Lifted Probabilistic Inference by First-Order Knowledge Compilation

Guy Van den Broeck
Nima Taghipour
Wannes Meert
Jesse Davis
Luc De Raedt

Lifted Inference in Probabilistic Logical Models - Tutorial - IJCAI11
18/07/11
Outline

- Overview Approach
- First-Order d-DNNF Circuits
- First-Order Knowledge Compilation
- Experiments
- Conclusions
Outline

• Overview Approach
• First-Order d-DNNF Circuits
• First-Order Knowledge Compilation
• Experiments
• Conclusions
Context

<table>
<thead>
<tr>
<th></th>
<th>Variable Elimination</th>
<th>Belief Propagation</th>
<th>Knowledge Compilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground</td>
<td>[Zhang94]</td>
<td>[Pearl82]</td>
<td>[Darwiche03]</td>
</tr>
<tr>
<td>Lifted</td>
<td>[Poole03]</td>
<td>[Singla08]</td>
<td>Our approach</td>
</tr>
</tbody>
</table>
Advantages of Knowledge Compilation

- Compile once, then run polytime inference for multiple queries and evidence
- Efficient **data structures**
- Principled **logical** approach
- Exploits **context-specific independences**
- **State of the art** for exact inference in
 - Bayesian networks
 - Statistical relational learning
- Used in **many domains**, not just probabilistic reasoning
Question?

- Can we **lift** knowledge compilation to a first-order setting?
- First step taken: **first-order d-DNNFs** for
 - weighted first-order model counting
 - lifted probabilistic inference
- Many open questions remaining!
What is Lifted Inference?

2 friends(\(X, Y\)) \land \text{smokes}(X) \Rightarrow \text{smokes}(Y)
What is Lifted Inference?

2 \text{ friends}(X, Y) \land \text{smokes}(X) \Rightarrow \text{smokes}(Y)

- Variables X,Y range over \textbf{domain} People
- Represents propositional model for given domain (50 people)
- \textbf{Propositional inference} in factor graph is expensive

- However: \textbf{symmetries}
What is Lifted Inference?

2 friends(\(X, Y\)) \land \text{smokes}(X) \Rightarrow \text{smokes}(Y)

- We compile to a circuit independent of \(|\text{People}|\)
- Inference \textbf{linear} in \(|\text{People}|\)

\[\text{\rightarrow Lifted Inference}\]
Knowledge Compilation

- Bayesian Network
- Factor Graph
- MLN
- ...

First-Order Knowledge Compilation
Knowledge Compilation

- Step 1: Convert model to weighted CNF
Knowledge Compilation

- Step ①: Convert model to weighted CNF
- Step ②: Convert CNF to d-DNNF circuit
Knowledge Compilation

- Step 1: Convert model to weighted CNF
- Step 2: Convert CNF to d-DNNF circuit
- Step 3: Perform weighted model counting
Our Approach: First-Order Knowledge Compilation:

1. Step 1: Convert model to weighted FO CNF
2. Step 2: Convert CNF to FO d-DNNF circuit
3. Step 3: Perform weighted FO model counting
Step 1: Converting to Weighted FO CNF

MLN

\[w : \text{smokes}(X) \land \text{friends}(X, Y) \Rightarrow \text{smokes}(Y) \]
Step 1: Converting to Weighted FO CNF

\[w : \text{smokes}(X) \land \text{friends}(X, Y) \Rightarrow \text{smokes}(Y) \]

\[[\text{smokes}(X) \land \text{friends}(X, Y) \Rightarrow \text{smokes}(Y)] \equiv f(X, Y) \]
Step 1: Converting to Weighted FO CNF

\[w : \text{smokes}(X) \land \text{friends}(X, Y) \Rightarrow \text{smokes}(Y)\]

\[\neg \text{smokes}(Y) \lor \neg \text{smokes}(X) \lor \neg \text{friends}(X, Y) \lor \neg f(X, Y)\]

friends\((X, Y) \lor f(X, Y)\)

smokes\((X) \lor f(X, Y)\)

\(\neg \text{smokes}(Y) \lor f(X, Y)\)
Step 3: Weighted FO Model Counting

- Weight function on ground atoms

\[
\begin{align*}
 w(\text{smokes}(X)) &= 2 & w(\neg \text{smokes}(X)) &= 10 \\
 w(\text{friends}(X, Y)) &= 5 & w(\neg \text{friends}(X, Y)) &= 1
\end{align*}
\]
Step 3: Weighted FO Model Counting

- Weight function on ground atoms
 \[w(\text{smokes}(X)) = 2 \quad w(\neg \text{smokes}(X)) = 10 \]
 \[w(\text{friends}(X, Y)) = 5 \quad w(\neg \text{friends}(X, Y)) = 1 \]

- Weight of a model (possible world)
 \[\{\text{smokes}(alice), \neg \text{smokes}(bob), \text{friends}(alice, bob), \ldots\} \]
 \[\begin{array}{ccc}
 2 & 10 & 5 \\
 \end{array} \]
 \[2 \cdot 10 \cdot 5 \cdot \ldots = 100 \]
Step 3: Weighted FO Model Counting

- Weight function on ground atoms
 \[w(smokes(X)) = 2 \quad \quad w(\neg smokes(X)) = 10 \]
 \[w(friends(X, Y)) = 5 \quad \quad w(\neg friends(X, Y)) = 1 \]

- Weight of a model (possible world)
 \[\{smokes(alice), \neg smokes(bob), friends(alice, bob), \ldots\} \]
 \[2 \cdot 10 \cdot 5 \cdot \ldots = 100 \]

- Weight of all models is \[100 + \ldots = Z \]
Step 3: Weighted FO Model Counting

- Weight function on ground atoms

 \[w(\text{smokes}(X)) = 2 \quad w(\neg \text{smokes}(X)) = 10 \]
 \[w(\text{friends}(X, Y)) = 5 \quad w(\neg \text{friends}(X, Y)) = 1 \]

- Weight of a model (possible world)

 \[\{\text{smokes}(alice), \neg \text{smokes}(bob), \text{friends}(alice, bob), \ldots\} \]

 \[2 \cdot 10 \cdot 5 \cdot \ldots = 100 \]

- Weight of all models is \(100 + \ldots = \mathbb{Z} \)

- Weight of models where Alice smokes is \(100 + \ldots = \mathbb{Q} \)
Step 3: Weighted FO Model Counting

- Weight function on ground atoms
 \[w(\text{smokes}(X)) = 2 \quad w(\neg\text{smokes}(X)) = 10 \]
 \[w(\text{friends}(X, Y)) = 5 \quad w(\neg\text{friends}(X, Y)) = 1 \]

- Weight of a model (possible world)
 \[\{\text{smokes}(alice), \neg\text{smokes}(bob), \text{friends}(alice, bob), \ldots\} \]
 \[2 \cdot 10 \cdot 5 \cdot \ldots = 100 \]

- Weight of all models is \[100 + \ldots = Z \]
 Weight of models where Alice smokes is \[100 + \ldots = Q \]

- \[P(\text{smokes}(alice)) = \frac{Q}{Z} \]
Outline

● Overview Approach
● First-Order d-DNNF Circuits
● First-Order Knowledge Compilation
● Experiments
● Conclusions
Propositional d-DNNF Circuits
[Darwiche and Marquis, 2002]

Logical theory:

\[p \lor r \]

\[q \lor \neg r \]
Logical theory:

\[p \lor r \]
\[q \lor \neg r \]
Propositional d-DNNF Circuits

[Darwiche and Marquis, 2002]

Logical theory:

\[p \lor r \]
\[q \lor \neg r \]

Logical operators (inner node)

Literal (leaf)
Propositional d-DNNF Circuits
[Darwiche and Marquis, 2002]

Logical theory:

\[p \lor r \]
\[q \lor \neg r \]

Logical operators (inner node)

Deterministic disjunction

Literal (leaf)
Propositional d-DNNF Circuits
[Darwiche and Marquis, 2002]

Logical theory:

\[p \lor r \]
\[q \lor \neg r \]

Logical operators (inner node):

- Deterministic disjunction
- Decomposable conjunction
- Literal (leaf)
First-Order d-DNNF Circuits

Logical Theory:

\[p(X) \lor r \]
\[q(X) \lor \neg r \]

Diagram:

\[\lor \]
\[\land \]
\[\land \]
\[r \]
\[q(X), X \in D \]
\[\neg r \]
\[p(X), X \in D \]
First-Order d-DNNF Circuits

Logical Theory:

\[p(X) \lor r \]
\[q(X) \lor \neg r \]
First-Order d-DNNF Circuits

Logical Theory:

\[p(X) \lor r \]
\[q(X) \lor \neg r \]

- Deterministic disjunction
- Decomposable conjunction
- 3 additional first-order operators (inner nodes)
Outline

- Overview Approach
- First-Order d-DNNF Circuits
- First-Order Knowledge Compilation
- Experiments
- Conclusions
Step 2: Our Compilation Algorithm

- Recursively apply
 - Unit Propagation
 - Independence
 - Inclusion-Exclusion (Shannon Decomposition)
 - Shattering
 - Independent Partial Grounding
 - Atom Counting
 - (Grounding)
Step 2: Our Compilation Algorithm

- Recursively apply
 - Unit Propagation
 - Independence
 - Inclusion-Exclusion (Shannon Decomposition)
 - Shattering
 - Independent Partial Grounding
 - Atom Counting
 - (Grounding)

Generate first-order operators in inner nodes

Weighted FO CNF
FO d-DNNF Circuit
Step 2: Our Compilation Algorithm

- Recursively apply:
 - Unit Propagation
 - Independence
 - Inclusion-Exclusion (Shannon Decomposition)
 - Shattering
 - Independent Partial Grounding
 - Atom Counting
 - (Grounding)
Unit Propagation

\[\text{friends}(X, Y) \lor \text{dislikes}(X, Y) \]
\[\neg \text{friends}(X, Y) \lor \text{likes}(X, Y) \]
\[\text{friends}(X, X) \]
Unit Propagation

\[\text{friends}(X, Y) \lor \text{dislikes}(X, Y) \]
\[\neg \text{friends}(X, Y) \lor \text{likes}(X, Y) \]
\[\text{friends}(X, X) \]

Unit clause
Unit Propagation

\[\text{friends}(X, Y) \lor \text{dislikes}(X, Y) \]
\[\neg \text{friends}(X, Y) \lor \text{likes}(X, Y) \]
\[\text{friends}(X, X) \]

Unit clause

\[\text{friends}(X, Y) \lor \text{dislikes}(X, Y), X \neq Y \]
\[\neg \text{friends}(X, Y) \lor \text{likes}(X, Y), X \neq Y \]
\[\text{likes}(X, X) \]

friends(X, X)
Unit Propagation

Clauses split w.r.t. unit clause atom 'residuals' → independent
Unit Propagation

\begin{align*}
\text{friends}(X, Y) \lor \text{dislikes}(X, Y) \\
\neg \text{friends}(X, Y) \lor \text{likes}(X, Y) \\
\text{friends}(X, X)
\end{align*}

Resolvent of unit and 2nd clause

\begin{align*}
\text{friends}(X, Y) \lor \text{dislikes}(X, Y), X \neq Y \\
\neg \text{friends}(X, Y) \lor \text{likes}(X, Y), X \neq Y \\
\text{likes}(X, X)
\end{align*}

friends(X, X)
Step 2: Our Compilation Algorithm

- Recursively apply
 - Unit Propagation
 - Independence
 - Inclusion-Exclusion (Shannon Decomposition)
 - Shattering
 - Independent Partial Grounding
 - Atom Counting
 - (Grounding)
Atom Counting

\[\text{fun}(X) \lor \neg \text{friends}(X, Y) \]
\[\text{fun}(X) \lor \neg \text{friends}(Y, X) \]
Atom Counting

Atom with one logical variable $X \in \{\text{luc}, \text{jesse}\}$

\[
\begin{align*}
\text{fun}(X) \lor \neg \text{friends}(X, Y) \\
\text{fun}(X) \lor \neg \text{friends}(Y, X)
\end{align*}
\]
Atom Counting

Atom with 1 logical variable

\[
\begin{align*}
\text{fun}(X) \lor \neg \text{friends}(X, Y) \\
\text{fun}(X) \lor \neg \text{friends}(Y, X)
\end{align*}
\]
Atom Counting

All partial interpretations for fun(X)
- deterministic
- $2^{|People|}$
Atom Counting

fun\(X\) \lor \neg \text{friends}(X, Y)
fun\(X\) \lor \neg \text{friends}(Y, X)

Same weighted model count
Atom Counting

\[
\begin{align*}
\text{fun}(X) \lor \neg \text{friends}(X, Y) \\
\text{fun}(X) \lor \neg \text{friends}(Y, X)
\end{align*}
\]

\[
2^{\lvert \text{People} \rvert} \rightarrow \lvert \text{People} \rvert + 1
\]
Atom Counting

fun(X) ∨ ¬friends(X, Y)
fun(X) ∨ ¬friends(Y, X)

Isomophic circuits

\[
\text{fun}(X), X \in \text{People}^T
\quad \neg \text{fun}(X), X \in \text{People}^\bot
\]

\[
|\text{People}^T| = 2 \\
|\text{People}^\bot| = 0
\]

fun(X) ∨ ¬friends(X, Y)
fun(X) ∨ ¬friends(Y, X)

\[
\text{fun}(X), X \in \text{People}^T
\quad \neg \text{fun}(X), X \in \text{People}^\bot
\]

\[
|\text{People}^T| = 1 \\
|\text{People}^\bot| = 1
\]

fun(X) ∨ ¬friends(X, Y)
fun(X) ∨ ¬friends(Y, X)

\[
\text{fun}(X), X \in \text{People}^T
\quad \neg \text{fun}(X), X \in \text{People}^\bot
\]

\[
|\text{People}^T| = 0 \\
|\text{People}^\bot| = 2
\]

fun(X) ∨ ¬friends(X, Y)
fun(X) ∨ ¬friends(Y, X)
Atom Counting

\[
\begin{align*}
\text{fun}(X) \lor \neg \text{friends}(X, Y) \\
\text{fun}(X) \lor \neg \text{friends}(Y, X)
\end{align*}
\]

\[\bigvee_{\text{People}^\top \subseteq \text{People}}\]

\[
\begin{align*}
\text{fun}(X), X \in \text{People}^\top \\
\neg \text{fun}(X), X \in \text{People}^\bot \\
\text{fun}(X) \lor \neg \text{friends}(X, Y) \\
\text{fun}(X) \lor \neg \text{friends}(Y, X)
\end{align*}
\]

\[|\text{People}| + 1 \rightarrow 1\]
Atom Counting

fun(X) ∨ ¬friends(X, Y)
fun(X) ∨ ¬friends(Y, X)

FunPeople ⊆ People

fun(X), X ∈ FunPeople
¬fun(X), X ∉ FunPeople
¬friends(X, Y), X ∉ FunPeople
¬friends(X, Y), X ∈ FunPeople, Y ∉ FunPeople
Outline

• Overview Approach
• First-Order d-DNNF Circuits
• First-Order Knowledge Compilation
• Experiments
• Conclusions
Evaluated Models

- **Sick Death** [de Salvo Braz 2005]
- **WebKB** [Lowd 2007]
- **Competing Workshops** [Milch 2008]
- **Workshop Attributes** [Milch 2008]
- **Friends Smoker** [Singla 2008]
- **Friends Smoker Drinker**
Probabilistic Model:

\[\neg 2 : \text{hot}(W) \land \text{attends}(P) \]
\[3 : \text{attends}(P) \land \text{series} \]
Competing Workshops [Milch 2008]

The diagram shows the time (ms) in a logarithmic scale against the number of persons. The lines represent different methods:

- **WFOMC (comp+inf) 10^1**
- **WFOMC (inf)**
- **BLOG**
- **VE**

The x-axis represents the number of persons ranging from 200 to 1,000, while the y-axis represents the time in milliseconds ranging from 10^2 to 10^5.
Probabilistic Model:

1.2 : \text{smokes}(X) \land \text{friends}(X,Y) \Rightarrow \text{smokes}(Y)

1.2 : \text{smokes}(X) \land \text{friends}(Y,X) \Rightarrow \text{smokes}(Y)

2 : \text{smokes}(X) \Rightarrow \text{cancer}(X)
Friends Smoker [Singla 2008]
New Probabilistic Model:

1.2 : \text{smokes}(X) \land \text{friends}(X, Y) \Rightarrow \text{smokes}(Y)

1.2 : \text{drinks}(X) \land \text{friends}(X, Y) \Rightarrow \text{drinks}(Y)
Outline

- Overview Approach
- First-Order d-DNNF Circuits
- First-Order Knowledge Compilation
- Experiments
- Conclusions
Benefits of **First-Order Knowledge Compilation**?

- **Compile once** for a given set of evidence then run polytime inference
- **Efficient** data structure
- **Principled** logical approach
 - First **model theoretic** approach to lifted probabilistic inference
 - Uses concepts from **logical inference**: model counting, unit propagation, Shannon decomposition, etc.
- **Exploits** context-specific independences
- **State of the art** for exact lifted inference
 - Lifts more models than C-FOVE
Contributions

- We introduced first-order ...
 - knowledge compilation
 - d-DNNF circuits
 - weighted model counting
 - smoothing
- Algorithm to compile a first-order probabilistic model into FO d-DNNF circuits
- Closer to understanding the connection between lifted inference in first-order logic (resolution) and lifted inference in graphical models
• Poster
 Wednesday 10:30 UAI session
• Talk
 Thursday 10:30 UAI session
Thanks
Extra Slides
Logic-based Probabilistic Inference

- Bayesian Network
- Factor Graph
- MLN
- ProbLog

Weighted Propositional CNF

Weighted Model Counting

- DPLL Search Weighted Model Counting [Sang 2005]
- Knowledge Compilation [Darwiche]
Additional Operator Nodes

- Deterministic set-disjunction
- Decomposable set-conjunction
- Inclusion-Exclusion
 (non-deterministic disjunction)

FO d-DNNF Circuit
Auxiliary Operations

- **Splitting w.r.t. an atom** [Poole 2003]:
 - Similar to splitting in (C-)FOVE, but with domain constraints

<table>
<thead>
<tr>
<th>Before Splitting</th>
<th>Atom</th>
<th>After Splitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(X,Y) \lor q(X) \lor r(Y)$</td>
<td>$p(X, X)$</td>
<td>$p(X, X) \lor q(X) \lor r(X)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p(X, Y) \lor q(X) \lor r(Y), X \neq Y$</td>
</tr>
<tr>
<td>$p(X) \lor q(X), X \in D$</td>
<td>$p(X), X \in D_1$</td>
<td>$p(X) \lor q(X), X \in D_1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$p(X) \lor q(X), X \in D_2$</td>
</tr>
</tbody>
</table>

- **Shattering** [de Salvo Braz 2005]

 Splitting w.r.t. any atom in theory, until convergence
Unit Propagation

\[q(X), X \in D_1^T \]
\[\neg q(X), X \in D_1^\perp \]
\[p(X, Y) \lor q(X) \]
\[p(X, Y) \lor r(Y) \]

Unit propagation of \(q(X), X \in D_1^T \).
Independence

- Set of clauses independent from rest
- Independence when no unifying atoms

\[
\begin{align*}
p(X, Y) \lor q(X), X \neq a \\
p(a, X) \lor \neg r(X)
\end{align*}
\]

Independence.
Inclusion-Exclusion

- Clause has set of literals that share no logical variables with rest
- Non-deterministic disjunction & intersection

\[p(X) \lor r(X, X) \lor q(Y) \lor r(Y, Z) \]
Inclusion-Exclusion

- Clause has set of literals that share no logical variables with rest
- Non-deterministic disjunction & intersection

\[
p(X) \lor r(X, X) \lor q(Y) \lor r(Y, Z)
\]

Inclusion-exclusion on \(p(X) \lor r(X, X) \lor q(Y) \lor r(Y, Z)\).
Independent Partial Grounding

- Single logical variable in every atom (position!)
- Different partial groundings are independent

\[
\begin{align*}
p(X) \lor q(X, Y) \\
r(X) \lor q(X, Y)
\end{align*}
\]
Independent Partial Grounding

- Single logical variable in every atom (position!)
- Different partial groundings are independent

\[
p(X) \lor q(X, Y) \\
r(X) \lor q(X, Y)
\]

Independent partial grounding of \(X \in D \).

\[
\bigwedge_{x \in D} \\
p(x) \lor q(x, X) \\
r(x) \lor q(x, X)
\]
Special Inclusion Exclusion Case: Shannon Decomposition

- CNF has ground atom
- Ground atoms do not share logical variables
- We can always add clause \(r \lor \neg r \)
- Intersection is unsatisfiable
- Inclusion-Exclusion becomes deterministic disjunction
First-Order Smoothing

\[p(X) \lor r \]
\[q(X) \lor \neg r \]
First-Order Smoothing

FO d-DNNF

\[
p(X) \lor r \\
q(X) \lor \neg r
\]

Smooth FO d-DNNF

\[
p(X) \lor \neg p(X), X \in D \\
q(X), X \in D \\
r \\
q(X), X \in D \\
r \\
p(X), X \in D
\]
First-Order Smoothing

Complicated rules for
- atom counting
- independent partial groundings

\[
p(X) \lor r
\]
\[
q(X) \lor \neg r
\]
Circuit Evaluation

- Propagate weighted model count to root node
- Propagate
 - + for disjunction
 - * for conjunction
 - ...
 - \[\sum_s \binom{|D|}{s} \text{wmc}(c \land |D_1^\top| = s) \]
 for atom counting
- Atom counting **linear** in domain size, others **independent** of