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An Imperfect World 

• Software has bugs 
– The northeast blackout of 2003, affected 10 million 

people in Ontario and 45 million in eight U.S. states 
(caused by a race condition) 

– The explosion of the Ariane 5, valued at $500 million, 
45 seconds after its lift-off (due to an 16-bit integer 
overflow) 

• Software is slow 
– the conversion of a single date field from a SOAP data 

source to a Java object can require as many as 268 
method calls and the generation of 70 objects 

 



Program Analysis 

• Discovering facts about programs 

• A wide variety of applications 
– Finding bugs (e.g., model checking, testing, etc.)  

– Optimizing performance (e.g., compiler 
optimizations, bloat detection, etc.) 

– Detecting security vulnerabilities (e.g., detecting 
violations of security policies, etc.) 

– Improving software maintainability and 
understandability (e.g., reverse-engineering of 
UML diagrams, software visualization, etc.) 



Static v.s. Dynamic Analysis 

• Static analysis 

– Attempt to understand certain program properties 
without running a program 

– Make over-conservative claims 

• Dynamic analysis 

– Need to run user instrumented code 

– Add overhead to running time and memory 
consumption 



This Class 

• Focus on static program analysis in this class 
• We will discuss 

– Both principles and practices 
– Both classical program analysis algorithms and the 

state-of-the-art research  

• We will cover five major topics 
– Dataflow analysis 
– Abstract interpretation 
– Constraint-based analysis 
– Type and effect system 
– Scalable interprocedural analysis  

 



This Class 

• We will spend two weeks on each topic 
– Discuss analysis principles in the first week (via lectures) 

– Discuss state-or-the-art research in the second week (via 
student presentations) 

• Homework for each topic 
– A project that implements program analysis algorithms in 

Java 

– Paper critiques 

• Students volunteer to present papers 
– 15 slots 

– Bonus credits! 



Projects 

• Two students form a group 

• Based on the soot program analysis 
framework  
(http://www.sable.mcgill.ca/soot/) 

• The first project 
– Implement a “hello-world” version of an intra-

procedural analysis that prints out all heap 
load/store operations 

– Due Friday April 10  



Course Pre-Reqs and Grading 

• Office hour:  Thursday 2—4pm, DBH 3212 

• Reader:  Taesu Kim 

• Prerequisites: Java programming experience 

• Grading 

– Paper critiques (20%) 

– Projects (40%) 

– In-class final (40%) 



Static Analysis 

• Key property: safe approximation 

– A larger set of possibilities than what will ever 
happen during any execution of the program 



A Simple Example 
read(x);   
if(x>0) y = 1;  
else {y = 2;  S};   //S does not write y  
z = y; 
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The Nature of Approximations 



Setting the Stage 

• Formalism 

– A simple imperative language 

– Operational semantics 

– Lattice theory 

– Fixedpoint computation 

• A simple reaching-definition analysis used 
throughout the quarter 



A while Language 



An Example Program 

[y:=x]1; [z:=1]2;  

while [y>1]3 do  

       ([z:=z*y]4; [y:=y-1]5;); 

[y:=0]6 

 

Computes the factorial of the number in x and 
leaves the result in z 



Formal Semantics 

• Why useful 

– Formally define what a program does exactly 

– Prove the correctness of an language 
implementation or a program analysis 

• Three major kinds of semantics 

– Denotational semantics 

– Operational semantics 

– Axiomatic semantics 



Denotational Semantics 

• Concerned about the conceptual meaning of a 
program 

• Each phrase is interpreted as a denotation 

• The meaning of a program reduces to the 
meaning of the sequence of commands 



An Denotational Semantics Example 



Denotational Semantics 

value   1023   = plus(times(10, value 102 ), digit 3  ) 
     = plus(times(10, plus(times(10,  
                    value 10 ), digit 2  ))), digit 3  )  
     = plus(times(10, plus(times(10,  
               plus(times(10, plus(times(10, digit 1  ), digit 0  ))),  
                             digit 2  ))),digit 3  )  
     =  1023 
 

 

Two language constructs are semantically equivalent if 
they share the same denotation 

 



Axiomatic Semantics 

• Based on mathematical logic (e.g., Hoare logic) 

– Used to reason about the correctness of a program 

• Hoare triple 

– {P} C {Q} 

– P and Q are assertions (i.e., formulae in predicate 
logic) and C is a command 

– P is the precondition and Q is the postcondition 

– When P is met, C establishes Q 

• Example: {x + 1 = 43} y:= x+1 {y = 43} 



Operational Semantics 

• The execution of a program is described 
directly 

• Structural (small-step) operational semantics 

– Formally define how the individual steps of a 
computation take place  

• Big-step operational semantics 

– How the overall results of an execution are 
obtained 

 



Operational Semantics 

• More commonly used in formally reasoning 
about a program analysis algorithm 

– The algorithm is sound if it appropriately abstracts 
the concrete operational semantics of the 
program 

 



Operational Semantics 



Transitions 



Example Derivation Sequence 



Lattice Theory 

• A lattice is a partially ordered set (L, ≤)   

• Any two elements have a supremum (i.e., 
least upper bound) and an infimum (i.e., 
greatest lower bound) 

• For any two elements a and b in L, a and b 
have a join:   a ∨ b (superemum) 

• For any two elements a and b in L, a and b 
have a meet:  a ∧ b (infimum) 



An Example Lattice  
• A lattice of partitions 

of a four-element set 
{1, 2, 3, 4} 

• Ordered by the 
relation “is 
refinement of” 

• a ∨ b = a coarser-
grained partition 
than both a and b 

• a ∧ b = a finer-
grained partition 
than both a and b 



General Properties 

• Commutative laws 
– a ∧ b = b ∧ a     a ∨ b = b ∨ a 

• Associative laws 
– a ∨ (b ∨ c) = (a ∨ b) ∨ c   a ∧(b ∧ c) = (a ∧ b) ∧ c    

•  Absorption laws 
– a ∨ (a ∧ b) = a    a ∧ (a ∨ b) = a     

• Idempotent laws 
– a ∨ a = a   a ∧ a = a 

 



More about Lattice 

• The least element ⊥ (i.e., unknown) and the 
greatest element ⊤ (i.e., everything) 
– ⊤ ∧ a = a  ⊤ ∨ a = ⊤     
– ⊥ ∧ a = ⊥  ⊥ ∨ a = a 

• Semi-lattice 
– A join-semi-lattice only has a join for any non-empty 

finite subset 
– A meet-semi-lattice only has a meet for any non-

empty finite subset 

• Real-world examples 
– Types in Java 

 
 



Fixedpoint Computation 

          A fixedpoint equation has the form  

                    f(x) = x 

 

Its solutions are called the fixed points of f because 
if xp is a solution then 

  xp = f(xp) = f(f(xp)) = f(f(f(xp))) = ... 

 

In program analysis, we look for both such xp and 
function f that can eventually reach a fixedpoint 

 
 



Tarski’s Fixedpoint Theorem 
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Dataflow analysis 

• A class of static analyses that aim to 
understand how data flows in the program 

• Typical examples 

– Available expression analysis 

– Reaching definition analysis 

– Live variable analysis 

– Constant propagation 

 



Analysis Scope 

• Intraprocedural analysis 

– Focusing on each individual function 

– Do not track dataflow across function boundary 

• Interprocedural analysis 

– Analyze the whole program 

– Way more expensive 



Control flow graph 



Intraprocedural Dataflow Analyses 

• Classical analyses 

– Available expression analysis 

– Reaching definition analysis 

– Live variable analysis 

 



Available Expression Analysis 



Basic Idea 



Analysis Algorithm 



Analysis Example 
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Reaching Definition Analysis 
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Live Variable Analysis 

 



Basic Idea 



Analysis Algorithm 

 



Example 
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Example (Cond) 



Extracting Similarities 

A common pattern exists in these analyses 



Forward v.s. Backward 



Union or Intersection 



Property Space 

L is a complete lattice used to represent the data  
flow information (data flow facts) 
 
⊔ is the combination operation: P(L) → L, used to  
Combine information from different paths 



Transfer Function 

 



Frameworks 

 



Framework Instances 



Equations and Constraints 



Examples Revisited 



Bit-Vector Frameworks 



Bit-Vector Frameworks are Monotone 
and Distributive 

Monotonicity can be proved in a similar manner 



Example: Constant Propagation 

• Determine, for each program point, whether 
or not a variable has a constant value 
whenever execution reaches the point 



Now You Tell Me 

• How to define a lattice L? 

 

• How to define transfer functions? 

 

• Is constant propagation a monotone 
framework? 

 

• Is it a distributive framework? 



Solving the Equation 

• Many different approaches 

• The least fixed-point solution 

– Always decidable 

– A worklist-based algorithm for monotone 
frameworks 



Algorithm 

• Idea: iterate until stabilization 

 



Algorithm (Cond.) 


