Constraint-based Analysis

Harry Xu
CS 253/INF 212
Spring 2013

Acknowledgements

Many slides in this file were taken from Prof.
Crista Lope’s slides on functional programming
as well as slides provided by the authors of the
book Principles of Program Analysis available at

http://www?2.imm.dtu.dk/~hrni/PPA/ppasup200
4.html

Lambda Calculus

Lambda calculus is a formal system for
expressing computation by way of variable
binding and substitution

Syntax

M ::= X (variable)
| AX.M (abstraction)
| MM (application)

Nothing else!

— No numbers

— No arithmetic operations
— No loops

— No etc.

Symbolic computation

Syntax reminder

anonymous functions

/
AX.M = function(x) { M }

= apply Lto M

Terminology — bound variables

AX.M

The binding operator A binds the variable x in the
A-term xX.M

* M is called the scope of x
e X IS said to be a bound variable

Terminology — free variables

Free variables are all symbols that aren’t bound (duh)

FV(x) = {x}
FV(MN) = FV(M) U FV(N)
FV(x.M) = FV(M) - x

Renaming of bound variables

AX.M = Ay.(M[y/x]) 1fy not in FV(M)

l.e. you can replace x with y
aka “renaming”

a-conversion

Operational Semantics

* Evaluating function application: (Ax.e,) e,
— Replace every x in e, with e,
— Evaluate the resulting term
— Return the result of the evaluation

* Formally: “B-reduction” (aka “substitution”)
— (A x.e)) e, >gejle,/x]

— A term that can be [3-reduced is a redex (reducible
expression)

— We omit 3 when obvious

Note again

 Computation = pure symbolic manipulation

— Replace some symbols with other symbols

Scoping etc.

* Scope of A extends as far to the right as
possible

— M Ay.xy s Ax.(Ay.(x y))
* Function application is left-associative

— Xyz means (xy)z

Multiple arguments

* ANxy).e 2?7
— Doesn’t exist

o Solution: Ax.Ay.e [remember, (Ax.(Ay.e))]

— A function that takes x and returns another function that
takes y and returns e

— (AM.Ay.e) a b>(Ny.e[a/x]) b>e[a/x][b/y]

— “Currying” after Curry: transformation of multi-arg
functions into higher-order functions

* Multiple argument functions are nothing but
syntactic sugar

Boolean Values and Conditionals

* True = AX.Ay.X
* False = AX.Ay.y
* If-then-else = Aa.Ab.Ac.abc

Boolean Values and Conditionals

* |f True M N = (Aa.Ab.Ac.abc) True M N
J

\

|

|f
- (Ab.Ac.Truebc) M N
- (A\c.True M c) N
- True M N
= (AX.Ay.X) M N
> (Ay. M) N
-> M

Numbers

 Numbers are counts of things, any things. Like
function applications!

— 0 =Af. AX. X

— 1 = M. Ax. (f X)

— 2 = M. Ax. (f (f X))

— 3 = Af. Ax. (T (f (f X)))

— N = Af. Ax. (fN X)

Church numerals

Successor

e succ=An. Af. AX. f (n f x)

— Want to try it on succ(1)?
— An. A AX. (N f x) (M. Y)\x. (f X))
A

[|

> M. A f (M. Ax. (f X)) F x)

> M. Ax. £ (f x)

2!

Closures

* Function with free variables that are bound to
values in the enclosing environment

lambda (x)
(lambda (y)

X+Yy))

closure

Function Execution by Substitution

plusx y=x+y

1. plus 23 > 2+3 > 5

2. plus (2*3) (plus 4 5)

— plus 6 (4+5) — (2*3) +(plus 4 5)
— plus 6 9 —> 6 + (4+5)

—> 6 + 9 —> 6 + 9

— 15 — 15

The final answer did not depend upon the order
in which reductions were performed

in
(x -y)/(x +y)

e 3 variable can have at most one definition
in a block

e ordering of bindings does not matter

Layout Convention in Haskell

This convention allows us to omit many delimiters

let
X=a%*a
v=b*b
in
(x-y)/(x+y)
is the same as
let
{x=a*a;
y=b*b;}

in
(x-y)/(x+y)

o-renaming

let let
y=2%2 y=2%2
Xx=3+4 Xx=3+4
z = let z=let
Xx=5%*5 x’=5%5
w=Xx+y ¥*x — w=x"+y*x
in in
w w
in in
X+y+z X+y+2

Lexical Scoping

let
y=2%2
Xx=3+4
z = let
x=5%5
w=x+y*x
in
w
in
X+y+z

Lexically closest definition of a
variable prevails.

Dynamic Dispatch Problem

proc p(procval q, val x, res y) is‘

: .
[call p(pl1,1,v)]§
2 which procedure

e
[call q G,y is called?

[call p(p2,2,v)]§§
' ’ endtz
These problems arise for:
e imperative languages with procedures as parameters
e Object oriented languages

e functional languages

Example

let f = fn x => x 1 ;
g = fn y => y+2;
h=fn z => z+3

in (£ g) + (f h)

The aim of Control Flow Analysis:

For each function application, which functions may be applied?

Control Flow Analysis computes the interprocedural flow relation used
when formulating interprocedural Data Flow Analysis.

A Simple Functional Language

Syntactic categories:

e € Exp expressions (or terms)
t € Term terms (or expressions)
f,x € Var variables
¢ € Const constants
op € Op binary operators
¢ € Lab labels
Syntax:
e =t
t = c|lxz|fnxz=>eg|fun f x =>¢eqg|eq e

| if eg then eq else ep | let = = e1 in ep | e] Op eo

Examples

e ((fn x => x1)? (fn y => YS)°

o (let f = (fn x => (x! 12)3)4,;
in (let g = (fn y => y5)6;

in (let h = (fn z => z/)8
in ((£9 glOy11 4 (12 p13y14)15)1617

e (let g = (fun f x => (fl (fn y => F2)3)4)5
in (g6 (fn > => 27)8)9

0-CFA Analysis

e Abstract domains (i.e., maps)
e Specification of the analysis

Abstract Domains

The result of a 0-CFA analysis is a pair (ff,ﬁ):

e C is the abstract cache associating abstract values with each labelled
program point

e p is the abstract environment associating abstract values with each
variable

Example

((fn x => x1)? (fny => y3))°

Three guesses of a 0-CFA analysis result:

(EE: ﬁﬁ) (E;: ﬁfe (Efefﬂ ﬁg)
1 | {fny => yg} {fn y => y3} {fn x => x1, fn y => y3}
2 | {fnx => x'} | {fn x => x!} | {fn x => xl fn y => y3}
3 1)] {fn x => xl,fn y => ya}
4 | {fn y => y3} {fn y => y3} | {fn x => x1 fn y => y3}
5 {fny=>733} | {fny => y3} | {fn x => x1,fn y => y3}
x | {fny => y3} 0 {fn x => x!,fn y => y3}
y 0 0 {fn x => x!,fn y => y3}

A More Complicated Example

let g = (fun £ x => (£! (fn y => y2)3)%4)>
in (g® (fn z => 27)8)?

Abbreviations:

f = fun f x => (fl (fn y => Y2)3)4
idy, = fny = y2
id, = fnz => z'

One guess of a 0-CFA analysis result:

Elp(l) = {f} Elp(ﬁ‘) = {f} ﬁ]p(f) = {f}
Cp(2) = 0 Cp(7) =0 pp(e) = {f}
Cp3) = fidy} Cp(8 = {idz} pp(x) = {idy,idz}
Cp(4) = 0 Cp(9) = 0 ppy) = 0
Cp(®) = {f} Cy10) = 0 Pp(z) = 0

Abstract Domains

Formally:
€ Val = P(Term) abstract values
5 € Env = Var — Val abstract environments
C € Cache = Lab — Val abstract caches

An abstract value v is a set of terms of the forms
e fn x => ¢
o fun f x => ¢g

When is a proposed guess (fﬁ,f}) of an analysis results an accept-
able 0O-CFA analysis for the program?

Specification of 0-CFA

(C,p) Ee means that (C,p) is an acceptable Control Flow Analysis
of the expression e

The relation = has functionality:

= : (Cache x Env x Exp) — {true, false}

Clauses for 0-CFA (1)
(C,p) = ¢t always
(C,p) =2t iff p(=) C C(O)

(C,p) = (let = t3* in t2)*
it (Cp) A (CR) EtR A
C(f1) Cp(z) A C(L) CC(0)

Clauses for 0-CFA (2)

=~ . £ £ {
(C,p) = (if ty’ then Lell else ng)g

iff (C,p) E=tg A
(C,p) =ttt A (Cp)

0o
— 2N

C(£1) CCW) A C(tr) CC)

G optr)
iff (G g A (Gh)

460
= {5

Clauses for 0-CFA (3)

(C,p) = (£n = => tQ)! iff {fn & => 10} C C(¥)

(C,p) |= (15 t22)*

iff (C,p) =t A (Cp) =t A
R < [

(V(
C(t2) Cp(z) A C(o) C CO)

Clauses for 0-CFA (4)

(C,p) = (fun f x => eg)? iff {fun f z => eg} C C(¥)

= £ ¢
(C,p) = (¢ ﬁgz)f
iff (G, =t A (Ch) R A

o D <o O

C(t2) C plz) A C(Ly) CC)) A

C(L2) C p(x) A C(o) C C(E) A
{fun f = => t2} C 5(f))

Constraint-based 0-CFA (1)

C«[[ex]] is a set of constraints of the form
Ihs C rhs

{t} C rhs’ = Ihs C rhs

where

rhs ::

C) | r(x)

lhs == C) | r(z) | {t}

and all occurrences of ¢t are of the form fn = => eg Or fun f x => eg

Constraint-based O0-CFA (2)

Cill(fn @ => e0)] = {{fn @ => eg} CC() } U Culleol

Cull(fun f 2 => ¢0)’] = {{fun f & => g} CC(£) } U Cilleo]
U {{fun f = => eo} C r(f) }

CI(H €)1 = e[t] v Ce[t2]

U (SR | = (o « >) € Term,)
U (ICCEEEEIEIE®)] | = (i - >) € Term.)
o (SRR | = (run f =) € Torm,)
U (IS | = (o f © -> 1) € Term,)

Cx

Cx

Constraint-based 0-CFA (3)

[T =0
[z°] = {r(z) C C(¥) }

[(if tgﬂ then t‘il else f)] = C*[[f]]LJC*[[f]]L.JC*[[f 2]]
U {C(41) CC(¥) }
U {C(4) C C(¥) }

Cll(tet z = t5 in £2)1] = CL[£] U C[t2]

U {C(41) Cr(z) } U{C(la) CC) }

Cul(ty op t2)] = Callt1] U Calit]

Constraint-based 0-CFA (4)

C+[((fn x => x1)? (fn y => y3)4)°] =

{ {fn x => x1} C C(2),

r(x) C C(1),

{fn y => y>} C C(4),

r(y) € C(3),

{fn x => x1} C C(2) = C(4) C r(x),
{fn x => x1} C C(2) = C(1) C C(5),
{fn y => y3} C C(2) = C(4) Cr(y),
{fn y => y3} CC(2) = C(3) C C(5) }

Solving the Constraints (1)

Input: a set of constraints Cy[[e]
Output: the least solution (C,) to the constraints

Data structures: a graph with one node for each C(¥) and r(x)
and zero, one or two edges for each constraint
N C*IIE*]]

e \W: the worklist of the nodes whose outgoing edges should be tra-
versed

e D: an array that for each node gives an element of ﬁl*

e E: an array that for each node gives a list of constraints influenced
(and outgoing edges)

Auxiliary procedure:
procedure add(q,d) is if = (d C DJq]) then Dlq] := DJq] U d;
W = cons(q,W);

Solving the Constraints (2)

Step 1
W = nil;
for ¢ in Nodes do Dlq] := 0; E[q] := nil;
Step 2
for ce in Cx[ex]] do
case cc of {t} C p: add(p,{t});
p1 € p2: Elp1] := cons(cc,E[p1]);
{t} Cp=p1 Cpa: E[p1] := cons(cc,E[p1D);
E[p] := cons(ecc,E[p]):
Step 3
while W # nil do
g := head(W); W := tail(W);
for ce in Elq] do
case ce of py1 C po: add(ps, Dlp1]);
{t} Cp=p1 Cpo: ifte Dlp] then add(p2, Dp1]);
Step 4

for ¢ in Labs do C(#) := D[C(#)]; for z in Vary do p(z) := D[r(z)];

Example

Initialisation of data structures

p D[p] E [p]

C(1) 0 [idz € C(2) = C(1) C C(5)]

C(2) | idg | [idy € C(2) = C(3) C C(5), idy € C(2) = C(4) C r(y),
idy C C(2) = C(1) C C(5), idy C C(2) = C(4) C r(x)]

C(3) 0 lidy € C(2) = C(3) € C(5)]

C(4) | id, |[idy C C(2) = C(4) C r(y), idz C C(2) = C(4) C r(x)]

C(5) 0 []

r(x) 0 [r(x) € C(1)]

r(y) 0 [r(y) € C(3)]

Iteration steps

Iteration Steps

W | [C(4),C(2)] | [r(x),C(2)] | [C(1),C(] | [C(B),C)] | [C2)] | T[]
p D(p] D(p] D(p] D(p] Dlp] | D[p]
C(1) 0 1] idy id,, id, | idy
C(2) idy id idy Idg idy Idg
C(3) 0)) 0) 0
C(4) id,, id,, id,, id,, id, | idy
C(5) 0 1] 0 id, idy, | idy
r(x) 0 id, id, id,, id, | id,
r(y) 0 0 0 0 1] 0

K-CFA

* An abstract value in K-CFA is a calling context

that records the last k dynamic call points (i.e.,
call sites)

* Contexts are sequences of labels of length at
most k and they will be updated whenever a
function application is analyzed

K-CFA for Imperative Languages

* A calling context is a sequence of call sites

 Compute a solution for a function under each
such calling context

* Scalability is the biggest challenge

