Constraint-based Analysis

Harry Xu CS 253/INF 212 Spring 2013

Acknowledgements

Many slides in this file were taken from Prof. Crista Lope's slides on functional programming as well as slides provided by the authors of the book *Principles of Program Analysis* available at http://www2.imm.dtu.dk/~hrni/PPA/ppasup200 4.html

Lambda Calculus

Lambda calculus is a formal system for expressing computation by way of variable binding and substitution

Syntax

M ::= x | λx.M | MM (variable)
(abstraction)
(application)

Nothing else!

- No numbers
- No arithmetic operations
- No loops
- No etc.

Symbolic computation

Syntax reminder

Terminology – bound variables

 $\lambda x.M$

The binding operator λ binds the variable x in the λ -term x.M

- M is called the *scope of x*
- *x* is said to be a *bound variable*

Terminology – free variables

Free variables are all symbols that aren't bound (duh)

$$FV(x) = \{x\}$$

FV(MN) = FV(M) U FV(N)
FV(x.M) = FV(M) - x

Renaming of bound variables

$\lambda x.M = \lambda y.(M[y/x])$ if y not in FV(M)

i.e. you can replace x with y aka "renaming"

α-conversion

Operational Semantics

- Evaluating function application: $(\lambda x.e_1) e_2$
 - Replace every x in e_1 with e_2
 - Evaluate the resulting term
 - Return the result of the evaluation
- Formally: "β-reduction" (aka "substitution")
 - $-(\lambda x.e_1) e_2 \rightarrow_{\beta} e_1[e_2/x]$
 - A term that can be β -reduced is a redex (reducible expression)
 - We omit $\boldsymbol{\beta}$ when obvious

Note again

• Computation = pure symbolic manipulation

Replace some symbols with other symbols

Scoping etc.

- Scope of λ extends as far to the right as possible
 - $-\lambda x.\lambda y.xy$ is $\lambda x.(\lambda y.(x y))$
- Function application is left-associative
 xyz means (xy)z

Multiple arguments

- λ(*x*,*y*).e ???
 - Doesn't exist
- Solution: $\lambda x.\lambda y.e$ [remember, $(\lambda x.(\lambda y.e))$]
 - A function that takes x and returns another function that takes y and returns e
 - $(\lambda x.\lambda y.e) a b \rightarrow (\lambda y.e[a/x]) b \rightarrow e[a/x][b/y]$
 - "Currying" after Curry: transformation of multi-arg functions into higher-order functions
- Multiple argument functions are nothing but syntactic sugar

Boolean Values and Conditionals

- True = $\lambda x . \lambda y . x$
- False = $\lambda x \cdot \lambda y \cdot y$
- If-then-else = $\lambda a.\lambda b.\lambda c. a b c$

Boolean Values and Conditionals

• If True M N = $(\lambda a.\lambda b.\lambda c.abc)$ True M N

Numbers

• Numbers are counts of things, any things. Like function applications!

$$-0 = \lambda f. \lambda x. x$$

$$-1 = \lambda f. \lambda x. (f x)$$

$$-2 = \lambda f. \lambda x. (f (f x))$$

$$-3 = \lambda f. \lambda x. (f (f (f x)))$$

$$-...$$

$$-N = \lambda f. \lambda x. (f^{N} x)$$

Church numerals

Successor

• succ = λn . λf . λx . f(n f x)

- Want to try it on succ(1)?

 $- \lambda n. \lambda f. \lambda x. f (n f x) (\lambda f. \lambda x. (f x))$

 $\rightarrow \lambda f. \lambda x. f((\lambda f. \lambda x. (f x)) f x)$

 $\rightarrow \lambda f. \lambda x. f (f x)$

2!

Closures

• Function with free variables that are bound to values in the enclosing environment

Function Execution by Substitution

plus x y = x + y

1. plus 2 3 \rightarrow 2+3 \rightarrow 5

2. plus (2*3) (plus 4 5)

 \rightarrow plus 6 (4+5) \rightarrow plus 6 9

 \rightarrow 6 + 9

 \rightarrow 15

→ (2*3) + (plus 4 5)→ 6 + (4+5)→ 6 + 9→ 15

The final answer did not depend upon the order in which reductions were performed

Blocks

- a variable can have at most one definition in a block
- ordering of bindings does not matter

Layout Convention in Haskell

This convention allows us to omit many delimiters

let x = a * a y = b * b *in* (x - y)/(x + y)

is the same as

let { x = a * a ; y = b * b ;} in (x - y)/(x + y)

α -renaming

let let y = 2 * 2 y = 2 * 2 x = 3 + 4 x = 3 + 4 z = *let* z = *let* <mark>x'</mark> = 5 * 5 x = 5 * 5 w = x' + y * x' w = x + y * xin in W W in in x + y + z x + y + z

Lexical Scoping

Lexically closest definition of a variable prevails.

Dynamic Dispatch Problem

These problems arise for:

- imperative languages with procedures as parameters
- object oriented languages
- functional languages

Example

The aim of Control Flow Analysis:

For each function application, which functions may be applied?

Control Flow Analysis computes the interprocedural flow relation used when formulating interprocedural Data Flow Analysis.

A Simple Functional Language

Syntactic categories:

- $e \in Exp$ expressions (or labelled terms)
- $t \in \text{Term}$ terms (or unlabelled expressions)
- $f, x \in$ Var variables
 - $c \in \text{Const}$ constants
 - $op \in Op$ binary operators
 - $\ell \in Lab$ labels

Syntax:

(Labels correspond to program points or nodes in the parse tree.)

Examples

•
$$((fn x \Rightarrow x^1)^2 (fn y \Rightarrow y^3)^4)^5$$

0-CFA Analysis

- Abstract domains (i.e., maps)
- Specification of the analysis

Abstract Domains

The *result* of a 0-CFA analysis is a pair $(\hat{C}, \hat{\rho})$:

- C is the abstract cache associating abstract values with each labelled program point
- $\hat{\rho}$ is the *abstract environment* associating abstract values with each variable

Example

 $((fn x \Rightarrow x^1)^2 (fn y \Rightarrow y^3)^4)^5$

Three guesses of a 0-CFA analysis result:

	$(\widehat{C}_{e}, \widehat{ ho}_{e})$	$(\widehat{C}'_{e}, \widehat{ ho}'_{e})$	$(\widehat{C}_{e}'', \widehat{ ho}_{e}'')$		
1	$\{fn y => y^3\}$	${fn y => y^3}$	$\{fn x \Rightarrow x^1, fn y \Rightarrow y^3\}$		
2	${fn x \Rightarrow x^1}$	${fn x => x^1}$	${fn x \Rightarrow x^1, fn y \Rightarrow y^3}$		
3	Ø	Ø	${fn x \Rightarrow x^1, fn y \Rightarrow y^3}$		
4	$\{fn y => y^3\}$	$\{fn y => y^3\}$	${fn x \Rightarrow x^1, fn y \Rightarrow y^3}$		
5	$\{fn y \Rightarrow y^3\}$	$\{fn y \Rightarrow y^3\}$	${fn x \Rightarrow x^1, fn y \Rightarrow y^3}$		
x	$\{fn y => y^3\}$	Ø	$\{fn x \Rightarrow x^1, fn y \Rightarrow y^3\}$		
У	Ø	Ø	${fn x \Rightarrow x^1, fn y \Rightarrow y^3}$		

A More Complicated Example

$$(let g = (fun f x => (f1 (fn y => y2)3)4)5$$

in (g⁶ (fn z => z⁷)⁸)⁹)¹⁰

Abbreviations:

$$f = fun f x \Rightarrow (f^1 (fn y \Rightarrow y^2)^3)^4$$

$$id_y = fn y \Rightarrow y^2$$

$$id_z = fn z \Rightarrow z^7$$

One guess of a 0-CFA analysis result:

Abstract Domains

Formally:

 $\hat{v} \in \widehat{Val} = \mathcal{P}(Term)$ abstract values $\hat{\rho} \in \widehat{Env} = Var \rightarrow \widehat{Val}$ abstract environments $\widehat{C} \in \widehat{Cache} = Lab \rightarrow \widehat{Val}$ abstract caches

An abstract value \hat{v} is a set of terms of the forms

- fn $x \Rightarrow e_0$
- fun $f x \Rightarrow e_0$

When is a proposed guess $(\hat{C}, \hat{\rho})$ of an analysis results an *accept*able *O*-*CFA* analysis for the program?

Specification of O-CFA

 $(\widehat{\mathsf{C}},\widehat{\rho})\models e$ means that $(\widehat{\mathsf{C}},\widehat{\rho})$ is an *acceptable Control Flow Analysis* of the expression e

The relation \models has functionality:

$$\models : (\widehat{\text{Cache}} \times \widehat{\text{Env}} \times \text{Exp}) \rightarrow \{\textit{true}, \textit{false}\}$$

Clauses for O-CFA (1)

 $(\widehat{\mathsf{C}}, \widehat{\rho}) \models c^{\ell}$ always

$$(\widehat{\mathsf{C}}, \widehat{\rho}) \models x^{\ell} \quad \underline{\mathrm{iff}} \quad \widehat{\rho}(x) \subseteq \widehat{\mathsf{C}}(\ell)$$

$$(\widehat{\mathsf{C}}, \widehat{\rho}) \models (\text{let } x = t_1^{\ell_1} \text{ in } t_2^{\ell_2})^{\ell}$$

$$\underbrace{\text{iff}}_{\widehat{\mathsf{C}}} (\widehat{\mathsf{C}}, \widehat{\rho}) \models t_1^{\ell_1} \land (\widehat{\mathsf{C}}, \widehat{\rho}) \models t_2^{\ell_2} \land$$

$$\widehat{\mathsf{C}}(\ell_1) \subseteq \widehat{\rho}(x) \land \widehat{\mathsf{C}}(\ell_2) \subseteq \widehat{\mathsf{C}}(\ell)$$

Clauses for O-CFA (2)

$$\begin{split} (\widehat{\mathsf{C}}, \widehat{\rho}) &\models (\text{if } t_0^{\ell_0} \text{ then } t_1^{\ell_1} \text{ else } t_2^{\ell_2})^{\ell} \\ & \underline{\text{iff}} \quad (\widehat{\mathsf{C}}, \widehat{\rho}) \models t_0^{\ell_0} \land \\ (\widehat{\mathsf{C}}, \widehat{\rho}) \models t_1^{\ell_1} \land (\widehat{\mathsf{C}}, \widehat{\rho}) \models t_2^{\ell_2} \land \\ & \widehat{\mathsf{C}}(\ell_1) \subseteq \widehat{\mathsf{C}}(\ell) \quad \land \quad \widehat{\mathsf{C}}(\ell_2) \subseteq \widehat{\mathsf{C}}(\ell) \end{split}$$

$$(\widehat{\mathsf{C}}, \widehat{\rho}) \models (t_1^{\ell_1} \text{ op } t_2^{\ell_2})^{\ell}$$

$$\underbrace{\text{iff}} \quad (\widehat{\mathsf{C}}, \widehat{\rho}) \models t_1^{\ell_1} \land (\widehat{\mathsf{C}}, \widehat{\rho}) \models t_2^{\ell_2}$$

Clauses for O-CFA (3)

 $(\widehat{\mathsf{C}},\widehat{\rho}) \models (\operatorname{fn} x \Rightarrow t_0^{\ell_0})^{\ell} \text{ iff } \{\operatorname{fn} x \Rightarrow t_0^{\ell_0}\} \subseteq \widehat{\mathsf{C}}(\ell)$

$$\begin{split} (\widehat{\mathsf{C}},\widehat{\rho}) &\models (t_1^{\ell_1} t_2^{\ell_2})^{\ell} \\ & \underset{(\widehat{\mathsf{C}},\widehat{\rho}) \models t_1^{\ell_1} \land (\widehat{\mathsf{C}},\widehat{\rho}) \models t_2^{\ell_2} \land \\ & (\forall (\operatorname{fn} x \Longrightarrow t_0^{\ell_0}) \in \widehat{\mathsf{C}}(\ell_1) : \quad (\widehat{\mathsf{C}},\widehat{\rho}) \models t_0^{\ell_0} \land \\ & \widehat{\mathsf{C}}(\ell_2) \subseteq \widehat{\rho}(x) \land \quad \widehat{\mathsf{C}}(\ell_0) \subseteq \widehat{\mathsf{C}}(\ell)) \end{split}$$

Clauses for O-CFA (4)

$$(\widehat{\mathsf{C}},\widehat{\rho}) \models (\texttt{fun } f \ x \Rightarrow e_0)^{\ell} \text{ iff } \{\texttt{fun } f \ x \Rightarrow e_0\} \subseteq \widehat{\mathsf{C}}(\ell)$$

$$\begin{split} (\widehat{\mathsf{C}},\widehat{\rho}) &\models (t_1^{\ell_1} \ t_2^{\ell_2})^{\ell} \\ & \text{iff} \qquad (\widehat{\mathsf{C}},\widehat{\rho}) \models t_1^{\ell_1} \ \land \ (\widehat{\mathsf{C}},\widehat{\rho}) \models t_2^{\ell_2} \ \land \\ & (\forall (\ \operatorname{fn} \ x \Rightarrow t_0^{\ell_0}) \in \widehat{\mathsf{C}}(\ell_1) : \qquad (\widehat{\mathsf{C}},\widehat{\rho}) \models t_0^{\ell_0} \ \land \\ & \widehat{\mathsf{C}}(\ell_2) \subseteq \widehat{\rho}(x) \ \land \ \widehat{\mathsf{C}}(\ell_0) \subseteq \widehat{\mathsf{C}}(\ell)) \ \land \\ & (\forall (\ \operatorname{fun} \ f \ x \Rightarrow t_0^{\ell_0}) \in \widehat{\mathsf{C}}(\ell_1) : \qquad (\widehat{\mathsf{C}},\widehat{\rho}) \models t_0^{\ell_0} \ \land \\ & \widehat{\mathsf{C}}(\ell_2) \subseteq \widehat{\rho}(x) \ \land \ \widehat{\mathsf{C}}(\ell_0) \subseteq \widehat{\mathsf{C}}(\ell) \ \land \\ & \widehat{\mathsf{C}}(\ell_2) \subseteq \widehat{\rho}(x) \ \land \ \widehat{\mathsf{C}}(\ell_0) \subseteq \widehat{\mathsf{C}}(\ell) \ \land \\ & \widehat{\mathsf{C}}(\ell_2) \subseteq \widehat{\rho}(x) \ \land \ \widehat{\mathsf{C}}(\ell_0) \subseteq \widehat{\mathsf{C}}(\ell) \ \land \\ & \widehat{\mathsf{fun}} \ f \ x \Rightarrow t_0^{\ell_0} \} \subseteq \widehat{\rho}(f) \end{split}$$

Constraint-based 0-CFA (1)

 $\mathcal{C}_{\star}[\![e_{\star}]\!]$ is a set of constraints of the form

 $\mathit{lhs} \subseteq \mathit{rhs}$

 $\{t\} \subseteq rhs' \Rightarrow lhs \subseteq rhs$

where

 $rhs ::= C(\ell) | r(x)$ $lhs ::= C(\ell) | r(x) | \{t\}$ and all occurrences of t are of the form fn x => e_0 or fun f x => e_0

Constraint-based 0-CFA (2)

 $\mathcal{C}_{\star}\llbracket (\operatorname{fn} x \Longrightarrow e_0)^{\ell} \rrbracket = \{ \{ \operatorname{fn} x \Longrightarrow e_0 \} \subseteq \mathsf{C}(\ell) \} \cup \mathcal{C}_{\star}\llbracket e_0 \rrbracket$

$$\mathcal{C}_{\star}[[(\operatorname{fun} f \ x \Rightarrow e_0)^{\ell}]] = \{ \{ \operatorname{fun} f \ x \Rightarrow e_0 \} \subseteq \mathsf{C}(\ell) \} \cup \mathcal{C}_{\star}[[e_0]] \\ \cup \{ \{ \operatorname{fun} f \ x \Rightarrow e_0 \} \subseteq \mathsf{r}(f) \} \}$$

$$\begin{aligned} \mathcal{C}_{\star}\llbracket(t_{1}^{\ell_{1}} \ t_{2}^{\ell_{2}})^{\ell}\rrbracket &= \mathcal{C}_{\star}\llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star}\llbracket t_{2}^{\ell_{2}} \rrbracket \\ &\cup \left\{ \left\{ t \right\} \subseteq \mathsf{C}(\ell_{1}) \Rightarrow \mathsf{C}(\ell_{2}) \subseteq \mathsf{r}(x) \right\} \ | \ t = (\operatorname{fn} \ x \Rightarrow t_{0}^{\ell_{0}}) \in \operatorname{Term}_{\star} \right\} \\ &\cup \left\{ \left\{ t \right\} \subseteq \mathsf{C}(\ell_{1}) \Rightarrow \mathsf{C}(\ell_{0}) \subseteq \mathsf{C}(\ell) \right\} \ | \ t = (\operatorname{fn} \ x \Rightarrow t_{0}^{\ell_{0}}) \in \operatorname{Term}_{\star} \right\} \\ &\cup \left\{ \left\{ t \right\} \subseteq \mathsf{C}(\ell_{1}) \Rightarrow \mathsf{C}(\ell_{2}) \subseteq \mathsf{r}(x) \right\} \ | \ t = (\operatorname{fn} \ f \ x \Rightarrow t_{0}^{\ell_{0}}) \in \operatorname{Term}_{\star} \right\} \\ &\cup \left\{ \left\{ t \right\} \subseteq \mathsf{C}(\ell_{1}) \Rightarrow \mathsf{C}(\ell_{0}) \subseteq \mathsf{C}(\ell) \right\} \ | \ t = (\operatorname{fn} \ f \ x \Rightarrow t_{0}^{\ell_{0}}) \in \operatorname{Term}_{\star} \right\} \end{aligned}$$

Constraint-based O-CFA (3)

 $\begin{aligned} \mathcal{C}_{\star}\llbracket c^{\ell} \rrbracket &= \emptyset \\ \mathcal{C}_{\star}\llbracket x^{\ell} \rrbracket &= \{ \mathsf{r}(x) \subseteq \mathsf{C}(\ell) \} \\ \mathcal{C}_{\star}\llbracket (\inf t_{0}^{\ell_{0}} \text{ then } t_{1}^{\ell_{1}} \text{ else } t_{2}^{\ell_{2}})^{\ell} \rrbracket &= \mathcal{C}_{\star}\llbracket t_{0}^{\ell_{0}} \rrbracket \cup \mathcal{C}_{\star}\llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star}\llbracket t_{2}^{\ell_{2}} \rrbracket \\ &\cup \{ \mathsf{C}(\ell_{1}) \subseteq \mathsf{C}(\ell) \} \\ &\cup \{ \mathsf{C}(\ell_{2}) \subseteq \mathsf{C}(\ell) \} \end{aligned}$

 $\mathcal{C}_{\star}\llbracket(\operatorname{let} x = t_1^{\ell_1} \text{ in } t_2^{\ell_2})^{\ell} \rrbracket = \mathcal{C}_{\star}\llbracket t_1^{\ell_1} \rrbracket \cup \mathcal{C}_{\star}\llbracket t_2^{\ell_2} \rrbracket \\ \cup \left\{ \frac{\mathsf{C}(\ell_1) \subseteq \mathsf{r}(x)}{\mathsf{C}(\ell_2)} \right\} \cup \left\{ \frac{\mathsf{C}(\ell_2) \subseteq \mathsf{C}(\ell)}{\mathsf{C}(\ell_2)} \right\}$

 $\mathcal{C}_{\star}[\![(t_{1}^{\ell_{1}} \text{ op } t_{2}^{\ell_{2}})^{\ell}]\!] = \mathcal{C}_{\star}[\![t_{1}^{\ell_{1}}]\!] \cup \mathcal{C}_{\star}[\![t_{2}^{\ell_{2}}]\!]$

Constraint-based 0-CFA (4)

$$\begin{aligned} &\mathcal{C}_{\star}[[((\text{fn } x \Rightarrow x^{1})^{2} \ (\text{fn } y \Rightarrow y^{3})^{4})^{5}]] = \\ & \left\{ \begin{array}{l} \{\text{fn } x \Rightarrow x^{1} \} \subseteq C(2), \\ & \mathsf{r}(x) \subseteq C(1), \\ & \{\text{fn } y \Rightarrow y^{3} \} \subseteq C(4), \\ & \mathsf{r}(y) \subseteq C(3), \\ & \{\text{fn } x \Rightarrow x^{1} \} \subseteq C(2) \Rightarrow C(4) \subseteq \mathsf{r}(x), \\ & \{\text{fn } x \Rightarrow x^{1} \} \subseteq C(2) \Rightarrow C(1) \subseteq C(5), \\ & \{\text{fn } y \Rightarrow y^{3} \} \subseteq C(2) \Rightarrow C(4) \subseteq \mathsf{r}(y), \\ & \{\text{fn } y \Rightarrow y^{3} \} \subseteq C(2) \Rightarrow C(3) \subseteq \mathsf{r}(y), \\ & \{\text{fn } y \Rightarrow y^{3} \} \subseteq C(2) \Rightarrow C(3) \subseteq \mathsf{C}(5) \ \end{aligned}$$

Solving the Constraints (1)

Input: a set of constraints $C_{\star}[[e_{\star}]]$

Output: the least solution $(\hat{C}, \hat{\rho})$ to the constraints

Data structures: a graph with one node for each $C(\ell)$ and r(x) (where $\ell \in Lab_*$ and $x \in Var_*$) and zero, one or two edges for each constraint in $C_*[[e_*]]$

- W: the worklist of the nodes whose outgoing edges should be traversed
- \bullet D: an array that for each node gives an element of $\widehat{\mathrm{Val}}_{\star}$
- E: an array that for each node gives a list of constraints influenced (and outgoing edges)

Auxiliary procedure:

procedure $\operatorname{add}(q,d)$ is if $\neg (d \subseteq D[q])$ then $D[q] := D[q] \cup d$; W := $\operatorname{cons}(q,W)$;

Solving the Constraints (2)

Example

Initialisation of data structures

p	D[p]	E[p]
C(1)	Ø	$[id_x \subseteq C(2) \Rightarrow C(1) \subseteq C(5)]$
C(2)	id_x	$[id_y \subseteq C(2) \Rightarrow C(3) \subseteq C(5), id_y \subseteq C(2) \Rightarrow C(4) \subseteq r(y),$
		$id_x \subseteq C(2) \Rightarrow C(1) \subseteq C(5), \ \ id_x \subseteq C(2) \Rightarrow C(4) \subseteq r(x)$
C(3)	Ø	$[id_y \subseteq C(2) \Rightarrow C(3) \subseteq C(5)]$
C(4)	id_y	$[id_y \subseteq C(2) \Rightarrow C(4) \subseteq r(y), id_x \subseteq C(2) \Rightarrow C(4) \subseteq r(x)]$
C(5)	Ø	
r(x)	Ø	$[r(x) \subseteq C(1)]$
r(y)	Ø	$[r(y) \subseteq C(3)]$

Iteration Steps

Iteration steps

W	[C(4),C(2)]	[r(x),C(2)]	[C(1), C(2)]	[C(5),C(2)]	[C(2)]	[]
p	D[p]	D[p]	D[p]	D[p]	D[p]	D[p]
C(1) C(2) C(3) C(4) C(5) r(x)	\emptyset id $_x$ \emptyset id $_y$ \emptyset \emptyset	$\emptyset \\ \mathrm{id}_x \\ \emptyset \\ \mathrm{id}_y \\ \emptyset \\ \mathrm{id}_y \\ \mathfrak{d}_y$	id_y id_x \emptyset id_y \emptyset id_y	id_y id_x id_y id_y id_y id_y	id_y id_x id_y id_y id_y	id_y id_x id_y id_y id_y

K-CFA

- An abstract value in K-CFA is a calling context that records the last k dynamic call points (i.e., call sites)
- Contexts are sequences of labels of length at most k and they will be updated whenever a function application is analyzed

K-CFA for Imperative Languages

- A calling context is a sequence of call sites
- Compute a solution for a function under each such calling context
- Scalability is the biggest challenge