
Harry Xu
May 2012

Complex, concurrent software

Precision (no false positives)
Find real bugs in real executions

Need to modify JVM
(e.g., object layout, GC, or ISA-level code)

Need to demonstrate realism

(usually performance)

Otherwise use RoadRunner, BCEL, Pin, LLVM, …

Keeping track of stuff
as the program executes?

 Change application behavior (add instrumentation)

 Store per-object/per-field metadata
 Piggyback on GC

Keeping track of stuff
as the program executes?

 JVM written in Java?!
 Change application behavior (add instrumentation)

 Store per-object/per-field metadata
 Piggyback on GC
 Uninterruptible code

 Guide
 Research Archive
 Research mailing list

Jikes RVM {

 Guide
 Research Archive
 Research mailing list

Jikes RVM {

Jikes RVM source code

Dynamic
compilers

Boot image
writer

Jikes RVM source code

Run with
another JVM

Dynamic
compilers

Boot image
writer

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Build configurations:
BaseBase
BaseAdaptive
FullAdaptive
FastAdaptive

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Build configurations:
BaseBase (prototype)
BaseAdaptive (prototype-opt)
FullAdaptive (development)
FastAdaptive (production)

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Build configurations:
BaseBase
BaseAdaptive
FullAdaptive
FastAdaptive

Testing

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Build configurations:
BaseBase
BaseAdaptive
FullAdaptive
FastAdaptive

Faster builds

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Build configurations:
BaseBase
BaseAdaptive
FullAdaptive
FastAdaptive

Faster runs

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Build configurations:
BaseBase
BaseAdaptive
FullAdaptive
FastAdaptive Performance

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Edit with Eclipse
(see Guide)

Jikes RVM source code

Boot image
(native code + initial

heap space)

Run with
another JVM

Dynamic
compilers

Boot image
writer

Keeping track of stuff
as the program executes?

 Change application behavior (add instrumentation)

 Store per-object/per-field metadata
 Piggyback on GC

Bytecode Native code
Baseline compiler

Bytecode Native code
Baseline compiler

Each bytecode several x86 instructions

(BaselineCompilerImpl.java)

Bytecode Native code
Baseline compiler

Each bytecode several x86 instructions

(BaselineCompilerImpl.java)

Bytecode Native code
Baseline compiler

Profiling

Adaptive optimization
system

Bytecode Native code
Baseline compiler

Profiling

Adaptive optimization
system

Optimizing
compiler

(Faster)
native code

Bytecode Native code
Baseline compiler

Profiling

Adaptive optimization
system

Optimizing
compiler

(Faster)
native code

Bytecode

Optimizing
compiler

(Faster)
native code

Bytecode

(Faster)
native code

HIR

LIR

MIR

Resembles bytecode

Resembles assembly code

Resembles typical compiler IR
(3-address code)

Bytecode

(Faster)
native code

HIR

LIR

MIR
(Even faster)
native code

Opt levels: 0, 1, 2

Bytecode

(Faster)
native code

HIR

LIR

MIR

ExpandRuntimeServices.java

Add instrumentation at
reads, writes, allocation,
synchronization

Keeping track of stuff
as the program executes?

 Change application behavior (add instrumentation)

 Store per-object/per-field metadata
 Piggyback on GC

field0 field1 field2 header

Low address High address

field0 field1 field2 type info
block

locking &
GC

Object reference

field0 field1 field2 type info
block

locking &
GC

Object reference

Array
length elem0 elem1 type info

block
locking &

GC

Object reference

field0 field1 field2 type info
block

locking &
GC

Object reference

Steal bits

field0 field1 field2 type info
block

locking &
GC

Object reference

misc

MiscHeader.java

field0 field1 field2 type info
block

locking &
GC

Object reference

counter

field0 field1 field2 type info
block

locking &
GC

Object reference

counter

Magic! Compiles down to three
x86 instructions

field0 field1 field2 type info
block

locking &
GC

Object reference

counter

Gotcha: can’t actually use
LSB of leftmost word

2

field0 field1 field2 type info
block

locking &
GC

Object reference

counter

What’s the problem
with this code?

2

field0 field1 field2 type info
block

locking &
GC

Object reference

counter

2

field0 field1 field2 type info
block

locking &
GC

Object reference

not used

field0 field1 field2 type info
block

locking &
GC

Object reference

not used

Compiles down to three
x86 instructions

field0 field1 field2 type info
block

locking &
GC

Object reference

misc

field0 field1 field2 type info
block

locking &
GC

Object reference

misc

What if GC moves object?
What if GC collects object?

Keeping track of stuff
as the program executes?

 Change application behavior (add instrumentation)

 Store per-object/per-field metadata
 Piggyback on GC

field0 field1 field2 type info
block

locking &
GC

Object reference

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)

field0 field1 field2 type info
block

locking &
GC

Object reference

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)

field0 field1 field2 type info
block

locking &
GC

Object reference

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)

field0 field1 field2 type info
block

locking &
GC

Object reference

misc

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)
 obj.misc = markAndPossiblyCopy(obj.f)
 worklist.push(obj.misc)

field0 field1 field2 type info
block

locking &
GC

Object reference

misc

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)
 obj.misc = markAndPossiblyCopy(obj.f)
 worklist.push(obj.misc)

field0 field1 field2 type info
block

locking &
GC

Object reference

misc

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)
 obj.misc = markAndPossiblyCopy(obj.f)
 worklist.push(obj.misc) TraceLocal.scanObject()

field0 field1 field2 type info
block

locking &
GC

Object reference

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)

field0 field1 field2 type info
block

locking &
GC

Object reference

// Initially worklist populated with roots
while worklist has elements
 Object obj = worklist.pop()
 foreach reference field obj.f
 obj.f = markAndPossiblyCopy(obj.f)
 worklist.push(obj.f)

TraceLocal.processNode()

Keeping track of stuff
as the program executes?

 Change application behavior (add instrumentation)

 Store per-object/per-field metadata
 Piggyback on GC
 Uninterruptible code

 Normal application code can be interrupted
 Allocation GC
 Synchronization & yield points join a GC

 Some VM code shouldn’t be interrupted
 Heap etc. in inconsistent state

 Most instrumentation can’t be interrupted
 Reads & writes aren’t GC-safe points

@Uninterruptible
static void myMethod(Object o) {

 // No allocation or synchronization

 // No calls to interruptible methods

}

@Uninterruptible
static void myMethod(Object o) {

 currentThread.deferGC = true;
 Metadata m = new Metadata();
 currentThread.deferGC = false;

 setMiscHeader(o, offset, m);
}

Need to modify JVM internals
Need to demonstrate realism

 Guide

 Research Archive

 Research mailing list

Jikes RVM

Overview of other tasks & components

Dynamic analysis examples

Help (especially
for novices)

 Object layout
 Extra bits or words in header
 Stealing bits from references
 Discuss magic here

 Adding instrumentation
 Baseline & optimizing compilers
 Allocation sites; reads & writes
 Inlining instrumentation

 Garbage collection
 Piggybacking on GC
 New spaces

 Low-level stuff
 Uninterruptible code
 Walking the stack

 Concurrency
 Atomic stores
 Thread-local data

	Dynamic Program Analysis in Jikes RVM
	Why dynamic program analysis?
	Why Jikes RVM?
	Why Jikes RVM?
	What is dynamic analysis?
	What is dynamic analysis?
	Resources (jikesrvm.org)
	Resources (jikesrvm.org)
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	JVM written in Java?!
	What is dynamic analysis?
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	Change application behavior�(add instrumentation)
	What is dynamic analysis?
	Object layout
	Object layout
	Object layout
	Extra header bits
	Extra header word
	Extra header word
	Extra header word
	Extra header word
	Extra header word
	Extra header word
	Thread-local data
	Thread-local data
	Extra header word
	Extra header word
	What is dynamic analysis?
	Tracing existing pointers
	Tracing existing pointers
	Tracing existing pointers
	Tracing new pointers
	Tracing new pointers
	Tracing new pointers
	Processing every object
	Processing every object
	What is dynamic analysis?
	Uninterruptible code
	Uninterruptible code
	Uninterruptible code
	Conclusion
	Notes

