
Principles of Program Analysis

Lecture 1

Harry Xu

Spring 2013

An Imperfect World

• Software has bugs
– The northeast blackout of 2003, affected 10 million

people in Ontario and 45 million in eight U.S. states
(caused by a race condition)

– The explosion of the Ariane 5, valued at $500 million,
45 seconds after its lift-off (due to an 16-bit integer
overflow)

• Software is slow
– the conversion of a single date field from a SOAP data

source to a Java object can require as many as 268
method calls and the generation of 70 objects

Program Analysis

• Discovering facts about programs

• A wide variety of applications
– Finding bugs (e.g., model checking, testing, etc.)

– Optimizing performance (e.g., compiler
optimizations, bloat detection, etc.)

– Detecting security vulnerabilities (e.g., detecting
violations of security policies, etc.)

– Improving software maintainability and
understandability (e.g., reverse-engineering of
UML diagrams, software visualization, etc.)

Static v.s. Dynamic Analysis

• Static analysis

– Attempt to understand certain program properties
without running a program

– Make over-conservative claims

• Dynamic analysis

– Need to run user instrumented code

– Add overhead to running time and memory
consumption

This Class

• Focus on static program analysis in this class
• We will discuss

– Both principles and practices
– Both classical program analysis algorithms and the

state-of-the-art research

• We will cover five major topics
– Dataflow analysis
– Abstract interpretation
– Constraint-based analysis
– Type and effect system
– Scalable interprocedural analysis

This Class

• We will spend two weeks on each topic
– Discuss analysis principles in the first week (via lectures)

– Discuss state-or-the-art research in the second week (via
student presentations)

• Homework for each topic
– A project that implements program analysis algorithms in

Java

– Paper critiques

• Students volunteer to present papers
– 15 slots

– Bonus credits!

Projects

• Two students form a group

• Based on the soot program analysis
framework
(http://www.sable.mcgill.ca/soot/)

• The first project
– Implement a “hello-world” version of an intra-

procedural analysis that prints out all heap
load/store operations

– Due Friday April 10

Course Pre-Reqs and Grading

• Office hour: Thursday 2—4pm, DBH 3212

• Reader: Taesu Kim

• Prerequisites: Java programming experience

• Grading

– Paper critiques (20%)

– Projects (40%)

– In-class final (40%)

Static Analysis

• Key property: safe approximation

– A larger set of possibilities than what will ever
happen during any execution of the program

A Simple Example
read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write y
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

– The value of z is 2

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

– The value of z is 2

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

– The value of z is 2

– The value of z is in the set {1, 2}

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

– The value of z is 2

– The value of z is in the set {1, 2}

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

– The value of z is 2

– The value of z is in the set {1, 2}

– The value of z is in the set {1, 2, 34, 128}

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?

– The value of z is 1

– The value of z is 2

– The value of z is in the set {1, 2}

– The value of z is in the set {1, 2, 34, 128}

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?
– The value of z is 1
– The value of z is 2
– The value of z is in the set {1, 2}
– The value of z is in the set {1, 2, 34, 128}
– The value of z depends on the value of x; when x > 0, z

is 1; otherwise z is 2

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

A Simple Example

• Which of the following statements about z are
valid from the perspective of a static analysis?
– The value of z is 1
– The value of z is 2
– The value of z is in the set {1, 2}
– The value of z is in the set {1, 2, 34, 128}
– The value of z depends on the value of x; when x > 0, z

is 1; otherwise z is 2

read(x);
if(x>0) y = 1;
else {y = 2; S}; //S does not write z
z = y;

The Nature of Approximations

Setting the Stage

• Formalism

– A simple imperative language

– Operational semantics

– Lattice theory

– Fixedpoint computation

• A simple reaching-definition analysis used
throughout the quarter

A while Language

An Example Program

[y:=x]1; [z:=1]2;

while [y>1]3 do

 ([z:=z*y]4; [y:=y-1]5;);

[y:=0]6

Computes the factorial of the number in x and
leaves the result in z

Formal Semantics

• Why useful

– Formally define what a program does exactly

– Prove the correctness of an language
implementation or a program analysis

• Three major kinds of semantics

– Denotational semantics

– Operational semantics

– Axiomatic semantics

Denotational Semantics

• Concerned about the conceptual meaning of a
program

• Each phrase is interpreted as a denotation

• The meaning of a program reduces to the
meaning of the sequence of commands

An Denotational Semantics Example

Denotational Semantics

value 1023 = plus(times(10, value 102), digit 3)
 = plus(times(10, plus(times(10,
 value 10), digit 2))), digit 3)
 = plus(times(10, plus(times(10,
 plus(times(10, plus(times(10, digit 1), digit 0))),
 digit 2))),digit 3)
 = 1023

Two language constructs are semantically equivalent if
they share the same denotation

Axiomatic Semantics

• Based on mathematical logic (e.g., Hoare logic)

– Used to reason about the correctness of a program

• Hoare triple

– {P} C {Q}

– P and Q are assertions (i.e., formulae in predicate
logic) and C is a command

– P is the precondition and Q is the postcondition

– When P is met, C establishes Q

• Example: {x + 1 = 43} y:= x+1 {y = 43}

Operational Semantics

• The execution of a program is described
directly

• Structural (small-step) operational semantics

– Formally define how the individual steps of a
computation take place

• Big-step operational semantics

– How the overall results of an execution are
obtained

Operational Semantics

• More commonly used in formally reasoning
about a program analysis algorithm

– The algorithm is sound if it appropriately abstracts
the concrete operational semantics of the
program

Operational Semantics

Transitions

Example Derivation Sequence

Lattice Theory

• A lattice is a partially ordered set (L, ≤)

• Any two elements have a supremum (i.e.,
least upper bound) and an infimum (i.e.,
greatest lower bound)

• For any two elements a and b in L, a and b
have a join: a ∨ b (superemum)

• For any two elements a and b in L, a and b
have a meet: a ∧ b (infimum)

An Example Lattice
• A lattice of partitions

of a four-element set
{1, 2, 3, 4}

• Ordered by the
relation “is
refinement of”

• a ∨ b = a coarser-
grained partition
than both a and b

• a ∧ b = a finer-
grained partition
than both a and b

General Properties

• Commutative laws
– a ∧ b = b ∧ a a ∨ b = b ∨ a

• Associative laws
– a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧(b ∧ c) = (a ∧ b) ∧ c

• Absorption laws
– a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a

• Idempotent laws
– a ∨ a = a a ∧ a = a

More about Lattice

• The least element ⊥ (i.e., unknown) and the
greatest element ⊤ (i.e., everything)
– ⊤ ∧ a = a ⊤ ∨ a = ⊤
– ⊥ ∧ a = ⊥ ⊥ ∨ a = a

• Semi-lattice
– A join-semi-lattice only has a join for any non-empty

finite subset
– A meet-semi-lattice only has a meet for any non-

empty finite subset

• Real-world examples
– Types in Java

Fixedpoint Computation

 A fixedpoint equation has the form

 f(x) = x

Its solutions are called the fixed points of f because
if xp is a solution then

 xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ...

In program analysis, we look for both such xp and
function f that can eventually reach a fixedpoint

Tarski’s Fixedpoint Theorem

Dataflow Analysis

Harry Xu

CS 253/INF 212

Spring 2013

Acknowledgements

Many slides in this file were taken from the
chapter 2 slides available at

http://www2.imm.dtu.dk/~hrni/PPA/ppasup200
4.html

We thank the authors of the book

Principles of Program Analysis for providing
their slides.

Dataflow analysis

• A class of static analyses that aim to
understand how data flows in the program

• Typical examples

– Available expression analysis

– Reaching definition analysis

– Live variable analysis

– Constant propagation

Analysis Scope

• Intraprocedural analysis

– Focusing on each individual function

– Do not track dataflow across function boundary

• Interprocedural analysis

– Analyze the whole program

– Way more expensive

Control flow graph

Intraprocedural Dataflow Analyses

• Classical analyses

– Available expression analysis

– Reaching definition analysis

– Live variable analysis

Available Expression Analysis

Basic Idea

Analysis Algorithm

Analysis Example

Example (Cond)

Example (Cond)

Reaching Definition Analysis

Basic Idea

Analysis Algorithm

Analysis Example

Example (Cond)

Example (Cond)

Live Variable Analysis

Basic Idea

Analysis Algorithm

Example

Example (Cond)

Example (Cond)

Extracting Similarities

A common pattern exists in these analyses

Forward v.s. Backward

Union or Intersection

Property Space

L is a complete lattice used to represent the data
flow information (data flow facts)

⊔ is the combination operation: P(L) → L, used to
Combine information from different paths

Transfer Function

Frameworks

Framework Instances

Equations and Constraints

Examples Revisited

Bit-Vector Frameworks

Bit-Vector Frameworks are Monotone
and Distributive

Monotonicity can be proved in a similar manner

Example: Constant Propagation

• Determine, for each program point, whether
or not a variable has a constant value
whenever execution reaches the point

Now You Tell Me

• How to define a lattice L?

• How to define transfer functions?

• Is constant propagation a monotone
framework?

• Is it a distributive framework?

Solving the Equation

• Many different approaches

• The least fixed-point solution

– Always decidable

– A worklist-based algorithm for monotone
frameworks

Algorithm

• Idea: iterate until stabilization

Algorithm (Cond.)

