
Supporting Address Translation for
Accelerator-Centric Architectures

Jason Cong Zhenman Fang Yuchen Hao Glenn Reinman
University of California, Los Angeles

{cong, zhenman, haoyc, reinman}@cs.ucla.edu

Abstract—While emerging accelerator-centric architectures of-
fer orders-of-magnitude performance and energy improvements,
use cases and adoption can be limited by their rigid program-
ming model. A unified virtual address space between the host
CPU cores and customized accelerators can largely improve
the programmability, which necessitates hardware support for
address translation. However, supporting address translation for
customized accelerators with low overhead is nontrivial. Prior
studies either assume an infinite-sized TLB and zero page walk
latency, or rely on a slow IOMMU for correctness and safety—
which penalizes the overall system performance.

To provide efficient address translation support for
accelerator-centric architectures, we examine the memory access
behavior of customized accelerators to drive the TLB augmen-
tation and MMU designs. First, to support bulk transfers of
consecutive data between the scratchpad memory of customized
accelerators and the memory system, we present a relatively small
private TLB design to provide low-latency caching of translations
to each accelerator. Second, to compensate for the effects of the
widely used data tiling techniques, we design a shared level-two
TLB to serve private TLB misses on common virtual pages,
eliminating duplicate page walks from accelerators working on
neighboring data tiles that are mapped to the same physical
page. This two-level TLB design effectively reduces page walks by
75.8% on average. Finally, instead of implementing a dedicated
MMU which introduces additional hardware complexity, we
propose simply leveraging the host per-core MMU for efficient
page walk handling. This mechanism is based on our insight that
the existing MMU cache in the CPU MMU satisfies the demand of
customized accelerators with minimal overhead. Our evaluation
demonstrates that the combined approach incurs only a 6.4%
performance overhead compared to the ideal address translation.

I. INTRODUCTION

In light of the failure of Dennard scaling and recent slow-
down of Moore’s law, the computer architecture community
has proposed many heterogeneous systems that combine con-
ventional processors with a rich set of customized accelerators
onto the same die [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
Such accelerator-centric architectures trade dark, unpowered
silicon [11], [12] area for customized accelerators that of-
fer orders-of-magnitude performance and energy gains com-
pared to general-purpose cores. These accelerators are usually
application-specific implementations of a particular function-
ality, and can range from simple tasks (e.g., a multiply-
accumulate operation) to complex applications (e.g., medical
imaging [13], database management [14], Memcached [15],
[16]).

While such architectures promise tremendous perfor-
mance/watt targets, system architects face a multitude of new

Accel

TLB

Main Memory

IOMMUMMU

Core

TLB
MMU

Core Accel

Interconnect

1. Inefficient TLB Support.
TLBs are not specialized to
provide low-latency and
capture page locality.

2. High Page Walk Latency.
On an IOTLB miss, four main
memory accesses are required
to walk the page table.

Fig. 1. Problems in current address translation support for accelerator-centric
architectures in an IOMMU-only configuration

problems, including but not limited to 1) how to integrate cus-
tomized accelerators into the existing memory hierarchies and
operating systems, and 2) how to efficiently offload algorithm
kernels from general-purpose cores to customized accelerators.
One of the key challenges involved is the memory management
between the host CPU cores and accelerators. For conventional
physically addressed accelerators, if the application lives in
the user space, an offload process requires copying data
across different privilege levels to/from the accelerator and
manually maintaining data consistency. Additional overhead
in data replication and OS intervention is inevitable, which
may diminish the gain of customization [17]. Zero-copy avoids
copying buffers via operating system support. However, pro-
gramming with special APIs and carefully managing buffers
can be a giant pain for developers.

Although accelerators in current heterogeneous systems
have limited support for virtual addresses, industry initiatives,
such as the Heterogeneous System Architecture (HSA) foun-
dation, are proposing a shift towards a unified virtual address
between the host CPU and accelerators [18]. In this model,
instead of maintaining two copies of data in both host and
device address spaces, only a single allocation is necessary.
Consequently, an offload process simply requires passing the
virtual pointer to the shared data to/from the accelerator. This
has a variety of benefits, including the elimination of explicit
data copying, increased performance of fine-grained memory
accesses, support for cache coherence and memory protection.

Unfortunately, the benefits of unified virtual address also
come at a cost. A key requirement of virtually addressed
accelerators is the hardware support for virtual-to-physical
address translation. Commercial CPUs and SoCs have intro-
duced I/O memory management units (IOMMUs) [19], [20],

d
e
b
lu

r

d
e
n
o
is

e

re
g
is

t

se
g

b
la

ck

st
re

a
m

sw
a
p
t

d
is

p
m

a
p

lp
ci

p

e
kf

sl
a
m

ro
b
lo

c

g
m

e
a
n

0.0

0.2

0.4

0.6

0.8

1.0
P
e
rf

o
rm

a
n
ce

 R
e
la

ti
v
e
 t

o
Id

e
a
l
A

d
d
re

ss
 T

ra
n
sl

a
ti

o
n

Medical Imaging Commercial Vision Navigation

baseline

Fig. 2. Performance of the baseline IOMMU approach relative to ideal address
translation

[21], [22] to allow loosely coupled devices to handle virtual
addresses, as shown in Figure 1. These IOMMUs have I/O
translation lookaside buffers (IOTLBs) and logic to walk the
page table, which can provide address translation support for
customized accelerators. However, a naive IOMMU configura-
tion cannot meet the requirement of today’s high-performance
customized accelerators as it lacks efficient TLB support, and
excessively long latency is incurred to walk the page table
on IOTLB misses. Figure 2 shows that the performance of
the baseline IOMMU approach achieves only 12.3% of the
ideal address translation, where all translation requests hit in
an ideal TLB;1 this leaves a huge performance improvement
gap. Recent advances in IOMMU enable translation caching
in devices [22]. However, designing efficient TLBs for high-
performance accelerators is nontrivial and should be carefully
studied. Prototypes in prior studies encounter the challenge of
virtual address support [15], [16], [23], [24] as well. However,
their focus is mainly on the design and performance tuning
of accelerators, with either the underlying address translation
approach not detailed or the performance impact not evaluated.

In this paper, our goal is to provide an efficient address
translation support for heterogeneous customized accelerator-
centric architectures. The hope is that such a design can
enable a unified virtual address space between host CPU
cores and accelerators with modest hardware modification
and low performance overhead compared to the ideal address
translation.

By examining the memory access behavior of customized
accelerators, we propose an efficient hardware support for
address translation tailored to the specific challenges and
opportunities of accelerator-centric architectures that includes:
1) Private TLBs. Unlike conventional CPUs and GPUs, cus-

tomized accelerators typically exhibit bulk transfers of con-
secutive data when loading data into the scratchpad memory
and writing data back to the memory system. Therefore,
a relatively small (16-32 entries) and low-latency private
TLB can not only allow accelerators to save trips to the
IOMMU, but can also capture the page access locality. On
average, a private TLB with 32 entries can reduce 30.4% of

1Detailed experimental setup is described in Section III. More analysis of
this gap is presented in Section IV-A.

the page walks compared to the IOMMU-only baseline, and
improves the performance from 12.3% (IOMMU baseline)
to 23.3% of the ideal address translation.

2) A Shared TLB. Data tiling techniques are widely used in
customized accelerators to improve the data reuse within
each tile and the parallelism between tiles. Due to the
capacity limit of each accelerator’s scratchpad memory,
this usually breaks the contiguous memory region within
a physical page into multiple data tiles that are mapped to
different accelerator instances for parallelism. In light of
this, we present a shared level-two TLB design to filter
translation requests on common pages so that duplicate
page walks will not be triggered from accelerator instances
working on neighboring data tiles. Our evaluation shows
that a two-level TLB design with a 512-entry shared TLB
can reduce page walks by 75.8% on average, and improves
the performance to 51.8% of the ideal address translation.

3) Host Page Walks. As accelerators are sensitive to long
memory latency, the excessively long latency of page
walks that cannot be filtered by TLBs degrades the system
performance. While enhancing the IOMMU with MMU
caches or introducing a dedicated MMU for accelerators
are viable approaches [25], [26], better opportunities lie in
the coordination between the host core and the accelerators
invoked by it. The idea is that by extending the per-core
MMU to provide an interface, accelerators operating within
the same application’s virtual address space can offload
TLB misses to the page walker of the host core MMU. This
gives us three different benefits: first, the page walk latency
can be significantly reduced due to the presence of MMU
caches [27], [28], [29] in the host core MMU; second,
prefetching effects can be achieved due to the support of
data cache inasmuch as loading one cache line effectively
brings in multiple page table entries; third, cold misses in
the MMU cache and data cache can be minimized since
it is likely that the host core has already touched the data
structure before offloading, so that corresponding resources
have been warmed up. The experimental results show the
host page walk reduces the average page walk latency to
58 cycles across different benchmarks, and the combined
approach bridges the performance gap to 6.4% compared
to the ideal address translation.
The remainder of this paper is organized as follows. Sec-

tion II characterizes address translation behaviors of cus-
tomized accelerators to motivate our design; Section III ex-
plains our simulation methodology and workloads; Section IV
details the proposed design and evaluation; Section V dis-
cusses more use cases; Section VI summarizes related work;
and Section VII concludes the paper.

II. CHARACTERIZATION OF CUSTOMIZED ACCELERATORS

A. Accelerator-Centric Architectures

We present an overview of the baseline accelerator-centric
architecture used throughout this paper in Figure 1. In this
architecture, CPU cores and loosely coupled accelerators share

Accel

TLB

Main Memory

IOMMUMMU

Core

TLB
MMU

Core Accel

Interconnect

Scratchpad

Accel Datapath

DMA

IOMMU IOTLIOTLB

Fig. 3. A detailed look at an accelerator connecting with system IOMMU
(baseline)

the physical memory. Each CPU core has its own TLB and
MMU, while all accelerators share an IOMMU that has an
IOTLB inside it. A CPU core can launch one or more accel-
erators by offloading a task to them for superior performance
and energy efficiency. Launching multiple accelerators can
exploit data parallelism by assigning accelerators to different
data partitions, which we call tiles.

The details of a customized accelerator are shown in Fig-
ure 3. In contrast to general-purpose CPU cores or GPUs,
accelerators do not use instructions and feature customized
registers and datapaths with deep pipelines [8]. Scratchpad
memory (SPM) is predominantly used by customized accel-
erators instead of hardware-managed caches, and data layout
optimization techniques such as data tiling are often applied
for increased performance. A memory interface such as a
DMA (direct memory access) is often used to transfer data
between the SPM and the memory system.

Due to these microarchitectural differences, customized ac-
celerators exhibit distinct memory access behaviors compared
to CPUs and GPUs. To drive our design, we characterize such
behaviors in the following subsections: the bulk transfer of
consecutive data, the impact of data tiling, and the sensitivity
to address translation latency.

B. Bulk Transfer of Consecutive Data
The performance and energy gains of customized acceler-

ators are largely due to the removal of instructions through
specialization and deep pipelining [8]. To guarantee a high
throughput for such customized pipelines—processing one
input data every II (pipeline initialization interval) cycles,
where II is usually one or two—the entire input data must
be available in the SPM to provide register-like accessibility.
Therefore, the execution process of customized accelerators
typically has three phases: reading data from the memory
system to the SPM in bulk for local handling, pipelined
processing on local data, and then writing output data back
to the memory system. Such bulky reads and writes appear
as multiple streams of consecutive accesses in the memory
system, which exhibit good memory page locality and high
memory bandwidth utilization.

To demonstrate such characteristics, we plot the trace of
virtual pages that trigger TLB misses in BlackScholes in
Figure 4 (our simulation methodology and workloads are
detailed in Section III). We can see that the TLB miss behavior

2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20

Cycles 1e7

0x54000000

0x54400000

0x54800000

0x54c00000

0x55000000

0x55400000

0x55800000

V
ir

tu
a
l
A

d
d
re

ss

Fig. 4. TLB miss behavior of BlackScholes

600 800 1000 1200 1400 1600 1800 2000 2200

Cycles +2.8332e7

0x54000000

0x54400000

0x54800000

0x54c00000

0x55000000

0x55400000

0x55800000

V
ir

tu
a
l
A

d
d
re

ss

read
phase

compute
phase

write
phase

Fig. 5. TLB miss trace of a single execution from BlackScholes

is extremely regular, which is different from the more random
accesses in CPU or GPU applications. Since accelerators
feature customized deep pipelines without multithreading or
context switching, the page divergence is only determined by
the number of input data arrays and the dimentionality of each
array. Figure 5 confirms this by showing the TLB miss trace in
a single execution of BlackScholes, which accesses six one-
dimensional input arrays and one output array. In addition,
we can see that TLB misses typically happen at the beginning
of the bulky data read and write phases, followed by a large
number of TLB hits. Therefore, high hit rates can be expected
from TLBs with sufficient capacity.

This type of regularity is also observed for a string-matching
application and is reported to be common for a wide range of
applications such as image processing and graphics [30]. We
think that this characteristic is determined by the fundamental
microarchitecture rather than the application domain. Such
regular access behavior presents opportunities for relatively
simple designs that support address translation for accelerator-
centric architectures.

C. Impact of Data Tiling

Data tiling techniques are widely used on customized ac-
celerators, which group data points into tiles that are executed
atomically. As a consequence, each data tile can be mapped to
a different accelerator to maximize the parallelism. Also, data
tiling can improve data locality for the accelerator pipeline,
leading to an increased computation to communication ratio.
This also enables the use of double (ping-pong) buffering.

While the input data array could span several memory
pages, the tile size of each input data is usually smaller than a

Page 0

Page 1

…

0 15 31

Page 15

Page 31

…

Page 16

Fig. 6. Rectangular tiling on a 32× 32× 32 data array into 16× 16× 16
tiles. Each tile accesses 16 pages and can be mapped to a different accelerator
for parallel processing.

memory page due to limited SPM resources, especially for
high-dimensional arrays. As a result, neighboring tiles are
likely to be in the same memory page. These tiles, once
mapped to different accelerators, will trigger multiple address
translation requests on the same virtual page. Figure 6 shows a
simple example of tiling on a 32×32×32 input float array with
16×16×16 tile size, producing 8 tiles in total. This example
is derived from the medical imaging applications, while the
sizes are picked for illustration purposes only. Since the first
two dimensions exactly fit into a 4KB page, 32 pages in total
are allocated for the input data. Processing one tile requires
accessing 16 of the 32 pages. However, mapping each tile
to a different accelerator will trigger 16 × 8 = 128 address
translation requests, which is 4 times more than the minimum
32 requests. This duplication in address translation requests
must be resolved so that additional translation service latency
can be avoided. The simple coalescing logic used in GPUs will
not be sufficient because concurrently running accelerators are
not designed to execute in lockstep.

D. Address Translation Latency Sensitivity

While CPUs expose memory-level parallelism (MLP) using
large instruction windows, and GPUs leverage their extensive
multithreading to issue bursts of memory references, accel-
erators generally lack architectural support for fine-grained
latency hiding. As discussed earlier, the performance of cus-
tomized accelerators relies on predictable accesses to the
local SPM. Therefore, the computation pipeline cannot start
until the entire input data tile is ready. To alleviate this
problem, double buffering techniques are commonly used to
overlap communication with computation—processing on one
buffer while transferring data on the other. However, such
coarse-grained techniques require a careful design to balance
communication and computation, and can be ineffective in
tolerating long-latency memory operations, especially page
walks on TLB misses.

To further demonstrate latency sensitivity, we run sim-
ulations with varied address translation latencies added to
each memory reference. Figure 7 presents the performance
slowdown of LPCIP and the geometric mean slowdown over
all benchmarks from additional latency. In general, address
translation latency within 8 cycles can be tolerated by double

0 1 2 4 8 16 32 64 128 256 512 1024

Address Translation Latency (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

 R
e
la

ti
v
e
 t

o
Id

e
a
l
A

d
d
re

ss
 T

ra
n
sl

a
ti

o
n

gmean

LPCIP

Fig. 7. Geometric mean slowdown over all benchmarks with varied address
translation latencies, with LPCIP being the most sensitive benchmark

buffering. Any additional latency beyond 16 cycles signifi-
cantly degrades overall system performance. LPCIP shows the
highest sensitivity to additional cycles among all benchmarks
since the accelerator issues dynamic memory accesses during
the pipelined processing which is beyond the coverage of
double buffering. While GPUs are reportedly able to tolerate
600 additional memory access cycles with a maximum slow-
down of only 5% [32], the performance of accelerators will
be decreased by 5x with the same additional cycles.

Such immense sensitivity poses serious challenges to de-
signing an efficient address translation support for accelerators:
1) TLBs must be carefully designed to provide low access
latency, 2) since page walks incur long latency which could
be a few hundred cycles, TLB structures must be effective in
reducing the number of page walks, 3) for page walks that
cannot be avoided, page walker must be optimized for lower
latency.

III. SIMULATION METHODOLOGY

Simulation. We use PARADE [33], an open-source cycle-
accurate full-system simulator to evaluate the accelerator-
centric architecture. PARADE extends the gem5 [34] simulator
with high-level synthesis support [35] to accurately model the
accelerator module, including the customized data path, the
associated SPM and the DMA interface. We use CACTI [36]
to estimate the area of TLB structures based on 32nm process
technology.

We model an 8-issue out-of-order X86-64 CPU core at
2GHz with 32KB L1 instruction and data cache, 2MB L2
cache and a per-core MMU. We implement a wide spectrum
of accelerators, as shown in Table I, where each accelerator
can issue 64 outstanding memory requests and has double
buffering support to overlap communication with computation.
The host core and accelerators share 2GB DDR3 DRAM on
four memory channels. We extend PARADE to model an
IOMMU with a 32-entry IOTLB [37]. To study the overhead
of address translation, we model an ideal address translation
in the simulator with infinite-sized TLBs and zero page walk
latency for accelerators. We assume that a 4KB page size is
used in the system for the best compatibility. The impact of
using large pages will be discussed in Section V-B. Table II
summarizes the major parameters used in our simulation.

TABLE I
BENCHMARK DESCRIPTIONS WITH INPUT SIZES AND NUMBER OF HETEROGENEOUS ACCELERATORS. [13]

Domain Application Algorithmic Functionality Input Size Acc Types2

Medical
Imaging

Deblur Total variation minimization and deconvolution
128 slices of images, each
image of size 128× 128

4
Denoise Total variation minimization 2
Registration Linear algebra and optimizations 2
Segmentation Dense linear algebra, and spectral methods 1

Commercial
from PARSEC
[31]

BlackScholes Stock option price prediction using floating point math 256K sets of option data 1
StreamCluster Clustering and vector arithmetic 64K 32-dimensional streams 5
Swaptions Computing swaption prices by Monte Carlo simulation 8K sets of option data 4

Computer
Vision

Disparity Map Calculate sums of absolute differences and integral
image representations using vector arithmetic

Images pairs of size 64× 64 4
8× 8 window, 64 max. disparity

LPCIP Desc Log-polar forward transformation of image patch
around each feature

128K features from 1images of size 640× 480

Computer
Navigation

EKF SLAM Partial derivative, covariance,
and spherical coordinate computations 128K sets of sensor data 2

Robot
Localization

Monte Carlo Localization using probabilistic model
and particle filter 128K sets of sensor data 1

TABLE II
PARAMETERS OF THE BASELINE ARCHITECTURE

Component Parameters

CPU 1 X86-64 OoO core @ 2GHz
8-wide issue, 32KB L1, 2MB L2

Accelerator
4 instances of each accelerator
64 outstanding memory references
Double buffering enabled

IOMMU 4KB page, 32-entry IOTLB
DRAM 2GB, 4 channels, DDR3-1600

Workloads. To provide a quantitative evaluation of our ad-
dress translation proposal, we use a wide range of applica-
tions that are open-sourced together with PARADE. These
applications are categorized into four domains: medical imag-
ing, computer vision, computer navigation and commercial
benchmarks from PARSEC [31]. A brief description of each
application, its input size, and the number of different accel-
erator types involved is specified in Table I. Each application
may call one or more types of accelerators to perform differ-
ent functionalities corresponding to the algorithm in various
phases. In total, we implement 25 types of accelerators.2 To
achieve maximum performance, multiple instances of the same
type can be invoked by the host to process in parallel. By
default, we use four instances of each type in our evaluation
unless otherwise specified. There will be no more than 20
active accelerators; others will be powered off depending on
which applications are running.

IV. DESIGN AND EVALUATION OF ADDRESS
TRANSLATION SUPPORT

The goal of this paper is to design an efficient address
translation support for accelerator-centric architectures. After
carefully examining the distinct memory access behaviors of
customized accelerators in Section II, we propose the corre-
sponding TLB and MMU designs with quantitative evaluations
step by step.

2Some of the types are shared across different applications. For example, the
Racian accelerator is shared by Deblur and Denoise; the Gaussian accelerator
is shared by Deblur and Registration.

A. Gap between the Baseline IOMMU Approach and the Ideal
Address Translation

Figure 2 shows the performance of the baseline IOMMU
approach relative to the ideal address translation with infinite-
sized TLBs and zero page walk latency. Since an IOMMU-
only configuration requires each memory reference to be
translated by the centralized hardware interface, performance
suffers from frequent trips to the IOMMU. On one hand,
benchmarks with large-page reuse distances, such as the med-
ical imaging applications, experience IOTLB thrashing due to
the limited capacity. In such cases, IOTLB cannot provide
effective translation caching, leading to a large number of
long-latency page walks. On the other hand, while the IOTLB
may satisfy the demand of some benchmarks with small page
reuse distances, such as computer navigation applications, the
IOMMU lacks efficient page walk handling; this significantly
degrades system performance on IOTLB misses. As a result,
the IOMMU approach achieves only an average of 12.3%
relative to the performance of the ideal address translation,
which leaves a huge performance gap.

In order to bridge the performance gap, we propose to
reduce the address translation overhead in three steps: 1)
provide low-latency access to translation caching by allowing
customized accelerators to store physical addresses locally in
TLBs, 2) reduce the number of page walks by exploiting page
sharing between accelerators resulted from data tiling, and 3)
minimize the page walk latency by offloading the page walk
request to the host core MMU. We detail our designs and
evaluations in the following subsections.

B. Private TLBs

To enable more capable devices, such as accelerators, recent
IOMMU proposals allow IO devices to cache address trans-
lation in devices [22]. This reduces the address translation
latency on TLB hits and relies on the page walker in IOMMU
on TLB misses. However, the performance impact and design
tradeoffs are not scrutinized in the literature.

black stream swapt dispmap lpcip ekfslam robloc
0.0

0.2

0.4

0.6

0.8

1.0

1.2
T
o
ta

l
E
x
e
cu

ti
o
n
 T

im
e

R
e
la

ti
v
e
 t

o
 B

a
se

lin
e

8 16 32 64

Fig. 8. Performance for benchmarks other than medical imaging with various
private TLB sizes, assuming fixed access latency.

1) Implementation

TLB sizes. While a large TLB may have a higher hit rate,
smaller TLB sizes are preferable in providing lower access
latency, since customized accelerators are very sensitive to
the address translation latency. Moreover, TLBs are report-
edly power-hungry and even TLB hits consume a significant
amount of dynamic energy [38]. Thus, TLB sizes must be
carefully chosen.

Commercial CPUs currently implement 64-entry per-core
L1 TLBs, and recent GPU studies [25], [26] introduce 64-
128 entry post-coalescer TLBs. As illustrated in Section II-B,
customized accelerators have much more regular and less
divergent access patterns compared to general-purpose CPUs
and GPUs; this fact endorses a relatively small private TLB
size for shorter access latency and lower energy consumption.
Next we quantitatively evaluate the performance effects of
various private TLB sizes. We assume a least-recently-used
(LRU) replacement policy to capture locality.

a) Private TLB size for all benchmarks except medical
imaging applications: Figure 8 illustrates that all seven evalu-
ated benchmarks greatly benefit from adding private TLBs. In
general, small TLB sizes such as 16-32 entries are sufficient to
achieve most of the improved performance. The cause of this
gain is twofold: 1) accelerators benefit from reduced access
time to locally cached translations; 2) even though the capacity
is not enlarged compared to the 32-entry IOTLB, accelerators
enjoy private TLB resources rather than sharing the IOTLB.
LPCIP receives the largest performance improvement from
having a private TLB. This matches the observation that it
has the highest sensitivity to address translation latency due to
dynamic memory references during pipelined processing, since
providing a low-latency private TLB greatly reduces pipeline
stalls.

b) Private TLB size for medical imaging applications: Fig-
ure 9 shows the evaluation of the four medical imaging bench-
marks. These benchmarks have a larger memory footprint
with more input array references, and the three-dimensional
access pattern (accessing multiple pages per array reference
as demonstrated in Figure 6) further stresses the capacity of
private TLBs. While apparently the 256-entry achieves the best
performance of the four, the increased TLB access time would
decease performance for other benchmarks, especially latency-
sensitive ones such as LPCIP. In addition, a large TLB will
also consume more energy.

deblur denoise regist seg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
o
ta

l
E
x
e
cu

ti
o
n
 T

im
e

R
e
la

ti
v
e
 t

o
 B

a
se

lin
e

8 16 32 64 128 256

Fig. 9. Performance for medical imaging benchmarks with various private
TLB sizes, assuming fixed access latency.

Non-blocking design. Most CPUs and GPUs use blocking
TLBs since the latency can be hidden with wide MLP. In
contrast, accelerators are sensitive to long TLB miss latencies.
Blocking accesses on TLB misses will stall the data transfer,
reducing the memory bandwidth utilization which results in
performance degradation. In light of this, our design provides
non-blocking hit-under-miss support to overlap TLB miss with
hits to other entries.
Correctness issues. In practice, correctness issues, including
page faults and TLB shootdowns [39], have negligible ef-
fects on the experimental results. We discuss them here for
implementation purposes. While page faults can be handled
by the IOMMU, accelerator private TLBs must support TLB
shootdowns from the system. In a multicore accelerator sys-
tem, if the mapping of memory pages is changed, all sharers
of the virtual memory are notified to invalidate TLBs using
TLB shootdown inter-processor interrupts (IPIs). We assume
shootdowns are supported between CPU TLBs and the IOTLB
based on this approach. We also extend IOMMU to send
invalidations to accelerator private TLBs to flush stale values.

2) Evaluation

We find that low TLB access latency provided by local
translation caching is key to the performance of customized
accelerators. While the optimal TLB size appears to be
application-specific, we choose 32-entry for balance between
latency and capacity for our benchmarks, and also lower area
and power consumption. On average, the 32-entry private TLB
achieves 23.3% of the ideal address translation performance,
one step up from the 12.3% IOMMU baseline, with an
area overhead of around 0.7% to each accelerator. Further
improvements are possible by customizing TLB sizes and
supporting miss-under-miss targeting individual applications.
We leave these for future work.

C. A Shared Level-Two TLB

Figure 10 depicts the basic structure of our two-level TLB
design, and illustrates two orthogonal benefits provided from
adding a shared TLB. First, the requested entry is previously
inserted to the shared TLB by a request from the same acceler-
ator. This is the case when the private TLB size is not sufficient
to capture the reuse distance so that the requested entry is
evicted from the private TLB earlier. Specifically, medical
imaging benchmarks would benefit from having a large shared

Accel

TLB

Shared TLB

To IOMMU

Accel

TLB

Accel

TLB

Accel

TLB
❶

❷

Fig. 10. The structure of two-level TLBs

TLB. Second, the requested entry is previously inserted to
the shared TLB by a request from another accelerator. This
case is common when data tile size is smaller than a memory
page, and neighboring tiles within a memory page are mapped
to different accelerators (illustrated in Section II-C). Once an
entry is brought into the shared TLB by one accelerator, it is
immediately available to other accelerators, leading to shared
TLB hits. Requests that also miss in the shared TLB need to
access IOMMU for page table walking.

1) Implementation

TLB size. While our design trades capacity for lower access
latency in private TLBs, we provide a relatively larger capacity
in the shared TLB to avoid thrashing. Based on the evaluation
of performance impact of private TLB sizes, we assume a
512-entry shared TLB for the four-accelerator-instances case,
where LRU replacement policy is used. Though it virtually
provides a 128-entry level-two TLB for each sharer, a shared
TLB is more flexible in allocating resources to a specific
sharer, resulting in improved performance.
Non-blocking design. Similar to the private TLBs, our shared
TLB design also provides non-blocking hit-under-miss support
to overlap TLB miss with hit accesses to other entries.
Inclusion policy. In order to enable the aforementioned use
cases, entries requested by an accelerator must be inserted in
both the private and the shared TLB. We adopt the approach
in [40] to implement a mostly-inclusive policy, where each
TLB is allowed to make independent replacement decisions.
This relaxes the coordination between private and shared TLBs
and simplifies the control logic.
Placement. We provide a centralized shared level-two TLB
not tied to any of the accelerators. This requires each accel-
erator to send requests through the interconnect to access the
shared TLB which adds additional latency. However, we find
that the benefit completely outweighs the added access latency
for the current configuration. Much larger TLB sizes or more
sharers (we will discuss this in Section V-A) could benefit from
a banked design, but such use cases are not well established.
Correctness issues. In addition to the TLB shootdown support
in private TLBs, the shared TLB also needs to be checked for
invalidation. The reason is in a mostly-inclusive policy, entries
that are previously brought in can be present in both levels.

2) Evaluation

In contrast to private TLBs where low access latency is the
key, the shared TLB mainly aims to reduce the number of page

d
e
b
lu

r

d
e
n
o
is

e

re
g
is

t

se
g

b
la

ck

st
re

a
m

sw
a
p
t

d
is

p
m

a
p

lp
ci

p

e
kf

sl
a
m

ro
b
lo

c

g
m

e
a
n

0.0

0.2

0.4

0.6

0.8

1.0

N
u
m

b
e
r

o
f

P
a
g
e
 W

a
lk

s
R

e
la

ti
v
e
 t

o
 B

a
se

lin
e

Medical Imaging Commercial Vision Navigation

privateTLB twoLevelTLB ideal twoLevelTLB

Fig. 11. Page walk reduction compared to the IOMMU baseline3

walks in two ways: 1) providing a larger capacity to capture
the page locality for applications which is difficult to achieve
in private TLBs without sacrificing access latency, 2) reducing
TLB misses on common virtual pages by enabling translation
sharing between concurrent accelerators.

Figure 11 sheds light upon the page walk reduction3 in
our two-level TLB design. Compared to private TLBs only,
adding a shared TLB consistently reduces the overall number
of page walk requests. For medical imaging benchmarks,
especially Deblur, Denoise and Registration, which suffer from
insufficient private TLB capacity, the shared TLB significantly
cuts the number of page walks by providing more resources.
For benchmarks that already find enough entries in private
TLBs, such as Segmentation and BlackScholes, the shared
TLB reduces the number of page walks by decreasing TLB
misses on common virtual pages, which are due to data tiling
effects. In general, the two-level TLB design achieves 76.8%
page walk reduction compared to the IOMMU-only approach,
leaving only a small gap to an ideal two-level TLB. The 512-
entry shared TLB only incurs around 0.3% area overhead to
the four sharing accelerators. StreamCluster and DisparityMap
involve multiple iterations over the same input data using
different types of accelerators. The result shows a gap between
the 512-entry case and the ideal case because the size of
input data exceeds the reach of the 512-entry TLB, but has
no problem fitting in the infinite-sized TLB which eliminates
cold misses at the beginning of each iteration.

To further isolate the effect of page sharing caused by data
tiling, we run simulations with infinite-sized private TLBs
so that the capacity issue is eliminated. Figure 12 shows
the page walk reduction by adding a 512-entry shared TLB
to infinite-sized private TLBs. As infinite-sized private TLBs
leave only cold misses, the shared TLB exploits page sharing
among those misses and filters duplicate ones, resulting in a
41.7% reduction on average. Notice that not all benchmarks
greatly benefit from having a shared TLB, which is due to
the different tiling mechanism of each application. While
developing a TLB-aware tiling mechanism could potentially

3Note that the number of page walks does not equal the number of
translation requests even in the IOMMU case, since the IOTLB can filter
part of them.

d
e
b
lu

r

d
e
n
o
is

e

re
g
is

t

se
g

b
la

ck

st
re

a
m

sw
a
p
t

d
is

p
m

a
p

lp
ci

p

e
kf

sl
a
m

ro
b
lo

c

g
m

e
a
n

0.0

0.2

0.4

0.6

0.8

1.0
N

u
m

b
e
r

o
f

P
a
g
e
 W

a
lk

s
R

e
la

ti
v
e
 t

o
 I
d
e
a
l
P
ri

v
a
te

 T
LB

s

Medical Imaging Commercial Vision Navigation

with shared TLB

Fig. 12. Page walk reduction from adding a 512-entry shared TLB to infinite-
sized private TLBs

reduce duplicate TLB misses, it is not easy to do so when the
input data size and tile size are user-defined and thus can be
arbitrary. We leave this for future work.

The remainder of the page walks are due to cold TLB
misses, where alternating TLB sizes or organization can not
make a difference. Therefore, we propose an efficient page
walk handling mechanism to minimize the latency penalty
introduced by those page walks.

D. Host Page Walks

As the IOMMU is not capable of delivering efficient page
walks, the performance of accelerators still suffers from ex-
cessive long page walk latency even with a reduced num-
ber of page walks. While providing a dedicated full-blown
MMU support for accelerators could potentially alleviate this
problem, there may not be a need to establish a new piece
of hardware—especially when off-the-shelf resources can be
readily leveraged by accelerators.

This opportunity lies in the coordination between the ac-
celerators and the host core that launches them. After the
computation task has been offloaded from the host core to
accelerators, a common practice is to put the host core into
spinning so that the core can react immediately to any status
change of the accelerators. As a result, during the execution
of accelerators, the host core MMU and data cache is less
stressed; this can be used to service translation requests from
the accelerators invoked by this core. By offloading page walk
operations to the host core MMU, the following benefits can
be achieved:

First, the MMU cache support is provided from the host
core MMU. Commercial CPUs have introduced MMU caches
to store upper-level entries in page walks [27], [29]. The
page walker accesses the MMU cache to determine if one or
more levels of walks can be skipped before issuing memory
references. As characterized in Section II-B, accelerators have
extremely regular page access behaviors with small page
divergence. Therefore, the MMU cache can potentially work
very well with accelerators by capturing the good locality
in upper levels of the page table. We expect that the MMU
cache is able to skip all three non-leaf page table accesses
most of the time, leaving only one memory reference required

for each page walk. We assume an AMD-style page walk
cache [27] in this paper, which stores entries in a data
cache fashion. However, other implementations, such as Intel’s
paging structure cache [29], could provide similar benefits.

Second, PTE (page table entry) locality within a cacheline
provides an opportunity to amortize the cost of memory
accesses over more table walks. Unlike the IOMMU, the
CPU MMU has data cache support, which means a PTE is
first brought from the DRAM to the data cache and then
to the MMU. Future access to the same entry, if missed in
the MMU cache, could still hit in the data cache with much
lower latency than a DRAM access. More importantly, as one
cache line could contain eight PTEs, one DRAM access for
a PTE potentially prefetches seven consecutive ones, so that
future references to these PTEs could be cache hits. While
this may not benefit CPU or GPU applications with large page
divergence, we have shown that the regularity of accelerator
TLB misses could permit improvement through prefetching.

Third, resources are likely warmed up by previous host
core operations within the same application’s virtual address
space. Since a unified virtual address space permits a close
coordination between the host core and the accelerators, both
can work on the same data with either general-purpose ma-
nipulation or high-performance specialization. Therefore, the
host core operations could very well warm up the resources
for accelerators. Specifically, a TLB miss triggered by the host
core brings both upper-level entries to the MMU cache and
PTEs to the data cache, leading to reduced page walk latency
for accelerators in the near future. While the previous two
benefits can also be obtained through any dedicated MMU
with an MMU cache and data cache, this benefit is unique to
host page walks.

1) Implementation

Modifications to accelerator TLBs. In addition to the accel-
erator ID bits in each TLB entry, the shared TLB also needs to
store the host process (or context) ID within each entry. On a
shared TLB miss, a translation service request with the virtual
address and the process ID is sent through the interconnect to
the host core operating within the same virtual address space.
Modifications to host MMUs. The host core MMU must
be able to distinguish accelerator page walk requests from the
core requests, so that PTEs can be sent back to the accelerator
shared TLB instead of being inserted into the host core TLBs
after page walking. As CPU MMUs are typically designed to
handle one single page walk at a time, a separate port and
request queue for accelerator page walk requests is required
to buffer multiple requests. An analysis on the number of
outstanding shared TLB misses is presented in Section V-A.
Demultiplexer logic is also required for the MMU to send
responses with the requested PTE back to the accelerator
shared TLB.
Correctness issues. In contrast to implementing a dedicated
MMU for accelerators where coordination with the host core
MMU is required on page fault handling, our approach re-
quires no additional support for system-level correctness issue.

If a page walk returns a NULL pointer on the virtual address
requested by accelerators, the faulting address is written to the
core’s CR2 register and an interrupt is raised. The core can
proceed with the normal page fault handling process without
the knowledge of the requester of the faulting address. The
MMU is signaled once the OS has written the page table
with the correct translation. Then, the MMU finishes the page
walk to send the requested PTE to the accelerator-shared TLB.
The support for TLB shootdowns works the same as in the
IOMMU case.

2) Evaluation

To evaluate the effects of host page walks, we simulate an
8KB page walk cache with 3-cycle access latency, and a 2MB
data cache with 20-cycle latency. If the PTE request misses in
the data cache, it is forwarded to the off-chip DRAM which
typically takes more than 200 cycles. We faithfully simulate
the interconnect delays in a mesh topology.

We first evaluate the capability of the host core MMU by
showing the average latency of page walks that are triggered
by accelerators. Figure 13 shows that the host core MMU
consistently provides low-latency page walks across all bench-
marks, with an average of only 58 cycles. Given the latency
of four consecutive data cache accesses is 80 cycles plus
interconnect delays, most page walks should be a combination
of MMU cache hits and data cache hits, with DRAM access
only in rare cases. This is partly due to the warm-up effects
where cold misses in both MMU cache and data cache are
minimized. Based on this, it is difficult for a dedicated MMU
to provide even lower page walk latency than the host core
MMU.

We further analyze the average translation latency of each
design to relate to our latency sensitivity study. As shown
in Figure 14(a), the average translation latency across all
benchmarks for designs with private TLBs and two-level
TLBs is 101.1 and 27.7 cycles, respectively. This level of
translation latency, if uniformly distributed, should not result
in more than a 50% performance slowdown according to
Figure 7. However, as shown in Figure 14(b), the average
translation latency of the requests that trigger page walks
is well above 1000 cycles for the two designs that use an
IOMMU. This is due to both long page walk latency and
queueing latency when there are multiple outstanding page
walk requests. With such long latencies added to the runtime,
accelerators become completely ineffective in latency hiding,
even on shorter latencies which could otherwise be tolerated
by double buffering. In contrast, host page walks reduce
page walk latencies and meanwhile minimize the variance of
address translation latency. Therefore, the overall performance
benefits from a much lower average address translation latency
(3.2 cycles) and decreased level of variations.

E. Summary: Two-level TLBs and Host Page Walks

Overall design. In summary, to provide an efficient address
translation support for accelerator-centric architectures, we

d
e
b
lu

r

d
e
n
o
is

e

re
g
is

t

se
g

b
la

ck

st
re

a
m

sw
a
p
t

d
is

p
m

a
p

lp
ci

p

e
kf

sl
a
m

ro
b
lo

c

m
e
a
n

0

20

40

60

80

100

A
v
e
ra

g
e
 P

a
g
e
 W

a
lk

 L
a
te

n
cy

Medical Imaging Commercial Vision Navigation

hostPageWalk

Fig. 13. Average page walk latency when offloading page walks to the host
core MMU

privateTLBs

twoLevelTLB

twoLevelTLB +

hostPageWalk

(a)

0

20

40

60

80

100

120

A
v
e
ra

g
e
 L

a
te

n
cy

3.2

privateTLBs

twoLevelTLB

twoLevelTLB +

hostPageWalk

(b)

0

500

1000

1500

2000

2500

3000

90.3

Fig. 14. Average translation latency of (a) all requests; (b) requests that
actually trigger page walks

TABLE III
CONFIGURATION OF OUR PROPOSED ADDRESS TRANSLATION SUPPORT

Component Parameters
Private TLBs 32-entry, 1-cycle access latency
Shared TLB 512-entry, 3-cycle access latency
Host MMU 4KB page, 8KB page walk cache [28]
Interconnect Mesh, 4-stage routers

first enhance the IOMMU approach by designing a low-
latency private TLB for each accelerator. Second, we present a
shared level-two TLB design to enable page sharing between
accelerators, reducing duplicate TLB misses. The two-level
TLB design effectively reduces the number of page walks by
76.8%. Finally, we propose to offload page walk requests to the
host core MMU so that we can efficiently handle page walks
with an average latency of 58 cycles. Table III summarizes the
parameters of key components in our design.

Overall system performance. Figure 15 compares the perfor-
mance of different designs against the ideal address translation.
Note that the first three designs rely on the IOMMU for
page walks which could take more than 900 cycles. Our
proposed three designs, as shown in Figure 15 achieve 23.3%,
51.8% and 93.6% of the ideal address translation performance,
respectively, while the IOMMU baseline only achieves 12.3%
of the ideal performance. The performance gap between our
combined approach (two-level TLBs with host page walks)
and the ideal address translation is reduced to 6.4% on average,
which is in the range deemed acceptable in the CPU world (5-
15% overhead of runtime [27], [41], [40], [42]).

d
e
b
lu

r

d
e
n
o
is

e

re
g
is

t

se
g

b
la

ck

st
re

a
m

sw
a
p
t

d
is

p
m

a
p

lp
ci

p

e
kf

sl
a
m

ro
b
lo

c

g
m

e
a
n

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rf

o
rm

a
n
ce

 R
e
la

ti
v
e
 t

o
Id

e
a
l
A

d
d
re

ss
 T

ra
n
sl

a
ti

o
n

Medical Imaging Commercial Vision Navigation

baseline

privateTLB

twoLevelTLB

twoLevel+hostPageWalk

Fig. 15. Total execution time normalized to ideal address translation

V. DISCUSSION

A. Impact of More Accelerators

While we have shown that significant performance improve-
ment can be achieved for four accelerator instances by sharing
resources including the level-two TLBs and host MMU, it
is possible that resource contention with too many sharers
results in performance slowdown. Specifically, since CPU
MMUs typically handle one page walk at a time, the host
core MMU can potentially become a bottleneck as the number
of outstanding shared TLB misses increases. To evaluate the
impact of launching more accelerators by the same host core,
we run simulations with 16 accelerator instances in the system
with the same configuration summarized in Table III.

We compare the average number of outstanding shared TLB
misses4 for the 4-instance and 16-instance cases in Figure 16.
Our shared TLB provides a consistent filtering effect, requiring
on average only 1.3 and 4.9 outstanding page walks at the
same time in the 4-instance and 16-instance cases, respectively.
While more outstanding requests lead to a longer waiting time,
subsequent requests are likely to hit in the page walk cache
and data cache due to the regular page access pattern, thus
requiring less service time. Using a dedicated MMU with
threaded page walker [26] could reduce the waiting time.
However, the performance improvement may not justify the
additional hardware complexity, even for GPUs [25].

Figure 17 presents the overall performance of our proposed
address translation support relative to the ideal address trans-
lation when there are 16 accelerator instances. We can see that
even with the same amount of shared resource, launching 16
accelerator instances does not have a significant impact over
the efficiency of address translation, with the overhead being
7.7% on average. While even more active accelerators promise
greater parallelism, we already observe diminishing returns
in the 16-instance case, as the interconnect and memory
bandwidth is saturating.

Another way of having more active accelerators in the
system is by launching multiple accelerators using multiple
CPU cores. However, the page walker in each core MMU

4As TLB misses are generally sparse during the execution, we only sample
the number when there is at least one TLB miss.

d
e
b
lu

r

d
e
n
o
is

e

re
g
is

t

se
g

b
la

ck

st
re

a
m

sw
a
p
t

d
is

p
m

a
p

lp
ci

p

e
kf

sl
a
m

ro
b
lo

c

m
e
a
n

0

2

4

6

8

10

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

O
u
ts

ta
n
d
in

g
 L

2
 T

LB
 M

is
se

s

Medical Imaging Commercial Vision Navigation

4-instance 16-instance

Fig. 16. The average number of outstanding shared TLB misses of the 4-
instance and 16-instance cases

d
e
b
lu

r

d
e
n
o
is

e

re
g
is

t

se
g

b
la

ck

st
re

a
m

sw
a
p
t

d
is

p
m

a
p

lp
ci

p

e
kf

sl
a
m

ro
b
lo

c

g
m

e
a
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
e
rf

o
rm

a
n
ce

 R
e
la

ti
v
e
 t

o
Id

e
a
l
A

d
d
re

ss
 T

ra
n
sl

a
ti

o
n

Medical Imaging Commercial Vision Navigation

twoLevelTLB+hostPageWalk

Fig. 17. Performance of launching 16 accelerator instances relative to ideal
address translation

will not experience higher pressure in such scenarios since our
mechanism requires that accelerators only offload TLB misses
to the host core that operates within the same application’s
virtual address space. A larger shared TLB may be required
for more sharers where a banked placement could be more
efficient. We leave this for future work.

B. Large Pages

Large pages [43] can potentially reduce TLB misses by
enlarging TLB reach and speedup misses by requiring less
access to memory while walking the page table. To reduce
memory management overhead, the OS with Transparent Huge
Page [44] support can automatically construct large pages by
allocating contiguous baseline pages aligned at the large page
size. As a result, developers no longer need to identify the
data that could benefit from using large pages and explicitly
request the allocation of large pages.

As we have shown that accelerators typically feature bulk
transfers of consecutive data and are sensitive to long memory
latencies, large pages are expected to improve the overall
performance of accelerators by reducing TLB misses and page
walk latencies. We believe this approach is orthogonal to ours
and can be readily applied to the proposed two-level TLBs
and host page walk design. It is worthwhile to note that the
page sharing effect that results from tiling high-dimensional
data will become more significant under large pages, leading
to an increased number of TLB misses on common pages. Our
shared TLB design is shown to be effective in alleviating this
issue.

VI. RELATED WORK

Address Translation on CPUs. To meet the ever-increasing
memory demands of applications, commercial CPUs have
included one or more levels of TLBs [4], [45] and pri-
vate low-latency caches [28], [29] in the per-core MMU
to accelerate address translation. These MMU caches, with
different implementations, have been shown to greatly increase
performance for CPU applications [27]. Prefetching [46], [47],
[48] techniques are proposed to speculate on PTEs that will be
referenced in the future. While such techniques benefit appli-
cations with regular page access patterns, additional hardware
such as a prefetching table is typically required. Shared last-
level TLBs [40] and shared MMU caches [49] are proposed for
multicores to accelerate multithreaded applications by sharing
translations between cores. The energy overheads of TLB
resources are also studied [38], and advocate for energy-
efficient TLBs. A software mechanism has also been proposed
for address translation on CPUs [50].
Address Translation on GPUs. A recent IOMMU tuto-
rial [22] presents a detailed introduction to the IOMMU design
within the AMD fused CPU-GPUs, with a key focus on its
functionality and security. Though it also enables translation
caching in devices, no detail or quantitative evaluation is
revealed. To provide hardware support for virtual memory
and page faults on GPUs, [25], [26] propose GPU MMU
designs consisting of post-coalescer TLBs and logic to walk
the page table. As GPUs can potentially require hundreds of
translations per cycle due to high parallelism in the architec-
ture, [25] uses 4-ported private TLBs and improved page walk
scheduling, while [26] uses a highly threaded page walker to
serve bursts of TLB misses. ActivePointers [51] introduces a
software address translation layer on GPUs that supports page
fault handling without CPU involvement. However, system
abstractions for GPUs are required.

Based on our characterization of customized accelerators,
we differentiate the address translation requirements between
customized accelerators and GPUs in three ways. First, accel-
erators do not use instructions and have much more regular
access patterns compared to GPUs, which enables a simpler
private TLB design. Second, the page sharing effect between
accelerators cannot be resolved using the same coalescing
structure as in GPU since accelerators are not designed to
execute in lockstep. Instead, a shared TLB design is tailored
to compensate for the impact of data tiling. Third, while
GPUs average 60 concurrent TLB misses [26], we show that
accelerators have far less outstanding TLB misses. Therefore,
host page walks with the existing MMU cache and data cache
support are sufficient to provide low page walk latency.
Current Virtual Memory Support for Accelerators. Some
initial efforts have been made to support address translation
for customized accelerators. The prototype of Intel-Altera
heterogeneous architecture research platform [52] uses a static
1024-entry TLB with 2MB page size to support virtual
address for user-defined accelerators. A similar approach is
also adopted in the design of a Memcached accelerator [15].

Such a static TLB approach requires allocation of pinned
memory and kernel driver intervention on TLB refills. As
a result, programmers need to work with special APIs and
manually manage various buffers, which can be a giant pain.
Xilinx Zynq SoC provides a coherent interface between the
ARM Cortex-A9 processor and FPGA programmable logic
through the accelerator coherency port [53]. While prototypes
in [23], [24] are based on this platform, the address translation
mechanism is not detailed. [16] assumes a system MMU
support for the designed hardware accelerator. However, the
impact on performance is not studied. [54] studies system co-
design of cache-based accelerators, but only with a simplified
address translation model.

Modern processors are equipped with IOMMUs [19], [21],
[22] to provide address translation support for loosely cou-
pled devices, including customized accelerators and GPUs.
rIOMMU [55] improves the throughput for devices that em-
ploy circular ring buffers, such as network and PCIe SSD
controllers, but this is not intended for customized accelerators
with more complex memory behaviors. With a unified address
space, [56] proposes a sandboxing mechanism to protect the
system against improper memory accesses. While we choose
an IOMMU configuration as the baseline in this paper for its
generality, the key insights of this work are applicable to other
platforms with modest adjustments.

VII. CONCLUSION

The goal of this paper is to provide simple but efficient
address translation support for accelerator-centric architec-
tures. We propose a two-level TLB design and host page
walks tailored to the specific challenges and opportunities of
customized accelerators. We find that a relatively small and
low-latency private TLB with 32 entries for each accelerator
reduces page walks by 30.4% compared to the IOMMU
baseline. Adding a shared 512-entry TLB eliminates 75.8%
of total page walks by exploiting page sharing resulting from
data tiling. Moreover, by simply offloading page walk requests
to the host core MMU, the average page walk latency can be
reduced to 58 cycles. Our evaluation shows that the combined
approach achieves 93.6% of the performance of the ideal
address translation.

This paper is the first to provide hardware support for
a unified virtual address space between the host CPU and
customized accelerators with marginal overhead. We hope
that this paper will stimulate future research in this area and
facilitate the adoption of customized accelerators.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback.
This work is partially supported by the Center for Domain-
Specific Computing under the NSF InTrans Award CCF-
1436827; funding from CDSC industrial partners including
Baidu, Fujitsu Labs, Google, Huawei, Intel, IBM Research
Almaden and Mentor Graphics; and C-FAR, one of the six
centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

REFERENCES

[1] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A flexible
multicore accelerator with virtualized execution for mobile multimedia
applications,” in MICRO-42, 2009.

[2] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ISCA-37, 2010.

[3] C. Johnson, D. Allen, J. Brown, S. VanderWiel, R. Hoover, H. Achilles,
C.-Y. Cher, G. May, H. Franke, J. Xenedis, and C. Basso, “A wire-speed
powertm processor: 2.3ghz 45nm soi with 16 cores and 64 threads,” in
ISSCC, 2010.

[4] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks,
M. Greenberg, G. Levinsky, M. Luttrell, C. Olson, Z. Samoail, M. Smit-
tle, and T. Ziaja, “Sparc t4: A dynamically threaded server-on-a-chip,”
IEEE Micro, vol. 32, pp. 8–19, Mar. 2012.

[5] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing,” IEEE Micro,
vol. 32, pp. 38–51, Sept. 2012.

[6] A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. VanderWiel,
“Hardware acceleration in the ibm poweren processor: Architecture and
performance,” in PACT-21, 2012.

[7] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture support for accelerator-rich cmps,” in DAC-49, 2012.

[8] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: Balancing efficiency and
flexibility in specialized computing,” in ISCA-40, 2013.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural ac-
celeration for general-purpose approximate programs,” in MICRO-45,
2012.

[10] R. Sampson, M. Yang, S. Wei, C. Chakrabarti, and T. F. Wenisch,
“Sonic millip3de: A massively parallel 3d-stacked accelerator for 3d
ultrasound,” in HPCA-19, 2013.

[11] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA-
38, 2011.

[12] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: Reducing
the energy of mature computations,” in ASPLOS-XV, 2010.

[13] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture support for domain-specific accelerator-rich cmps,” ACM
Trans. Embed. Comput. Syst., vol. 13, pp. 131:1–131:26, Apr. 2014.

[14] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and P. Ran-
ganathan, “Meet the walkers: Accelerating index traversals for in-
memory databases,” in MICRO-46, 2013.

[15] M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line accel-
erator for memcached,” Computer Architecture Letters, vol. 13, no. 2,
pp. 57–60, 2014.

[16] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: Designing soc accelerators for mem-
cached,” in ISCA-40, 2013.

[17] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, “A quan-
titative analysis on microarchitectures of modern cpu-fpga platforms,”
in DAC-53, 2016.

[18] HSA Foundation, HSA Platform System Architecture Specification 1.0,
2015.

[19] Advanced Micro Devices, Inc., AMD I/O Virtualization Technology
(IOMMU) Specification, 2011.

[20] ARM Ltd., ARM System Memory Management Unit Architecture Spec-
ification, 2015.

[21] Intel Corporation, Intel Virtualization Technology for Directed I/O
Architecture, 2014.

[22] A. Kegel, P. Blinzer, A. Basu, and M. Chan, “Virtualizing io through io
memory management unit (iommu),” in ASPLOS-XXI Tutorials, 2016.

[23] E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on little clients,”
in ISCA-40, 2013.

[24] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze,
and M. Oskin, “Snnap: Approximate computing on programmable socs
via neural acceleration,” in HPCA-21, 2015.

[25] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support for
address translation on gpus: Designing memory management units for
cpu/gpus with unified address spaces,” in ASPLOS-XIX, 2014.

[26] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address
translation for 100s of gpu lanes,” in HPCA-20, 2014.

[27] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching: Skip, don’t
walk (the page table),” in ISCA-37, 2010.

[28] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating two-
dimensional page walks for virtualized systems,” in ASPLOS-XIII, 2008.

[29] Intel Corporation, TLBs, Paging-Structure Caches, and Their Invalida-
tion, 2008.

[30] Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Toward
cache-friendly hardware accelerators,” in Proc. Sensors to Cloud Archi-
tectures Workshop (SCAW), in conjuction with HPCA-21, 2015.

[31] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
characterization and architectural implications,” in PACT-17, 2008.

[32] J. Hestness, S. W. Keckler, and D. A. Wood, “A comparative analysis
of microarchitecture effects on cpu and gpu memory system behavior,”
in IISWC, 2014.

[33] J. Cong, Z. Fang, M. Gill, and G. Reinman, “Parade: A cycle-accurate
full-system simulation platform for accelerator-rich architectural design
and exploration,” in ICCAD, 2015.

[34] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[35] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,”
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 30, pp. 473–491, Apr.
2011.

[36] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, CACTI 6.0:
A tool to model large caches. HP Laboratories, 2009.

[37] N. Amit, M. Ben-Yehuda, and B.-A. Yassour, “Iommu: Strategies for
mitigating the iotlb bottleneck,” in Workshop on Interaction between
Operating Systems and Computer Architecture (WIOSCA), 2010.

[38] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient address
translation,” in HPCA-22, 2016.

[39] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill, “Translation
lookaside buffer consistency: A software approach,” in ASPLOS-III,
1989.

[40] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level tlbs
for chip multiprocessors,” in HPCA-17, 2011.

[41] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in ISCA-40, 2013.

[42] C. McCurdy, A. L. Coxa, and J. Vetter, “Investigating the tlb behavior
of high-end scientific applications on commodity microprocessors,” in
ISPASS, 2008.

[43] M. Talluri and M. D. Hill, “Surpassing the tlb performance of superpages
with less operating system support,” in ASPLOS-VI, 1994.

[44] A. Arcangeli, “Transparent hugepage support,” in KVM Forum, 2010.
[45] P. Hammarlund, “4th generation intel core processor, codenamed

haswell,” in Hot Chips, 2013.
[46] B. L. Jacob and T. N. Mudge, “A look at several memory management

units, tlb-refill mechanisms, and page table organizations,” in ASPLOS-
VIII, 1998.

[47] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based tlb
preloading,” in ISCA-27, 2000.

[48] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for tlb
prefetching: An application-driven study,” in ISCA-29, 2002.

[49] A. Bhattacharjee, “Large-reach memory management unit caches,” in
MICRO-46, 2013.

[50] B. Jacob and T. Mudge, “Software-managed address translation,” in
HPCA-3, 1997.

[51] S. Shahar, S. Bergman, and M. Silberstein, “Activepointers: a case for
software address translation on gpus,” in ISCA-43, 2016.

[52] Intel Corporation, Accelerator abstraction layer software programmers
guide.

[53] S. Neuendorffer and F. Martinez-Vallina, “Building zynq accelerators
with vivado high level synthesis.,” in FPGA, 2013.

[54] Y. S. Shao, S. L. X. V. Srinivasan, and G.-Y. W. D. Brooks, “Co-
designing accelerators and soc interfaces using gem5-aladdin,” in
MICRO-49, 2016.

[55] M. Malka, N. Amit, M. Ben-Yehuda, and D. Tsafrir, “riommu: Efficient
iommu for i/o devices that employ ring buffers,” in ASPLOS-XX, 2015.

[56] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border control:
sandboxing accelerators,” in MICRO-48, 2015.

