Outline

 Part 1: Motivation
e Part 2: Probabilistic Databases
» Part 3: Weighted Model Counting

[- Part 4: Lifted Inference for WFOMC
O
« Part 5: Completeness of Lifted Inference
« Part 6: Query Compilation
« Part 7: Symmetric Lifted Inference Complexity
« Part 8: Open-World Probabllistic Databases

 Part 9: Discussion & Conclusions

Defining Lifted Inference

o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc.

o A formal definition: Domain-lifted inference

Inference runs in time polynomial
In the number of objects in the domain.

- Polynomial in #people, #webpages, #cards
- Not polynomial in #predicates, #formulas, #logical variables
- Related to data complexity in databases

[VdB’'11, Jaeger’12]

Defining Lifted Inference

o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc. [Poole’03, etc.]

o A formal definition: Domain-lifted inference

o~ L
L 4

Run Time

propositional == ===

lifted ——

>

Domain Size

[VdB’'11, Jaeger’12]

Defining Lifted Inference

o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc. [Poole’03, etc.]

o A formal definition: Domain-lifted inference

Run Time

propositional == ===

lifted ——

>

Domain Size

o Alternative in this tutorial:

Lifted inference = 3Query Plan = 3FO Compilation

[VdB’'11, Jaeger’12]

Asymmetric WFOMC Rules

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

Asymmetric WFOMC Rules

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

WMC(AAAD,) = WMC(A ;) * WMC(A) Independent

Asymmetric WFOMC Rules

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

WMC(AAAD,) = WMC(A ;) * WMC(A) Independent

WMC(3z A) = Z = MNcepomain (£c—WMC(A[C/z]) Independent
WMC(VZ A) = MNecpomain WMC(A[C/Z] project

Asymmetric WFOMC Rules

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

WMC(A,AD,) = WMC(A ,) * WMC(A ,) Independent

WMC(3z A) = Z = MNcepomain (£c—WMC(A[C/z]) Independent
WMC(VZ A) = MNecpomain WMC(A[C/Z] project

WMC(AAA,) = WMC(A)+FWMC(A,)-WMC(AVA,) | Inclusion/
WMC(A,VA,) = WMC(A,)+WMC(A,)-WMC(A,AA,) | exclusion

Symmetric WFOMC Rules

« Simplification to independent project:

If A[C,/X], A[C,/X], ... are independent
WMC3z A) = Z - (ch_WMC(A[Cl/z])lDomaim
WMC(vz A) = WMC(A[C,/z])IPomain|

[VdB'11]

Symmetric WFOMC Rules

« Simplification to independent project:

If A[C,/X], A[C,/X], ... are independent
WMC3z A) = Z - (ch_WMC(A[Cl/z])lDomaim
WMC(vz A) = WMC(A[C,/z])IPomain|

« A powerful new inference rule: atom counting
Only possible with symmetric weights .
Intuition: Remove unary relations °

The workhorse of
Symmetric WFOMC

[VdB'11]

WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1
* Apply inference rules backwards (step 4-3-2-1)

WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1

* Apply inference rules backwards (step 4-3-2-1)

4. | A= (Stress(Alice) = Smokes(Alice))

Domain = {Alice}

WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1

* Apply inference rules backwards (step 4-3-2-1)

4. | A= (Stress(Alice) = Smokes(Alice))

—> 3 models

Domain = {Alice}

WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1
* Apply inference rules backwards (step 4-3-2-1)

4. | A=(Stress(Alice) = Smokes(Alice)) Domain = {Alice}

WMC(=Stress(Alice) V Smokes(Alice))) =
= Z — WMC(Stress(Alice)) x WMC(-Smokes(Alice))
=4 —-1x1=3models

WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1
* Apply inference rules backwards (step 4-3-2-1)

4. | A=(Stress(Alice) = Smokes(Alice)) Domain = {Alice}

WMC(=Stress(Alice) V Smokes(Alice))) =
= Z — WMC(Stress(Alice)) x WMC(-Smokes(Alice))
=4 —-1x1=3models

3. | A=VXx, (Stress(x) = Smokes(x)) Domain = {n people}

WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1

* Apply inference rules backwards (step 4-3-2-1)

4. | A= (Stress(Alice) = Smokes(Alice))

WMC(-Stress(Alice) V. Smokes(Alice))) =

Domain = {Alice}

= Z — WMC(Stress(Alice)) x WMC(-Smokes(Alice))

=4-1x1=3models

3. | A=VXx, (Stress(x) = Smokes(x))

- 3" models

Domain = {n people}

WFOMC Inference: Example

A = VX, (Stress(x) = Smokes(x))

- 3" models

Domain = {n people}

WFOMC Inference: Example

3. | A=Vx, (Stress(x) = Smokes(x)) ' Domain = {n people} '

- 3" models

2. | A=Vy, (ParentOf(y) A Female = MotherOf(y)) ' D = {n people} '

WFOMC Inference: Example

A = VX, (Stress(x) = Smokes(x))

Domain = {n people}

- 3" models

A = Vy, (ParentOf(y) A Female = MotherOf(y))

If Female = true? A = VYy, (ParentOf(y) = MotherOf(y))

D = {n people}

- 3" models

WFOMC Inference: Example

A = VX, (Stress(x) = Smokes(x))

Domain = {n people}

- 3" models

A = Vy, (ParentOf(y) A Female = MotherOf(y))

If Female = true? A = VYy, (ParentOf(y) = MotherOf(y))

If Female = false? A = true

D = {n people}

- 3" models

- 4" models

WFOMC Inference: Example

A = Vx, (Stress(x) = Smokes(x)) Domain = {n people}
- 3" models
A =Vy, (ParentOf(y) A Female = MotherOf(y)) D = {n people}
If Female = true? A = Vy, (ParentOf(y) = MotherOf(y)) - 3" models
If Female = false? A = true > 4" models

- 3"+ 4" models

WFOMC Inference: Example

A = Vx, (Stress(x) = Smokes(x)) Domain = {n people}
- 3" models
A =VYy, (ParentOf(y) A Female = MotherOf(y)) D = {n people}

WMC(A) = WMC(- Female V Vy, (ParentOf(y) = MotherOf(y)))
=2*2n*2n- (2-1)* (2" * 2" — WMC(Vvy, (ParentOf(y) = MotherOf(y))))
:2*4n_(4n_3n)

- 3"+ 4" models

WFOMC Inference: Example

A = Vx, (Stress(x) = Smokes(x)) Domain = {n people}
- 3" models
A =VYy, (ParentOf(y) A Female = MotherOf(y)) D = {n people}

WMC(A) = WMC(- Female V Vy, (ParentOf(y) = MotherOf(y)))
=2*2n*2n- (2-1)* (2" * 2" — WMC(Vvy, (ParentOf(y) = MotherOf(y))))
:2*4n_(4n_3n)

- 3"+ 4" models

A = Vx,y, (ParentOf(x,y) A Female(x) = MotherOf(x,y)) D = {n people}

WFOMC Inference: Example

A = Vx, (Stress(x) = Smokes(x)) Domain = {n people}
- 3" models
A =VYy, (ParentOf(y) A Female = MotherOf(y)) D = {n people}

WMC(A) = WMC(- Female V Vy, (ParentOf(y) = MotherOf(y)))
=2*2n*2n- (2-1)* (2" * 2" — WMC(Vvy, (ParentOf(y) = MotherOf(y))))
:2*4n_(4n_3n)

- 3"+ 4" models

A = Vx,y, (ParentOf(x,y) A Female(x) = MotherOf(x,y)) D = {n people}

> (3" + 4”)n models

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y))

Domain = {n people}

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =0
Smokes(Charlie) =0 k k

Smokes(Dave) = 1

Smokes Friends Smokes

Smokes(Eve) =0

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1

Smokes(Bob) = 0 I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1

Smokes(Eve) =0

Smokes Friends Smokes

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1

Smokes(Bob) = 0 >
Smokes(Charlie) =0 k k
Smokes(Dave) = 1

Smokes(Eve) =0

Smokes Friends Smokes

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Data—base: . Smokes Friends Smokes
Smokes(Alice) =1
Smokes(Bob) = 0 >
Smokes(Charlie) =0 k k

Smokes(Dave) = 1
Smokes(Eve) =0

—

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Data—base: . Smokes Friends Smokes
Smokes(Alice) =1
Smokes(Bob) = 0 >
Smokes(Charlie) =0 k k

Smokes(Dave) = 1
Smokes(Eve) =0

—

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =

0
Smokes(Charlie) =0
Smokes(Dave) = 1
Smokes(Eve) =0

”k

Smokes Friends Smokes

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =

0
Smokes(Charlie) =0
Smokes(Dave) = 1
Smokes(Eve) =0

”k

Smokes Friends Smokes

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Dat :
atabase Smokes Friends Smokes

Smokes(Alice) =1
Smokes(Bob) = 0 EE——
Smokes(Charlie) =0 k k
Smokes(Dave) = 1 \

Smokes(Eve) =0 \

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Dat :
atabase Smokes Friends Smokes

Smokes(Alice) =1
Smokes(Bob) = 0 EE——
Smokes(Charlie) =0 k k
Smokes(Dave) = 1 \

Smokes(Eve) =0 \

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Dat :
atabase Smokes Friends Smokes

Smokes(Alice) =1
Smokes(Bob) = 0 EE——
Smokes(Charlie) =0 k \ k
Smokes(Dave) = 1
Smokes(Eve) =0 /\

n-k n-k
~— @

> 9n =k(n=k) models I

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Dat :
atabase Smokes Friends Smokes

Smokes(Alice) =1
Smokes(Bob) = 0 EE——
Smokes(Charlie) =0 k \ k
Smokes(Dave) = 1
Smokes(Eve) =0 /\

n-k n-k
~— @

> Q”Z_k(”_k) models I

o If we know that there are k smokers?

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =0

I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1
Smokes(Eve) =0 \
-

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
. If we know that there are k smokers? S (k) on”—k(n—k) models

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =0

I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1
Smokes(Eve) =0 \
-

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
. If we know that there are k smokers? S (k) on”—k(n—k) models

o Intotal...

Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =

0 I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1
Smokes(Eve) =0 \

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
. If we know that there are k smokers? S (k) on”—k(n—k) models

mn
« Intotal... > Z()2“ ("=k) models
k=0

Augment Rules with Logical Rewritings

Augment Rules with Logical Rewritings

1. Remove constants (shattering)

A = vx (Friend(Alice, x) v Friend(x, Bob))

[Suciu’11]

Augment Rules with Logical Rewritings

1. Remove constants (shattering)

A = vx (Friend(Alice, x) v Friend(x, Bob))

F,(X) = Friend(Alice,x)
F,(X) = Friend(x,Bob)
F; = Friend(Alice, Alice)
F, = Friend(Alice,Bob)
F: = Friend(Bob,Bob)

|:> A= VX (Fl(X)V Fz()‘()z_/\ (Fs v F4‘)_'/\ (F4_V Fs)

[Suciu’11]

Augment Rules with Logical Rewritings

F,(X) = Friend(Alice,x)

1. Remove constants (shattering) F,(x) = Friend(x,Bob)
F; = Friend(Alice, Alice)
— - - - F, = Friend(Alice,Bob)
A = VX (I_:rlend(,‘Allce, x)'v Frlend(>‘<, Bob)z' F: — Friend(Bob, Bob)

|:> A= VX (Fl(X)V Fo(x)) A (F3 v F42'/\ ('_:4_V Fs)

2. “Rank” variables (= occur in the same order in each atom)

A = (Friend(x,y) VvV Enemy(x,y)) A (Friend(x,y) v Enemy(y,x)) °oo

[Suciu’11]

Augment Rules with Logical Rewritings

F,(X) = Friend(Alice,x)

1. Remove constants (shattering) F,(x) = Friend(x,Bob)
F; = Friend(Alice, Alice)
— - - - F, = Friend(Alice,Bob)
A = VX (I‘:rlend(,‘Allce, x).v Frlend(>‘<, Bob)g' F: — Friend(Bob, Bob)

|:> A= VX (Fl(X)V Fz()‘()z_/\ (Fs v F4‘)_'/\ (F4_V Fs)

2. “Rank” variables (= occur in the same order in each atom)

A = (Friend(x,y) VvV Enemy(x,y)) A (Friend(x,y) v Enemy(y,x)) °oo

—

F,(u,v) = Friend(u,v),u<v E,;(u,v) = Friend(u,v),u<v | A = (F{(X,y) V E{(X,y)) A (FL(Xy) V E5(X,y))
F,(u) = Friend(u,u) E,(u) = Friend(u,u) A (FZ(X) V EZ(X))

i) = Flenduul s Exu) = Fend)vss |y (£ () v Ey(xy)) A (Faxy) V Es(xy))

[Suciu’11]

Augment Rules with Logical Rewritings

3. Perform Resolution [Gribkoff'14]

A= VXVy'(I‘?(g)'\/—lS(g,y')}_/\ VXVy (‘S(>‘<,y')'\/ TQ/’))' Rules stuck...

Resolution on S(x,y): | VxVy (R(X) V T(y))

Y

Add resolvent: | A = vxvy (R(X) V-aS(x,y)) A Vxvy (S(x,y) V T(y))
A vxvy (R(x) V T(y))

Now apply I/E!

Augment Rules with Logical Rewritings

4. Skolemization [VdB’14]

Mix V/3 in encodings of MLNs with quantifiers and probabilistic

Datalog | smokes(X) :- friends(X,Y), smokes(Y).

A =Vp, 3c, Card(p,c) Inference rules assume one type of quantifier!

programs

FOL A = VX, Smokes(x) < 3y, Friends(x,y), Smokes(y).
Skolemization Input: Mix v/3 Output: Only v

BUT: cannot introduce Skolem constants or functions!

vp, Card(p,S(p))

Skolemization: Example

A =Vp, 3c, Card(p,c)

[VdB'14]

Skolemization: Example

A =Vp, 3c, Card(p,c) —\ Skolemization

A’ = Vp, V¢, Card(p,c) = S(p)

[VdB'14]

Skolemization: Example

A =Vp, 3c, Card(p,c) —\ Skolemization

A’ =Vp, vc, Card(p,c) = S(p) w(S)=1 and w(=S)=-1

o
®)

Skolem predicate

[VdB'14]

Skolemization: Example

A =Vp, 3c, Card(p,c)

Consider one position p:

[VdB'14]

3c, Card(p,c) = true

3¢, Card(p,c) = false

’\ Skolemization

A’ = Vp, V¢, Card(p,c) = S(p)

w(S)=1 and w(=S)=-1

o
®)

Skolem predicate

Skolemization: Example

A =Vp, 3c, Card(p,c) —\ Skolemization

A’ =Vp, vc, Card(p,c) = S(p) w(S)=1 and w(=S)=-1

o
®)

Consider one position p:

3c, Card(p,c) = true

I—» S(p) =true Also model of A, weight * 1

3¢, Card(p,c) = false

[VdB'14]

Skolemization: Example

A =Vp, 3c, Card(p,c) ‘\ Skolemization

A= Vp,vVC,'Card(p,(v:) = S(p) w(S)=1 and w(=S)=-1

o
®)

Consider one position p:

3c, Card(p,c) = true

I—» S(p) =true Also model of A, weight * 1

3¢, Card(p,c) = false

—— S(p) =true No model of A, weight * 1

— S(p) =false No model of A, weight' * -1

O (@)

First-Order Knowledge Compilation

Markov Logic

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

[Vdb’'11,'13]

First-Order Knowledge Compilation

Markov Logic

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

—

Weight Function

w(Smokes)=1
w(-Smokes)=1
w(Friends)=1
w(-Friends)=1
w(F)=exp(3.14)
w(-F)=1

N

FOL Sentence

Vvx,y, F(x,y) © [Smokes(x) A Friends(x,y) = Smokes(y)]

[Vdb’'11,'13]

First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

— W

Weight Function FOL Sentence
w(Smokes)=1 Vvx,y, F(x,y) © [Smokes(x) A Friends(x,y) = Smokes(y)]
w(-Smokes)=1 i ’
w(Friends)=1 l Compile?
w(-Friends)=1
w(F)=exp(3.14) First-Order d-DNNF Circuit
w(-F)=1 3

[Vdb’'11,'13]

First-Order Knowledge Compilation

Markov Logic

—

Weight Function

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

N

FOL Sentence

w(Smokes)=1
w(-Smokes)=1
w(Friends)=1
w(-Friends)=1
w(F)=exp(3.14)
w(-F)=1

Vvx,y, F(x,y) © [Smokes(x) A Friends(x,y) = Smokes(y)]

Domain

Alice
Bob
Charlie

!
v v (V.
A Y. & ‘ o €D o
vy v, v,
v v P wED veD 5 ‘
Friends(r, y F(z,y Friends(z,y Flz.y)

Z=WFOMC = 1479.85

l Compile?
First-Order d-DNNF Circuit

Jo

[Vdb’'11,'13]

First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y) '

Weight Function FOL Sentence

Vvx,y, F(x,y) © [Smokes(x) A Friends(x,y) = Smokes(y)] '

l Compile?

w(Smokes)=1
w(-Smokes)=1
w(Friends)=1
w(=Friends)=1
w(F)=exp(3.14)

First-Order d-DNNF Circuit

Charlie

Z = WFOMC = 1479.85 '
Evaluation in time polynomial in domain size

[Vdb’11,'13]

First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y) '

Weight Function FOL Sentence

w(Smokes)=1
w(-Smokes)=1
w(Friends)=1
w(=Friends)=1
w(F)=exp(3.14)

Vvx,y, F(x,y) © [Smokes(x) A Friends(x,y) = Smokes(y)] '

l Compile?
First-Order d-DNNF Circuit

Charlie

Z = WFOMC = 1479.85 '
Evaluation in time polynomial in domain size Domain-lifted!

[Vdb’11,'13]

Negation Normal Form

rainbow —rainbow

sun — Sun rain

[Darwiche’01]

Decomposable NNF

SRR

rainbow

Sun

(V)
o

- sun

— rairl/%

—rainbow

O &

rain

[Darwiche’01]

Deterministic Decomposable NNF

—rainbow

rainbow) o

(V) ﬂfaiﬂ/@\

sun - Sun rain

[Darwiche’01]

Deterministic Decomposable NNF

Weighted Model Counting
525.4

54 520

[Darwiche’01]

Deterministic Decomposable NNF

Weighted Model Counting and much more!
525.4

54 520

[Darwiche’01]

First-Order NNF

VX, X € People : belgian(X) = likes(X, chocolate)

XePeople

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]

First-Order Decomposabillity

VX, X € People : belgian(X) = likes(X, chocolate)

>’
XePeople

©)

AN

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]

First-Order Decomposabillity

VX, X € People : belgian(X) = likes(X, chocolate)

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]

First-Order Determinism

VX, X € People : belgian(X) = likes(X, chocolate)

belgian(X)

S
XePeople

likes(X, chocolate)

-~ belgian(X)

[VdB'13]

First-Order NNF = Query Plan

VX, X € People : belgian(X) = likes(X, chocolate)

Vx
XePeople

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]

Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

belgian(X) likes(X, chocolate)

-~ belgian(X)

[VdB'13]

Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

Pr(belgian) x Pr(likes)

+ Pr(-belgian)

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]

Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

+ Pr(=belgian)

N

belgian(X)

|People]

(Pr(belgian) X Pr(likes)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]

Symmetric WFOMC on FO NNF

Uler) = 4

0 when o = false

1 when o = true

0.5 when o s a literal

U(ly) x---xU(ly) when o =1 N --- Ny

Ully)+---+U(ly) when o = (L V-V [,

[T, U(B{X/x:}) when o =YX € 7.0 and x1.....x, are the objects in T.
S U(B{X/z:}) when o = dX € 7,3 and x4, ..., x, are the objects in T.

Hl:jo U(,-'S’{X/Xi})(lzl) when o = VX C 7, 3, and X; is any subset of T such that |x;| = 1.

hZ:L’;IO (I';I) CU(B{X/x;}) when o =3X C 7,3, and X; is any subset of 7 such that |X;| = i.

Complexity polynomial in domain size!

Polynomial in NNF size for bounded depth.

[VdB'13]

How to do first-order
knowledge compilation?

Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

[VdB'13]

Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

KV/X\3 Vx \|
Xe[y }{epeopm,mxgg_/
smokes(X) — smokes(X)

[VdB'13]

Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

KV/X\/<\\V/X \|
XE[y Xe People:\X{éE_/
smokes(X) — smokes(X)

[VdB'13]

Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople

Vx
XePeopleNX£D

smokes(X) — smokes(X)

[VdB'13]

Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople . o)

<

Vx

XePeopleNX£D

Y

smokes(X) —smokes(X)

[VdB'13]

Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople

Vx
XePeopleNX£D
Yy
YePeople Y D
hJ

smokes(X) —smokes(X) - friends(X,Y)

[VdB'13]

Compilation Rules

« Standard rules
— Shannon decomposition (DPLL)
— Detect decomposabillity
D
— Etc. DCPeople

 FO Shannon
decomposition:

A

Vx
XePeoplen XD

smokes(X) — smokes(X)

[VdB'13]

Playing Cards Revisited

I N I SNBSS NS IR

*,
ﬂﬁh&ﬂﬁﬂﬁﬁ&ﬂﬂﬂ&&?ﬁ?ﬁ?ﬁ?
f’ffﬁ)ﬁ%ﬁ%%C'cQthtc

I R R I R R IR TI

RIS NSNS NSNS NS BN SN
c.c.aﬂffff?ﬂﬁﬂ“ﬁ\.c:ff.

D I I I BB BN

u

RIC S S NS NS NS NN S N)
%,

e s

*,
RIS SIS
R N K O RO e e e Y
ctctcfcfufcfcﬁbﬁ%ﬁﬂﬂ‘%

I I BRI SNSRI N

ROC S S S S NSNS NN
N e

R e RN Ky N N
RN R K e Ky KN e e e
E e oeh e t'. ttt Ao 't!.t.’ltﬂ"'

fctc'c'coc.rnrnrtc-umc
RIS IS N NSNS NSNS NS N RN SN
ffffﬂ€4€§%1000titttfft

N
£ RIS I N BN S R 6 A
W N K K, F R,

Let us automate this

| model

Relationa

, Card(p,c)

vp, 3c
ve, 3p

,C)

Card(p
c) A Card(p

)

)

C

Card(p,

, VC

, VC

vp

- Lifted probabillistic inference algorithm

Why not do propositional WMC?

Reduce to propositional model counting:

[VdB'15]

Why not do propositional WMC?

Reduce to propositional model counting:

A= Card(Av,p,) v ... v Card(2#,p,)
Card(Av,p,) v ... v Card(2#,p,)

Card(AY,p,) v ... v Card(Av,p:,)
Card(Kv,p,) v ... v Card(K®,ps,)

~Card(Av,p,) v ~Card(Av,p.)
-Card(Av,p,) v ~Card(Av,p,)

[VdB'15]

Why not do propositional WMC?

Reduce to propositional model counting:

A= Card(Av,p,) v ... v Card(2#,p,)
Card(Av,p,) v ... v Card(2#,p,)

Card(AY,p,) v ... v Card(Av,p:,)
Card(Kv,p,) v ... v Card(K®,ps,)

~Card(Av,p,) v ~Card(Av,p.)
-Card(Av,p,) v ~Card(Av,p,)

What will
happen?

[VdB'15]

Deck of Cards Graphically

[VdB'15]

Deck of Cards Graphically

Card(Kv,ps,

[VdB'15]

Deck of Cards Graphically

g><

One model/perfect matching

[VdB'15]

Deck of Cards Graphically

[VdB'15]

Deck of Cards Graphically

Card(Kv,ps,

[VdB'15]

Deck of Cards Graphically
O

\

Card(Kv,p:,)

Model counting: How many perfect matchings?

[VdB'15]

Deck of Cards Graphically

What if | set
w(Card(Kv,ps,)) = 0?

[VdB'15]

Deck of Cards Graphically

What if | set
w(Card(Kv,ps,)) = 0?

[VdB'15]

Deck of Cards Graphically
O

What if | set can set any
asymmetric weight function?

[VdB'15]

Observations

* Asymmetric weight function can remove edge
Encode any bigraph

« Counting models = perfect matchings
* Problem is #P-complete! ®

 All non-lifted WMC solvers efficiently handle
asymmetric weights

* NoO solver does cards problem efficiently!

Later: Power of lifted vs. ground inference and complexities

[VdB'15]

Playing Cards Revisited

I N I SNBSS NS IR

*,
ﬂﬁh&ﬂﬁﬂﬁﬁ&ﬂﬂﬂ&&?ﬁ?ﬁ?ﬁ?
f’ffﬁ)ﬁ%ﬁ%%C'cQthtc

I R R I R R IR TI

RIS NSNS NSNS NS BN SN
c.c.aﬂffff?ﬂﬁﬂ“ﬁ\.c:ff.

D I I I BB BN

u

RIC S S NS NS NS NN S N)
%,

e s

*,
RIS SIS
R N K O RO e e e Y
ctctcfcfufcfcﬁbﬁ%ﬁﬂﬂ‘%

I I BRI SNSRI N

ROC S S S S NSNS NN
N e

R e RN Ky N N
RN R K e Ky KN e e e
E e oeh e t'. ttt Ao 't!.t.’ltﬂ"'

fctc'c'coc.rnrnrtc-umc
RIS IS N NSNS NSNS NS N RN SN
ffffﬂ€4€§%1000titttfft

N
£ RIS I N BN S R 6 A
W N K K, F R,

Let us automate this

| model

Relationa

, Card(p,c)

vp, 3c
ve, 3p

,C)

Card(p
c) A Card(p

)

)

C

Card(p,

, VC

, VC

vp

- Lifted probabillistic inference algorithm

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = S;(p)
vc, vp, Card(p,c) = S,(c)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

Vp, Vc, Card(p,c) = S;(p) w(S,) = 1 and w(=S,) = -1
vc, vp, Card(p,c) = S,(c)

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=C w(S,) = 1 and w(=S,) =-1

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, v, Card(p,c) = Sy(p) W(S) = 1and w(-S,) = -1
vc, vp, Card(p,c) = 4(¥)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c = w(S,) = 1 and w(=S,) =-1

l s 0 O Atom counting

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) =)
vc, vp, Card(p,c) = (%)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

w(S,) = 1and w(=S,) =-1

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) =)
vc, vp, Card(p,c) = (%)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

oo e)2

w(S,) = 1and w(=S,) =-1

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) =)
vc, vp, Card(p,c) = 4(¥)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

| o e 2

vc, vc', Card(c) A Card(c’) = c =’

w(S,) = 1and w(=S,) =-1

[VdB'15]

Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) =)
vc, vp, Card(p,c) = 4(¥)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

| o e 2

vc, vc', Card(c) A Card(c’) = c =’

| ..

w(S,) = 1and w(=S,) =-1

[VdB'15]

Playing Cards Revisited

U R R N

LIRS RIS NS IS S NN
R R
CQCQCQCQUtJ??V?VVtJ&V%

D R N I R R SR RN E N

5&%‘%&%‘%%5‘%%%‘.%%‘%%
RN O O N K KN e R KN
LR E S N SN SN SN
S
RTINS R IO

t.
N R R K Ky o e oy N
orcfcfcﬂ\fdé\f{fff}ﬁ

U R R N

*
ﬁuﬁuhuuuﬁﬂﬁﬂﬁﬂﬁunuﬁﬂft’

cocncncncnféﬁtn"rcncn

>,
RIS SIS S8
RN R Ry O O Ky ey e
iti'!fﬂf.ﬁtﬂﬁ)‘%&ﬁ%ﬁ‘ﬂ

A R R e

¥,

RIC SO S S S NS NS S NN RN S N
%,

!ncnf”????ff’ffffﬂﬁ%ﬁ%

R 5
FoR ey K K N e e
B o S R e e S e

R I R N IR RSN RIS

RIC SIS IS S NS N NS NN SN S Y
Jh‘%%%%ﬁ\%‘tu..t;f’f}?\

¥R Ky K RN Ky KR O oy Y
R N K N N KXy

Let us automate this

ference algorithm

In

fted probabilistic |

L

) (L+ Dk (=1)2nk-1 =

n
[

)

n
k

>

Computed in time polynomial in n

HSAT =

[VdB'15]

Summary Lifted Inference

By definition: PTIME data complexity
Also: 3 FO compilation = 3 Query Plan

However: only works for “liftable” queries
Preprocessing based on logical rewriting

The rules: Deceptively simple: the only
surprising rules are I/E and atom counting

Rules are captured by a query plan
or first-order NNF circuit

