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Lambda Calculus 

Lambda calculus is a formal system for 
expressing computation by way of variable 
binding and substitution 

 



Syntax 

M ::= x   (variable) 

  | λx.M   (abstraction) 

  | MM   (application) 

 

Nothing else! 
– No numbers 

– No arithmetic operations 

– No loops 

– No etc. 

Symbolic computation 

 



Syntax reminder 

λx.M               function(x) { M } 

 

LM, e.g. λx.N y      apply L to M   

 
L M 

anonymous functions 



Terminology – bound variables 

λx.M 

 

The binding operator λ binds the variable x in the  

λ-term x.M 

 

• M is called the scope of x 

• x is said to be a bound variable 

 



Terminology – free variables 

Free variables are all symbols that aren’t bound (duh) 

FV(x) = {x} 

FV(MN) = FV(M) U FV(N) 

FV(x.M) = FV(M) − x 



Renaming of bound variables 

λx.M = λy.(M[y/x])    if y not in FV(M) 

α-conversion 

i.e. you can replace x with y 

aka “renaming” 



Operational Semantics 

• Evaluating function application: (λx.e1) e2 

– Replace every x in e1 with e2 

– Evaluate the resulting term 

– Return the result of the evaluation 

• Formally: “β-reduction”  (aka “substitution”) 
– (λ x.e1) e2 →β e1[e2/x] 

– A term that can be β-reduced is a redex (reducible 
expression) 

– We omit β when obvious 



Note again 

• Computation = pure symbolic manipulation 

– Replace some symbols with other symbols 



Scoping etc. 

• Scope of λ extends as far to the right as 
possible 

– λx.λy.xy      is        λx.(λy.(x y)) 

• Function application is left-associative 

– xyz means (xy)z 



Multiple arguments 

• λ(x,y).e   ??? 
– Doesn’t exist 

• Solution: λx.λy.e    [remember, (λx.(λy.e))] 
– A function that takes x and returns another function that 

takes y and returns e 

– (λx.λy.e) a b→(λy.e[a/x]) b→e[a/x][b/y] 

– “Currying” after Curry: transformation of multi-arg 
functions into higher-order functions 

 

• Multiple argument functions are nothing but 
syntactic sugar 



Boolean Values and Conditionals 

• True = λx.λy.x 

• False = λx.λy.y 

• If-then-else = λa.λb.λc. a b c 



Boolean Values and Conditionals 

• If True M N = (λa.λb.λc.abc) True M N 
 
 
   (λb.λc.True b c) M N 
   (λc.True M c) N 
   True M N 
                = (λx.λy.x) M N 
   (λy.M) N  

            M 

 
 

If 



Numbers 

• Numbers are counts of things, any things. Like 
function applications! 

 
– 0 = λf. λx. x 

– 1 = λf. λx. (f x) 

– 2 = λf. λx. (f (f x)) 

– 3 = λf. λx. (f (f (f x))) 

– … 

– N = λf. λx. (fN x) 

Church numerals 



Successor 

• succ = λn. λf. λx. f (n f x) 

– Want to try it on succ(1)? 

–      λn. λf. λx. f (n f x) (λf. λx. (f x)) 

 

  λf. λx. f ((λf. λx. (f x)) f x) 

 
  λf. λx. f (f x) 

1 

2 ! 



Closures 

• Function with free variables that are bound to 
values in the enclosing environment 

(lambda (x) 

    (lambda (y) 

        x+y)) 
closure 



Function Execution by Substitution 

 plus x  y = x + y 
 
1. plus  2  3    2 + 3    5 
 
2. plus  (2*3)  (plus 4 5) 
 

 plus 6 (4+5) 

 plus 6 9 

 6 + 9 

 15 

 (2*3) +(plus 4 5) 

 6 + (4+5) 

 6 + 9 

 15 

The final answer did not depend upon the order 
in which reductions were performed 



Blocks 

let 
  x =  a * a 
  y =  b * b 
in  

 (x - y)/(x + y) 
 
 
 
 

• a variable can have at most one definition  
  in a block 
 
• ordering of bindings does not matter 



Layout Convention in Haskell 
This convention allows us to omit many delimiters  
 

let 
  x =  a * a 
  y =  b * b 
in  

 (x - y)/(x + y) 
 
is the same as 
 

let 
  { x =  a * a ; 
    y =  b * b ;} 
in  

 (x - y)/(x + y) 



-renaming 

let 
  y = 2 * 2  
  x = 3 + 4  
  z = let 
             x = 5 * 5  
             w = x + y * x 
      in    
         w 
 in 
   x + y + z 
 

 

let 
  y = 2 * 2  
  x = 3 + 4  
  z = let 
        x’ = 5 * 5  
        w = x’ + y * x’ 
      in    
         w 
in 
   x + y + z 
 



Lexical Scoping 

let 
    y = 2 * 2 
    x = 3 + 4 
    z = let 
          x = 5 * 5 
                  w = x + y * x 
          in    
                   w 
in 
    x + y + z 

 
 

Lexically closest definition of a 
variable prevails. 



Dynamic Dispatch Problem 



Example 



A Simple Functional Language  



Examples 



0-CFA Analysis 

• Abstract domains (i.e., maps) 

• Specification of the analysis 

 



Abstract Domains 



Example 



A More Complicated Example 



Abstract Domains 



Specification of 0-CFA 



Clauses for 0-CFA (1) 



Clauses for 0-CFA (2) 



Clauses for 0-CFA (3) 



Clauses for 0-CFA (4) 



Constraint-based 0-CFA (1) 



Constraint-based 0-CFA (2) 



Constraint-based 0-CFA (3) 



Constraint-based 0-CFA (4) 



Solving the Constraints (1) 



Solving the Constraints (2) 



Example 



Iteration Steps 



K-CFA 

• An abstract value in K-CFA is a calling context 
that records the last k dynamic call points (i.e., 
call sites) 

• Contexts are sequences of labels of length at 
most k and they will be updated whenever a 
function application is analyzed 



K-CFA for Imperative Languages 

• A calling context is a sequence of call sites 

• Compute a solution for a function under each 
such calling context 

• Scalability is the biggest challenge 


