Tractable Learning In
Structured Probabillity Spaces

Guy Van den Broeck

UCLA

Southern California Machine Learning Symposium
Nov 18, 2016



Structured probabllity spaces?



Running Example

Courses:

A Logic (L) Data
A Knowledge Representation (K)
A Probability (P)

A Artificial Intelligence (A)

Constraints
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Structured Probabillity Space
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Must take at least one of
Probability or Logic.

Probability is a prerequisite for Al.
The prerequisites for KR is
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either Al or Logic.
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Learning with Constraints

Learn a statistical model that assigns
zero probability
to Instantiations that violate the constraints.



Example: Video

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]



Example: Video

We also connect all pairs of identity nodes y; ; and y; ;
if they appear in the same time ¢. We then introduce an
edge potential that enforces mutual exclusion:

1 lf Yt i # yl.]
0 otherwise

L'mutux(yt.i- yt.j) - { (5)
This potential specifies the constraint that a player can
belappear only once in a frame] For example, if the i-th
detection y; ; has been assign to Bryant, y; ; cannot have
the same identity because Bryant is impossible to appear

twice in a frame.

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]



Example: Language

A Non-local dependencies:
At least one verb in each sentence

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as priork n o wl e d €lkahg, M. W., Ratinov, L., & Roth, D. (2012).
Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]



Example: Language

A Non-local dependencies:

At least one ver
A Sentence com

0 In each sentence

oression

If a modifier is kept, its subject is also kept

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as priork n o wl e d €lkahg, M. W., Ratinov, L., & Roth, D. (2012).
Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]



Example: Language

A Non-local dependencies:
At least one verb in each sentence

A Sentence compression
If a modifier is kept, its subject is also kept

A Information extraction

or editor.

AppearsOnce || Each field must be a consecutive list
of words, and can appear at most
once in a citation.

Punctuation State transitions must occur on
punctuation marks.

BooklJournal || The words proe, journal, proceed-
ings, ACM

are JOURNAL or BOOKTITLE.

TechReport The words tech, technical are
TECH_REPORT.

Title Quotations can appear only in titles.
Location The words CA, Australia, NY are

LOCATION.

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as priork n o wl e d €lkahg, M. W., Ratinov, L., & Roth, D. (2012).
Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]



Example: Language

A Non-local dependencies:
At least one verb in each sentence

A Sentence compression
If a modifier is kept, its subject is also kept

A Information extraction

or editor.
AppearsOnce || Each field must be a consecutive list
of words, and can appear at most

| n
Semantic role labelin
Punctuation State transitions must occur on

punctuation marks.

The words proe, journal, proceed-

’ BookJournal _ d:
A e a, n d m a n y n ;TE‘JJS{(%‘J{\4L or BOOKTITLE.

‘T'b.c.hReport '.];l'lc words tech, technical are
TECH_REPORT.

Title Quotations can appear only in titles.
Location The words CA, Australia, NY are
LOCATION.

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as priork n o wl e d €lkahg, M. W., Ratinov, L., & Roth, D. (2012).
Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]



Example: Deep Learning

New

Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in London

News | Technalog
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DeepMmd’s Al has learned to
navigate the Tube using memory

s e

nature International weekly journal of science

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | For /
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Google's Al reasons its way around the London
Underground

DeepMind’s latest technique uses external memory to solve tasks that require logic and
reasoning — a step toward more human-like Al.

Elizabeth Gibney

d Memory usage
G Memory and temporal links

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-B a r wi ,&sek a.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Example: Deep Learning

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-B a r wi ,&sek a.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Example: Deep Learning

To ensure that the

network always moved to a valid node, the output distribution was renormalized

over the set of possible triples outgoing from the current node

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-B a r wi ,&sek a.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]




Example: Deep Learning

To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node

it also received input triples during the answer phase, indicating the actions cho-
sen on the previous time-step.

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-B a r wi ,&sek a.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]




What are people doing now?

A Ignore 0

A Hack your way around ﬂ.\
A Handcraft into models — @& ‘e’ ©
A Use specialized distributions (o)

A Find non-structured encoding

A Try to learn constraints



What are people doing now?

A Ignore

(v
A Hack your way around ﬂ.\
T
(®)

A Handcraft into models —

?
A Use specialized distributions _Accuracy
A _ Specialized skill ?

Find non-structured encoding Impossible ?

A Try to learn constraints Intractable inference ?

Intractable learning ?
Waste parameters ?
Risk predicting out of space ?

+

you are on your own L



Structured Probabillity Spaces

A Everywhere in ML!

' Configuration problems, video, text, deep learning
Planning and diagnosis (physics)

I Cooking scenarios (interpreting videos)
I Combinatorial objects: parse trees, rankings, directed

acyclic graphs, trees, simple paths, game traces, etc.



Structured Probabillity Spaces

A Everywhere in ML!

' Configuration problems, video, text, deep learning
Planning and diagnosis (physics)

I Cooking scenarios (interpreting videos)
I Combinatorial objects: parse trees, rankings, directed

acyclic graphs, trees, simple paths, game traces, etc.

A Representations: constrained conditional models,
mixed networks, probabilistic logics.



Structured Probabillity Spaces

A Everywhere in ML!

Configuration problems, video, text, deep learning

Planning and diagnosis (physics)

Cooking scenarios (interpreting videos)

Combinatorial objects: parse trees, rankings, directed

acyclic graphs, trees, simple paths, game traces, etc.

A Representations: constrained conditional models,
mixed networks, probabilistic logics.

No ML boxes out there that take
constraints as input! L




The Problem / The ML Box

Goal: Constraints as important as data! General purpose!

_ Probabilistic Model
e (Distribution)
{ Constraints J




Specification Language: Logic
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Combinatorial Objects: Rankings

© o0 ~N o o B~ w N PP

[HE
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fatty tuna
sea urchin
salmon roe
shrimp
tuna
squid
tuna roll
see eel

€g9

cucumber roll
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salmon roe
fatty tuna
tuna
squid
tuna roll
see eel

€99

cucumber roll

10 items:
3,628,800
rankings

20 items:

2,432,902,008,176,640,000

rankings
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Combinatorial Objects: Rankings

10

fatty tuna
sea urchin
salmon roe
shrimp
tuna
squid
tuna roll
see eel

€99

cucumber roll

10

shrimp
sea urchin
salmon roe
fatty tuna
tuna
squid
tuna roll
see eel

€g9

cucumber roll

A; Iltem I at position ]
(n itemsrequire n?
Boolean variables)

An item may be assigned
to more than one position

A position may contain
more than one item



Encoding Rankings in Logic

A; itemi at positiorny
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Encoding Rankings in Logic

A; itemi at positiorny constraint each item assigned to
a unigue positionnconstraints
T Lbost | pos2 | pos3 | posd. que positionn )
item 1 [.YH A, V A A (/#\ _'Aik)

Iltem2 Az_1 Az_2 A23 A24
Au  An Ag A
Aw A An Ay




Encoding Rankings in Logic

A; itemi at positiorny constraint each item assigned to
a unique positionn(constraints)

pos1 pos 2 pos 3
item 1 W A V A A ( A _'Az'k)
J

k#j
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Encoding Rankings in Logic

A; itemi at positiorny constraint each item assigned to
a unique positionn(constraints)

pos1 pos 2 pos 3
item 1 W A V A A ( A _'Az'k)
J

k#j
|ftem2 Ay Az_z Azs Pou constraint each position assigned
Mo | A | B

_ a unique itemr{ constraints)
A | A | As A
\/ Aij A (/\ ﬁAkJ)

ki

total constraints 2n

2
unstructured space 2"
structured space n!




Structured Space for Paths




Structured Space for Paths

Good variable assignment
(represents route)

184



Structured Space for Paths
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Good variable assignment Bad variable assignment
(represents route) (does not represent route)

184 16,777,032
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Space easily encoded in logical constraints J



Structured Space for Paths

o o o
® O O
Good variable assignment Bad variable assignment
(represents route) (does not represent route)
184 16,777,032

Space easily encoded in logical constraints J

Unstructured probability space: 184+16,777,032 = 224



Undirected Graphs (Unstructured)

g Labeled Trees

Parse Trees

S
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the cat sleeps

Label Consjfraints T
(CFG Production Rules) NP VP
PN N
DT NN Vi NP
| | | N

the dog saw DT NN

the cat




NDeep Archit

Logic + Probabillity
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Property: Decomposability
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Property: Decomposabillity
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Property: Determinism
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Sentential Decision Diagram (SDD)
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Sentential Decision Diagram (SDD)
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x P
Input: L, K, P, A @
A XA




Tractable for Logical Inference

A Is structured space empty? (SAT)
A Count size of structured space (#SAT)

A Check equivalence of s

DaCesS

A Algorithms linear in circuit size J
(pass up, pass down, similar to backprop)



Tractable for Logical Inference

A Is structured space empty? (SAT)
A Count size of structured space (#SAT)
A Check equivalence of spaces

A Algorithms linear in circuit size J
(pass up, pass down, similar to backprop)

SCIENCE + TECHNOLOGY
Artificial intelligence framework developed by UCLA
professor now powers Toyota websites

Adnan Darwiche’s invention helps consumers customize their vehicles online




PSDD: Probabilistic SDD




PSDD: Probabilistic SDD

ﬁﬁﬂ%};

LA P A xPA

Input: L, K, P, A



PSDD: Probabilistic SDD

G ﬁ 0
Ha 4 -

1] lo 1“0 1.0
L A P A xp~ LéiijA xPxA E%E xLxK LA~ Ph xpP A
0.8/ \0.2 (MQQQB ngm

K xK A XA A XA

xL K

Input: L, K, LA  Pr(L,K,”,A) =0.3x1.0x0.8x0.4x0.25=0.02



PSDD nodes induce

: K P A|Pr(L.K.P.A)
a normalized 00 0 0.00%
: : : 00 1 0.005%
distribution! 0 1 0 6.00%
o1 0 1 1 54.00%
1 00 0.00%
h 1 01 0.00%
110 0.00%
1 11 10.00%
0 0 0 4.40%
0 0 L
0 0 1 0.00%
ﬂ ﬂ ﬂ ﬂ 0 1 0 1.00%
AUA 0 1 1 0.60%
><LK LA PA A & ’_(;) ‘)’;4[) 100 17.6%
U] 73.33% 1 0 1 0.00%
U 1| 0.00% 1 10 4.00%
1 0| 16.67% 1 11 2.40%
| 10.00%

Can read independences off the circuit structure




Tractable for
Probabilistic Inference

A MAP inference: Find most-likely assignment
(otherwise NP-complete)

A Computing conditional probabilities Pr(x|y)
(otherwise PP-complete)

A Sample from Pr(x|y)

A Algorithms linear in circuit size J
(pass up, pass down, similar to backprop)



PSDDs are Arithmetic Circuits
(ACS) [Darwiche, JACM 2003]
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Bayesian Network (BN) Arithmetic Circuit (AC)



PSDDs are Arithmetic Circuits
(ACS) [Darwiche, JACM 2003]

Bayesian Network (BN) Arithmetic Circuit (AC)

Known in the ML literature as SPNs
UAI 2011, NIPS 2012 best paper awards

[ICML 2014] (SPNs equivalent to ACs)



