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Abstract--Register allocation may be viewed as a graph coloring problem. Each node in the 
graph stands for a computed quantity that resides in a machine register, and two nodes are 
connected by an edge if the quantities interfere with each other, that is, if they are simultaneously 
live at some point in the object program. This approach, though mentioned in the literature, was 
never implemented before. Preliminary results of an experimental implementation in a PL/I 
optimizing compiler suggest that global register allocation approaching that of hand-coded 
assembly language may be attainable. 

Register allocation Optimizing compilers Graph coloring 

1. O V E R V I E W  O F  R E G I S T E R  A L L O C A T I O N  

In this paper we describe the Register Allocation Phase of an experimental PL/I compiler 
for the IBM System/370. (For an overview of the entire compiler see Cocke and Mark- 
stein I-l], for background information on optimization, see Refs [1] and [2].) It is the 
responsibility of this phase to map the unlimited number of symbolic registers assumed 
in the intermediate language into the 17 real machine registers, namely the 16 general- 
purpose registers (RO-R15), and the Condition-code (CC). 

The essence of our approach is that it is uniform and systematic. Compiler back-ends 
must deal with the idiosyncrasies of the machine instructions; for example, register pairs, 
the fact that register R0 is an invalid base register, and that the contents of some machine 
registers are destroyed as a side-effect of particular instructions. In our approach all 
these idiosyncrasies are entered in a uniform manner in our data structure, the interfer- 
ence graph. Afterwards this data structure is manipulated in a very systematic way. 

Also, our approach has a rather different personality than traditional ones because we 
do global register allocation across entire procedures. Furthermore, except for the regis- 
ter which always contains the address of the DSA ("dynamic storage area", i.e. current 
stack frame) and is the anchor for all addressability, all other registers are considered to 
be part of a uniform pool and all computations compete on an equal basis for these 
registers. Most compilers reserve subsets of the registers for specific purposes; we do the 
exact opposite. 

In our compiler a deliberate effort is made to make things as hard as possible for 
register allocation, i.e. to keep as many computations as possible in registers rather than 
in storage. For example, automatic scalars are usually kept in registers rather than in the 
DSA, and subroutine linkage also attempts to pass as much information as possible 
through registers. It is the responsibility of code generation and optimization to take 
advantage of the unlimited number of registers allowed in the intermediate language in 
order to minimize the number of loads and stores in the program, since these are much 
more expensive than register to register instructions. Then hopefully register allocation 
will map all these registers into the 17 that are actually available in the hardware. If not, 
it is register allocation's responsibility to put back into the object program the minimum 
amount of spill code, i.e. of stores and reloads of registers, that is needed. 

As long as no spill code need be introduced, we feel that our approach to register 
allocation does a better job than can be done by hand-coders. For example, if there is a 
slight change in a program, when it is recompiled the Register Allocation Phase may 
produce a completely different allocation to accommodate the change. A hand-coder 
would be irresponsible to proceed in such a fashion. We also feel that our compiler 
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succeeds in keeping things in registers rather than in storage better than other compilers, 
and that this is one of the salient features of the personality of the object code we 
produce. Moreover the mathematical elegance of the graph coloring approach described 
below, its systematic and uniform way of dealing with hardware idiosyncrasies, and the 
fact that its algorithms are computationally highly efficient, are convincing arguments in 
its favor. 

2. R E G I S T E R  A L L O C A T I O N  AS A G R A P H  C O L O R I N G  P R O B L E M  

Our approach to register allocation is via graph coloring. This has been suggested by 
Cocke [2], Yershov [3], Schwartz [4], and others, but has never been worked-out in 
detail nor implemented before. Recall that a coloring of a graph is an assignment of a 
color to each of its nodes in such a manner that if two nodes are adjacent, i.e. connected 
by an edge of the graph, then they have different colors. A coloring of a graph is said to 
be an n-coloring if it does not use more than n different colors. And the chromatic 
number of a graph is defined to be the minimal number of colors in any of its colorings, 
i.e. the least n for which there is an n-coloring of it. 

It is well-known [5] that given a graph G and a natural number n > 2, the problem of 
determining whether G is n-colorable, i.e. whether or not there is an n-coloring of G, is 
NP-complete. This suggests that in some cases an altogether impractical amount of 
computation is needed to decide this, i.e. that in some cases the amount of computation 
must be an exponential function of the size of G. 

In fact experimental evidence indicates that the NP-completeness of graph coloring is 
not a significant obstacle to a register allocation scheme based on graph coloring. How- 
ever it should be pointed out that given an arbitrary graph it is possible to construct a 
program whose register allocation is formulated in terms of coloring this graph (see 
Appendix 2). Thus some programs must give rise to serious coloring problems. 

Our approach to register allocation is to build a register interference graph for each 
procedure in the source program, and to obtain 17-colorings of these interference graphs. 
Roughly speaking, two computations which reside in machine registers are said to inter- 
fere with each other if they are live simultaneously at any point in the program. 

For each procedure P in the source program an interference graph is constructed 
whose nodes stand for the 17 machine registers and for all computations in the procedure 
• P which reside in machine registers, and whose edges stand for register interferences. If 
the chromatic number of this graph is 17, then a register allocation has been achieved, 
and the register assigned to a computation is that one of the 17 machine registers which 
has the same color that it does. Thus computations which interfere cannot be assigned to 
the same machine register. On the other hand, if the chromatic number is greater than 
17, then spill code must be introduced to store and reload registers in order to obtain a 
program whose chromatic number is 17. 

3. THE C O N C E P T  OF I N T E R F E R E N C E  

If a program has two loops of the form D O J  = I TO I00, J could be kept in a 
different register in each of the loops. In order to make this possible, each symbolic 
register is split into the connected components of its def-use (definition-use) chains, and it 
is these components, c~alled names, which are the nodes of our interference graph. This is 
especially important because we always do global register allocation for entire pro- 
cedures. Much additional freedom in coloring is obtained by uncoupling distant regions 
of the procedure by using names instead of symbolic registers as the nodes of the 
interference graph. However, as we explain below, some of these names are later co- 
alesced, at which point the mapping from symbolic registers to names becomes many- 
many rather than one-many. 

Our notion of liveness is not quite the same as that used in optimization. We consider 
a name X to be live at a point L in a program P if there is a control flow path from the 
entry point of P to a definition of X and then through L to a use of X at point U, which 
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has the property that there is no redefinition of X on the path between L and the use of 
X at U. I.e. a computat ion is live if it has been computed and will be used before being 
recomputed. 

Above it was stated that two names interfere if they are ever live simultaneously. Thus 
if at a point in the program there are k live names Ni, it is necessary to add k(k - 1)/2 
edges to the interference graph. However, we do not actually do this. If k names Ni are 
live at the definition point of another name N',  we add the k interferences (N',N~) to the 
graph. In other words, the notion of interference that we actually use is that two names 
interfere if one of them is live at a definition point of the other. This interference concept 
is better than the previous one for two reasons: it is less work to build the interference 
graph (k edges added vs k(k + 1)/2), and there are programs for which the resulting 
interference graph has a smaller chromatic number. Here is an example of such a 
program:  

P: PROC(MODE);  

DCL 

MODE BIT( 1 ), 

(A 1 ,A2,A3,A4,A5,A6,A7,A8,A9,A 10, 

B 1 ,B2,B3,B4,B5,B6,B7,B8,B9,B 10, 

SUM) FIXED BIN(15) AUTO, 

(U(10),V(10))  FIXED BIN(15) STATIC EXT; 

1F MODE 

THEN DO; 

A I = U ( I ) ;  A2=U(2) ;  A3=U(3) ;  A4=U(4) ;  A5=U(5) ;  

A6=U(6) ;  A7=U(7) ;  A8=U(8) ;  A9=U(9) ;  A I 0 = U ( 1 0 ) ;  

END; 

ELSE DO; 

BI=V(1 ) ;  B2=V(2) ;  B3=V(3) ;  B4=V(4) ;  B5=V(5) ;  

B6=V(6) ;  B7---V(7); B8=V(8) ;  B9=V(9) ;  BI0=V(10) ;  

END; 

LABEL:; 

IF MODE 

THEN SUM = A I + A 2 + A 3 + A 4 + A 5 + A 6 + A 7 + A 8 + A 9 + A I 0 ;  

ELSE SUM = B I + B 2 + B 3 + B 4 + B 5 + B 6 + B 7 + B 8 + B 9 + B 1 0 ;  

RETURN (SUM); 

END P; 
~ l  6 l  D 
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At the point in the program P marked L A B E L  the ten A~ and the ten B i are simul- 
taneously live, and so is MODE.  Thus with the first method of building the interference 
graph there is a 21-clique and the chromatic number of the graph is 21. [Recall that an 
n-clique is an n-node graph with all possible n(n - 1)/2 edges.] With the second method, 
however, none of the ten A variables interferes with any of the ten B variables, and the 
chromatic number of the interference graph is only 11. (A technical point: we have 
ignored the fact that all our interference graphs contain the 17-clique of machine registers 
as a subgraph. Thus the chromatic number is actually 17 instead of l l.) 

4. M A N I P U L A T I N G  THE I N T E R F E R E N C E S  

There are 3 stages in processing the interference graph of a procedure. The first stage is 
building the graph in the manner described above. This is done by the routine C ITF. 
The second stage is coalescing nodes in this graph in order to force them to get the same 
color and be assigned to the same machine register, This is done by the routine C LR. 
The third and final stage is attempting to construct a 17-coloring of the resulting graph. 
This is done by a fast routine called C CLR, or by a slower routine C NP which uses 
backtracking and is guaranteed to find a 17-coloring if there is one. Of course, back- 
tracking is dangerous: in some unusual circumstances C NP uses exponential amounts 
of time. 

We now make a few general remarks about the preprocessing of the interference graph 
which is done for the purpose of assuring that separate nodes in the graph must get the 
same color. This is done by coalescing nodes, i.e. taking two nodes which do not interfere 
and combining them in a single node which interferes with any node which either of 
them interfered with before. Note that coalescing nodes in the graph before coloring it is 
also a way of doing some pre-coloring, for any node which is coalesced with one of the 
17 machine registers has in fact been assigned to that register. Of course, such pre- 
colorings are a strong constraint on the final coloring, and should be avoided if possible, 
preferably replaced by coalesces not involving real machine registers. It should be 
pointed out that preprocessing the graph in this manner gives much better results than 
warping the coloring algorithms to try to give certain nodes the same color. 

Here is an example of a typical situation in which one might wish to coalesce nodes. If 
there is a L R  T, S (load register T from S) in the object program, it is desirable to give the 
names S and T the same color so that it isn't actually necessary to copy the contents of 
register S into register T and thus the Final Assembly Phase needn't emit any code for 
this intermediate language instruction. (This optimization is traditionally referred to as 
subsumption.) C LR achieves this by checking the source S and target T of each LR 
instruction in the object program to see whether or not they interfere. If they don't, then 
C LR alters the graph by combining or coalescing the nodes for S and T. Thus any 
coloring of the graph will necessarily give them the same color. 

However, in order to make this work well, the definition of interference presented 
above must be altered yet again! The refinement is that the target of an LR doesn't 
necessarily have to be allocated to a different register than its source. Thus a L R  T,S at a 
point at which S and the k names Ni are live only yields the k interferences of the form 
(T,Ni),  but not the interference (T,S). (See Appendix 1 for a consistent philosophy of the 
"'ultimate" notion of interference and approximations to it.) 

Subsumption is a very useful optimization, because intermediate language typically 
contains many LR's. Some of these are produced for assignments of one scalar to 
another. But even more are generated for subroutine linkages and are introduced by 
value numbering and by reduction in strength. Besides eliminating LR's  by coalescing 
sources and targets, C LR also attempts to coalesce computations with the condition 
code, and to coalesce the first operand and the result of instructions like subtract which 
are actually two-address (to avoid the need for the Final Assembly Phase to emit code to 
copy the operand). C LR also attempts to coalesce the operands of certain instructions 
with real registers in order to assign them to register pairs. 



Register allocation via coloring 51 

How is the interference graph actually colored? This is done by using the following 
idea, which is surprisingly powerful. If one wishes to obtain a 17-coloring of a graph G, 
and if a node N has less than 17 neighbors, then no matter how they are colored there 
will have to be a color left over for N. Thus node N can be thrown out of the graph G. 
The problem of obtaining a 17-coloring of G has therefore been recursively reduced to 
that of obtaining a 17-coloring of a graph G' with one node (and usually several edges) 
less than G. Proceeding in this manner, it is often the case that the entire graph is thrown 
away, i.e. the problem of 17-coloring the original graph is reduced to that of 17-coloring 
the empty graph. In fact, C CLR gives up if the original graph cannot be reduced to the 
empty graph, and so spill code has to be introduced. 

On the other hand, C NP  won't give up until it proves that the graph is not 17-color- 
able; it uses an urgency criterion to select nodes for which to guess colors, and back- 
tracks if guesses fail. The urgency of a node is defined to be (the current number of 
uncolored neighbors that it has) divided by (the number of possible colors that are 
currently left for it). C CLR runs in time linear in the size of the graph, while C N P  in 
the worst case is exponential, although this doesn't seem to happen often. The usual 
situation is that C NP  quickly confirms that graphs for which C CLR gave up indeed 
have no 17-coloring. In fact, up to now in our experiments running actual PL/I  source 
programs through the experimental compiler, in the handful of cases in which C N P  
found a 17-coloring and C CLR didn't, C NP has achieved this by guessing without 
having to backtrack. In view of this situation, we have disabled the dangerous back- 
tracking feature o f C  NP. Furthermore,  C N P  is only invoked when C CLR fails 
and the user of the compiler has requested a very high level of optimization. 

5. R E P R E S E N T A T I O N  O F  T H E  I N T E R F E R E N C E  G R A P H  

One of the most important problems in doing register allocation via graph coloring is 
to find a representation for the interference graph, i.e. a data structure, for which the 3 
different kinds of operations which are performed on i t --namely building the graph, 
coalescing nodes, and coloring i t - -can be done with a reasonable investment of CPU 
time and storage. In order to do these three different kinds of manipulations efficiently, it 
is necessary to be able to access the interference graph both at random and sequentially. 
In other words, it is necessary to be able to quickly determine whether or not two given 
names interfere, and to also be able to quickly run through the list of all names that 
interfere with a given name. 

While building the graph one accesses it at random in order to determine whether an 
edge is already in the graph or must be added to it. While coloring the graph one 
accesses it sequentially, in order, for example, to count the number of neighbors that a 
node has (so that if this number is less than 17 the node can be deleted). And while 
coalescing nodes one accesses the graph both in a random and in a sequential fashion. 
For each LR T,S in the object code one must first check whether or not T and S 
interfere, which is a random access. If T and S don't  interfere, one must then make all 
interferences of the form (S,X) into ones of the form (T,X). To do this requires sequential 
access to all names that interfere with S, and random access to see which interferences 
(T, XI are new and necessitate adding an edge to the graph. 

Our solution to the problem of satisfying both of these requirements--fast random and 
sequential access--is to simultaneously represent the interference graph in two different 
data structures, one of which is efficient for random access, and the other for sequential 
access. 

For  random access operations we use an area I T F S  in which the interference graph is 
represented in the form of a bit matrix. We take advantage of the fact that the adjacency 
matrix of the interference graph is symmetrical to halve the storage needed. The precise 
addressing rule is as follows. Consider two nodes numbered i and j, where without loss of 
generality we assume that i is less than or equal to j. Then these are adjacent nodes in the 
interference graph if the i + j2/2 th bit of the area I T F S  is a 1, and if this bit is a 0 they 
are not adjacent. (Here the result of the division is truncated to an integer.) 
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Since the adjacency matrix is usually quite sparse, and the number of bytes in the 
I T F S  area grows roughly as a quadratic function f ( n )  = n2/16 of the number n of nodes 
in the interference graph, for large programs it would be better if hashing were used 
instead of direct addressing into a bit matrix (somewhat more CPU time would be traded 
for much less main memory). Since the coefficient 1/16 of n 2 is small, if the program is 
not too large our bit matrix approach is ideal since it uses a small amount  of storage and 
provides immediate access to the desired information. 

For  sequential access operations we keep in an area L S T S  lists of all of the nodes 
which are adjacent to a given one, in the form of linked 32-byte segments. Each segment 
begins with a 4-byte forward pointer which is either 0 or is the offset in L S T S  of the first 
byte after the next segment of the list. This forward pointer is followed in the segment by 
fourteen 2-byte fields for the adjacent nodes. For  any given node J, the J th  element of the 
vector N X T  is either 0, or gives the offset in L S T S  of the first empty adjacent-node field 
in the latest segment of the list of nodes which are adjacent to J, or, if the latest segment 
is full, it gives the offset of the first byte after the latest segment. All segments in a list are 
full (give all 14 adjacent nodes), except possibly the latest one. 

6. DELETING INTERFERENCES AND PROPAGATING COALESCES 

Consider a L R  T,S  at a point in the object program where besides S the names 
L I , L  2 . . . .  are also live. Furthermore,  suppose S was subsumed with Li. We carefully 
avoided making T and S interfere, but it turns out that we erroneously made T and Li 
interfere. This may have blocked our subsuming T and Li, which in turn may have 
blocked other subsumptions. Our solution to this problem is as follows: After C LR 
does all possible desirable coalesces, the entire interference graph is rebuilt from scratch, 
and typically there will be fewer interferences than before. We then run C LR again to 
see if any of the coalesces which were impossible before have now become possible. This 
entire process is repeated either a fixed number of times (usually twice will do), or until 
no further coalesces are obtained. It turns out that in practice this is as fast and uses 
much less storage than the expensive data structure (described below) which directly 
supports deleting interferences and propagating coalesces. 

Here is a more arcane example of a situation which requires interferences to be 
removed'  If the source and target of a L R  instruction are coalesced, then the L R  no 
longer makes its source and target interfere with the condition code, nor does it make its 
target interfere with all names live at that point. 

As it is of some theoretical interest, we now describe the alternate representation of the 
interference graph mentioned above. The graph has a count associated with each edge. 
This is called the interference count, and it is the number of program points at which the 
two computations interfere. As interferences are deleted, these counts are decremented, 
and if they reach zero then the two computations no longer interfere with .ach other. 

Let us be more precise. In the framework necessary to directly propagate coalesces, the 
interference graph is best thought of as consisting of three sparse symmetric matrices. 
The first one gives the interference count of any two given names. The second one gives a 
pointer to the list of interferences that must be deleted if these two names are coalesced, 
and the third sparse matrix is boolean and indicates whether it is desired to coalesce the 
pair of names if their interference count hits zero. In practice these three sparse matrices 
can be combined into a single one. Hash tables are needed to provide random access to 
elements of the matrix, as well as pointers in both directions to chain rows and columns 
together for sequential access and to permit fast deletion. 

The problem with this scheme for directly deleting interferences and propagating 
coalesces is the large amount of memory needed to represent the interference graph. 

7. REPRESENTATION OF THE PROGRAM DURING COLORING 

Here are some details about the way we represent the program in terms of names. In 
order to avoid rewriting the intermediate language text, it is actually left in terms of 
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symbolic registers. But it is supplemented by a vector NM MAP giving the name of the 
result produced by each intermediate language instruction, and also by a "ragged" array 
giving for each basic block in the intermediate language text a list of ordered pairs 
(symbolic register live at entry to the basic block, corresponding name). And the name of 
a computation is represented as the index into the intermediate language text of an 
arbitrarily chosen canonical definition point for it. It is then possible to interpret one's 
way down a basic block maintaining at each moment a map from the symbolic registers 
into the corresponding names. C ITF does this, keeping track of which names are live 
at each point, in order to build the interference graph. We also take advantage of this 
scheme to avoid rewriting the intermediate language text to reflect coalesces--only the 
ragged array and the NM MAP vector are changed. 

8. H A N D L I N G  OF M A C H I N E  I D I O S Y N C R A S I E S  

It was mentioned above that one of the important advantages of the coloring approach 
to register allocation is that special case considerations can be taken care of by ad- 
ditional interferences in the graph. For example, the fact that the base register in a load 
instruction cannot be assigned to the register R0, is handled by making all names that 
are used as base registers interfere with R0. The fact that a call to a PL/I subprogram or 
a library routine has the side-effect of destroying the contents of certain machine registers 
is handled by making all names live across the call interfere with all registers whose 
contents are destroyed. Thus i f j  computations are live across the call and k registers are 
destroyed by it, a total ofjk interferences are added to the graph to reflect this fact. 

Although subtract is a destructive 2-address instruction, in the intermediate language 
subtract is 3-address and non-destructive. This is done to make possible a systematic 
uniform optimization process. Consider the intermediate language instruction SR 
NI,N2,N3 (N1 := N2 - N3). If N1 and N2 are assigned to the same register, then code 
emission in the Final Assembly Phase will emit a single instruction, subtract, for this 
intermediate language instruction. If not, it will emit LR N1,N2 followed by SR N1,N3. 
However, if N1 and N3 are assigned to the same register, then the Final Assembly Phase 
is in trouble, because copying N2 into N1 destroys N3. In order to avoid this code- 
emission problem, we make N1 and N3 interfere when building the interference graph. 

A large set of special-purpose interferences has to do with intermediate language 
instructions involving the condition code (CC). The intermediate language ignores the 
fact that there is actually only one CC. The way we get around this is exemplified by 
contrasting the compare intermediate language instruction with the actual compare 
instruction. The intermediate language compare is three-address: two registers are com- 
pared, and bits 2 and 3 of the result register express the result of the compare. However 
compare always sets the bits of the CC, not those of an arbitrary register. Code emission 
in the Final Assembly Phase emits machine code for the compare intermediate language 
instruction in the following manner. If the result of the compare intermediate language 
instruction is assigned to the CC, then it merely generates a compare. If the result of the 
compare intermediate language instruction is assigned to one of the 16 general-purpose 
registers, then code emission generates a compare followed by a BALR which copies the 
contents of the CC into the indicated general-purpose register. 

(A very special issue is how to deal with the fact that some instructions set the CC to 
reflect the sign of their result. For instance, subtract does this. In the Final Assembly 
Phase no code is emitted for a compare with zero of the result of a subtraction if it comes 
later in the same basic block as the subtract and none of the intervening instructions 
destroys the CC.) 

9. T E C H N I Q U E S  FOR I N S E R T I N G  S P I L L  C O D E  

Our techniques for inserting spill code are quite heuristic and ad hoc. The following 
notion is the basis for our heuristic. At any point in the program, the pressure on the 
registers is defined to be equal to the number of live names (it might be interesting to 
change this to the number of live colors) plus the number of machine registers which are 
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unavailable at that point because their contents are destroyed as a side-effect of the 
current instruction. Under the level two optimization compiler option, we insert spill 
code to immediately lower the maximum pressure on the registers in the program to 14. 
Under the level three optimization compiler option, successive trys are made. Spill code 
is inserted to bring the maximum pressure down to 20, then down to t9, etc., until a 
colorable program is obtained. 

After inserting spill code it is necessary to recompute the def-use chains and the right 
number of names; there are generally more names than before. We also rerun dead code 
elimination, which has the side-effect of setting the operand-last-use flag bits in the 
intermediate language text--these flags are needed by C ITF to keep track of which 
names are live at each point in the program. Note that since intermediate language text 
containing spill code is reanalyzed by optimization routines, and these routines only 
understand intermediate language written in terms of symbolic registers, the intermediate 
language text containing spill code must be correct in terms of symbolic registers as well 
as names. 

How is spill code inserted to lower the register pressure? We attempt to respect the 
loop structure of the program and to put spill code in regions of the program which are 
not executed frequently. This is done in the following manner. First the decomposition of 
the program into flow-graphs is used bottom-up to compute the maximum register 
pressure in each basic block and each interval of all orders. As we do this we also obtain 
a bit vector of mentioned names for each basic block and interval. A pass-through is 
defined to be a computation which is live at entry to an interval but which is not 
mentioned (i.e. neither used nor redefined) within it. Clearly pass-throughs of high-order 
intervals are ideal computations to spill, i.e. to keep in storage rather than in a register 
throughout the interval for which they are a pass-through. We use the decomposition of 
the program into flow-graphs top-down in order to fix all those intervals in which the 
maximum pressure is too high by spilling pass-throughs. 

We have explained how spill decisions are made for pass-throughs, but we have not 
explained how the spill code is actually inserted. This is done by using two rules. First of 
all, if a name is spilled anywhere, then we insert a store instruction at each of its 
definition points. And pass-throughs are reloaded according to the following rule: load at 
entry to each basic block B every name live at entry to B that is not spilled within B, but 
that is spilled in some basic block which is an immediate predecessor of B. These rules 
for inserting spill code are easy to carry out, but the other side of the coin is that they 
sometimes insert unnecessary code. However this unnecessary spill code is eliminated by 
a pass of dead code elimination which immediately follows. 

Further remarks: Another idea used here is that some computations have the property 
that they can be redone in a single instruction whose operands are always available. We 
call such computations never-killed. An example of a never-killed computation is a load 
address off of the register which gives addressability to the DSA. Such computations are 
recalculated instead of being spilled and reloaded. Furthermore~ if spilling pass-through 
computations doesn't lower the register pressure enough, as a last resort we traverse each 
basic block inserting spill code whenever the pressure gets too high. 

Another approach to using recomputation as an alternative to spilling and reloading, 
is what we call the rematerialization of uncoalesced LR instructions. Here the idea is to 
replace a LR which can't be coalesced away by a recomputation that directly leaves the 
result of the computation in the desired register. (Of course, this should only be done if 
repeating the computation at this point still gives the same result.) Rematerialization 
usually decreases the pressure on the registers. Furthermore, assuming that all inter- 
mediate language instructions seen at this stage of the compilation are single-cost, replac- 
ing an uncoalesced LR by a recomputation cannot increase object program path lengths, 
and it sometimes actually short:ns them. Thus there is a sense in which rematerialization 
is an optimization as opposed to a spill technique. 

Rematerialization is most helpful when there are LR's into real registers. Typically this 
occurs when parameters are passed in standard registers. The standard parameter regis- 
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ters are destroyed over calls so the computation to be passed cannot be kept in the 
standard register over the call. The adverse consequence of this is most severe in loops 
where many loop constant parameters may be kept in registers and are loaded into 
standard parameter registers before each procedure invocation. Rematerialization tends 
to reduce the requirement for registers to hold loop constant parameters. 

An entirely different approach to spilling might be based on the following observation. 
It is possible to have C CLR make the spill decisions as it colors the interference graph. 
Each time C CLR is blocked because it cannot delete any more nodes (all of them have 
more than 16 neighbors), it simply deletes a node by deciding to always keep that 
computation in storage rather than in a register. By increasing the granularity in the 
names, one could perhaps develop this into a more global and systematic approach to 
spilling than the one sketched above. 

10. C O N C L U S I O N S  

We have shown that in spite of the fact that graph coloring is NP-complete, it can be 
developed into a practical approach to register allocation for actual programs. It is also a 
pleasant surprise that coalescing nodes of the graph turns out to be an important optimi- 
zation technique, and that machine idiosyncrasies can be handled in a uniform manner. 
We believe that our approach is able to pack computations into registers globally across 
large programs more cleverly than a hand-coder can or should. However, when not all 
computations can be kept in registers across the entire program+ then the spill code that 
we insert sometimes leaves much to be desired. 
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A P P E N D I X  1. T H E  " U L T I M A T E "  N O T I O N  O F  
I N T E R F E R E N C E  

The intuitive definition of the concept of interference is that two symbolic registers (i.e. results of compu- 
tations} interfere if they cannot reside in the same machine register. Similarly, a symbolic register and a machine 
register interfere if the symbolic register cannot be assigned to that real register. Thus two registers interfere if 
there exists a point in the program, and a specific possible execution of the program for which : 

1. Both registers are defined (i.e. they have been assigned by previous computat ions  in the current execution): 
2. Both registers will be used (note that we are considering a specific execution. Thus we mean use. not 

potential use}: 
3. The values of the registers are different. 

It is clear that if these conditions are met, then assigning both symbolic registers to the same real register would 
be incorrect for that execution. It should also be clear that if any of the three conditions is not met. then such 
an assignment is correct at that point in the program, for that execution. 

Of  course, the criteria stated above are in general undecidable properties of the program. Thus  a compiler 
must  use more restrictive conditions of interference, potentially increasing the number  of registers or amount  of 
spill code required. 

One  particularly simple and sufficient criterion is that two symbolic registers interlere i1 they are ever 
simultaneously live (in the data flow sense). Considerat ion or experiment will show that this criterion is both 
expensive to compute  and overly conservative. The difficulty is that application of this standard involves adding 
interferences for all pairs of live values at every point in the program. One could at tempt to reduce this cost by 
observing how the liveness set changes during a linear reading of the program, so that only potentially new 
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interferences are added. Only growth of the liveness set need be taken into account, that is to say, the fact 
that (a) symbolic registers become alive on assignment, and (b) the set grows by union at a control flow join. 
The cost of computing the simultaneously alive criterion could be reduced by applying these observations. 

However, one can safely take into account (a) all by itself, and ignore (b), the effect of control flow joins. This 
approach, which may be called point of definition interference, is not only inexpensive to compute, but omits 
certain apparent interferences for which both symbolic registers can never be defined simultaneously in any 
particular execution of the program. Thus we approximate interference by reading the program, using precom- 
puted data flow information so that the set of live values is known at every computation. At each computation, 
the newly defined symbolic register is made to interfere with all currently live symbolic registers which cannot 
be seen to have the same value as the newly defined register. 

A P P E N D I X  2. P R O O F  THAT ALL G R A P H S  CAN ARISE IN 
R E G I S T E R  A L L O C A T I O N  

Consider the following program, It has declarations of the variables NODEi, and there are just as many of 
these variables as there are nodes in the desired graph. For each edge (NODEi, NODE2) in the desired graph, 
the corresponding variables are summed in order to make them interfere. 

P: PROC(EDGE,MODE) RETURNS(FIXED BIN); 

DCL (MODE,EDGE,X) FIXED BIN; 

DCL LABEL(number-of-edges) LABEL; 

DCL NODEi FIXED BIN STATIC EXT; 

GO TO LABEL(EDGE); 

/* THE CALL PREVENTS OPTIMIZATION */  

/*  FROM MOVING THE LOADS OF NODEi,j. */  

/*  THE ASSIGNMENT STATEMENT */  

/* MAKES NODEi AND NODEj INTERFERE. */  

/* JO1Ni,j CODE FRAGMENTS MAKE */  

/*  NAMES COME OUT CORRECTLY. */  

LABEL(edge-number): 

CALL EXTERNAL ROUTINEedge-number; 

X -- NODEi + NODEj; 

IF MODE THEN GO TO JOINi; 

JOINi: 

END P; 

ELSE GO TO JOINj; 

RETURN (X*NODEi); 
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