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Kristin and her son Justin went to visit
her mother Carol on a nice Sunday
afternoon. They went out for a movie
together and had a good time.

I

Q: How is Carol related to Justin ?
A: Carol is the grandmother of Justin

!

~

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on various “reasoning” benchmarks in NLP.

Reasoning Example
from the CLUTRR

J

dataset

N

It is unclear whether they solve the tasks following the rules of logical deduction.

Language Models:
input — ? — Carol is the grandmother of Justin.

Logical Reasoning:
input — Justin in Kristin’s son; Carol is Kristin’'s mother; — Carol is Justin’s mother’s mother; if

X is Y’s mother’s mother then X is Y’s grandmother — Carol is the grandmother of Justin.




Problem Setting: SimplelLogic

The easiest of reasoning problems:

Facts:
1. Propositional logic fragment Alice is fast.
a. bounded vocabulary & number of rules | | Ace s rermal
b. bounded reasoning depth (< 6) Rules:

If Alice is fast and smart, then Alice is bad.
If Alice is normal, then Alice is smart.
If Alice is normal and happy, then Alice is sad.

c. finite space (= 10*360)

2. No language variance: templated language

. Query 1: Alice is bad. [Answer: True]
3. Self-contained Query 2: Alice is sad. [Answer: False]
No prior knowledge @
4. Purely symbolic predicates LMs: BERT, T5
No shortcuts from word meaning @
5. Tractable logic (definite clauses) True or False

Can always be solved efficiently

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

SimplelLogic

Generate textual train and test examples of the form:

Rules: If witty, then diplomatic. If careless and condemned and attractive, then blushing. If dishonest and inquisitive and average,
then shy. If average, then stormy. If popular, then blushing. If talented, then hurt. If popular and attractive, then thoughtless. If
blushing and shy and stormy, then inquisitive. If adorable, then popular. If cooperative and wrong and stormy, then thoughtless.
If popular, then sensible. If cooperative, then wrong. If shy and cooperative, then witty. If polite and shy and thoughtless, then
talented. If polite, then condemned. If polite and wrong, then inquisitive. If dishonest and inquisitive, then talented. If blushing
and dishonest, then careless. If inquisitive and dishonest, then troubled. If blushing and stormy, then shy. If diplomatic and
talented, then careless. If wrong and beautiful, then popular. If ugly and shy and beautiful, then stormy. If shy and inquisitive
and attractive, then diplomatic. If witty and beautiful and frightened, then adorable. If diplomatic and cooperative, then sensible.
If thoughtless and inquisitive, then diplomatic. If careless and dishonest and troubled, then cooperative. If hurt and witty and
troubled, then dishonest. If scared and diplomatic and troubled, then average. If ugly and wrong and careless, then average. If
dishonest and scared, then polite. If talented, then dishonest. If condemned, then wrong. If wrong and troubled and blushing,
then scared. If attractive and condemned, then frightened. If hurt and condemned and shy, then witty. If cooperative, then
attractive. If careless, then polite. If adorable and wrong and careless, then diplomatic. Facts: Alice sensible Alice condemned
Alice thoughtless Alice polite Alice scared Alice average

Query: Alice is shy ?

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Training a transformer on SimplelLogic

(1) Randomly sample facts & rules.
Facts: B, C

Rules:A,B>D.B>E.B,C>F. Test accuracy for different reasoning depths
(2) Compute the correct

° e G labels for all predicates given
Test| 0 f 2 B8 4 & B

the facts and rules.
o ‘ . RP | 999 998 99.7 99.3 98.3 975 955

Rule-Priority

Label-Priority ° ‘ ‘

Test | O 1 2 3 4 5 6

= LP [100.0 1000 99.9 99.9 99.7 99.7 99.0
O (2) Set B, C (randomly chosen
@ Q among B, C, E, F) as facts and
(1) Randomly assign labels to sample rules (randomly)
predicates. consistent with the label
True: B, C, E,F. assignments.

False: A, D.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Has the transformer learned to reason from data®?

Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
RP/LP data covers the whole problem space

The learned model has almost 100% test accuracy

e

There exist transformer parameters that compute the ground-truth reasoning function:

Theorem 1: For a BERT model with n layers and 12 attention heads, by construction,
there exists a set of parameters such that the model can correctly solve any
reasoning problem in SimpleLogic that requires at most n — 2 steps of reasoning.

Surely, under these conditions, the transformer has
learned the ground-truth reasoning function!

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

The Paradox of Learning to Reason from Data

Train Test | O 1 2 3 4 5 6

RP RP | 999 99.8 99.7 993 983 97.5 955
LP | 99.8 99.8 993 96.0 904 750 57.3

RP | 973 669 53.0 542 595 656 69.2
LP | 100.0 100.0 999 99.9 99.7 99.7 99.0

LP

The BERT model trained on one distribution fails to generalize
to the other distribution within the same problem space.

1. If the transformer has learned to reason,
it should not exhibit such generalization failure.

2. If the transformer has not learned to reason,
it is baffling how it achieves near-perfect in-distribution test accuracy.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Why? Statistical Features

Monotonicity of entailment:
Any rules can be freely added to the axioms of any proven fact.

{

[ The more rules given, the more likely a predicate will be proven. ]

.

[ Pr(label = True | Rule # = x) should increase (roughly) monotonically with x }

N WWWWWWWWWWWWMM Mwm i MMWWWMWMMW vmwmum wwmx mhi\rw\MUn\hN Jh \»“ Ml

(a) Statistics for examples generated by Rule-. ty (RP). (b) St: ty (LP). () S y uniform sampling;




Model leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train Test | 0 1 2 3 4 5 6

RP (999 99.8 99.7 99.3 983 97.5 95.5
RP RP_b[99.0 993 985 97.5 96.7 93.5 883

1. Accuracy drop from RP to RP_b indicates that
the model is using rule# as a statistical feature to make predictions.

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

First Conclusion

Experiments unveil the fundamental difference between

1. learning to reason, and

2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying Al in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate...

FAQ: Will reasoning emerge? Perhaps on 99% of human behavior...

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
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O Generate a sentence using "frisbee", "caught" and "dog",
) following the given order.

After a perfect throw, the frisbee glided through the air,

and the dog, with incredible agility, caught it mid-flight. ChatGPT

O That's not correct. Generate a sentence using "frisbee",
(— ) "caught” and "dog". The keywords should appear in the
order as specified.

Here's the correct sentence: The dog caught the frisbee
in mid-air, showing off its amazing catching skills. ChatGPT

() Afrisbee is caught by a dog. o
‘E A pair of frisbee players are caught in a dog fight. eralo




What do we have?

Prefix; “The weather is”

Constraint a: text contains “winter”

cold 0.05

Model only does p(next-token|prefix) =

warm 0.10

Train some q(. |a) for a specific task distribution o ~ p,.

(amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train g(next-token|prefix, o)



What do we need?

Prefix; “The weather is”

Constraint a: text contains “winter”

Generate from p(next-token|prefix, a) =

X Z p(next-token, text, prefix, a)

text

Marginalization!

cold

0.50

warm

0.01
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Probabillistic circuits

computational graphs that recursively define distributions

©
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Probabilistic circuits

computational graphs that recursively define distributions

.25
@ 0.20
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000
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~10 -5 0 5 10

Xi
p(X1) = wips (X1) + wapo (Xy)

= p(X)=p(Z =0 -r1(X|Z =D
mixtures +pZ2=B) n(X|1Z=BE



Probabillistic circuits

computational graphs that recursively define distributions

©

—-X w1 w2
X1 X1 X1 Xl X2

p(X1) = wip; (X1) + wapa (X1) p(X1,X2) = p(X1) - p(X2) %
= =
mixtures factorizations



Fully factorized
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a unifying framework for tractable models




Likelihood p(X; =—1.85,X,=0.5,X3 =—1.3,X; =0.2)




Likelihood p(X1 =-1.85,X, =05, X3 =-1.3,X, =0.2)




Likelihood p(X1 = —1.85, X, =0.5,X3 = —1.3, X4 = 0.2)
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Tractable marginals

A sum node is smooth if its children depend on the same set of variables.

A product node is decomposable if its children depend on disjoint sets of variables.

(X)
W W W
X1 Xo X3

smooth circuit decomposable circuit

wy wa

X1 X1



m ull decomposability gl tractable MAR

If p(x) = >, wipi(X), (smoothness):

—> integrals are “pushed down” to children

[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]



m ul decomposability g tractable MAR
If p(x,y,2z) = p(x)p(y)p(2), (decomposability):

///p(x’y’z)dXdydz:
:/ / / p(x)p(y)p(z)dxdydz =
— / p(x)dx / p(y)dy / il

—> integrals decompose into easier ones




Forward pass evaluation for MAR /Q\

=—> linear in circuit size! @ @ @ @
— AR

E.g. to compute p(x2, 74): Xl/ | | \X1
B leafs over X; and X3 output Z; = [ p(x;)dx; ?1/@ @\?z

— for normalized leaf distributions: @ @ @ @
B leafs over X5 and X4 output |37/ T >(T)< >< T

B feedforward evaluation (bottom-up) @ @ @ @
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Cute, but these models cannot compete?

bpd

2008-2020 2020-2021

ICLR 22 NeurlPS 22

Tabular
MNIST
F-MNIST
EMNIST-L
CIFAR
Imagenet32

Imagenet64

el ~

>1.67
. o >4.29
J) >2.73

Discrete Flow Hierarchical VAE

%
1.20
3.34

1.80
« >5.50

&
2

1.14
3.27
1.58

PixelVAE

MNIST
F-MNIST
EMNIST-L

1.90 1.27
3.47 3.28
1.95 1.84

1.39
3.66
2.26



Cute, but these models cannot compete?

bpd| 2008-2020 2020-2021 ICLR22 NeurlPS22 ICLR 23
Tabular X & - = =
MNIST @ D >1.67 1.20 1.14 =

F-MNIST oy @ >4.29 3.34 3.27 =

EMNIST-L D @ >2.73 1.80 1.58 =
CIFAR (ow) D % >5.50 D 4.38
Imagenet32 oy D D D 4.39
Imagenet64 o) @ D o8 4.12

General-purpose architecture / /
Custom GPU kernels
Pruning without losing likelihood Latent Variable Distillation




Cute, but these models cannot compete?

bpd| 2008-2020 2020-2021 ICLR22 NeurlPS22 ICLR23  ICML 23
Tabular e B 2z & & &
MNIST . 2 >1.67 1.20 1.14 = =

F-MNIST 3 D >4.29 3.34 3.27 = =
EMNIST-L . D >2.73 1.80 1.58 i’ =
CIFAR > . Y >5.50 . 4.38 3.87
Imagenet32 . . . . 4.39 4.06
Imagenet64 . . e . 4.12 3.80
Flow Hierarchical VAE Diffusion
CIFAR 3.35 3.08 2.65
Imagenet32 4.09 3.96 3.72
Imagenet64 3.81 - 3.40




Outline

1. The paradox of learning to reason from data
deepfearnng
2. Architectures for learning and reasoning
logical reasoning + probabilistic reasoning + deep learning

a. Tractable probabilistic circuits
b. Controlling generative Al



What do we need?

Prefix; “The weather is”

Constraint a: text contains “winter”

Generate from p(next-token|prefix, a) =

X Z p(next-token, text, prefix, a)

text

Marginalization!

cold

0.50

warm

0.01




CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords,
in any order and any form of inflections. e.qg.,

Input: snow drive car
Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

Constraintain CNF: (w, V... Vw, JA ... AW ,V..Vw

1,d1) m,dm)

Each clause represents the inflections for one keyword.



Step 1: Distillan HMM p, __ that approximates Pypt

[ \ > [ | ( \
\ 4 ) o \Zi-1) \ Z. )
\ 4 \ / \ /
N N\ Nou

"\ |

[ “‘, |

Y B 4 b £
/ \”\ g“"'f N\ / g i\
{ ) { )
X ) &\Xt 1 X, )
J/ \ \_“

1. HMM with 4096 hidden states and 50k emission tokens

2. Data sampled from GPT2-large (domain-adapted), minimizing KL(pgpt o

3. Leverages latent variable distillation for training PCs at scale [ICLR 23].
(Cluster embeddings of examples to estimate latent Z)

Anji Liu, Honghua Zhang and Guy Van den Broeck. Scaling Up Probabilistic Circuits by Latent Variable Distillation, 2023.


http://starai.cs.ucla.edu/papers/LiuICLR23.pdf

Computing p(a | x, .. .)

For constraint a in CNF:
(W, | V..V W, o) A ... A (W, V..V W g

where each w; is a keyword (i.e. a string of tokens),
representing that w; appears in the generated text.

e.g., a=("swims" V "like swimming") A ("lake" V "pool")

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Computing p(a | x, .. .)

For constraint a in CNF:

(W, | V..V W) A A w V..Vw

m,dm)

where each w; is a keyword (i.e. a string of tokens),
representing that w; appears in the generated text.

e.g., a=("swims" V "like swimming") A ("lake" V "pool")

Efficient algorithm:
For m clauses and sequence length n, time-complexity for HMM generation is O(2mn)

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.



https://arxiv.org/pdf/2304.07438.pdf

Lexical Constraint a: sentence contains keyword “winter”

GelaTo

Overview Constraine-.d Generation: Pr(x,, | | @, x;., = "the weather is")
X intractable \k efficient
v
Pre-trained Tractable
Language Model Probabilistic Model
L Pryp (i 1 x1.) X1 | Propyla| Xp, xy.,)
cold 0.05 cold 0.50
warm 0.10 warm 0.01

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Lexical Constraint a: sentence contains keyword “winter”

GelaTo

Overview Constraine-.d Generation: Pr(x,, | | @, x;., = "the weather is")
X intractable \k efficient
v
Pre-trained Tractable
Language Model Probabilistic Model
Xr+1 Pry (X1 1% X1 | Proppfer| Xy, %1.0)
cold 0.05 cold 0.50
warm 0.10 warm 0.01
X1 Py | s Xy
cold 0.025
warm 0.001

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Step 2: Control p,, via pj,,,

Unsupervised

Language model is not

fine-tuned/prompted to satisfy constraints

By Bayes rule:
PopXit1 | X1 @) Pepl@ | X1:041) - PoptXey1 | x1.,)

Assume phmm(a |—x1;[+1) ~ pgpt(a I'xlIH-l)’ we
generate from:

P(X,+1 |xl:19 (1) X p/zmm(a |X1:I+1) ’ pg/)l(XH-l |xl:1)

Mathiod Generation Quality Constraint Satisfaction
ROUGE-L BLEU-4 CIDEr SPICE Coverage Success Rate
Unsupervised dev test  dev  test dev test dev test dev test dev test
InsNet (Lu et al., 2022a) - - 18.7 - - - - - 100.0 - 100.0 -
NeuroLogic (Lu et al., 2021) - 41.9 - 24.7 - 14.4 - 275 - 96.7 - -
A*esque (Lu et al., 2022b) - 44.3 - 28.6 - 15.6 - 29.6 - 97.1 - -
NADO (Meng et al., 2022) - - 26.2 - - - - - 96.1 - - -
GeLaTo 4.6 441 1299 294 | 160 158 | 31.3 31.0 | 100.0 100.0 | 100.0 100.0

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Step 2: Control p,, via pj,,,

Supervised

Language model is fine-tuned to perform
constrained generation (e.g. seg2seq)

Empirically pppm(@ ] X1:111) R Pgp(@ ] X1.441)
does not hold well enough;

we View Pppy (X1 | X1 @) @nd Py, (X4 | Xy,) @s
classifiers trained for the same task with different

biases; thus we generate from their weighted
geometric mean:

= 5 / x 1—w
p()‘l+l |X1:l’ (Z) & p/mmz(XH—l |“\lil’ a)“ .l)&’l)l()l’*'l |x15/) '

Method Generation Quality Constraint Satisfaction
ROUGE-L BLEU-4 CIDEr SPICE Coverage Success Rate
Supervised dev test  dev  test dev test dev test dev test dev test
NeuroLogic (Lu et al., 2021) - 42.8 - 26.7 - 14.7 - 30.5 - 91.1 - 93.91
A*esque (Lu et al., 2022b) - 43.6 - 28.2 - 152 - 30.8 - 97.8 - 97.97
NADO (Meng et al., 2022) 444t - | 308 - 1617 - | 32.0f 2 97.1 = 88.81 :
GeLaTo 46.0 456 | 341 329 | 167 168 | 31.3 319 | 100.0 100.0 | 100.0 100.0

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.


https://arxiv.org/pdf/2304.07438.pdf

Advantages of GelaTo:

1. Constraint a is guaranteed to be satisfied:

for any next-token x_, , that would make a unsatisfiable, p(x, | x, .., ) = 0.

2. Training p, _ does not depend on q,

which is only imposed at inference (generation) time.

3. Can impose additional tractable constraints:
o keywords follow a particular order

o keywords appear at a particular position
o keywords must not appear

Conclusion: you can control an intractable generative model
using a tractable probabilistic circuit.



Inpainting/constrained generation is still challenging

Diffusion models are good at fine-grained details, but
not so good at global consistency of generated images.




Inpainting/constrained generation is still challenging




Constrained posterior in diffusion models

Unconstrained denoising step: pa(x;_1]x;) 1= Zq(xt_l\io,xt) - po(Xo|X¢)

X0

/4 ﬂ Constraint ¢ on the generated image (e.g., inpainting)

Constrained denoising step: ~ Po(Xi1[x1.¢) == > q(x1-1/%0.X,) - po(Xo|Xy, €

X0

Computing or sampling from the constrained posterior
po(Xo|%¢, c) is intractable for diffusion models.




Tiramisu

pom(Xo|x¢, x5) 3

J

p(i()|xtaxl(;)

i

PTPM (5(0 |Xt, Xlé )

TPM not used

Denoising process F — 249 t — 217 t =201 t =100 =4 *

Denoising p(Zo|x:, azlg) o ppm (o | x4, wlg)a - prom (&o |2, wk)l—a

From the diffusion model: From the probabilistic circuit:
Good at generating vivid details Exact samples — better global coherence



Controlling the denoiser with a probabilistic circuit

CoPaint

pom(Xo|x¢, X§) ‘

Tiramisu

pomi(Xo[xt, %) ;

J

p(i()lxt, xlﬂ()

]

prem(Xo|xe, xg) |

[ TPM not used ]

Denoising process T =510 7 =217 =201 (=100 =0 {=210 1=217 1{=201 (=100 o




High-resolution i1mage benchmarks

Tasks Algorithms
Dataset Mask Tiramisu (ours) CoPaint RePaint DDNM DDRM DPS  Resampling
Left 0.189 0.185 0.195 0.254 0.275  0.201 0.257
Top 0.187 0.182 0.187 0.248 0.267  0.187 0.251
Expand1 0.454 0.468 0.504 0.597 0.682  0.466 0.613
CelebA-HQ Expand2 0.442 0.455 0.480 0.585 0.686  0.434 0.601
V-strip 0.487 0.502 0.517 0.625 0.724  0.535 0.647
H-strip 0.484 0.488 0.517 0.626 0.731  0.492 0.639
Wide 0.069 0.072 0.075 0.112 0.132  0.078 0.128
Left 0.286 0.289 0.296 0.410 0.369  0.327 0.369
Top 0.308 0.312 0.336 0.427 0373  0.343 0.368
Expand1 0.616 0.623 0.691 0.786 0.726  0.621 0.711
ImageNet Expand2 0.597 0.607 0.692 0.799 0.724  0.618 0.721
V-strip 0.646 0.654 0.741 0.851 0.761  0.637 0.759
H-strip 0.657 0.660 0.744 0.851 0.753  0.647 0.774
Wide 0.125 0.128 0.127 0.198 0.197  0.132 0.196
Left 0.285 0.287 0.314 0.345 0366 0.314 0.367
Top 0.310 0.323 0.347 0.376 0.368  0.355 0.372
Expand1 0.615 0.637 0.676 0.716 0.695 0.641 0.699
LSUN-Bedroom Expand2 0.635 0.641 0.666 0.720 0.691  0.638 0.690
V-strip 0.672 0.676 0.711 0.760 0.721  0.674 0.725
H-strip 0.679 0.686 0.722 0.766 0.726  0.674 0.724
Wide 0.116 0.115 0.124 0.135 0.204  0.108 0.202
Average 0.421 0.427 0.459 0.532 0.531 0434 0.514




Qualitative results on high-resolution image datasets

CelebA-HQ ImageNet LSUN-Bedrooms
Left Expandl Expand2 V-stnp Left Expandl Expand2 V-smp Left  Expandl Expand2 V-strip
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Semantic Probabilistic Layers

e How to give a 100% guarantee that Boolean constraints will be satisfied?
e Bake the constraint into the neural network as a special layer

x—>|fl>2z —|S : z |90+ X->Tre | ry|x
| P ply | x)
— L

X
Y c ¥B

Y : SPL

e Secret sauce is again tractable circuits — computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.


https://arxiv.org/abs/2206.00426

GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)
ARCHITECTURE EXACT MATCH HAMMING SCORE CONSISTENCY
RESNET-18+FIL 55.0 97.7 56.9
RESNET-18+Lg 59.4 97.7 61.2
RESNET-18+SPL 7827 | 97.6 100.0
OVERPARAM. SPL 78.2 06.3 100.0

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.


https://arxiv.org/abs/2206.00426

Hierarchical Multi-Label Classification

“if the image is classified as a dog, it must
also be classified as an animal”

“if the image is classified as an animal, it
must be classified as either cat or dog”

DATASET EXACT MATCH
HMCNN MLP+SPL

CELLCYCLE 3.05 :0.11 3.79 + 0.18
DERISI 1.39 4+ 0.47 2.28 + 0.23
EISEN 5.40 &+ 0.15 6.18 + 0.33
EXPR 420 10.21 5.54 + 0.36
GASCHI 3.48 + 0.96 4.65 + 0.30
GASCH2 3.11 + 0.08 3.95 + 0.28
SEQ 5.24 +0.27 7.98 + 0.28
Spo 1.97 4+ 0.06 1.92 4+ 0.11
DIATOMS 48.21 + 0.57 58.71 + 0.68
ENRON 5.97 + 0.56 8.18 + 0.68
IMCLEFO7A 79.75 4+ 0.38 86.08 + 0.45
IMCLEFO7D 76.47 + 0.35 81.06 + 0.68




SIMPLE: Gradient Estimator for k-Subset Sampling

v pg(z|z,zz-:k) ~ z e
X 0 : fuZX y,

VoL(x,y;w) ~0gpu(0)V U fu(z, %)

We achieve lower bias and variance by exact, discrete samples and exact derivative of conditional marginals.
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and SotA Learning to Explain (L2X) and sparse discrete VAE results.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, Guy Van den Broeck. SIMPLE: A Gradient Estimator for k-Subset Sampling, ICLR 2023


https://arxiv.org/abs/2210.01941

Outline

1. The paradox of learning to reason from data
deepfearnng
2. Architectures for learning and reasoning

logical reasoning + probabilistic reasoning + deep learning

a. Tractable probabilistic circuits
b. Controlling generative Al
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