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Structured probability spaces? 



Courses: 
ÅLogic (L) 

ÅKnowledge Representation (K) 

ÅProbability (P)  

ÅArtificial Intelligence (A) 

 

 

 

 

 

 

 

 

Data 

ÅMust take at least one of  

Probability or Logic. 

Å Probability is a prerequisite for AI. 

Å The prerequisites for KR is  

either AI or Logic. 

 

Constraints 
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Structured Probability Space 

7 out of 16 instantiations  

are impossible 

Å Must take at least one of  

Probability or Logic. 

Å Probability is a prerequisite for AI. 

Å The prerequisites for KR is  

either AI or Logic. 

 



Learning with Constraints 

Learn a statistical model that assigns  

zero probability 

to instantiations that violate the constraints. 



Example: Video 

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.] 
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Example: Language 

ÅNon-local dependencies: 

At least one verb in each sentence 

                      

                                                 

                        

                        

                  

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],é, [Chang, M. W., Ratinov, L., & Roth, D. (2012). 

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model] 



Example: Language 

ÅNon-local dependencies: 

At least one verb in each sentence 

ÅSentence compression 

If a modifier is kept, its subject is also kept 

                        

                        

                  

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],é, [Chang, M. W., Ratinov, L., & Roth, D. (2012). 

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model] 



Example: Language 

ÅNon-local dependencies: 

At least one verb in each sentence 

ÅSentence compression 

If a modifier is kept, its subject is also kept 

ÅInformation extraction 

                        

                  

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],é, [Chang, M. W., Ratinov, L., & Roth, D. (2012). 

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model] 

   



Example: Language 

ÅNon-local dependencies: 

At least one verb in each sentence 

ÅSentence compression 

If a modifier is kept, its subject is also kept 

ÅInformation extraction 

 Semantic role labeling 

Åé and many more! 

 

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],é, [Chang, M. W., Ratinov, L., & Roth, D. (2012). 

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model] 

   



Example: Deep Learning 

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-BarwiŒska, A., et al.. (2016).  

Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.] 
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What are people doing now? 

ÅIgnore  

ÅHack your way around 

ÅHandcraft into models 

ÅUse specialized distributions 

ÅFind non-structured encoding 

ÅTry to learn constraints 
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Accuracy ? 

Specialized skill ? 

Impossible ? 

Intractable inference ? 

Intractable learning ? 

Waste parameters ? 

Risk predicting out of space ? 

 

you are on your own L 

 

+ 



Structured Probability Spaces 

ÅEverywhere in ML! 

ïConfiguration problems, video, text, deep learning 

ïPlanning and diagnosis (physics) 

ïCooking scenarios (interpreting videos) 

ïCombinatorial objects: parse trees, rankings, directed 

acyclic graphs, trees, simple paths, game traces, etc. 
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 No ML boxes out there that take 

constraints as input! L 



The Problem / The ML Box 

Data 

Constraints 

Probabilistic Model         

(Distribution)      
Learning                       

Goal: Constraints as important as data! General purpose! 



Specification Language: Logic 
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7 out of 16 instantiations  

are impossible 



Combinatorial Objects: Rankings 

10 items:  

3,628,800  

rankings 

rank  sushi  

1 fatty tuna 

2 sea urchin 

3 salmon roe 

4 shrimp 

5 tuna 

6 squid 

7 tuna roll 

8 see eel 

9 egg 

10 cucumber roll 

rank  sushi  

1 shrimp 

2 sea urchin 

3 salmon roe 

4 fatty tuna 

5 tuna 

6 squid 

7 tuna roll 

8 see eel 

9 egg 

10 cucumber roll 

20 items:  

2,432,902,008,176,640,000  

rankings 
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Aij   item i at position j    

(n items require n2  

 Boolean variables)  
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Aij   item i at position j    

(n items require n2  

 Boolean variables)  

An item may be assigned   

to more than one position 

A position may contain  

more than one item 



Encoding Rankings in Logic 

Aij   : item i at position j  

pos 1 pos 2 pos 3 pos 4 

item 1 A11 A12 A13 A14 

item 2 A21 A22 A23 A24 

item 3 A31 A32 A33 A34 

item 4 A41 A42 A43 A44 
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Structured Space for Paths 
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Unstructured probability space: 184+16,777,032 = 224  

Structured Space for Paths 

Good variable assignment  

(represents route)  
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Bad variable assignment  

(does not represent route)  

 

16,777,032 

Space easily encoded in logical constraints J 
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Acyclicity   

Constraints  

Label Constraints  

(CFG Production Rules)  



ñDeep Architectureò 

 
Logic + Probability 
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K ×K A ×A A ×A 

Logical Circuits 
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Tractable for Logical Inference 

ÅIs structured space empty? (SAT) 

ÅCount size of structured space (#SAT) 

ÅCheck equivalence of spaces 

ÅAlgorithms linear in circuit size J 

(pass up, pass down, similar to backprop) 
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Can read independences off the circuit structure  

PSDD nodes induce 

a normalized 

distribution! 



Tractable for  
Probabilistic Inference 

ÅMAP inference: Find most-likely assignment  

(otherwise NP-complete) 

ÅComputing conditional probabilities Pr(x|y) 

(otherwise PP-complete) 

ÅSample from Pr(x|y) 

 

ÅAlgorithms linear in circuit size J 
(pass up, pass down, similar to backprop) 

 



Bayesian Network (BN) Arithmetic Circuit (AC) 

PSDDs are Arithmetic Circuits 
(ACs) [Darwiche, JACM 2003] 



Bayesian Network (BN) Arithmetic Circuit (AC) 

Known in the ML literature as SPNs 

UAI 2011, NIPS 2012 best paper awards 

PSDDs are Arithmetic Circuits 
(ACs) [Darwiche, JACM 2003] 

[ICML 2014] (SPNs equivalent to ACs) 


