI'S

Basic Idea:

Use how likely a constraint is to be

satisfied around a model sample (x)

as a proxy for how likely it is to be

satisfied under the entire distribution.

Average over many such samples.

Formally, minimize the pseudo-semantic loss

x

x

Formally, minimize the pseudo-semantic loss

x

x

Formally, minimize the pseudo-semantic loss

How good is this approximation?
● Local:

~30 bits entropy vs ~80 for GPT-2.
● Fidelity:

4 bits KL-divergence from GPT-2.

x

x

How to compute pseudo-semantic loss?

Sudoku

Detoxify LLMs by disallowing bad words

Constraint α is a list of 403 toxic words
Evaluation is a toxicity classifier

Detoxify LLMs by disallowing bad words

Constraint α is a list of 403 toxic words
Evaluation is a toxicity classifier

1. Language generation with constraints

2. Structured output learning with constraints

3. Autoregressive model learning with constraints

Outline

Thanks

This was the work of many wonderful
students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/

Honghua Kareem Zhe Meihua Anji

http://starai.cs.ucla.edu/publications/

