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Defining Lifted Inference

o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc.

o A formal definition: Domain-lifted inference

Inference runs in time polynomial
In the number of objects in the domain.

- Polynomial in #people, #webpages, #cards
- Not polynomial in #predicates, #formulas, #logical variables
- Related to data complexity in databases

[VdB’'11, Jaeger’12]
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Defining Lifted Inference

o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc. [Poole’03, etc.]

o A formal definition: Domain-lifted inference
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o Alternative in this tutorial:

Lifted inference = 3Query Plan = 3FO Compilation

[VdB’'11, Jaeger’12]
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Asymmetric WFOMC Rules

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

WMC(A,AD,) = WMC(A ,) * WMC(A ,) Independent

WMC(3z A) = Z = MNcepomain (£c—WMC(A[C/z]) Independent
WMC(VZ A) = MNecpomain WMC(A[C/Z] project

WMC(AAA,) = WMC(A)+FWMC(A,)-WMC(AVA,) | Inclusion/
WMC(A,VA,) = WMC(A,)+WMC(A,)-WMC(A,AA,) | exclusion



Symmetric WFOMC Rules

« Simplification to independent project:

If A[C,/X], A[C,/X], ... are independent
WMC3z A) = Z - (ch_WMC(A[Cl/z])lDomaim
WMC(vz A) = WMC(A[C,/z])IPomain|

[VdB'11]



Symmetric WFOMC Rules

« Simplification to independent project:

If A[C,/X], A[C,/X], ... are independent
WMC3z A) = Z - (ch_WMC(A[Cl/z])lDomaim
WMC(vz A) = WMC(A[C,/z])IPomain|

« A powerful new inference rule: atom counting
Only possible with symmetric weights .
Intuition: Remove unary relations °

The workhorse of
Symmetric WFOMC

[VdB'11]
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WFOMC Inference: Example

A = Vx, (Stress(x) = Smokes(x)) Domain = {n people}
- 3" models
A =VYy, (ParentOf(y) A Female = MotherOf(y)) D = {n people}

WMC(A) = WMC(- Female V Vy, (ParentOf(y) = MotherOf(y)))
=2*2n*2n- (2-1)* (2" * 2" — WMC(Vvy, (ParentOf(y) = MotherOf(y))))
:2*4n_(4n_3n)

- 3"+ 4" models

A = Vx,y, (ParentOf(x,y) A Female(x) = MotherOf(x,y)) D = {n people}

> (3" + 4”)n models
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Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =

0 I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1
Smokes(Eve) =0 \

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
. If we know that there are k smokers? S (k) on”—k(n—k) models

mn
« Intotal... > Z( )2“ ("=k)  models
k=0
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Augment Rules with Logical Rewritings

F,(X) = Friend(Alice,x)

1. Remove constants (shattering) F,(x) = Friend(x,Bob)
F; = Friend(Alice, Alice)
— - - - F, = Friend(Alice,Bob)
A = VX (I_:rlend(,‘Allce, x)'v Frlend(>‘<, Bob)z' F: — Friend(Bob, Bob)

|:> A= VX (Fl(X)V Fo(x)) A (F3 v F42'/\ ('_:4_V Fs)

2. “Rank” variables (= occur in the same order in each atom)
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Augment Rules with Logical Rewritings

F,(X) = Friend(Alice,x)

1. Remove constants (shattering) F,(x) = Friend(x,Bob)
F; = Friend(Alice, Alice)
— - - - F, = Friend(Alice,Bob)
A = VX (I‘:rlend(,‘Allce, x).v Frlend(>‘<, Bob)g' F: — Friend(Bob, Bob)

|:> A= VX (Fl(X)V Fz()‘()z_/\ (Fs v F4‘)_'/\ (F4_V Fs)

2. “Rank” variables (= occur in the same order in each atom)

A = (Friend(x,y) VvV Enemy(x,y)) A (Friend(x,y) v Enemy(y,x)) °oo

—

F,(u,v) = Friend(u,v),u<v  E,;(u,v) = Friend(u,v),u<v | A = (F{(X,y) V E{(X,y)) A (FL(Xy) V E5(X,y))
F,(u) = Friend(u,u) E,(u) = Friend(u,u) A (FZ(X) V EZ(X))

i) = Flenduul s Exu) = Fend)vss |y (£ () v Ey(xy)) A (Faxy) V Es(xy))

[Suciu’11]



Augment Rules with Logical Rewritings

3. Perform Resolution [Gribkoff'14]

A= VXVy'(I‘?(g)'\/—lS(g,y')}_/\ VXVy (‘S(>‘<,y')'\/ TQ/’))' Rules stuck...

Resolution on S(x,y): | VxVy (R(X) V T(y))

Y

Add resolvent: | A = vxvy (R(X) V-aS(x,y)) A Vxvy (S(x,y) V T(y))
A vxvy (R(x) V T(y))

Now apply I/E!



Augment Rules with Logical Rewritings

4. Skolemization [VdB’14]

Mix V/3 in encodings of MLNs with quantifiers and probabilistic

Datalog | smokes(X) :- friends(X,Y), smokes(Y).

A =Vp, 3c, Card(p,c) Inference rules assume one type of quantifier!

programs

FOL A = VX, Smokes(x) < 3y, Friends(x,y), Smokes(y).
Skolemization Input: Mix v/3 Output: Only v

BUT: cannot introduce Skolem constants or functions!

vp, Card(p,S(p))
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A =Vp, 3c, Card(p,c) —\ Skolemization

A’ =Vp, vc, Card(p,c) = S(p) w(S)=1 and w(=S)=-1

o
®)

Skolem predicate

[VdB'14]



Skolemization: Example

A =Vp, 3c, Card(p,c)

Consider one position p:

[VdB'14]

3c, Card(p,c) = true

3¢, Card(p,c) = false

’\ Skolemization

A’ = Vp, V¢, Card(p,c) = S(p)

w(S)=1 and w(=S)=-1

o
®)

Skolem predicate
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A =Vp, 3c, Card(p,c) —\ Skolemization

A’ =Vp, vc, Card(p,c) = S(p) w(S)=1 and w(=S)=-1

o
®)

Consider one position p:

3c, Card(p,c) = true

I—» S(p) =true  Also model of A, weight * 1

3¢, Card(p,c) = false
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Skolemization: Example

A =Vp, 3c, Card(p,c) ‘\ Skolemization

A= Vp,vVC,'Card(p,(v:) = S(p) w(S)=1 and w(=S)=-1

o
®)

Consider one position p:

3c, Card(p,c) = true

I—» S(p) =true  Also model of A, weight * 1

3¢, Card(p,c) = false

—— S(p) =true No model of A, weight * 1

— S(p) =false  No model of A, weight' * -1

O (@)



First-Order Knowledge Compilation

Markov Logic

3.14 Smokes(x) A Friends(x,y) = Smokes(y)
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First-Order Knowledge Compilation

Markov Logic

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

—

Weight Function

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(-Friends )=1
w(F)=exp(3.14)
w(-F)=1

N

FOL Sentence

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]
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First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

— W

Weight Function FOL Sentence
w(Smokes)=1 Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]
w(-Smokes )=1 i ’
w(Friends )=1 l Compile?
w(-Friends )=1
w(F)=exp(3.14) First-Order d-DNNF Circuit
w(-F)=1 3
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First-Order Knowledge Compilation

Markov Logic

—

Weight Function

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

N

FOL Sentence

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(-Friends )=1
w(F)=exp(3.14)
w(-F)=1

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]

Domain

Alice
Bob
Charlie

!
v v (V.
A Y. & ‘ o €D o
vy v, v,
v v P wED veD 5 ‘
Friends(r, y F(z,y Friends(z,y Flz.y)

Z=WFOMC = 1479.85

l Compile?
First-Order d-DNNF Circuit

Jo
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Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y) '

Weight Function FOL Sentence

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ] '

l Compile?

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(=Friends )=1
w(F)=exp(3.14)

First-Order d-DNNF Circuit

Charlie

Z = WFOMC = 1479.85 '
Evaluation in time polynomial in domain size
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First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y) '

Weight Function FOL Sentence

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(=Friends )=1
w(F)=exp(3.14)

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ] '

l Compile?
First-Order d-DNNF Circuit

Charlie

Z = WFOMC = 1479.85 '
Evaluation in time polynomial in domain size Domain-lifted!

[Vdb’11,'13]



Negation Normal Form

rainbow —rainbow

sun — Sun rain

[Darwiche’01]



Decomposable NNF
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Deterministic Decomposable NNF
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Weighted Model Counting
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Deterministic Decomposable NNF

Weighted Model Counting and much more!
525.4

54 520

[Darwiche’01]



First-Order NNF

VX, X € People : belgian(X) = likes(X, chocolate)

XePeople

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



First-Order Decomposabillity
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First-Order Decomposabillity

VX, X € People : belgian(X) = likes(X, chocolate)
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First-Order Determinism

VX, X € People : belgian(X) = likes(X, chocolate)

belgian(X)

S
XePeople

likes(X, chocolate)

-~ belgian(X)
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First-Order NNF = Query Plan

VX, X € People : belgian(X) = likes(X, chocolate)

Vx
XePeople

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

belgian(X) likes(X, chocolate)

-~ belgian(X)
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Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

Pr(belgian) x Pr(likes)

+ Pr(-belgian)

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

+ Pr(=belgian)

N

belgian(X)

|People]

(Pr(belgian) X Pr(likes)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



Symmetric WFOMC on FO NNF

Uler) = 4

0 when o = false

1 when o = true

0.5 when o s a literal

U(ly) x---xU(ly) when o =1 N --- Ny

Ully)+---+U(ly) when o = (L V-V [,

[T, U(B{X/x:}) when o =YX € 7.0 and x1.....x, are the objects in T.
S U(B{X/z:}) when o = dX € 7,3 and x4, ..., x, are the objects in T.

Hl:jo U(,-'S’{X/Xi})(lzl) when o = VX C 7, 3, and X; is any subset of T such that |x;| = 1.

hZ:L’;IO (I';I) CU(B{X/x;}) when o =3X C 7,3, and X; is any subset of 7 such that |X;| = i.

Complexity polynomial in domain size!

Polynomial in NNF size for bounded depth.

[VdB'13]



How to do first-order
knowledge compilation?



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

KV/X\3 Vx \|
Xe[y }{epeopm,mxgg_/
smokes(X) — smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

KV/X\/<\\V/X \|
XE[y Xe People:\X{éE_/
smokes(X) — smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople

Vx
XePeopleNX£D

smokes(X) — smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople . o)

<

Vx

XePeopleNX£D

Y

smokes(X) —smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople

Vx
XePeopleNX£D
Yy
YePeople Y D
hJ

smokes(X) —smokes(X) - friends(X,Y)

[VdB'13]



Compilation Rules

« Standard rules
— Shannon decomposition (DPLL)
— Detect decomposabillity
D
— Etc. DCPeople

 FO Shannon
decomposition:

A

Vx
XePeoplen XD

smokes(X) — smokes(X)

[VdB'13]




Playing Cards Revisited
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Let us automate this

| model

Relationa

, Card(p,c)

vp, 3c
ve, 3p

,C)

Card(p
c) A Card(p

)

)

C

Card(p,

, VC

, VC

vp

- Lifted probabillistic inference algorithm



Why not do propositional WMC?

Reduce to propositional model counting:
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Why not do propositional WMC?

Reduce to propositional model counting:

A= Card(Av,p,) v ... v Card(2#,p,)
Card(Av,p,) v ... v Card(2#,p,)

Card(AY,p,) v ... v Card(Av,p:,)
Card(Kv,p,) v ... v Card(K®,ps,)

~Card(Av,p,) v ~Card(Av,p.)
-Card(Av,p,) v ~Card(Av,p,)
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Why not do propositional WMC?

Reduce to propositional model counting:

A= Card(Av,p,) v ... v Card(2#,p,)
Card(Av,p,) v ... v Card(2#,p,)

Card(AY,p,) v ... v Card(Av,p:,)
Card(Kv,p,) v ... v Card(K®,ps,)

~Card(Av,p,) v ~Card(Av,p.)
-Card(Av,p,) v ~Card(Av,p,)

What will
happen?

[VdB'15]



Deck of Cards Graphically

[VdB'15]



Deck of Cards Graphically

Card(Kv,ps,
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Deck of Cards Graphically

g><

One model/perfect matching
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Deck of Cards Graphically
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Deck of Cards Graphically

Card(Kv,ps,

[VdB'15]



Deck of Cards Graphically
O

\

Card(Kv,p:,)

Model counting: How many perfect matchings?

[VdB'15]



Deck of Cards Graphically

What if | set
w(Card(Kv,ps,)) = 0?

[VdB'15]



Deck of Cards Graphically

What if | set
w(Card(Kv,ps,)) = 0?

[VdB'15]



Deck of Cards Graphically
O

What if | set can set any
asymmetric weight function?

[VdB'15]



Observations

* Asymmetric weight function can remove edge
Encode any bigraph

« Counting models = perfect matchings
* Problem is #P-complete! ®

 All non-lifted WMC solvers efficiently handle
asymmetric weights

* NoO solver does cards problem efficiently!

Later: Power of lifted vs. ground inference and complexities

[VdB'15]



Playing Cards Revisited
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Let us automate this

| model

Relationa

, Card(p,c)

vp, 3c
ve, 3p

,C)

Card(p
c) A Card(p

)

)

C

Card(p,

, VC

, VC

vp

- Lifted probabillistic inference algorithm



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C
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Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization
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Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = S;(p)
vc, vp, Card(p,c) = S,(c)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC
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Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

Vp, Vc, Card(p,c) = S;(p) w(S,) = 1 and w(=S,) = -1
vc, vp, Card(p,c) = S,(c)

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=C w(S,) = 1 and w(=S,) =-1

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, v, Card(p,c) = Sy(p) W(S) = 1and w(-S,) = -1
vc, vp, Card(p,c) = 4(¥)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c = w(S,) = 1 and w(=S,) =-1

l s 0 O Atom counting

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = (%)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

w(S,) = 1and w(=S,) =-1

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = (%)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

oo e )2

w(S,) = 1and w(=S,) =-1
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Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = 4(¥)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

| o e 2

vc, vc', Card(c) A Card(c’) = c =’

w(S,) = 1and w(=S,) =-1
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Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = 4(¥)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

| o e 2

vc, vc', Card(c) A Card(c’) = c =’

| ..

w(S,) = 1and w(=S,) =-1
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Playing Cards Revisited
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Let us automate this

ference algorithm

In

fted probabilistic |

L

) (L+ Dk (=1)2nk-1 =

n
[

)

n
k

>

Computed in time polynomial in n

HSAT =
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Summary Lifted Inference

By definition: PTIME data complexity
Also: 3 FO compilation = 3 Query Plan

However: only works for “liftable” queries
Preprocessing based on logical rewriting

The rules: Deceptively simple: the only
surprising rules are I/E and atom counting

Rules are captured by a query plan
or first-order NNF circuit



