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Complex, concurrent software 
 

Precision (no false positives) 
Find real bugs in real executions 



Need to modify JVM 
(e.g., object layout, GC, or ISA-level code) 

 
Need to demonstrate realism 

(usually performance) 



Otherwise use RoadRunner, BCEL, Pin, LLVM, … 



Keeping track of stuff 
as the program executes? 

 
 

 Change application behavior (add instrumentation) 

 Store per-object/per-field metadata 
 Piggyback on GC 
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Bytecode 
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Resembles bytecode 

Resembles assembly code 

Resembles typical compiler IR 
(3-address code) 
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Bytecode 

(Faster) 
native code 
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ExpandRuntimeServices.java 

Add instrumentation at 
reads, writes, allocation, 
synchronization 
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field0 field1 field2 header 

Low address High address 
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What if GC moves object? 
What if GC collects object? 
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field0 field1 field2 type info 
block 

locking & 
GC 

Object reference 

// Initially worklist populated with roots 
while worklist has elements 
   Object obj = worklist.pop() 
   foreach reference field obj.f 
      obj.f = markAndPossiblyCopy(obj.f) 
      worklist.push(obj.f) 

TraceLocal.processNode() 



Keeping track of stuff 
as the program executes? 

 
 Change application behavior (add instrumentation) 

 Store per-object/per-field metadata 
 Piggyback on GC 
 Uninterruptible code 



 Normal application code can be interrupted 
 Allocation  GC 
 Synchronization & yield points  join a GC 

 Some VM code shouldn’t be interrupted 
 Heap etc. in inconsistent state 

 Most instrumentation can’t be interrupted 
 Reads & writes aren’t GC-safe points 



@Uninterruptible 
static void myMethod(Object o) { 
 
  // No allocation or synchronization 
 
  // No calls to interruptible methods 
 
} 



@Uninterruptible 
static void myMethod(Object o) { 
 
  currentThread.deferGC = true; 
  Metadata m = new Metadata(); 
  currentThread.deferGC = false; 
 
  setMiscHeader(o, offset, m); 
} 



Need to modify JVM internals 
Need to demonstrate realism 

 Guide 
 

 Research Archive 
 

 Research mailing list 

Jikes RVM 

Overview of other tasks & components 

Dynamic analysis examples 

Help (especially 
for novices) 



 Object layout 
 Extra bits or words in header 
 Stealing bits from references 
 Discuss magic here 

 Adding instrumentation 
 Baseline & optimizing compilers 
 Allocation sites; reads & writes 
 Inlining instrumentation 

 Garbage collection 
 Piggybacking on GC 
 New spaces 

 Low-level stuff 
 Uninterruptible code 
 Walking the stack 

 Concurrency 
 Atomic stores 
 Thread-local data 
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