Principles of Program Analysis

Lecture 1
Harry Xu
Spring 2013

An Imperfect World

* Software has bugs

— The northeast blackout of 2003, affected 10 million
people in Ontario and 45 million in eight U.S. states
(caused by a race condition)

— The explosion of the Ariane 5, valued at $500 million,
45 seconds after its lift-off (due to an 16-bit integer
overflow)

e Software is slow

— the conversion of a single date field from a SOAP data
source to a Java object can require as many as 268
method calls and the generation of 70 objects

Program Analysis

* Discovering facts about programs
* A wide variety of applications

— Finding bugs (e.g., model checking, testing, etc.)
— Optimizing performance (e.g., compiler
optimizations, bloat detection, etc.)

— Detecting security vulnerabilities (e.g., detecting
violations of security policies, etc.)

— Improving software maintainability and
understandability (e.g., reverse-engineering of
UML diagrams, software visualization, etc.)

Static v.s. Dynamic Analysis

e Static analysis

— Attempt to understand certain program properties
without running a program

— Make over-conservative claims
* Dynamic analysis
— Need to run user instrumented code

— Add overhead to running time and memory
consumption

This Class

* Focus on static program analysis in this class

* We will discuss
— Both principles and practices

— Both classical program analysis algorithms and the
state-of-the-art research

* We will cover five major topics
— Dataflow analysis
— Abstract interpretation
— Constraint-based analysis
— Type and effect system
— Scalable interprocedural analysis

This Class

 We will spend two weeks on each topic
— Discuss analysis principles in the first week (via lectures)

— Discuss state-or-the-art research in the second week (via
student presentations)

* Homework for each topic

— A project that implements program analysis algorithms in
Java

— Paper critiques

e Students volunteer to present papers
— 15 slots
— Bonus credits!

Projects

* Two students form a group

* Based on the soot program analysis
framework
(http://www.sable.mcgill.ca/soot/)

* The first project

— Implement a “hello-world” version of an intra-
procedural analysis that prints out all heap
load/store operations

— Due Friday April 10

Course Pre-Reqgs and Grading

Office hour: Thursday 2—4pm, DBH 3212
Reader: Taesu Kim

Prerequisites: Java programming experience
Grading

— Paper critiques (20%)

— Projects (40%)

— In-class final (40%)

Static Analysis

* Key property: safe approximation

— A larger set of possibilities than what will ever
happen during any execution of the program

true answer

{d1,---,dn} {dn+1,---,dn}

. -
" 5 oW -

S —_

fdy; >~ dny~ s darin}

safe answer

A Simple Example
read(x);
if(x>0)y=1;
else{y=2; S}; //S does not write y

Z=Y;

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— The valueof zis 1

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— The value of zis 1) 4

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— The value of zis 1) 4
— The value of z is 2

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— The value of zis 1) 4
— The value of z is 2 4

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— The value of zis 1) 4
— The value of z is 2) ¢
— The value of z is in the set {1, 2}

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— The value of zis 1) 4
— The value of z is 2) ¢
— The value of z is in the set {1, 2} |

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

Ne Vad
Ne Vad

Ne Vd

Ne Vd

ueofzisl) 4
ue of zis 2) ¢
ue of zis in the set {1, 2} |

ue of zis in the set {1, 2, 34, 128}

A Simple Example
read(x);
if(x>0)y=1;
else{y=2; S}; //S does not write z
Z=Y,

* Which of the following statements about z are
valid from the perspective of a static analysis?

ne value of zis 1) 4
ne value of z is 2) 4
ne value of z is in the set {1, 2} |
ne value of zis in the set {1, 2, 34, 128} \

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— Thevalueof zis 1) ¢
— The value of zis 2) 4
— The value of z is in the set {1, 2} 2
— The value of zis in the set {1, 2, 34, 128} |

— The value of z depends on the value of x; when x>0, z
is 1; otherwise z is 2

A Simple Example

read(x);

if(x>0)y=1;

else{y=2; S}; //S does not write z
z=y;

* Which of the following statements about z are
valid from the perspective of a static analysis?

— Thevalueof zis 1) ¢
— The value of zis 2) 4
— The value of z is in the set {1, 2} 2
— The value of zis in the set {1, 2, 34, 128} |

— The value of z depends on the value of x; when x>0, z
is 1; otherwise z is 2 N

The Nature of Approximations

The exact world Qver-approximation Under-approximation

universe

exact set of
- configurations

or behaviours

'Ef p—
approximation u -
approximation

Slogans: Err on the safe side!
Trade precision for efficiency!

Setting the Stage

* Formalism
— A simple imperative language
— Operational semantics
— Lattice theory
— Fixedpoint computation

* Asimple reaching-definition analysis used
throughout the quarter

A while Language

AExp arithmetic expressions
BExp boolean expressions
Stmt statements

Var variables

Num numerals
Lab labels

Op, arithmetic operators
Op, boolean operators
Op, relational operators

MMMMMMMMM

z|n|a op, as
true | false | not b | by op, b2 | ay op, as

[z := a] | [skip]® | 51552 |
if [b]’ then S; else S | while [b]* do S

An Example Program

[y:=x]%; [2:=1]%;

while [y>1]3 do
([z:=z*y]%; [y:=y-1]>;);

[y:=0]°

Computes the factorial of the number in x and
leaves the result in z

Formal Semantics

 Why useful

— Formally define what a program does exactly

— Prove the correctness of an language
implementation or a program analysis

* Three major kinds of semantics
— Denotational semantics
— Operational semantics
— Axiomatic semantics

Denotational Semantics

* Concerned about the conceptual meaning of a
program

* Each phrase is interpreted as a denotation

* The meaning of a program reduces to the
meaning of the sequence of commands

An Denotational Semantics Example

Syntactic Domains
N : Numeral -- nonnegative numerals
D : Digit -- decimal digits
Abstract Production Rules
Numeral ;= Digit | Numeral Digit
Digit::=0| 1| 2] 3| 4| 5| 6| 7| 8 9
Semantic Domain
Number = {0, 1,2, 3,4, ... } -- natural numbers
Semantic Functions
value : Numeral — Number
digit : Digit — Number
Semantic Equations
value [N D] = plus (times(10, value [N]]). digit [D])
value [D] = digit [D]
digit [0] =0 digit [3] =3 digit [6] =6 digit [8] = §
digit [1]=1 digit [4] = 4 digit [T] =7 digit [9] =9
digit [2] =2 digit [S] =35

Denotational Semantics

value [1023] = plus(times(10, value[102]l), digitl3]1)
= plus(times(10, plus(times(10,
value[[10T, digitll21))), digiil[31)
= plus(times(10, plus(times(10,
plus(times(10, plus(times(10, digitl1l), digitl0I))),
digitl[2]))),digiil31)
= 1023

Two language constructs are semantically equivalent if
they share the same denotation

Axiomatic Semantics

* Based on mathematical logic (e.g., Hoare logic)
— Used to reason about the correctness of a program

* Hoare triple

—{P}C{Q}
— P and Q are assertions (i.e., formulae in predicate
logic) and Cis a command

— P is the precondition and Q is the postcondition
— When P is met, C establishes Q

e Example: {x+1=43}y:=x+1 {y =43}

Operational Semantics

* The execution of a program is described
directly

e Structural (small-step) operational semantics

— Formally define how the individual steps of a
computation take place

* Big-step operational semantics

— How the overall results of an execution are
obtained

Operational Semantics

* More commonly used in formally reasoning
about a program analysis algorithm
— The algorithm is sound if it appropriately abstracts

the concrete operational semantics of the
program

Operational Semantics

A state is a mapping from variables to integers:

o € State = Var — Z
The semantics of arithmetic and boolean expressions

A: AExp — (State — Z) (no errors allowed)

B: BExp — (State — T) (no errors allowed)
The transitions of the semantics are of the form

(S,0) — o' and (S,o0) — (5, o)

Transitions

([:= a]t, o) — o[z — Afa]o]
([skip]f, o)y — 0o

<Sl:~ U) — <Sf) Jf)

(81, 52! J) — (Si, 52: DJ)

<S]_,G'> — D-I

(51; 52,0) — (S2,0)
(if [b]¢ then S else So,0) — (S7,0) if B

(if [b]* then S else So, o) — (S5, 0) if B

(while [b]¢ do S, o) — ((S;while [b]¢ do S),0) if B
(while [b]¢ do S,0) — o if B

[0]
[0]

[0]

[6]

o —

Q
|

true

false

true

false

Example Derivation Sequence

([y:=x]"; [z:=1]% while [y>1]® do ([z:=z*y]"; [y:=y-1]°); [y:=0]°, 0300)
— ([z:=1]%;while [y>1]> do ([z:=zxy]*; [y:=y-1]°); [y:=0]°, o330)
— (while [y>1]> do ([z:=z*y]%; [y:=y-1]°); [y:=0]°, o331)

— ([z:=z*y]"; [y:=y-1]>;
while [y>1]° do ([z:=z*y]*; [y:=y-1]®); [y:=0]% 0'331)
— ([y:=y-1]°;while [y>1]> do ([z:=z+y]*; [y:=y-1]°); [y:=0]°, 0333)
— (while [y>1]> do ([z:=z*y]%; [y:=y-1]°); [y:=0]°, 0323)
([z:=z+y]%; [y:=y-1]°;
while [y>1]® do ([z:=zy]*; [y:=y-1]°); [y:=0]°, o323)

([y:=y-1]°; while [y>1]> do ([z:=z*y]%; [y:=y-1]°); [y:=0]°, o326)

(while [y>1]® do ([z:=z*y]?; [y:=y-1]°); [y:=0]°, 0316)

([y:=0]°, 0316)

0306

|

Ll

Lattice Theory

A lattice is a partially ordered set (L, <)

Any two elements have a supremum (i.e.,
least upper bound) and an infimum (i.e.,
greatest lower bound)

For any two elementsaandbinl,aandb
have a join: a V b (superemum)

For any two elementsaandbinl,aandb
have a meet: a A b (infimum)

An Example Lattice

1234
L

14/23 17234 124/3 13/24 123/4 134/2 - 12/34
@ L ® L L] L

@ ¢ o L @ @
1/23/414/2/3 1/24/3 13/2/4 12/3/4 1/2/34

@
1720374

* A lattice of partitions

of a four-element set
{1, 2, 3, 4}

Ordered by the
relation “is
refinement of”

aV b =acoarser-
grained partition

than bothaandb
a/Ab=afiner-

grained partition
than bothaandb

General Properties

Commutative laws
—aAb=bAa aVb=bvVva

Associative laws

—aV(bvc)=(avb)vec aA(bAc)=(aAb)AC
Absorption laws

—aV(aAb)=a aA(aVvb)=a

ldempotent laws

—aVa=a aAa=a

More about Lattice

* The least element L (i.e., unknown) and the
greatest element T (i.e., everything)

— T Aa=a T Va=T
—1ANa=1 1lVa=a
e Semi-lattice

— A join-semi-lattice only has a join for any non-empty
finite subset

— A meet-semi-lattice only has a meet for any non-
empty finite subset

* Real-world examples
— Types in Java

Fixedpoint Computation

A fixedpoint equation has the form

f(x) = x

Its solutions are called the fixed points of f because
if X, is a solution then

X, = f(Xx;) = f(f(x,)) = f(f(f(x;))) = ...

In program analysis, we look for both such X, and
function f that can eventually reach a flxedpomt

Tarski’s Fixedpoint Theorem

Let L = (L,C) be a complete lattice / \

and let f : L — L be a monotone func- JF) El

tion. e

The greatest fixed point gfp(f) satisfy: =5)
gfp(f) =L [T fFD}e{l| fFO) =1} o e

The least fixed point Ifp(f) satisfy: LT £(D)
Ifo(f) =m{l| fF) C1} e {L] f(1) =1}

Dataflow Analysis

Harry Xu
CS 253/INF 212
Spring 2013

Acknowledgements

Many slides in this file were taken from the
chapter 2 slides available at

http://www?2.imm.dtu.dk/~hrni/PPA/ppasup200
4.html

We thank the authors of the book

Principles of Program Analysis for providing
their slides.

Dataflow analysis

* A class of static analyses that aim to
understand how data flows in the program

* Typical examples
— Available expression analysis
— Reaching definition analysis
— Live variable analysis
— Constant propagation

Analysis Scope

* |Intraprocedural analysis

— Focusing on each individual function

— Do not track dataflow across function boundary
* |Interprocedural analysis

— Analyze the whole program
— Way more expensive

Control flow graph

Example: [z:=1]);while [x>0]2 do ([z:=z*y]3; [x:=x-1]%)

(--) = 1
(--) = {2}

() — {1323334}

(')) — {(112)1 (213):

(3,4),(4,2)}

(' ’) — {(21 1)1 (214):

(33 2)? (4? 3)}

|

[z:=1]1

|

[x>0]2

no

ves

[z:=2y]3

‘ [x:=x—1]4‘

Intraprocedural Dataflow Analyses

* Classical analyses
— Available expression analysis
— Reaching definition analysis
— Live variable analysis

Available Expression Analysis

The aim of the Available Expressions Analysis is to determine

For each program point, which expressions must have already
been computed, and not later modified, on all paths to the pro-
gram point.

Example: point of interest

|
[x:=a+b]L: [y:=a*b]?; while [y>J8#BI]> do ([a:=a+1]%; [x:=a+b]°)

The analysis enables a transformation into

[x:= a+b]!; [y:=a*b]?; while [y>@]> do ([a:=a+1]?; [x:= a+b]>)

Basic Idea

N = X1NXo

= a

Kill
X = (N\{expressions with an z})

U {subexpressions of a without an z}
gén

Analysis Algorithm

kill and gen functions

Killae([z = a]®) = {a’ € AExp, |z € FV(d)}
Killag([skip]®) = 0
Killag([B]9) = 0
genpe([z := al¥) = {da’ € AExp(a) | z ¢ FW(a')}
genpe([skipl?) = 0
genpe([b]Y) = AExp(b)

data flow equations; AE—

AE 1) = 0 if £ = init(Sy)
ety Nt T) (AE i (2) | (¢, 0) € flow(Sx)} otherwise

AEit(€) = (AEcuiry (O)\Killag(BY)) U genpe(BY)
where Bf € blocks(Sy)

Analysis Example

[x:=a+b]1: [y:=a*b]?; while [y>a+b]> do ([a:=a+1]?; [x:=a+b]°)

kill and gen functions:

14 kf”AE(f) QC’HAE(E)
1) {a+b}
2 0 {axb}
3 0 {a+D}
4 | {a+b, axb, a+l} 0

5 0 {ath}

Example (Cond)

[x:=a+b]’; [y:=a*b]?; while [y>a+b]> do ([a:=a+1]?; [x:=a+b]>)

Equations:

AE ¢y (1) 0

AEﬁntry(z) = AE s (1)

AEﬁm’,T‘y(?’) = AE.;;1(2) NAE . (5)
AE f.i?'atr*y(4) = AEq(3)

AE cntry(5) AE ;1 (4)

AEE:}:-:E?E(l) AEr??;'.ﬂ?‘;;(l) U {a+b}
AE i1 (2) = AEcntry(z) U {a*b}
AE.;1(3) = AEr??;'.fi?‘;:;(‘?’) U {a+b}
AE.;i1(4) = AEcuyy(4)\{atb,a*b,a+1}
AE i+ (5) AEentry(B) U {a+b}

Example (Cond)

[x:=a+b]1: [y:=a*b]?; while [y>a+b]> do ([a:=a+1]%; [x:=a+b]>)

LLargest solution:

AE enlry (6) AE it (6)
1] {a+b}
{atb} | {atb, a*b}
{a+b} {a+b}
{a+b} 0
g {a+b}

O P WNR™

Reaching Definition Analysis

The aim of the Reaching Definitions Analysis is to determine

For each program point, which assignments may have been made
and not overwritten, when program execution reaches this point
along some path.

Example: point of interest

[x:=5]1; [y:=1]2;while [x>1]3 do ([y:=}£1~;y]4; [x:=x—1]5)

useful for definition-use chains and use-definition chains

Basic Idea

N — .\,1 U \2
[z = a)’

Kill

\ U {(z,0)}
gen

Analysis Algorithm

kKill and gen functions

Killrp([z := al®) = {(z,?)}
U{(z,) | BY is an assignment to z in S}
killgp([skip]®) = 0
Killop([B]Y) = 0
gengp([z = a]®) = {(z,0)}
gengp([skip]?) = 0
gengp([b]Y) = 0

data flow equations: RD™

RD ¢ty (£) {(2,?) |z € FV(S54)} If €= init(S)
entry o U{RDﬁﬂi(Er) | (ﬁ’",f) S ﬂOW(S*)} otherwise

RD it (£) (RDE?-NIW(E)\kf”RD(BE)) U genRD(BE)

where Bf € blocks(Sy)

Analysis Example

[x:=5]1; [y:=1]2;while [x>1]3 do ([y:=x*y]4; [x:=x-l]5)

kill and gen functions:

14 kaRD(f) QEHRD(JE?)
{(y,7), (Yam?), (y,4)} {(FbQ)}
{(v,7),(7,2), (7,4} | { }
{(x7),(x,1),(x,5)}| {(x,5)}

P WN -

Example (Cond)

[x:=5]1; [y:=1]%; while [x>1]° do ([y:=x*y]?: [x:=x-1]°)

Equations:

RD entry (1)
RD entry (2)
RD entry (3)
RD ety (4)
RD entry (5)

RD ¢yt (1)
RD it (2)
RD exit (3)
RD it (4)
RD exit (5)

{(x,7),(y,7)}

RD(:;E:M (1)

RDr?ﬂ:?jt (2) U RDE:}:-:Et (5)
RD(:;E?M (3)

RDrj.mjrf(d')

(RDr_e:r:r.a’..-:r‘y(l)\{(Xa ?)a (}c, 1):~ (X: 5)}) U {(x, 1)}
(RDr.f-ntry(z)\{(Y: ?),(y,2), (v, U{(y,2)}
RD enlry (3)

(RDr.f-ratT'y(4)\{(}ru ?),(y,2),(y,;H) D U{ly,4)}
(RDentry (5)\{(%,7), (x,1),(x,5)}) U{(x,5)}

Example (Cond)

[x:=5]1: [y:=1]?%; while [x>1]> do ([y:=x*y]?; [x:=x-1]°)

Smallest solution:

RD entry (E)

RD exit (E)

2 WN R~

{(x7),(F.7)}
{(y,7),(x, 1)}
{(x,1),(y,2),(y,4),(x,5)}
{(x,1),(y,2),(y,4),(x,5)}
{(x,1),(5,4),(x,5)}

{(v,7),(x,1)}
{(x,1),(y,2)}
{(x,1),(y,2),(y,4),(x,5)}
{(x,1),(y,4),(x,5)}
{(y,4), (x,5)}

Live Variable Analysis

A variable is live at the exit from a label if there is a path from the label
to a use of the variable that does not re-define the variable.

The aim of the Live Variables Analysis is to determine

For each program point, which variables may be live at the exit
from the point.

Example:
point of interest

[x :f=2]1; [y:=4]2; [x:=1]3; (if [y>x]4 then [z:=}r]5 else [z:=y*y]6); [1-::=z]7r
The analysis enables a transformation into

[y:=f-l]2; [x:=1]3; (if [y>x]4 then [z:=},r]5 else [z:=},r*},r]6); [x:=2]"

Basic Idea

‘ Kill
N = (x\{z})

U iall variables of a]_:
gén

T .= a

X = N1 U N>

Analysis Algorithm

kill and gen functions

Kilhy([z := a]®) = {z}
kil ([skip]®) = @
Killhy ([B]) = 0
genpy([z == a,:g) = FV(a)
genyy([skip]®) = 0
geny([b]Y) = FV(b)

data flow equations: LV—

1] if £ & final(S
LV epit (£) = { (5+)

U{LV epiry (€1 | (£, £) € flow(S,)} otherwise

Lvr%-ni.ir“y(g) — (I—Vﬁ:r;:it(E)\RHILV(BE)) Uge”LV(BE)
where Bt € blocks(Sy)

Example

[x:=2]1: [y:=4]2; [x:=1]3; (if [y>x]? then [z:=y]> else [z:=y*y]®); [x:=2]"

kill and gen functions:

¢ kf”Lv(f) genw(ff)
1 {x} 0

2 Ay} 0

3 {x} 0

41 0 {x,y}
5/ {z} {v}

6 {z} {v}

7 {x} iz}

Example (Cond)

[x:=2]1: [y:=4]%; [x:=1]7; (if [y>x]? then [z:=y]> else [z:=y*y]®); [x:=z]"

Equations:

LV entry (1) = WV ()\{x} Ve (1) = LV entry (2)

LV entry (2) = WV (2)\{y} WVer(2) = LV entry (3)

LV en Lry (3) = Ve (3) \{x} LVerit(3) = Wy try (4)

LV entry (4) = LV exil (4) U {X: Y} LV exil (4) = LV entry (5) ULV entry (6)
LV (.‘Z'I".ti?"j';(S) — (I-V exit (5)\{2}) U {}r} LV exil (5) = LV r.fntry(?)

Lveni?‘y(e‘) — (LV exit (6)\{2}) U {Y} LV exil (6) = L f.f?':,t?*y(?)

LV entry (7) = {z} Vet (7) = 0

Example (Cond)

[x:=2]%: [y:=4)?; [x:=1]>; (if [y>x]? then [z:=y]° else [z:=y*y]®);[x:=2]"

Smallest solution:

¢ LV enlry (E) LV exit (E)
1 0 0

2 0 {y}

31 {v} {x,y}
41 {xy} {y}

5/ Ay} {z}

6 v} {z}

7 {z} 0

Extracting Similarities

A common pattern exists in these analyses

. [ifte B
Analysis,(£) = { L {Analysis,(£") | (¢',£) € F} otherwise

Analysise(£) = fy(Analysis,(£))

where

—[JisNor U (and U is U or N),

— F'is either (Sx) or (S4),

— Eis {init(Sy)} or (Sx),

— 1 specifies the initial or final analysis information, and

— [, is the transfer function associated with B¢ ¢ (Sx).

Forward v.s. Backward

e The forward analyses have F' to be flow(Sx) and then Analysis,
concerns entry conditions and Analysis, concerns exit conditions;
the equation system presupposes that Sx has isolated entries.

e [he backward analyses have I to be HOWH(S*) and then Analysis,
concerns exit conditions and Analysis, concerns entry conditions; the
equation system presupposes that Sx has isolated exits.

Union or Intersection

e When || is [we require the greatest sets that solve the equations
and we are able to detect properties satisfied by all execution paths
reaching (or leaving) the entry (or exit) of a label; the analysis is
called a must-analysis.

e When | |is | we require the smallest sets that solve the equations and
we are able to detect properties satisfied by at least one execution
path to (or from) the entry (or exit) of a label; the analysis is called
a may-analysis.

Property Space

[is a complete lattice used to represent the data
flow information (data flow facts)

[/is the combination operation: P(L) — L, used to
Combine information from different paths

Transfer Function

The set of transfer functions, 7, is a set of monotone functions over L,
meaning that

[T 1" implies fo(1) T fo(1')

and furthermore they fulfil the following conditions:

e F contains all the transfer functions f;, : L. — L in question (for
f? & Lab*)

e F contains the identity function

e F is closed under composition of functions

Frameworks

A Monotone Framework consists of:

e a complete lattice, L, that satisfies the Ascending Chain Condition;
we write | | for the least upper bound operator

e a set F of monotone functions from L to L that contains the identity
function and that is closed under function composition

A Distributive Framework is a Monotone Framework where additionally
all functions f in F are required to be distributive:

S ulz) = f(1) U f(2)

Framework Instances

An instance of a Framework consists of:

— the complete lattice, L, of the framework

— the space of functions, 7, of the framework

— a finite flow, I (typically (Sx) or (S%))

— a finite set of extremal labels, E (typically {init(Ss)} or (S%))
— an extremal value, . € L, for the extremal labels

— a mapping, f., from the labels Lab, to transfer functions in F

Equations and Constraints

Equations of the Instance:

Analysis,(£) = | [{Analysis,(¢) | (£,£) € F} U5

L if /el
1L ifeer

where LEE — {

Analysise(£) = fy(Analysis,(£))

Constraints of the Instance:

Analysis,(¢) 3 | [{Analysis,(¢) | (¢',£) € F} U5

where £ — 1 ¢ if¢c F
E 1l ife¢éFr

Analysise(¢) I fe(Analysis,(£))

Examples Revisited

Available Reaching Very Busy Live

Expressions Definitions Expressions | Variables
L | P(AExp,) P(Vary, x Laby) P(AExp,) | P(Vary)
L D C D, C
L] M U N U
1 AExp, 0 AExp, 0
L 0 {(z,?)|xe FV(S«)} 0 0
E | {init(Sx)} {init(S%)} final(Sx) final(Sy)
F | flow(Sy) flow(Sy) flow™(Syx) | flow™(Sy)
F {f L — L|3l,lg: f(I) = A\ 1) Ulg}

fe(D) = U\ kill(B")) U gen(B*) where B € blocks(Sy)

Bit-Vector Frameworks

A Bit Vector Framework has
e L ="P(D) for D finite

o F={f|3,lg: f()=(U\I) Ulg}

Examples:
e Available Expressions
e Live Variables
e Reaching Definitions

e Very Busy Expressions

Bit-Vector Frameworks are Monotone
and Distributive

_] riuly) [yl \) Ul
fhttz) = f(ii a 13) - ((ﬂi N zz) \ﬂi) U zg
_ S W NG U\ 1) Ulg] (Ua \) Ulg) U (U2 \ 1) Ulg)
(1 \) N2\ 1)) Ul (2 \ k) Ulg) N (2 \1g) Ulg)
_)) v fa) _
=\ /0N = fuit)

Monotonicity can be proved in a similar manner

Example: Constant Propagation

* Determine, for each program point, whether
or not a variable has a constant value
whenever execution reaches the point

Example:
[x:=6]1; [y:=3]2;while [x > y]3 do ([x:=x — 1]4; [z:=y*y]6)
The analysis enables a transformation into

[x:=6]'; [y:=3]%; while [x > 3]> do ([x:=x — 1]%; [2:=9]°)

Now You Tell Me

How to define a lattice L?
How to define transfer functions?

|s constant propagation a monotone
framework?

Is it a distributive framework?

Solving the Equation

 Many different approaches

* The least fixed-point solution
— Always decidable

— A worklist-based algorithm for monotone
frameworks

Algorithm

e |dea: iterate until stabilization
Worklist Algorithm

Input: An instance (L, F.,F,E,., f.) of a Monotone Framework
Output: The MFP Solution: MFP,, MFP,

Data structures:

e Analysis: the current analysis result for block entries

e The worklist W: a list of pairs (£,¢") indicating that the current
analysis result has changed at the entry to the block ¢ and
hence the entry information must be recomputed for ¢

Step 1

Step 2

Step 3

Algorithm (Cond.)

W = nil;
for all (£,¢") in F do W := cons((¢,¢),W);
for all £ in F or I¥ do
if £ € F then Analysis[¢] := . else Analysis[¢] := 1p;

while W #£ nil do
¢ := fst(head(W)): ¢ = snd(head(W)); W := tail(W);
if f,(Analysis[f]) Z Analysis[¢] then
Analysis[¢'] := Analysis[¢'] U f,(Analysis[¢]);
for all ¢ with (¢/,¢") in FF do W := cons((#,¢"),W);

MF P, MFP,
for all £ in F or I¥ do

MFP.(¢) := Analysis[{];

MFPe(¢) := fy,(Analysis[{])

