



# **Tractable Probabilistic Circuits**

#### Guy Van den Broeck

Generative AI - UCSD - Nov 21 2023

# Outline

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials* 

## Outline

# 1. What are probabilistic circuits? tractable deep generative models

2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials* 

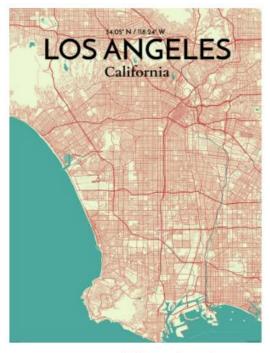
#### Why probabilistic inference?

**q**<sub>1</sub>: What is the probability that today is a Monday and there is a traffic jam on Westwood Blvd.?

$$\mathbf{X} = \{\mathsf{Day}, \mathsf{Time}, \mathsf{Jam}_{\mathsf{Str1}}, \mathsf{Jam}_{\mathsf{Str2}}, \dots, \mathsf{Jam}_{\mathsf{StrN}}\}$$

 $\mathbf{q}_1(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Day} = \mathsf{Mon}, \mathsf{Jam}_{\mathsf{Wwood}} = 1)$ 

 $\Rightarrow$  marginals



<sup>©</sup> fineartamerica.com

#### **Tractable Probabilistic Inference**

A class of queries Q is tractable on a family of probabilistic models  $\mathcal{M}$ iff for any query  $\mathbf{q} \in Q$  and model  $\mathbf{m} \in \mathcal{M}$ **exactly** computing  $\mathbf{q}(\mathbf{m})$  runs in time  $O(\operatorname{poly}(|\mathbf{m}|))$ .

 $\Rightarrow$  often poly will in fact be **linear**!

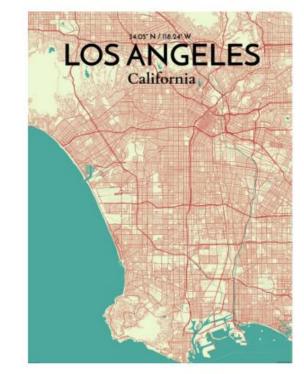
#### Complete evidence (EVI)

**q**<sub>3</sub>: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Westwood Blvd.?

$$\mathbf{X} = \{ \mathsf{Day}, \mathsf{Time}, \mathsf{Jam}_{\mathsf{Wwood}}, \mathsf{Jam}_{\mathsf{Str2}}, \dots, \mathsf{Jam}_{\mathsf{StrN}} \\ \mathbf{q}_{\mathbf{3}}(\mathbf{m}) = p_{\mathbf{m}}(\mathbf{X} = \{\mathsf{Mon}, 12.00, 1, 0, \dots, 0\})$$

...fundamental in maximum likelihood learning

$$\theta_{\mathbf{m}}^{\mathsf{MLE}} = \operatorname{argmax}_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} p_{\mathbf{m}}(\mathbf{x}; \theta)$$

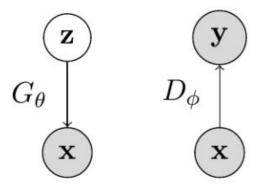


© fineartamerica.com

**Generative Adversarial Networks** 

$$\min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})} \left[ \log D_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[ \log(1 - D_{\phi}(G_{\theta}(\mathbf{z}))) \right]$$

no explicit likelihood!
*adversarial training instead of MLE no tractable EVI* good sample quality
*but lots of samples needed for MC* unstable training *mode collapse*



#### Variational Autoencoders

 $\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[ \log p_{\theta}(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{KL}(q_{\phi}(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))$ 

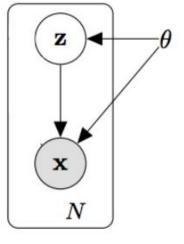
an explicit likelihood model!

... but computing  $\log p_{ heta}(\mathbf{x})$  is intractable

 $\Rightarrow$  an infinite and uncountable mixture  $\Rightarrow$  no tractable EVI

we need to optimize the ELBO...

 $\Rightarrow$  which is "tricky"



### Normalizing flows

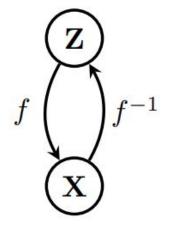
$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f^{-1}(\mathbf{x})) \left| \det \left( \frac{\delta f^{-1}}{\delta \mathbf{x}} \right) \right|$$

an explicit likelihood!

 $\Rightarrow$  tractable EVI queries!

many neural variants

RealNVP (Dinh et al. 2016), MAF (Papamakarios et al. 2017) MADE (Germain et al. 2015), PixelRNN (Oord et al. 2016)



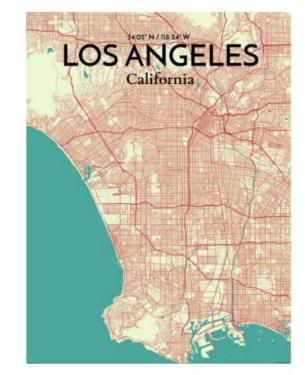
#### Marginal queries (MAR)

**q**<sub>1</sub>: What is the probability that today is a Monday et <del>12:00</del> and there is a traffic jam <del>only</del> on Westwood Blvd.?

$$\mathbf{q}_1(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Day} = \mathsf{Mon}, \mathsf{Jam}_{\mathsf{Wwood}} = 1)$$

General:  $p_{\mathbf{m}}(\mathbf{e}) = \int p_{\mathbf{m}}(\mathbf{e}, \mathbf{H}) \, d\mathbf{H}$ 

where  $\mathbf{E} \subset \mathbf{X}, \quad \mathbf{H} = \mathbf{X} \setminus \mathbf{E}$ 



© fineartamerica.com

#### Normalizing flows

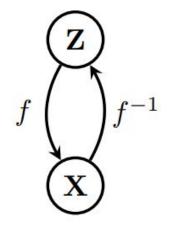
$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f^{-1}(\mathbf{x})) \left| \det \left( \frac{\delta f^{-1}}{\delta \mathbf{x}} \right) \right|$$

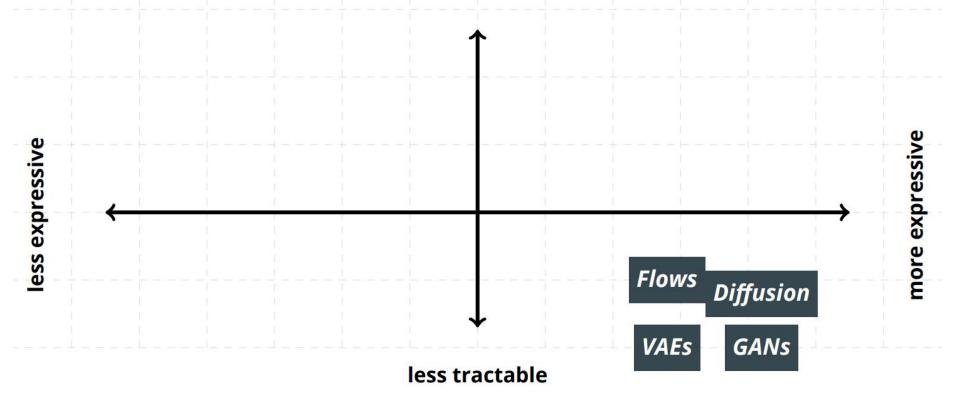
an explicit likelihood!

 $\Rightarrow$  tractable EVI queries!

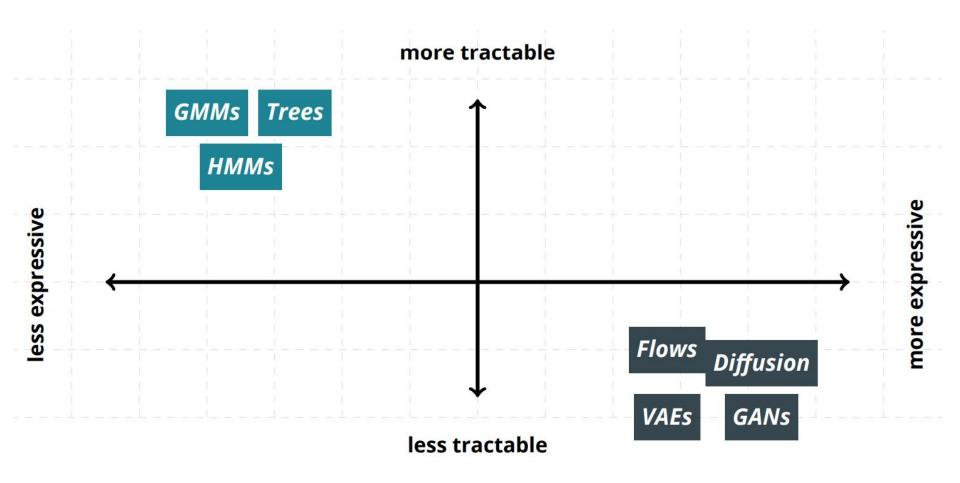
#### MAR is generally intractable:

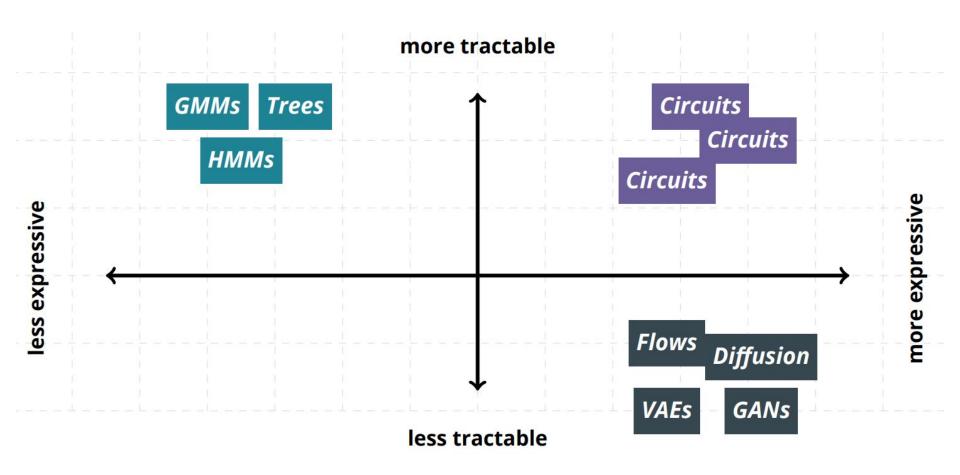
we cannot easily integrate over high-dimensional  $\boldsymbol{f}$ 

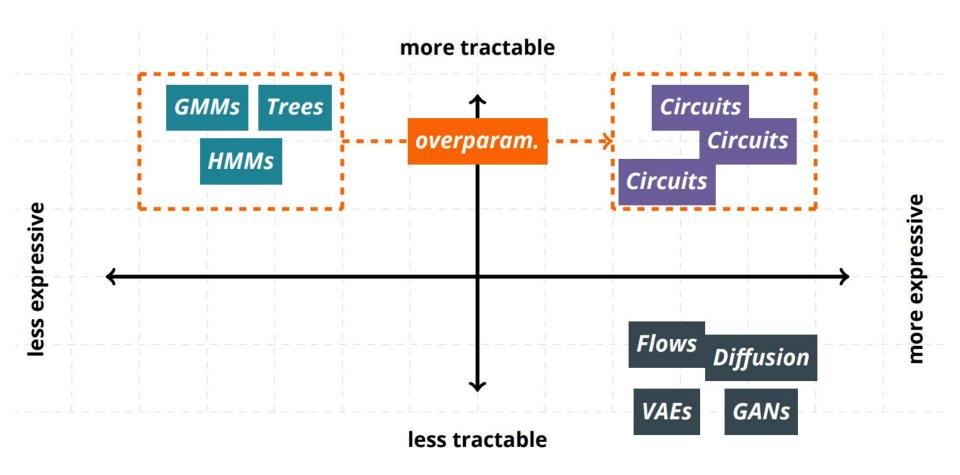


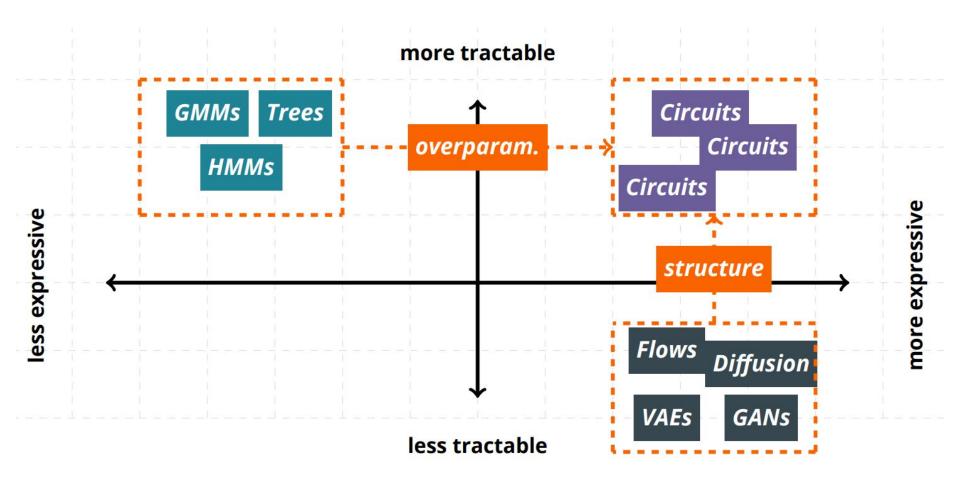


#### more tractable









#### Probabilistic circuits

*computational graphs* that recursively define distributions

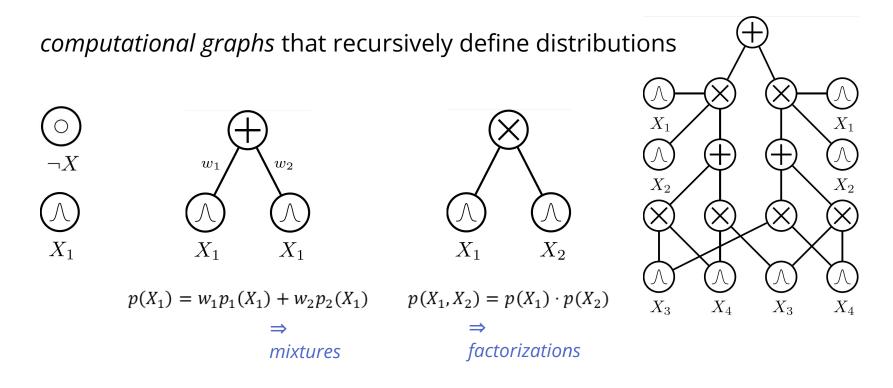


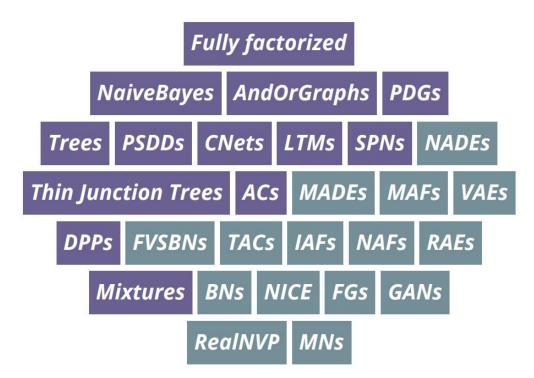
#### Probabilistic circuits

*computational graphs* that recursively define distributions



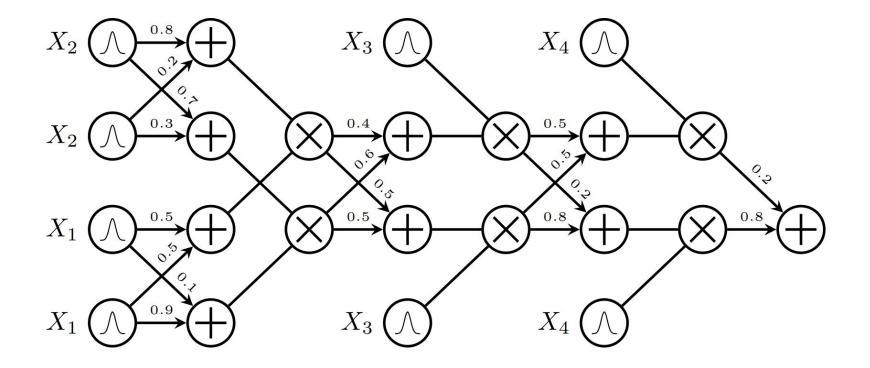
#### Probabilistic circuits



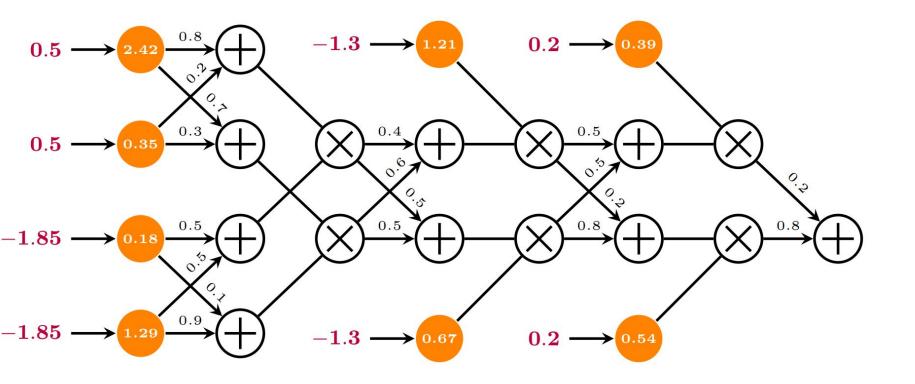


#### a unifying framework for tractable models

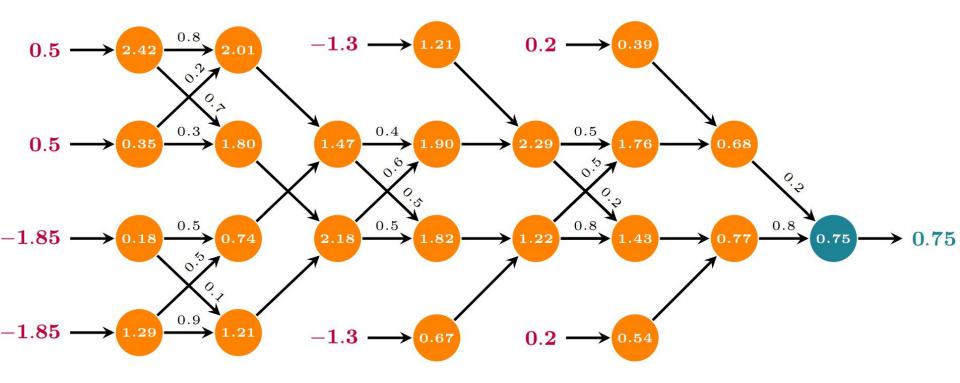
Likelihood 
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



#### Likelihood $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$



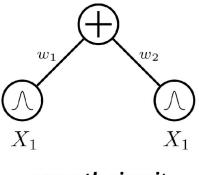
Likelihood 
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



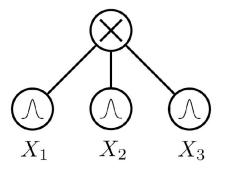
#### Tractable marginals

A sum node is *smooth* if its children depend on the same set of variables.

A product node is *decomposable* if its children depend on disjoint sets of variables.



smooth circuit



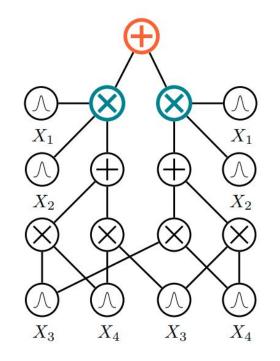
#### decomposable circuit

# Smoothness + decomposability = tractable MAR

If  $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$ , (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

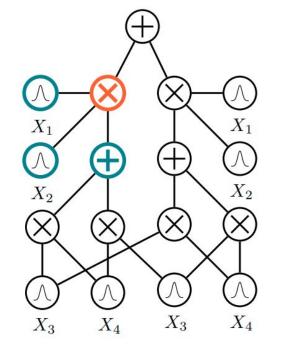
 $\Rightarrow$  integrals are "pushed down" to children



#### Smoothness + decomposability = tractable MAR

If  $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$ , (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$



 $\Rightarrow$  integrals decompose into easier ones

# Smoothness + decomposability = tractable MAR

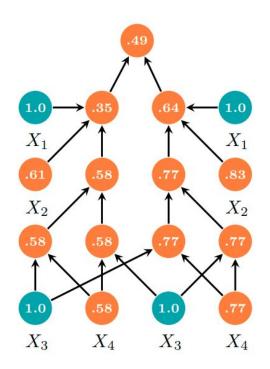
Forward pass evaluation for MAR

inear in circuit size!

E.g. to compute  $p(x_2, x_4)$ : leafs over  $X_1$  and  $X_3$  output  $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0

leafs over  $X_2$  and  $X_4$  output **EVI** 

feedforward evaluation (bottom-up)



# Outline

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for? *controlling generative Al*
- 3. What is the underlying theory? *probability generating polynomials*

| bpd        | 2008-2020         |
|------------|-------------------|
| Tabular    | •••               |
| MNIST      | $\mathbf{\Omega}$ |
| F-MNIST    | $\mathbf{\Theta}$ |
| EMNIST-L   | $\mathbf{\Theta}$ |
| CIFAR      | $\mathbf{\Theta}$ |
| Imagenet32 | $\mathbf{Q}$      |
| Imagenet64 | $\mathbf{\Theta}$ |

| bpd        | 2008-2020    | 2020-2021         |
|------------|--------------|-------------------|
| Tabular    | •••          | $\odot$           |
| MNIST      | $\mathbf{Q}$ | 😱 > 1.67          |
| F-MNIST    | $\mathbf{Q}$ | 😱 > 4.29          |
| EMNIST-L   | $\mathbf{Q}$ | 😱 > 2.73          |
| CIFAR      | $\mathbf{Q}$ | $\mathbf{\Theta}$ |
| Imagenet32 | $\mathbf{Q}$ | $\mathbf{\Theta}$ |
| Imagenet64 | $\mathbf{Q}$ | $\mathbf{\Theta}$ |

General-purpose architecture

| bpd        | 2008-2020    | 2020-2021         | ICLR 22               |
|------------|--------------|-------------------|-----------------------|
| Tabular    | •••          | $\odot$           |                       |
| MNIST      | $\mathbf{Q}$ | 😱 > 1.67          | 1.20                  |
| F-MNIST    | $\mathbf{Q}$ | ♀ > 4.29          | 3.34                  |
| EMNIST-L   | $\mathbf{Q}$ | 😱 > 2.73          | 1.80                  |
| CIFAR      | $\mathbf{Q}$ | $\mathbf{\Omega}$ | <mark>♀</mark> > 5.50 |
| Imagenet32 | $\mathbf{Q}$ | $\mathbf{\Theta}$ | $\mathbf{Q}$          |
| Imagenet64 | $\mathbf{Q}$ | $\mathbf{\Theta}$ | $\mathbf{Q}$          |
|            |              | 1                 | 1                     |

General-purpose architecture

Custom GPU kernels

|    | bpd                          | 2008-2020    | 2020-2021    | ICLR 22      | NeurIPS 22   |  |  |
|----|------------------------------|--------------|--------------|--------------|--------------|--|--|
|    | Tabular                      | •••          | 0            |              |              |  |  |
|    | MNIST                        | $\mathbf{Q}$ | 😱 > 1.67     | 1.20         | 1.14         |  |  |
|    | F-MNIST                      | $\mathbf{Q}$ | ♀ 4.29       | 3.34         | 3.27         |  |  |
|    | EMNIST-L                     | $\mathbf{Q}$ | 😱 > 2.73     | 1.80         | 1.58         |  |  |
|    | CIFAR                        | $\mathbf{Q}$ | $\mathbf{Q}$ | 😱 > 5.50     | $\mathbf{Q}$ |  |  |
|    | Imagenet32                   | $\mathbf{Q}$ | $\mathbf{Q}$ | $\mathbf{Q}$ | $\mathbf{Q}$ |  |  |
|    | Imagenet64                   | $\mathbf{Q}$ | $\mathbf{Q}$ | $\mathbf{Q}$ | $\mathbf{Q}$ |  |  |
| Ge | General-purpose architecture |              |              |              |              |  |  |
|    | Custom GPU kernels           |              |              |              |              |  |  |

Pruning without losing likelihood

| bpd        | 2008-2020    | 2020-2021         | ICLR 22         | NeurIPS 22   |
|------------|--------------|-------------------|-----------------|--------------|
| Tabular    | •••          | $\odot$           |                 |              |
| MNIST      | $\mathbf{Q}$ | 😱 > 1.67          | 1.20            | 1.14         |
| F-MNIST    | $\mathbf{Q}$ | <b>♀</b> > 4.29   | 3.34            | 3.27         |
| EMNIST-L   | $\mathbf{Q}$ | 😱 > 2.73          | 1.80            | 1.58         |
| CIFAR      | $\mathbf{Q}$ | $\mathbf{\Theta}$ | <b>♀</b> > 5.50 | $\mathbf{Q}$ |
| Imagenet32 | $\mathbf{Q}$ | $\mathbf{\Theta}$ | $\bigcirc$      | $\mathbf{Q}$ |
| Imagenet64 | $\mathbf{Q}$ | $\mathbf{\Theta}$ | $\bigcirc$      | $\mathbf{Q}$ |

|          | Discrete Flow | Hierarchical VAE | PixelVAE |
|----------|---------------|------------------|----------|
| MNIST    | 1.90          | 1.27             | 1.39     |
| F-MNIST  | 3.47          | 3.28             | 3.66     |
| EMNIST-L | 1.95          | 1.84             | 2.26     |

|    | bpd           | 2008-2020    | 2020-2021    | ICLR 22         | NeurIPS 22   | ICLR 23    |                |
|----|---------------|--------------|--------------|-----------------|--------------|------------|----------------|
|    | Tabular       | •••          | 0            |                 |              |            |                |
| _  | MNIST         | $\mathbf{Q}$ | 😱 > 1.67     | 1.20            | 1.14         | 2          |                |
|    | F-MNIST       | $\mathbf{Q}$ | 😱 > 4.29     | 3.34            | 3.27         | 2          |                |
|    | EMNIST-L      | $\mathbf{Q}$ | 😱 > 2.73     | 1.80            | 1.58         |            |                |
|    | CIFAR         | $\mathbf{Q}$ | $\mathbf{Q}$ | <b>♀</b> > 5.50 | $\mathbf{Q}$ | 4.38       |                |
|    | Imagenet32    | $\mathbf{Q}$ | $\mathbf{Q}$ | $\mathbf{O}$    | $\mathbf{Q}$ | 4.39       |                |
| _  | Imagenet64    | $\mathbf{Q}$ | $\mathbf{Q}$ | $\mathbf{O}$    | $\mathbf{Q}$ | 4.12       |                |
| Ge | neral-purpose | e architectu | re           | /               | /            | /          |                |
|    | (             | Custom GP    | U kernels    |                 |              |            |                |
|    | Prun          | ing withou   | t losing lik | elihood /       |              | Latent Var | riable Distill |

| bpd        | 2008-2020    | 2020-2021         | ICLR 22         | NeurIPS 22        | ICLR 23 | ICML 23 |
|------------|--------------|-------------------|-----------------|-------------------|---------|---------|
| Tabular    | •••          | $\odot$           |                 |                   |         |         |
| MNIST      | $\mathbf{Q}$ | 😱 > 1.67          | 1.20            | 1.14              | 2       |         |
| F-MNIST    | $\mathbf{Q}$ | 😱 > 4.29          | 3.34            | 3.27              |         |         |
| EMNIST-L   | $\mathbf{Q}$ | 😱 > 2.73          | 1.80            | 1.58              |         |         |
| CIFAR      | $\mathbf{Q}$ | $\mathbf{\Theta}$ | <b>♀</b> > 5.50 | $\mathbf{\Theta}$ | 4.38    | 3.87    |
| Imagenet32 | $\mathbf{Q}$ | $\mathbf{\Theta}$ | $\mathbf{Q}$    | $\mathbf{\Theta}$ | 4.39    | 4.06    |
| Imagenet64 | $\mathbf{Q}$ | $\mathbf{\Theta}$ | $\bigcirc$      | $\mathbf{\Theta}$ | 4.12    | 3.80    |

|            | Flow | Hierarchical VAE | Diffusion |
|------------|------|------------------|-----------|
| CIFAR      | 3.35 | 3.08             | 2.65      |
| Imagenet32 | 4.09 | 3.96             | 3.72      |
| Imagenet64 | 3.81 | -                | 3.40      |

Generate a sentence using "frisbee", "caught" and "dog", following the given order.



Generate a sentence using "frisbee", "caught" and "dog", following the given order.



After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

ChatGPT



Generate a sentence using "frisbee", "caught" and "dog", following the given order.



After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

 $\bigcirc$ 

That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.



Here's the correct sentence: The <u>dog caught</u> the <u>frisbee</u> in mid-air, showing off its amazing catching skills.

ChatGPT

ChatGPT



Generate a sentence using "frisbee", "caught" and "dog", following the given order.



After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.



Here's the correct sentence: The <u>dog caught</u> the <u>frisbee</u> in mid-air, showing off its amazing catching skills.



A <u>frisbee</u> is <u>caught</u> by a <u>dog</u>.

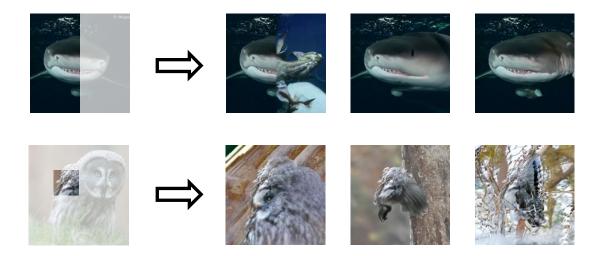
A pair of <u>frisbee</u> players are <u>caught</u> in a <u>dog</u> fight.

ChatGPT

ChatGPT

GeLaTo

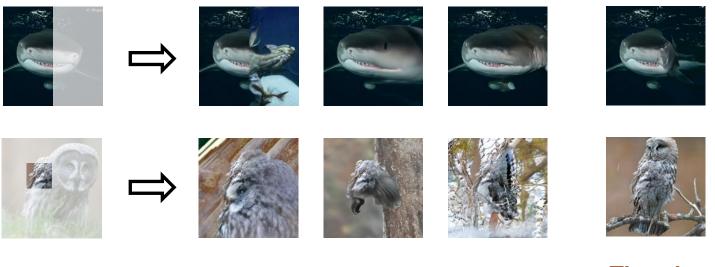
#### Inpainting/constrained generation is still challenging



Diffusion models are good at fine-grained details, but not so good at global consistency of generated images.



#### Inpainting/constrained generation is still challenging







## What do we have?

Prefix: "The weather is"

Constraint α: text contains "winter"

| Model only does $p(\text{next-token} \text{prefix})$ | ) — | cold | 0.05 |
|------------------------------------------------------|-----|------|------|
| woder only does $p(\text{next-token} \text{prefix})$ | ) — | warm | 0.10 |

Train some  $q(. | \alpha)$  for a specific task distribution  $\alpha \sim p_{\text{task}}$  (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train  $q(\text{next-token}|\text{prefix}, \alpha)$ 

## What do we need?

Prefix: "The weather is"

Constraint α: text contains "winter"



$$\propto \sum_{\text{text}} p(\text{next-token, text, prefix}, \alpha)$$

## Marginalization!

## Step 1: Distill an HMM $p_{hmm}$ that approximates $p_{gpt}$



- 1. HMM with 4096 hidden states and 50k emission tokens
- 2. Data sampled from GPT2-large (domain-adapted), minimizing KL( $p_{apt} \parallel p_{HMM}$ )
- Leverages <u>latent variable distillation</u> for training PCs at scale [ICLR 23]. (Cluster embeddings of examples to estimate latent Z<sub>i</sub>)

#### CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords, in any order and any form of inflections. e.g.,

Input: snow drive car

Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

Constraint  $\alpha$  in CNF: (w

Each clause represents the inflections for one keyword.

## Computing $p(\alpha \mid x_{1:t+1})$

For constraint  $\alpha$  in CNF:

$$(w_{1,1} \vee \ldots \vee w_{1,d1}) \wedge \ldots \wedge (w_{m,1} \vee \ldots \vee w_{m,dm})$$

where each  $w_{ij}$  is a keyword (i.e. a string of tokens), representing that  $w_{ij}$  appears in the generated text.

```
e.g., \alpha = ("swims" V "like swimming") \wedge ("lake" V "pool")
```

## Computing $p(\alpha | x_{1:t+1})$

For constraint  $\alpha$  in CNF:

$$(w_{1,1} \vee \ldots \vee w_{1,d1}) \wedge \ldots \wedge (w_{m,1} \vee \ldots \vee w_{m,dm})$$

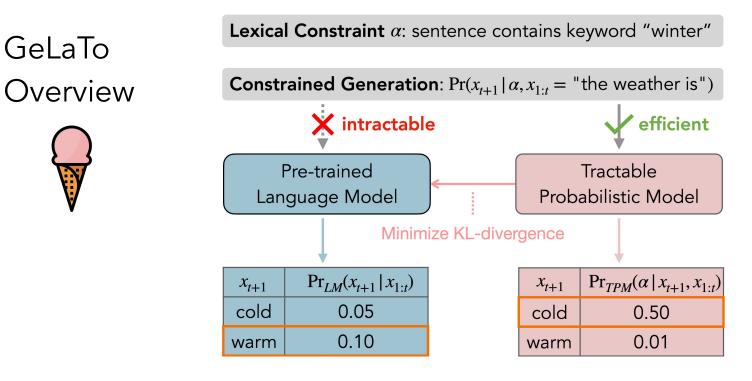
where each w<sub>ij</sub> is a keyword (i.e. a string of tokens), representing that w<sub>ii</sub> appears in the generated text.

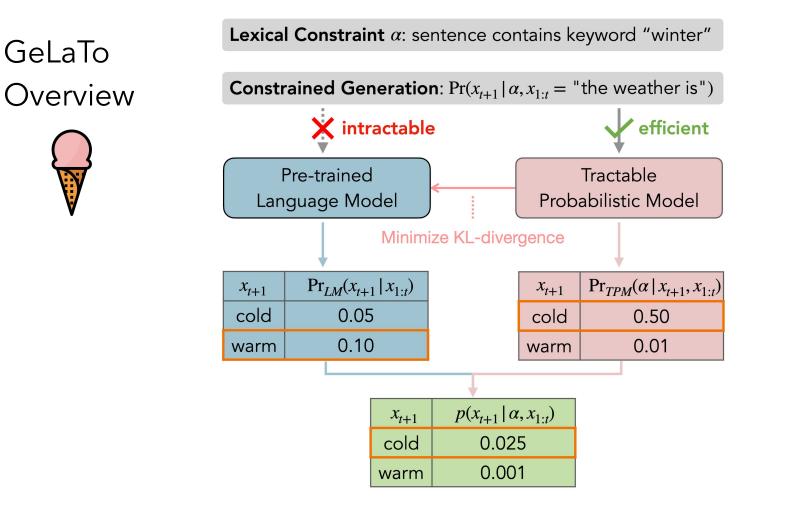
```
e.g., \alpha = ("swims" V "like swimming") \wedge ("lake" V "pool")
```

#### Efficient algorithm:

For m clauses and sequence length n, time-complexity for HMM generation is O(2<sup>|m|</sup>n)

<u>Trick</u>: dynamic programming with clever preprocessing and local belief updates





Step 2: Control  $p_{gpt}$  via  $p_{hmm}$ 

#### <u>Unsupervised</u>

Language model is not fine-tuned/prompted to satisfy constraints

By Bayes rule:  $p_{gpt}(x_{t+1} | x_{1:t}, \alpha) \propto p_{gpt}(\alpha | x_{1:t+1}) \cdot p_{gpt}(x_{t+1} | x_{1:t})$ 

Assume  $p_{hmm}(\alpha | x_{1:t+1}) \approx p_{gpt}(\alpha | x_{1:t+1})$ , we generate from:

 $p(x_{t+1} | x_{1:t}, \alpha) \propto p_{hmm}(\alpha | x_{1:t+1}) \cdot p_{gpt}(x_{t+1} | x_{1:t})$ 

| Method                       | ROU  | GE-L |      | Generatio<br>EU-4 | on Quali<br>CII |      | SPI  | CE   |       | onstraint<br>erage | Satisfacti<br>Succes | on<br>ss Rate |
|------------------------------|------|------|------|-------------------|-----------------|------|------|------|-------|--------------------|----------------------|---------------|
| Unsupervised                 | dev  | test | dev  | test              | dev             | test | dev  | test | dev   | test               | dev                  | test          |
| InsNet (Lu et al., 2022a)    | -    | -    | 18.7 | -                 | -               | -    | -    | -    | 100.0 | -                  | 100.0                | -             |
| NeuroLogic (Lu et al., 2021) | -    | 41.9 | -    | 24.7              | -               | 14.4 | -    | 27.5 | -     | 96.7               | -                    | -             |
| A*esque (Lu et al., 2022b)   | -    | 44.3 | -    | 28.6              | -               | 15.6 | -    | 29.6 | -     | 97.1               | -                    |               |
| NADO (Meng et al., 2022)     | -    | -    | 26.2 | -                 | -               | -    | -    | -    | 96.1  | -                  | -                    | -             |
| GeLaTo                       | 44.6 | 44.1 | 29.9 | 29.4              | 16.0            | 15.8 | 31.3 | 31.0 | 100.0 | 100.0              | 100.0                | 100.0         |

## Step 2: Control $p_{gpt}$ via $p_{hmm}$

#### **Supervised**

Language model is fine-tuned to perform constrained generation (e.g. seq2seq)

Empirically  $p_{HMM}(\alpha | x_{1:t+1}) \approx p_{gpt}(\alpha | x_{1:t+1})$ does not hold well enough; we view  $p_{HMM}(x_{t+1} | x_{1:t}, \alpha)$  and  $p_{gpt}(x_{t+1} | x_{1:t})$  as classifiers trained for the same task with different biases; thus we generate from their <u>weighted</u> <u>geometric mean</u>:

 $p(x_{t+1} | x_{1:t}, \alpha) \propto p_{hmm}(x_{t+1} | x_{1:t}, \alpha)^{w} \cdot p_{gpt}(x_{t+1} | x_{1:t})^{1-w}$ 

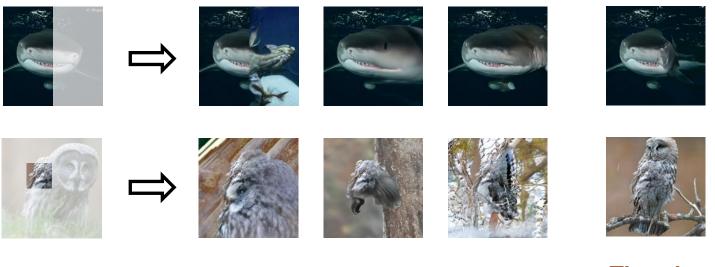
| Method                       | Generation Quality |      |      |      |                  |      |                          |      | Constraint Satisfaction |       |                   |                   |
|------------------------------|--------------------|------|------|------|------------------|------|--------------------------|------|-------------------------|-------|-------------------|-------------------|
| Method                       | ROU                | GE-L | BLE  | EU-4 | CIL              | DEr  | SPI                      | CE   | Cove                    | erage | Succes            | ss Rate           |
| Supervised                   | dev                | test | dev  | test | dev              | test | dev                      | test | dev                     | test  | dev               | test              |
| NeuroLogic (Lu et al., 2021) | -                  | 42.8 | -    | 26.7 | 12 <b>-</b> 0    | 14.7 | -                        | 30.5 | -                       | 97.7  | -                 | 93.9 <sup>†</sup> |
| A*esque (Lu et al., 2022b)   | -                  | 43.6 | -    | 28.2 |                  | 15.2 | -                        | 30.8 | -                       | 97.8  | -                 | $97.9^{\dagger}$  |
| NADO (Meng et al., 2022)     | 44.4 <sup>†</sup>  | -    | 30.8 | -    | $16.1^{\dagger}$ | -    | <b>32.0</b> <sup>†</sup> | -    | 97.1                    | -     | 88.8 <sup>†</sup> | -                 |
| GeLaTo                       | 46.0               | 45.6 | 34.1 | 32.9 | 16.7             | 16.8 | 31.3                     | 31.9 | 100.0                   | 100.0 | 100.0             | 100.0             |

#### Advantages of GeLaTo:

- 1. Constraint  $\alpha$  is <u>guaranteed to be satisfied</u>: for any next-token  $x_{t+1}$  that would make  $\alpha$  unsatisfiable,  $p(x_{t+1} | x_{1:t}, \alpha) = 0$ .
- 2. Training  $p_{hmm}$  does not depend on  $\alpha$ , which is only imposed at inference (generation) time.
- 3. Can impose <u>additional tractable constraints</u>:
  - keywords follow a particular order
  - keywords appear at a particular position
  - keywords must not appear

Conclusion: you can control an intractable generative model using a tractable probabilistic circuit.

#### Inpainting/constrained generation is still challenging







## Constrained posterior in diffusion models

Unconstrained denoising step: 
$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := \sum_{\tilde{\mathbf{x}}_0} q(\mathbf{x}_{t-1}|\tilde{\mathbf{x}}_0, \mathbf{x}_t) \cdot p_{\theta}(\tilde{\mathbf{x}}_0|\mathbf{x}_t)$$



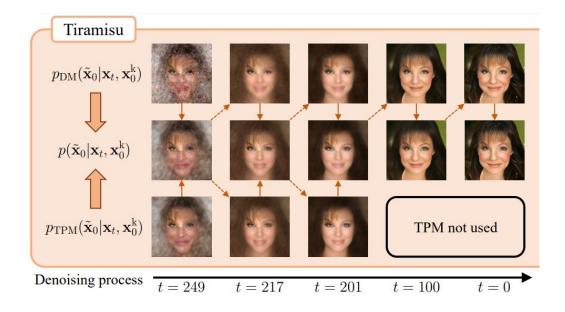
Constraint c on the generated image (e.g., inpainting)

Constrained denoising step: 
$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t, c) := \sum_{\tilde{\mathbf{x}}_0} q(\mathbf{x}_{t-1}|\tilde{\mathbf{x}}_0, \mathbf{x}_t) \cdot p_{\theta}(\tilde{\mathbf{x}}_0|\mathbf{x}_t, c)$$

Computing or sampling from the constrained posterior  $p_{\theta}(\tilde{\mathbf{x}}_0 | \mathbf{x}_t, c)$  is **intractable** for diffusion models.



#### Denoising $p(\tilde{\boldsymbol{x}}_0|\boldsymbol{x}_t, \boldsymbol{x}_0^{\mathrm{k}}) \propto p_{\mathrm{DM}}(\tilde{\boldsymbol{x}}_0|\boldsymbol{x}_t, \boldsymbol{x}_0^{\mathrm{k}})^{\alpha} \cdot p_{\mathrm{TPM}}(\tilde{\boldsymbol{x}}_0|\boldsymbol{x}_t, \boldsymbol{x}_0^{\mathrm{k}})^{1-\alpha}$

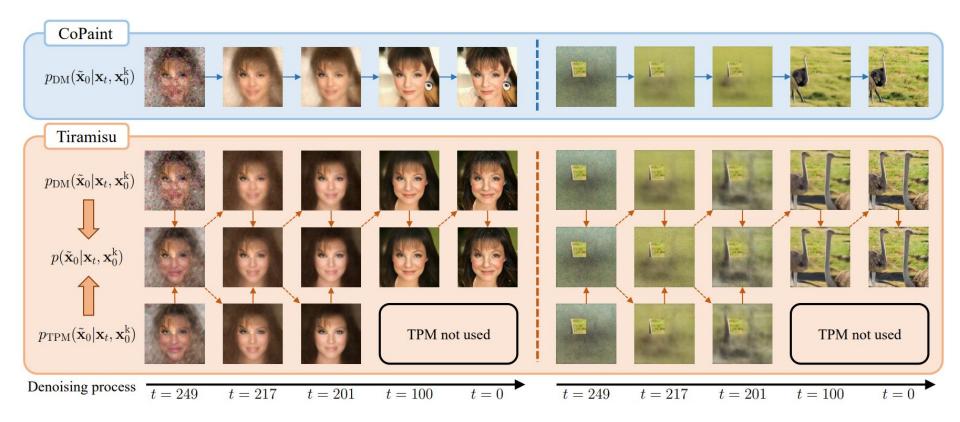


 $p_{\rm DM}(\tilde{\mathbf{x}}_0|\mathbf{x}_t,c)$ From the diffusion model: Good at generating vivid details

$$p_{\mathrm{TPM}}(\tilde{\mathbf{x}}_0|\mathbf{x}_t,c)$$

From the probabilistic circuit: Exact samples – better global coherence

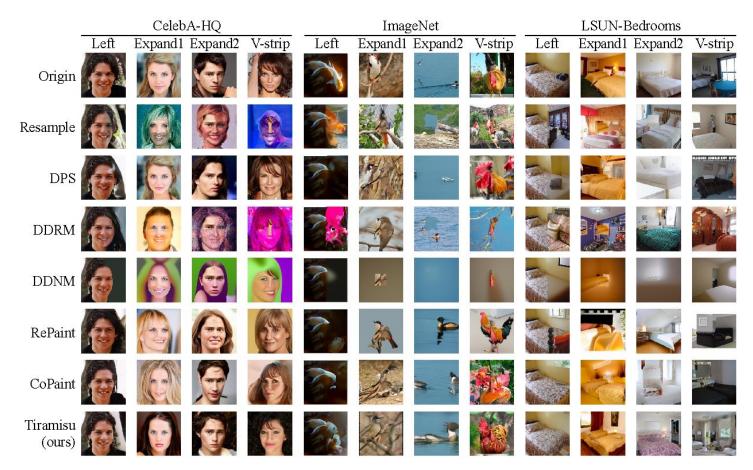
### Controlling the denoiser with a probabilistic circuit



#### High-resolution image benchmarks

| Tasks        |         | Algorithms      |         |         |       |       |       |            |  |
|--------------|---------|-----------------|---------|---------|-------|-------|-------|------------|--|
| Dataset      | Mask    | Tiramisu (ours) | CoPaint | RePaint | DDNM  | DDRM  | DPS   | Resampling |  |
|              | Left    | 0.189           | 0.185   | 0.195   | 0.254 | 0.275 | 0.201 | 0.257      |  |
|              | Тор     | 0.187           | 0.182   | 0.187   | 0.248 | 0.267 | 0.187 | 0.251      |  |
| CelebA-HQ    | Expand1 | 0.454           | 0.468   | 0.504   | 0.597 | 0.682 | 0.466 | 0.613      |  |
| CUCUA-IIQ    | Expand2 | 0.442           | 0.455   | 0.480   | 0.585 | 0.686 | 0.434 | 0.601      |  |
|              | V-strip | 0.487           | 0.502   | 0.517   | 0.625 | 0.724 | 0.535 | 0.647      |  |
|              | H-strip | 0.484           | 0.488   | 0.517   | 0.626 | 0.731 | 0.492 | 0.639      |  |
|              | Left    | 0.286           | 0.289   | 0.296   | 0.410 | 0.369 | 0.327 | 0.369      |  |
|              | Тор     | 0.308           | 0.312   | 0.336   | 0.427 | 0.373 | 0.343 | 0.368      |  |
| ImageNet     | Expand1 | 0.616           | 0.623   | 0.691   | 0.786 | 0.726 | 0.621 | 0.711      |  |
| Inagenet     | Expand2 | 0.597           | 0.607   | 0.692   | 0.799 | 0.724 | 0.618 | 0.721      |  |
|              | V-strip | 0.646           | 0.654   | 0.741   | 0.851 | 0.761 | 0.637 | 0.759      |  |
|              | H-strip | 0.657           | 0.660   | 0.744   | 0.851 | 0.753 | 0.647 | 0.774      |  |
|              | Left    | 0.285           | 0.287   | 0.314   | 0.345 | 0.366 | 0.314 | 0.367      |  |
|              | Тор     | 0.310           | 0.323   | 0.347   | 0.376 | 0.368 | 0.355 | 0.372      |  |
|              | Expand1 | 0.615           | 0.637   | 0.676   | 0.716 | 0.695 | 0.641 | 0.699      |  |
| LSUN-Bedroom | Expand2 | 0.635           | 0.641   | 0.666   | 0.720 | 0.691 | 0.638 | 0.690      |  |
|              | V-strip | 0.672           | 0.676   | 0.711   | 0.760 | 0.721 | 0.674 | 0.725      |  |
|              | H-strip | 0.679           | 0.686   | 0.722   | 0.766 | 0.726 | 0.674 | 0.724      |  |
| Average      | 2       | 0.474           | 0.481   | 0.518   | 0.596 | 0.591 | 0.489 | 0.571      |  |

#### Qualitative results on high-resolution image datasets



## Outline

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials* 

## Probabilistic circuits seem awfully general.

# Are all tractable probabilistic models probabilistic circuits?



## Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0\\ 0.9 & 0.97 & 0.96 & 0\\ 0.8 & 0.96 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

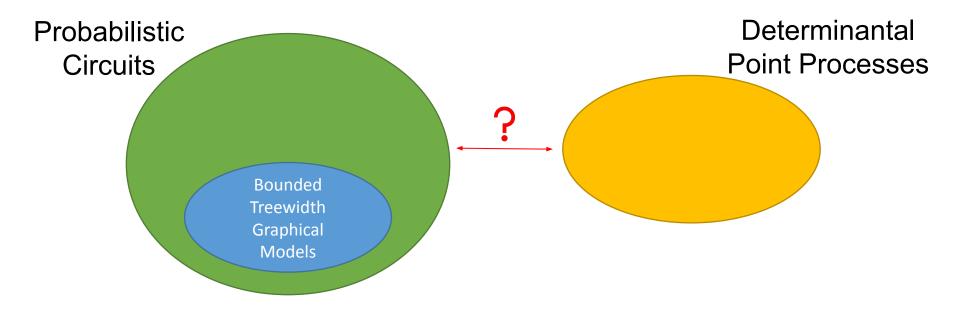
**Global Negative Dependence** 

Diversity in recommendation systems

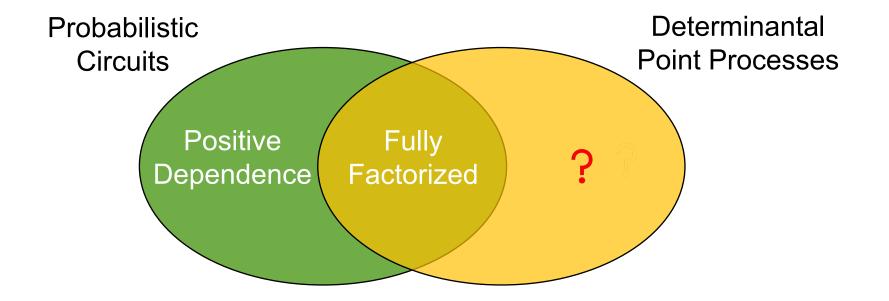
Tractable likelihoods and marginals

$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$

# Are all tractable probabilistic models probabilistic circuits?



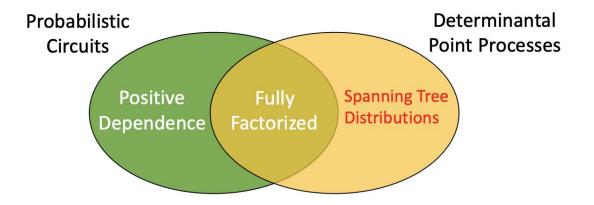
# Are all tractable probabilistic models probabilistic circuits?



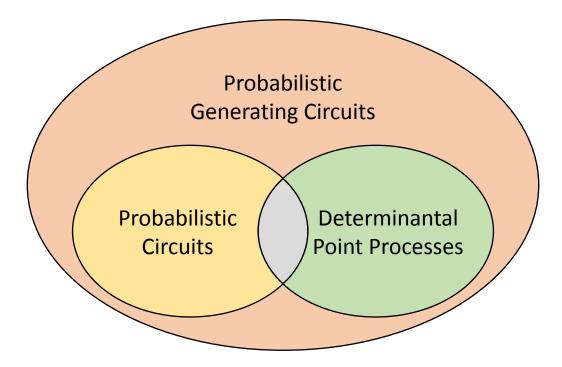
### A separation between PCs and DPPs

**Theorem** (Martens and Medabalimi, 2014). Let  $P_n$  be the uniform distribution over spanning trees on  $K_n$ . For  $n \ge 20$ , the size of any smooth and decomposable PC that represents  $P_n$  is at least  $2^{n/30240}$ .

**Theorem** (Snell, 1995). The uniform distribution over spanning trees on the complete graph  $K_n$  is a DPP over  $\binom{n}{2}$  edges.



## **Probabilistic Generating Circuits**



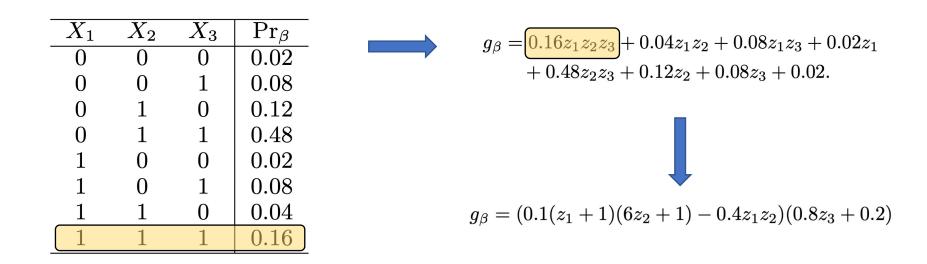
A Tractable Unifying Framework for PCs and DPPs

#### **Probability Generating Functions**

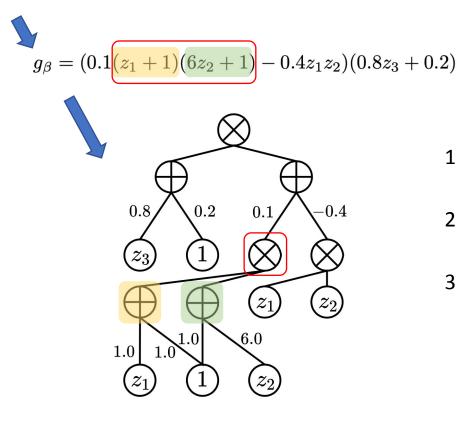
| $X_1$ | $X_2$ | $X_3$ | $\Pr_{\beta}$ |
|-------|-------|-------|---------------|
| 0     | 0     | 0     | 0.02          |
| 0     | 0     | 1     | 0.08          |
| 0     | 1     | 0     | 0.12          |
| 0     | 1     | 1     | 0.48          |
| 1     | 0     | 0     | 0.02          |
| 1     | 0     | 1     | 0.08          |
| 1     | 1     | 0     | 0.04          |
| 1     | 1     | 1     | 0.16          |

$$g_{\beta} = \underbrace{0.16z_1z_2z_3}_{+ 0.48z_2z_3} + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 + 0.48z_2z_3 + 0.12z_2 + 0.08z_3 + 0.02z_1$$

#### **Probability Generating Functions**



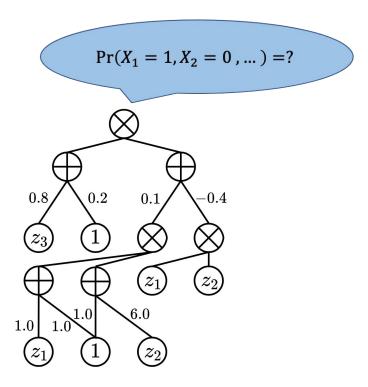
### Probabilistic Generating Circuits (PGCs)



- Sum nodes with weighted edges to children.
- 2. Product nodes 🚫 with unweighted edges to children.
- 3. Leaf nodes: z\_i or constant.

#### PGCs Support Tractable Likelihoods

How to extract the right monomial's coefficient?



## PGCs Support Tractable Likelihoods

0.8

 $z_3$ 

1.0

0.2

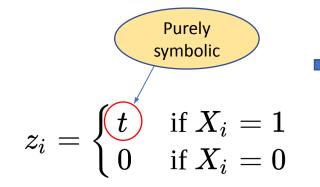
1.0

0.1

6.0

 $z_2$ 

How to extract the right monomial's coefficient?



$$\Pr(X_1 = 1, X_2 = 0, ...) =?$$

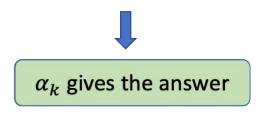
-0.4

 $(z_2)$ 

complexity O(circuit size x degree)

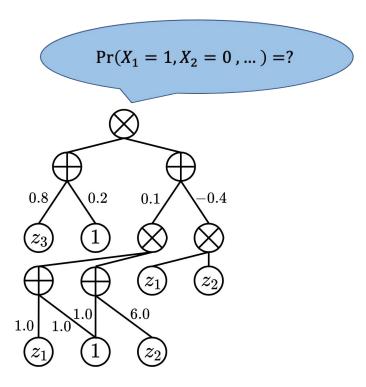
$$p(t) = \alpha_k t^k + \dots + \alpha_1 t$$

- Monomials setting to true variables that must be false are 0-ed out
- Only the monomial that sets all required variables to true has max degree.



#### PGCs Support Tractable Marginals

How to sum the right monomial's coefficients?



## PGCs Support Tractable Marginals

0.8

1.0

0.2

1.0

0.1

6.0

 $z_2$ 

## How to sum the right monomial's coefficients?

$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$

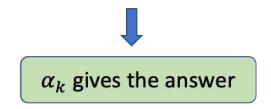
$$\Pr(X_1 = 1, X_2 = 0, ...) = ?$$

-0.4

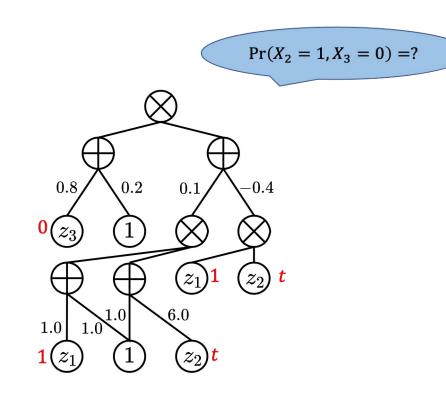
 $z_2$ 

$$p(t) = \alpha_k t^k + \dots + \alpha_1 t$$

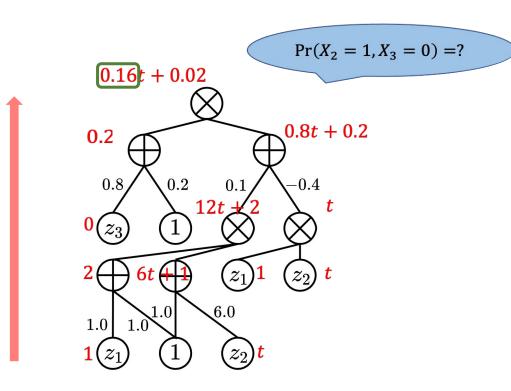
- Monomials setting to true variables that must be false are 0-ed out
- Other monomials contribute to result.
- Only monomials that set all required variables to true have max degree.



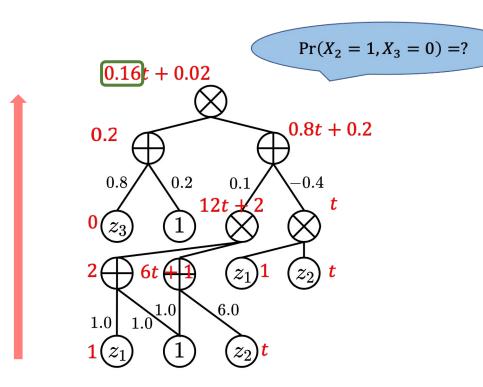
**Example** 
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$



**Example** 
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$



Example 
$$z_i = \begin{cases} t & \text{if } X_i = 1 \\ 0 & \text{if } X_i = 0 \\ 1 & \text{if } X_i = ? \end{cases}$$



| $X_1$ | $X_2$ | $X_3$ | $\Pr_{\beta}$ |
|-------|-------|-------|---------------|
| 0     | 0     | 0     | 0.02          |
| 0     | 0     | 1     | 0.08          |
| 0     | 1     | 0     | 0.12          |
| 0     | 1     | 1     | 0.48          |
| 1     | 0     | 0     | 0.02          |
| 1     | 0     | 1     | 0.08          |
| 1     | 1     | 0     | 0.04          |
| 1     | 1     | 1     | 0.16          |

#### Probabilistic circuits are probabilistic generating circuits

PCs represents probability mass functions:

$$\begin{split} m_{\beta} &= 0.16X_{1}X_{2}X_{3} + 0.04X_{1}X_{2}\overline{X_{3}} + 0.08X_{1}\overline{X_{2}}X_{3} + 0.02X_{1}\overline{X_{2}}\overline{X_{3}} \\ &+ 0.48\overline{X_{1}}X_{2}X_{3} + 0.12\overline{X_{1}}X_{2}\overline{X_{3}} + 0.08\overline{X_{1}}\overline{X_{2}}X_{3} + 0.02\overline{X_{1}}\overline{X_{2}}\overline{X_{3}} \end{split}$$

PGCs represent probability generating functions:

$$g_{\beta} = 0.16z_1z_2z_3 + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1 + 0.48z_2z_3 + 0.12z_2 + 0.08z_1z_3 + 0.02z_1$$

Given a smooth & decomposable PC, by setting  $\overline{X_i}$  to 1, and  $X_i$  to  $z_i$ , we obtain an equivalent PGC

#### DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel *L* is given by:

$$g_L = \frac{1}{\det(L+I)} \det(I + L \operatorname{diag}(z_1, \dots, z_n)).$$

We need it as a sum of products to obtain a Probabilistic Generating Circuit

#### DPPs are probabilistic generating circuits

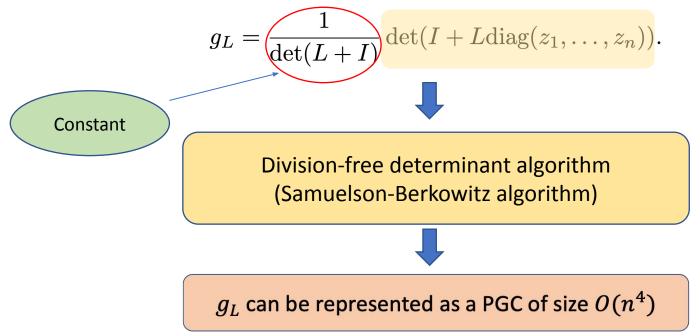
The generating polynomial for a DPP with kernel *L* is given by:

$$g_L = \underbrace{\frac{1}{\det(L+I)}\det(I + L\operatorname{diag}(z_1, \dots, z_n))}_{\operatorname{Constant}}$$

We need it as a sum of products to obtain a Probabilistic Generating Circuit

#### DPPs are probabilistic generating circuits

The generating polynomial for a DPP with kernel L is given by:



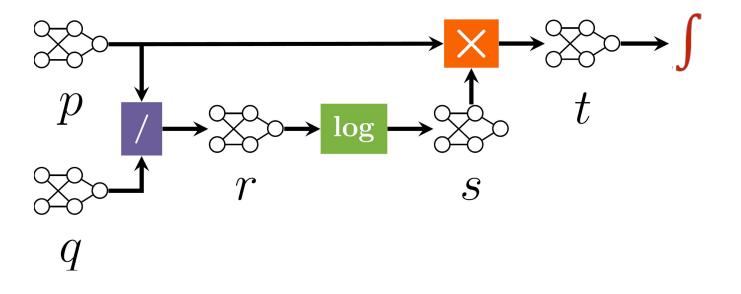
# Probabilistic **generating** circuits seem awfully general.

## Are all tractable probabilistic models probabilistic **generating** circuits?



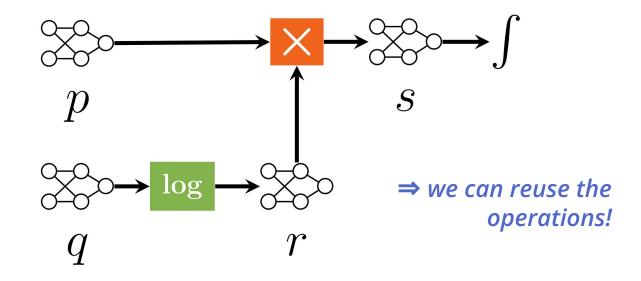
#### Queries as pipelines: KLD

 $\mathbb{KLD}(p \parallel q) = \int p(\mathbf{x}) \times \log((p(\mathbf{x})/q(\mathbf{x}))d\mathbf{X})$ 



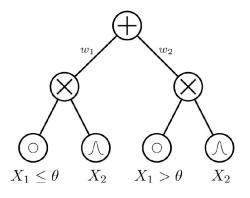
#### Queries as pipelines: Cross Entropy

 $H(p,q) = \int p(\boldsymbol{x}) \times \log(q(\boldsymbol{x})) d\boldsymbol{X}$ 



#### Determinism

A sum node is *deterministic* if only one of its children outputs non-zero for any input



 $\Rightarrow$  allows **tractable MAP** inference argmax<sub>x</sub> p(x)

deterministic circuit

Darwiche and Marquis, "A Knowledge Compilation Map", 2002

| Operation |                                | Tractability         |                         |
|-----------|--------------------------------|----------------------|-------------------------|
|           |                                | Input conditions     | Output conditions       |
| Log       | $\log(p)$                      | Sm, Dec, Det         | Sm, Dec                 |
|           |                                |                      |                         |
|           | $Q_{\Delta}$                   | $\rightarrow \log -$ | $\overline{\mathbf{Q}}$ |
|           |                                | log                  |                         |
|           | smooth,                        |                      | smooth,                 |
|           | decomposable,<br>deterministic |                      | decomposable            |

#### Tractable circuit operations

| Operation |                                     | Tractability                 |                    |                        |  |
|-----------|-------------------------------------|------------------------------|--------------------|------------------------|--|
|           |                                     | Input properties             | Output properties  | Hardness               |  |
| SUM       | $\theta_1 p + \theta_2 q$           | (+Cmp)                       | (+SD)              | NP-hard for Det output |  |
| PRODUCT   | $p\cdot q$                          | Cmp (+Det, +SD)              | Dec (+Det, +SD)    | #P-hard w/o Cmp        |  |
| POWER     | $p^n, n \in \mathbb{N}$             | SD (+Det)                    | SD (+Det)          | #P-hard w/o SD         |  |
|           | $p^{\alpha}, \alpha \in \mathbb{R}$ | Sm, Dec, Det (+SD)           | Sm, Dec, Det (+SD) | #P-hard w/o Det        |  |
| QUOTIENT  | p/q                                 | Cmp; $q$ Det (+ $p$ Det,+SD) | Dec (+Det,+SD)     | #P-hard w/o Det        |  |
| LOG       | $\log(p)$                           | Sm, Dec, Det                 | Sm, Dec            | #P-hard w/o Det        |  |
| Exp       | $\exp(p)$                           | linear                       | SD                 | #P-hard                |  |

#### Inference by tractable operations

#### *systematically derive* tractable inference algorithm of complex queries

|                       | Query                                                                                                                                        | Tract. Conditions | Hardness          |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| CROSS ENTROPY         | $-\int p(\boldsymbol{x}) \log q(\boldsymbol{x})  \mathrm{d} \mathbf{X}$                                                                      | Cmp, $q$ Det      | #P-hard w/o Det   |
| SHANNON ENTROPY       | $-\sum p(oldsymbol{x})\log p(oldsymbol{x})$                                                                                                  | Sm, Dec, Det      | coNP-hard w/o Det |
| Rényi Entropy         | $(1-lpha)^{-1}\log\int p^{lpha}(\boldsymbol{x})d\mathbf{X}, lpha\in\mathbb{N}$                                                               | SD                | #P-hard w/o SD    |
|                       | $(1-lpha)^{-1}\log \int p^lpha(oldsymbol{x}) \ d\mathbf{X}, lpha\in\mathbb{R}_+$                                                             | Sm, Dec, Det      | #P-hard w/o Det   |
| MUTUAL INFORMATION    | $\int p(oldsymbol{x},oldsymbol{y}) \log(p(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$                                      | Sm, SD, Det*      | coNP-hard w/o SD  |
| KULLBACK-LEIBLER DIV. | $\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) d \mathbf{X}$                                                                    | Cmp, Det          | #P-hard w/o Det   |
| Rényi's Alpha Div.    | $(1-lpha)^{-1}\log\int p^{lpha}(oldsymbol{x})q^{1-lpha}(oldsymbol{x})\;d\mathbf{X},lpha\in\mathbb{N}$                                        | Cmp, q Det        | #P-hard w/o Det   |
|                       | $(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x})  d\mathbf{X}, \alpha \in \mathbb{R}$                        | Cmp, Det          | #P-hard w/o Det   |
| ITAKURA-SAITO DIV.    | $\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d  \mathbf{X}$                                           | Cmp, Det          | #P-hard w/o Det   |
| CAUCHY-SCHWARZ DIV.   | $-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})doldsymbol{X}}{\sqrt{\int p^2(oldsymbol{x})doldsymbol{X}\int q^2(oldsymbol{x})doldsymbol{X}}}$ | Cmp               | #P-hard w/o Cmp   |
| SQUARED LOSS          | $\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \mathbf{X}$                                                                                    | Cmp               | #P-hard w/o Cmp   |

### Conclusions

- 1. What are probabilistic circuits? *tractable deep generative models*
- 2. What are they useful for?

controlling generative AI

3. What is the underlying theory? *probability generating polynomials* 

### Thanks

### This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/