Constraint-based Analysis

Harry Xu
CS 253/INF 212
Spring 2013

Acknowledgements

Many slides in this file were taken from Prof.
Crista Lope's slides on functional programming as well as slides provided by the authors of the book Principles of Program Analysis available at http://www2.imm.dtu.dk/~hrni/PPA/ppasup200 4.html

Lambda Calculus

Lambda calculus is a formal system for expressing computation by way of variable binding and substitution

Syntax

M ::=x

| $\lambda x . M$
| MM

(variable)
(abstraction)
(application)

Nothing else!

- No numbers
- No arithmetic operations
- No loops
- No etc.

Symbolic computation

Syntax reminder

anonymous functions
$\lambda x . M$
\rightarrow function $(x)\{M\}$
LM, e.g. $\underbrace{\lambda x . N ~}_{L \quad M} \underbrace{\mathrm{y}}_{\mathrm{M}}$
\Rightarrow apply L to M

Terminology - bound variables

$\lambda x . M$

The binding operator λ binds the variable x in the λ-term x.M

- M is called the scope of x
- x is said to be a bound variable

Terminology - free variables

Free variables are all symbols that aren't bound (duh)

$$
\begin{aligned}
& F V(x)=\{x\} \\
& F V(M N)=F V(M) \cup F V(N) \\
& F V(x . M)=F V(M)-x
\end{aligned}
$$

Renaming of bound variables

$\lambda x . \mathrm{M}=\lambda y .(\mathrm{M}[y / x])$ if y not in $\mathrm{FV}(\mathrm{M})$
i.e. you can replace x with y aka "renaming"

α-conversion

Operational Semantics

- Evaluating function application: ($\left.\lambda x . e_{1}\right) e_{2}$
- Replace every x in e_{1} with e_{2}
- Evaluate the resulting term
- Return the result of the evaluation
- Formally: " β-reduction" (aka "substitution")
$-\left(\lambda x . e_{1}\right) e_{2} \rightarrow_{\beta} e_{1}\left[e_{2} / x\right]$
- A term that can be β-reduced is a redex (reducible expression)
- We omit β when obvious

Note again

- Computation = pure symbolic manipulation
- Replace some symbols with other symbols

Scoping etc.

- Scope of λ extends as far to the right as possible
$-\lambda x \cdot \lambda y \cdot x y$ is $\lambda x .(\lambda y .(x y))$
- Function application is left-associative
- xyz means (xy)z

Multiple arguments

- $\lambda(x, y) . e$???
- Doesn't exist
- Solution: $\lambda x . \lambda y . e \quad[r e m e m b e r, ~(\lambda x .(\lambda y . e))]$
- A function that takes x and returns another function that takes y and returns e
$-(\lambda x . \lambda y . e) a b(\lambda y . e[a / x]) b \rightarrow e[a / x][b / y]$
- "Currying" after Curry: transformation of multi-arg functions into higher-order functions
- Multiple argument functions are nothing but syntactic sugar

Boolean Values and Conditionals

- True $=\lambda x . \lambda y . x$
- False $=\lambda x . \lambda y \cdot y$
- If-then-else $=\lambda a \cdot \lambda b \cdot \lambda c . a b c$

Boolean Values and Conditionals

- If True M N = ($\lambda a . \lambda b . \lambda c . a b c)$ True M N

$$
\begin{aligned}
& \rightarrow(\lambda b . \lambda c . \text {.Ifue } b c) \mathrm{M} \mathrm{~N} \\
& \rightarrow(\lambda c . \text { True } M c) \mathrm{N} \\
& \rightarrow \text { True } M \mathrm{~N} \\
& =(\lambda x \cdot \lambda y \cdot \mathrm{M}) \mathrm{N} \\
& \rightarrow(\lambda y \cdot M) N \\
& \rightarrow \mathrm{M}
\end{aligned}
$$

Numbers

- Numbers are counts of things, any things. Like function applications!

$$
\begin{aligned}
& -0=\lambda f . \lambda x \cdot x \\
& -1=\lambda f . \lambda x \cdot(f x) \\
& -2=\lambda f . \lambda x \cdot(f(f x)) \\
& -3=\lambda f \cdot \lambda x \cdot(f(f(f x))) \\
& -\ldots \\
& -N=\lambda f \cdot \lambda x \cdot\left(f^{N} x\right)
\end{aligned}
$$

Successor

- $\operatorname{succ}=\lambda n . \lambda f . \lambda x . f(n f x)$
- Want to try it on succ(1)?
- $\quad \lambda n . \lambda f . \lambda x . f(n f x)(\lambda f . \lambda x .(f x))$
$\rightarrow \lambda \mathrm{f} . \lambda \mathrm{x} . \mathrm{f}((\lambda \mathrm{f} . \lambda \mathrm{x} .(\mathrm{fx})) \mathrm{fx})$
$\rightarrow \lambda f . \lambda x . f(f x)$
$2!$

Closures

- Function with free variables that are bound to values in the enclosing environment

Function Execution by Substitution

plus $x y=x+y$	
1. plus $23 \rightarrow 2+$	
2. plus (2*3) (plus	
\rightarrow plus 6 (4+5)	$\rightarrow(2 * 3)+($ plus 45$)$
\rightarrow plus 69	$\rightarrow 6+(4+5)$
$\rightarrow 6+9$	$\rightarrow 6+9$
$\rightarrow 15$	$\rightarrow 15$

The final answer did not depend upon the order in which reductions were performed

Blocks

$$
\begin{aligned}
& \text { let } \\
& \quad \begin{array}{l}
x=a * a \\
y=b^{*} b
\end{array} \\
& \\
& (x-y) /(x+y)
\end{aligned}
$$

- a variable can have at most one definition in a block
- ordering of bindings does not matter

Layout Convention in Haskell

This convention allows us to omit many delimiters

$$
\begin{array}{ll}
\text { let } & \\
& \begin{array}{l}
x=a * a \\
y=b * b
\end{array} \\
\text { in } & \\
& (x-y) /(x+y)
\end{array}
$$

is the same as

$$
\left.\begin{array}{lc}
\text { let } & \\
& \{x=a * a ; \\
\left.y=b^{*} \cdot b ;\right\}
\end{array}\right\}
$$

α-renaming

let	let
$y=2 * 2$	$y=2 * 2$
$x=3+4$	$x=3+4$
$\mathrm{z}=1 \mathrm{l}$ t	$\mathrm{z}=1 \mathrm{l}$ t
$x=5 * 5$	$x^{\prime}=5 * 5$
$w=x+y * x$	$w=x^{\prime}+y^{*} x^{\prime}$
in	in
W	W
in	in
$x+y+z$	$x+y+z$

Lexical Scoping

$$
\begin{aligned}
& \text { let } \\
& y=2 * 2 \\
& x=3+4 \\
& \mathrm{z}=1 e t \\
& x=5 * 5 \\
& w=x+y^{*} x \\
& \text { in } \\
& \text { W } \\
& \text { in } \\
& x+y+z
\end{aligned}
$$

Lexically closest definition of a variable prevails.

Dynamic Dispatch Problem

$[\text { call } \mathrm{p}(\mathrm{p} 1,1, \mathrm{v})]_{\ell_{r}^{1}}^{\ell_{c}^{1}}$
$[\operatorname{call} \mathrm{p}(\mathrm{p} 2,2, \mathrm{v})]_{\ell_{r}^{2}}^{\ell_{c}^{2}}$

```
proc p(procval q, val x, res y) is }\mp@subsup{|}{n}{l
[call q (x,y)] [ which procedure is called?
```

These problems arise for:

- imperative languages with procedures as parameters
- object oriented languages
- functional languages

Example

$$
\begin{aligned}
& \text { let } \begin{array}{l}
f=f n x \Rightarrow x 1 ; \\
g=f n y \Rightarrow y+2 ; \\
h=f n z \Rightarrow z+3
\end{array} \\
& \text { in }(f \mathrm{~g})+(f \mathrm{~h})
\end{aligned}
$$

The aim of Control Flow Analysis:

For each function application, which functions may be applied?

Control Flow Analysis computes the interprocedural flow relation used when formulating interprocedural Data Flow Analysis.

A Simple Functional Language

Syntactic categories:

$$
\begin{array}{rlll}
e & \in \text { Exp } & \text { expressions (or labelled terms) } \\
t & \in \text { Term } & \text { terms (or unlabelled expressions) } \\
f, x & \in \text { Var } & \text { variables } \\
c & \in \text { Const } & \text { constants } \\
o p & \in \text { Op } & \text { binary operators } \\
\ell & \in \text { Lab } & \text { labels }
\end{array}
$$

Syntax:

$$
\begin{aligned}
e & ::=t^{\ell} \\
t: & :=c|x| \text { fn } x=>e_{0} \mid \text { fun } f x=>e_{0} \mid e_{1} e_{2} \\
& \mid \quad \text { if } e_{0} \text { then } e_{1} \text { else } e_{2} \mid \text { let } x=e_{1} \text { in } e_{2} \mid e_{1} \text { op } e_{2}
\end{aligned}
$$

Examples

- $\left(\left(\operatorname{fnx}=>x^{1}\right)^{2}\left(f n y=y^{3}\right)^{4}\right)^{5}$
- (let $f=\left(f n x=\left(x^{1} 1^{2}\right)^{3}\right)^{4}$; in (let $\mathrm{g}=\left(\mathrm{fn} \mathrm{y}=\mathrm{y}^{5}\right)^{6}$;
in $\left(\right.$ let $h=\left(f n z=z^{7}\right)^{8}$
in $\left.\left.\left.\left(\left(f^{9} g^{10}\right)^{11}+\left(f^{12} h^{13}\right)^{14}\right)^{15}\right)^{16}\right)^{17}\right)^{18}$
- (let $g=\left(\text { fun } f x=>\left(f^{1} \quad\left(f n y \Rightarrow y^{2}\right)^{3}\right)^{4}\right)^{5}$ in $\left.\left(g^{6}\left(f n z=z^{7}\right)^{8}\right)^{9}\right)^{10}$

0-CFA Analysis

- Abstract domains (i.e., maps)
- Specification of the analysis

Abstract Domains

The result of a 0-CFA analysis is a pair $(\widehat{\mathrm{C}}, \widehat{\rho})$:

- \widehat{C} is the abstract cache associating abstract values with each labelled program point
- $\hat{\rho}$ is the abstract environment associating abstract values with each variable

Example

$$
\left(\left(f n x \Rightarrow x^{1}\right)^{2}\left(f n y \Rightarrow y^{3}\right)^{4}\right)^{5}
$$

Three guesses of a 0-CFA analysis result:

A More Complicated Example

$$
\begin{aligned}
& \left(\text { let } g=\left(\text { fun } f x=>\left(f f^{1}\left(\text { fr } y=>y^{2}\right)^{3}\right)^{4}\right)^{5}\right. \\
& \text { in } \left.\left(g^{6}\left(\text { fr } z=z^{7}\right)^{8}\right)^{9}\right)^{10}
\end{aligned}
$$

Abbreviations:

$$
\begin{aligned}
\mathrm{f} & =\text { fun } \mathrm{fx} \mathrm{x} \Rightarrow\left(\mathrm{f}^{1}\left(\mathrm{fn} \mathrm{y} \Rightarrow \mathrm{y}^{2}\right)^{3}\right)^{4} \\
\mathrm{id}_{y} & =\text { fin } \mathrm{y} \Rightarrow \mathrm{y}^{2} \\
\mathrm{id}_{z} & =\text { fin } \mathrm{z} \Rightarrow \mathrm{z}^{7}
\end{aligned}
$$

One guess of a 0-CFA analysis result:

$$
\begin{aligned}
& \hat{C}_{1 p}(1)=\{f\} \\
& \widehat{C}_{1 p}(6)=\{f\} \\
& \widehat{\rho}_{\text {lp }}(f)=\{f\} \\
& \widehat{C}_{1 p}(2)=\emptyset \\
& \widehat{C}_{1 p}(7)=\emptyset \\
& \widehat{\rho}_{\mathrm{lp}}(\mathrm{~g})=\{\mathrm{f}\} \\
& \widehat{C}_{l p}(3)=\left\{\mathrm{id}_{y}\right\} \\
& \widehat{\mathrm{C}}_{\mathrm{lp}}(8)=\left\{\mathrm{id}_{z}\right\} \\
& \widehat{\rho}_{\mathrm{lp}}(\mathrm{x})=\left\{\mathrm{id}_{y}, \mathrm{id}_{z}\right\} \\
& \widehat{C}_{1 p}(4)=\emptyset \\
& \widehat{C}_{\mathrm{Cp}}(5)=\{\mathrm{f}\} \\
& \widehat{C}_{1 p}(9)=\emptyset \\
& \widehat{\rho}_{\mathrm{lp}}(\mathrm{y})=\emptyset \\
& \widehat{\rho}_{\text {lp }}(\mathrm{z})=\emptyset
\end{aligned}
$$

Abstract Domains

Formally:

$$
\begin{aligned}
\widehat{v} \in \widehat{\text { Val }} & =\mathcal{P}(\text { Term }) \\
\widehat{\rho} \in \widehat{\text { Env }} & =\text { Var } \rightarrow \widehat{\text { Val }} \text { abstract values } \\
\widehat{\mathrm{C}} \in \widehat{\text { Cache }} & =\text { Lab } \rightarrow \widehat{\text { Val }} \text { abstract caches }
\end{aligned}
$$

An abstract value \hat{v} is a set of terms of the forms

- $\mathrm{fn} x=e_{0}$
- fun $f x=e_{0}$

When is a proposed guess ($\widehat{C}, \widehat{\rho}$) of an analysis results an acceptable O-CFA analysis for the program?

Specification of 0-CFA

($\widehat{\mathrm{C}}, \widehat{\rho}) \models e$ means that $(\widehat{\mathrm{C}}, \widehat{\rho})$ is an acceptable Control Flow Analysis of the expression e

The relation \vDash has functionality:
$\vDash:(\widehat{\text { Cache }} \times \widehat{\operatorname{Env}} \times \operatorname{Exp}) \rightarrow\{$ true, false $\}$

Clauses for 0-CFA (1)

$(\widehat{\mathrm{C}}, \widehat{\rho}) \models c^{\ell}$ always
$(\widehat{\mathrm{C}}, \widehat{\rho}) \models x^{\ell} \quad$ iff $\quad \widehat{\rho}(x) \subseteq \widehat{\mathrm{C}}(\ell)$

$$
\begin{aligned}
&(\widehat{\mathrm{C}}, \widehat{\rho}) \models\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \underline{\text { iff }} \quad(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{2}^{\ell_{2}} \wedge \\
& \widehat{\mathrm{C}}\left(\ell_{1}\right) \subseteq \hat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\mathrm{C}}(\ell)
\end{aligned}
$$

Clauses for 0-CFA (2)

$$
\begin{aligned}
& (\widehat{C}, \hat{\rho}) \models\left(\text { if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\hat{C}, \widehat{\rho}) \models t_{0}^{\ell_{0}} \wedge \\
& (\widehat{C}, \widehat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{2}^{\ell_{2}} \wedge \\
& \widehat{C}\left(\ell_{1}\right) \subseteq \widehat{C}(\ell) \wedge \widehat{C}\left(\ell_{2}\right) \subseteq \widehat{C}(\ell) \\
& (\widehat{C}, \widehat{\rho}) \models\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \\
& \text { iff } \quad(\widehat{C}, \widehat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{C}, \widehat{\rho}) \models t_{2}^{\ell_{2}}
\end{aligned}
$$

Clauses for 0-CFA (3)

$$
(\widehat{\mathrm{C}}, \widehat{\rho}) \models\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right)^{\ell} \text { iff }\left\{\mathrm{fn} x \Rightarrow t_{0}^{\ell}\right\} \subseteq \widehat{\mathrm{C}}(\ell)
$$

$(\widehat{C}, \widehat{\rho}) \models\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell}$

$$
\text { iff } \quad(\widehat{C}, \hat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\hat{C}, \hat{\rho}) \models t_{2}^{\ell_{2}} \wedge
$$

$$
\left(\forall\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{\mathcal{C}}\left(\ell_{1}\right): \quad(\widehat{\mathrm{C}}, \hat{\rho}) \models t_{0}^{\ell_{0}} \wedge\right.
$$

$$
\left.\widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{c}}\left(\ell_{0}\right) \subseteq \hat{c}(\ell)\right)
$$

Clauses for 0-CFA (4)

$$
\begin{aligned}
& (\widehat{\mathrm{C}}, \widehat{\rho}) \models\left(\text { fun } f x \Rightarrow e_{0}\right)^{\ell} \text { inf }\left\{\text { fun } f x \Rightarrow e_{0}\right\} \subseteq \widehat{\mathrm{C}}(\ell) \\
& (\widehat{\mathrm{C}}, \widehat{\rho}) \models\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \\
& \underline{\text { iffy } \quad(\widehat{\mathrm{C}}, \widehat{\rho}) \models t_{1}^{\ell_{1}} \wedge(\widehat{\mathrm{C}}, \hat{\rho}) \models t_{2}^{\ell_{2}} \wedge} \begin{aligned}
\left(\forall\left(\text { fin } x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{\mathrm{C}}\left(\ell_{1}\right): \quad\right. & (\widehat{\mathrm{C}}, \hat{\rho}) \models t_{0}^{\ell_{0}} \wedge \\
& \left.\widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell)\right) \wedge \\
\left(\forall\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \widehat{\mathrm{C}}\left(\ell_{1}\right):\right. & (\widehat{\mathrm{C}}, \hat{\rho}) \models t_{0}^{\ell_{0}} \wedge \\
& \widehat{\mathrm{C}}\left(\ell_{2}\right) \subseteq \widehat{\rho}(x) \wedge \widehat{\mathrm{C}}\left(\ell_{0}\right) \subseteq \widehat{\mathrm{C}}(\ell) \wedge \\
& \left\{\text { fun } f x=t_{0}^{\left.\ell_{0}\right\}} \subseteq \widehat{\rho}(f)\right)
\end{aligned}
\end{aligned}
$$

Constraint-based 0-CFA (1)

$\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$ is a set of constraints of the form

$$
\begin{gathered}
l h s \subseteq r h s \\
\{t\} \subseteq r h s^{\prime} \Rightarrow I h s \subseteq r h s
\end{gathered}
$$

where

$$
\begin{aligned}
\text { rhs }: & :=C(\ell) \mid r(x) \\
\text { Ihs }: & :=C(\ell)|r(x)|\{t\}
\end{aligned}
$$

and all occurrences of t are of the form $\mathrm{fn} x \Rightarrow e_{0}$ or fun $f x=>e_{0}$

Constraint-based 0-CFA (2)

$$
\begin{aligned}
& \mathcal{C}_{\star} \llbracket\left(\mathrm{fn} x \Rightarrow e_{0}\right)^{\ell} \rrbracket=\left\{\left\{\mathrm{fn} x=e_{0}\right\} \subseteq \mathrm{C}(\ell)\right\} \cup \mathcal{C}_{\star} \llbracket e_{0} \rrbracket \\
& \mathcal{C}_{\star} \llbracket\left(\text { fun } f x=e_{0}\right)^{\ell} \rrbracket=\left\{\left\{\text { fun } f x=e_{0}\right\} \subseteq C(\ell)\right\} \cup \mathcal{C}_{\star} \llbracket e_{0} \rrbracket \\
& \cup\left\{\left\{\text { fun } f x=>e_{0}\right\} \subseteq r(f)\right\} \\
& \mathcal{C}_{\star} \llbracket\left(t_{1}^{\ell_{1}} t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket=\mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{2}^{\ell_{2}} \rrbracket \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow \mathrm{C}\left(\ell_{2}\right) \subseteq \mathrm{r}(x) \mid t=\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right) \in \mathrm{Term}_{\star}\right\} \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow \mathrm{C}\left(\ell_{0}\right) \subseteq \mathrm{C}(\ell) \mid t=\left(\mathrm{fn} x \Rightarrow t_{0}^{\ell_{0}}\right) \in \mathrm{Term}_{*}\right\} \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow C\left(\ell_{2}\right) \subseteq r(x) \mid t=\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \operatorname{Term}_{\star}\right\} \\
& \cup\left\{\{t\} \subseteq C\left(\ell_{1}\right) \Rightarrow C\left(\ell_{0}\right) \subseteq C(\ell) \mid t=\left(\text { fun } f x \Rightarrow t_{0}^{\ell_{0}}\right) \in \operatorname{Term}_{*}\right\}
\end{aligned}
$$

Constraint-based 0-CFA (3)

$\mathcal{C}_{\star} \llbracket c^{\ell} \rrbracket=\emptyset$
$\mathcal{C}_{\star} \llbracket x^{\ell} \rrbracket=\{r(x) \subseteq C(\ell)\}$
$\mathcal{C}_{\star} \llbracket\left(\text { if } t_{0}^{\ell_{0}} \text { then } t_{1}^{\ell_{1}} \text { else } t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket=\mathcal{C}_{\star} \llbracket t_{0}^{\ell_{0}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{2}^{\ell_{2}} \rrbracket$
$\cup\left\{C\left(\ell_{1}\right) \subseteq C(\ell)\right\}$
$\cup\left\{C\left(\ell_{2}\right) \subseteq C(\ell)\right\}$
$\mathcal{C}_{\star} \llbracket\left(\text { let } x=t_{1}^{\ell_{1}} \text { in } t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket=\mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{2}^{\ell_{2}} \rrbracket$
$\cup\left\{C\left(\ell_{1}\right) \subseteq r(x)\right\} \cup\left\{C\left(\ell_{2}\right) \subseteq C(\ell)\right\}$
$\mathcal{C}_{\star} \llbracket\left(t_{1}^{\ell_{1}} \text { op } t_{2}^{\ell_{2}}\right)^{\ell} \rrbracket=\mathcal{C}_{\star} \llbracket t_{1}^{\ell_{1}} \rrbracket \cup \mathcal{C}_{\star} \llbracket t_{2}^{\ell_{2}} \rrbracket$

Constraint-based 0-CFA (4)

$$
\begin{aligned}
& \mathcal{C}_{\star} \llbracket\left(\left(\text { fn } x \Rightarrow x^{1}\right)^{2}\left(f n y=y^{3}\right)^{4}\right)^{5} \rrbracket= \\
&\left\{\text { fn } x \Rightarrow x^{1}\right\} \subseteq C(2), \\
& r(x) \subseteq C(1), \\
&\left\{\text { fn } y \Rightarrow y^{3}\right\} \subseteq C(4), \\
& r(y) \subseteq C(3), \\
&\left\{\text { fn } x \Rightarrow x^{1}\right\} \subseteq C(2) \Rightarrow C(4) \subseteq r(x), \\
&\left\{\text { fn } x \Rightarrow x^{1}\right\} \subseteq C(2) \Rightarrow C(1) \subseteq C(5), \\
&\left\{\text { fn } y \Rightarrow y^{3}\right\} \subseteq C(2) \Rightarrow C(4) \subseteq r(y), \\
&\left.\left\{\text { fn } y \Rightarrow y^{3}\right\} \subseteq C(2) \Rightarrow C(3) \subseteq C(5)\right\}
\end{aligned}
$$

Solving the Constraints (1)

Input: a set of constraints $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$
Output: the least solution ($\widehat{\mathrm{C}}, \widehat{\rho}$) to the constraints
Data structures: a graph with one node for each $C(\ell)$ and $r(x)$ (where $\ell \in \mathrm{Lab}_{\star}$ and $x \in \operatorname{Var}_{\star}$) and zero, one or two edges for each constraint in $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$

- W: the worklist of the nodes whose outgoing edges should be traversed
- D: an array that for each node gives an element of $\widehat{\mathrm{Val}}_{\star}$
- E: an array that for each node gives a list of constraints influenced (and outgoing edges)
Auxiliary procedure:
procedure $\operatorname{add}(q, d)$ is if $\neg(d \subseteq \mathrm{D}[q])$ then $\mathrm{D}[q]:=\mathrm{D}[q] \cup d$;

$$
\mathrm{W}:=\operatorname{cons}(q, \mathrm{~W})
$$

Solving the Constraints (2)

Step 1 Initialisation

$$
\mathrm{W}:=\text { nil; }
$$

$$
\text { for } q \text { in Nodes do } \mathrm{D}[q]:=\emptyset ; \mathrm{E}[q]:=\text { nil; }
$$

Step 2 Building the graph

for $c c$ in $\mathcal{C}_{\star} \llbracket e_{\star} \rrbracket$ do
case $c c$ of $\{t\} \subseteq p: \operatorname{add}(p,\{t\}) ;$

$$
\begin{array}{ll}
p_{1} \subseteq p_{2}: \mathrm{E}\left[p_{1}\right]:=\operatorname{cons}\left(c c, \mathrm{E}\left[p_{1}\right]\right) \\
\{t\} \subseteq p \Rightarrow p_{1} \subseteq p_{2}: & \mathrm{E}\left[p_{1}\right]:=\operatorname{cons}\left(c c, \mathrm{E}\left[p_{1}\right]\right) \\
& \mathrm{E}[p]:=\operatorname{cons}(c c, \mathrm{E}[p])
\end{array}
$$

Step 3 Iteration

while $W \neq$ nil do
$q:=$ head(W); W $:=\operatorname{tail}(\mathrm{W})$;
for $c c$ in $E[q]$ do
case $c c$ of $p_{1} \subseteq p_{2}: \operatorname{add}\left(p_{2}, \mathrm{D}\left[p_{1}\right]\right)$;

$$
\{t\} \subseteq p \Rightarrow p_{1} \subseteq p_{2}: \text { if } t \in \mathrm{D}[p] \text { then } \operatorname{add}\left(p_{2}, \mathrm{D}\left[p_{1}\right]\right)
$$

Step 4 Recording the solution

 for ℓ in Lab_{\star} do $\widehat{C}(\ell):=\mathrm{D}[\mathrm{C}(\ell)]$; for x in $\operatorname{Var}_{\star}$ do $\widehat{\rho}(x):=\mathrm{D}[\mathrm{r}(x)]$;
Example

Initialisation of data structures

| p | $\mathrm{D}[p]$ | $\mathrm{E}[p]$ |
| :---: | :---: | :--- | :--- |
| $\mathrm{C}(1)$ | \emptyset | $\left[\mathrm{id}_{x} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(1) \subseteq \mathrm{C}(5)\right] \quad$ |
| $\mathrm{C}(2)$ | id_{x} | $\left[\mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(3) \subseteq \mathrm{C}(5), \quad \mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{y})\right.$, |
| | | $\left.\mathrm{id}_{x} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(1) \subseteq \mathrm{C}(5), \quad \mathrm{id}_{x} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{x})\right]$ |
| $\mathrm{C}(3)$ | \emptyset | $\left[\mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(3) \subseteq \mathrm{C}(5)\right]$ |
| $\mathrm{C}(4)$ | id_{y} | $\left[\mathrm{id}_{y} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{y}), \quad \quad \quad \mathrm{id}_{x} \subseteq \mathrm{C}(2) \Rightarrow \mathrm{C}(4) \subseteq \mathrm{r}(\mathrm{x})\right]$ |
| $\mathrm{C}(5)$ | \emptyset | [] |
| $\mathrm{r}(\mathrm{x})$ | \emptyset | $[\mathrm{r}(\mathrm{x}) \subseteq \mathrm{C}(1)]$ |
| $\mathrm{r}(\mathrm{y})$ | \emptyset | $[\mathrm{r}(\mathrm{y}) \subseteq \mathrm{C}(3)]$ |

Iteration Steps

Iteration steps

W	$[\mathrm{C}(4), \mathrm{C}(2)]$	$[\mathrm{r}(\mathrm{x}), \mathrm{C}(2)]$	$[\mathrm{C}(1), \mathrm{C}(2)]$	$[\mathrm{C}(5), \mathrm{C}(2)]$	$[\mathrm{C}(2)]$	[]
p	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$	$\mathrm{D}[p]$
$\mathrm{C}(1)$	\emptyset	\emptyset	id_{y}	id_{y}	id_{y}	id_{y}
$\mathrm{C}(2)$	id_{x}	id_{x}	id_{x}	id_{x}	id_{x}	id_{x}
$\mathrm{C}(3)$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
$\mathrm{C}(4)$	id_{y}	id_{y}	id_{y}	id_{y}	id_{y}	id_{y}
$\mathrm{C}(5)$	\emptyset	\emptyset	\emptyset	id_{y}	id_{y}	id_{y}
$\mathrm{r}(\mathrm{x})$	\emptyset	id_{y}	id_{y}	id_{y}	id_{y}	id_{y}
$\mathrm{r}(\mathrm{y})$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

K-CFA

- An abstract value in K-CFA is a calling context that records the last k dynamic call points (i.e., call sites)
- Contexts are sequences of labels of length at most k and they will be updated whenever a function application is analyzed

K-CFA for Imperative Languages

- A calling context is a sequence of call sites
- Compute a solution for a function under each such calling context
- Scalability is the biggest challenge

