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Lambda Calculus

Lambda calculus is a formal system for
expressing computation by way of variable
binding and substitution



Syntax

M ::= X (variable)
| AX.M (abstraction)
| MM (application)

Nothing else!

— No numbers

— No arithmetic operations
— No loops

— No etc.

Symbolic computation



Syntax reminder

anonymous functions

/
AX.M =  function(x) { M }

= apply Lto M



Terminology — bound variables

AX.M

The binding operator A binds the variable x in the
A-term xX.M

* M is called the scope of x
e X IS said to be a bound variable



Terminology — free variables

Free variables are all symbols that aren’t bound (duh)

FV(x) = {x}
FV(MN) = FV(M) U FV(N)
FV(x.M) = FV(M) - x



Renaming of bound variables

AX.M = Ay.(M[y/x]) 1fy not in FV(M)

l.e. you can replace x with y
aka “renaming”

a-conversion



Operational Semantics

* Evaluating function application: (Ax.e,) e,
— Replace every x in e, with e,
— Evaluate the resulting term
— Return the result of the evaluation

* Formally: “B-reduction” (aka “substitution”)
— (A x.e)) e, >gejle,/x]

— A term that can be [3-reduced is a redex (reducible
expression)

— We omit 3 when obvious



Note again

 Computation = pure symbolic manipulation

— Replace some symbols with other symbols



Scoping etc.

* Scope of A extends as far to the right as
possible

— M Ay.xy s Ax.(Ay.(x y))
* Function application is left-associative

— Xyz means (xy)z



Multiple arguments

* ANxy).e 2?7
— Doesn’t exist

o Solution: Ax.Ay.e [remember, (Ax.(Ay.e))]

— A function that takes x and returns another function that
takes y and returns e

— (AM.Ay.e) a b>(Ny.e[a/x]) b>e[a/x][b/y]

— “Currying” after Curry: transformation of multi-arg
functions into higher-order functions

* Multiple argument functions are nothing but
syntactic sugar



Boolean Values and Conditionals

* True = AX.Ay.X
* False = AX.Ay.y
* If-then-else = Aa.Ab.Ac.abc



Boolean Values and Conditionals

* |f True M N = (Aa.Ab.Ac.abc) True M N
J

\

|

|f
- (Ab.Ac.Truebc) M N
- (A\c.True M c) N
- True M N
= (AX.Ay.X) M N
> (Ay. M) N
-> M



Numbers

 Numbers are counts of things, any things. Like
function applications!

— 0 =Af. AX. X

— 1 = M. Ax. (f X)

— 2 = M. Ax. (f (f X))

— 3 = Af. Ax. (T (f (f X)))

— N = Af. Ax. (fN X)

Church numerals



Successor

e succ=An. Af. AX. f (n f x)

— Want to try it on succ(1)?
— An. A AX. (N f x) (M. Y)\x. (f X))
A

[ |

> M. A f (M. Ax. (f X)) F x)

> M. Ax. £ (f x)

2!



Closures

* Function with free variables that are bound to
values in the enclosing environment

lambda (x)
(lambda (y)

X+Yy))

closure




Function Execution by Substitution

plusx y=x+y

1. plus 23 > 2+3 > 5

2. plus (2*3) (plus 4 5)

— plus 6 (4+5) — (2*3) +(plus 4 5)
— plus 6 9 —> 6 + (4+5)

—> 6 + 9 —> 6 + 9

— 15 — 15

The final answer did not depend upon the order
in which reductions were performed



in
(x -y)/(x +y)

e 3 variable can have at most one definition
in a block

e ordering of bindings does not matter



Layout Convention in Haskell

This convention allows us to omit many delimiters

let
X=a%*a
v=b*b
in
(x-y)/(x+y)
is the same as
let
{x=a*a;
y=b*b;}

in
(x-y)/(x+y)



o-renaming

let let
y=2%2 y=2%2
Xx=3+4 Xx=3+4
z = let z=let
Xx=5%*5 x’=5%5
w=Xx+y ¥*x — w=x"+y*x
in in
w w
in in
X+y+z X+y+2



Lexical Scoping

let
y=2%2
Xx=3+4
z = let
x=5%5
w=x+y*x
in
w
in
X+y+z

Lexically closest definition of a
variable prevails.



Dynamic Dispatch Problem

proc p(procval q, val x, res y) is‘

: .
[call p(pl1,1,v)]§
2 which procedure

e
[call q G,y is called?

[call p(p2,2,v)]§§
' ’ endtz
These problems arise for:
e imperative languages with procedures as parameters
e Object oriented languages

e functional languages



Example

let f = fn x => x 1 ;
g = fn y => y+2;
h=fn z => z+3

in (£ g) + (f h)

The aim of Control Flow Analysis:

For each function application, which functions may be applied?

Control Flow Analysis computes the interprocedural flow relation used
when formulating interprocedural Data Flow Analysis.



A Simple Functional Language

Syntactic categories:

e € Exp  expressions (or terms)
t € Term terms (or expressions)
f,x € Var variables
¢ € Const constants
op € Op binary operators
¢ € Lab labels
Syntax:
e =t
t = c|lxz|fnxz=>eg|fun f x =>¢eqg|eq e

| if eg then eq else ep | let = = e1 in ep | e] Op eo



Examples

e ((fn x => x1)? (fn y => YS )°

o (let f = (fn x => (x! 12)3)4,;
in (let g = (fn y => y5)6;

in (let h = (fn z => z/)8
in ((£9 glOy11 4 (12 p13y14)15)1617

e (let g = (fun f x => (fl (fn y => F2)3)4)5
in (g6 (fn > => 27)8)9



0-CFA Analysis

e Abstract domains (i.e., maps)
e Specification of the analysis



Abstract Domains

The result of a 0-CFA analysis is a pair (ff,ﬁ):

e C is the abstract cache associating abstract values with each labelled
program point

e p is the abstract environment associating abstract values with each
variable



Example

((fn x => x1)? (fny => y3))°

Three guesses of a 0-CFA analysis result:

(EE: ﬁﬁ) (E;: ﬁfe (Efefﬂ ﬁg)
1 | {fny => yg} {fn y => y3} {fn x => x1, fn y => y3}
2 | {fnx => x'} | {fn x => x!} | {fn x => xl fn y => y3}
3 1) ] {fn x => xl,fn y => ya}
4 | {fn y => y3} {fn y => y3} | {fn x => x1 fn y => y3}
5  {fny=>733} | {fny => y3} | {fn x => x1,fn y => y3}
x | {fny => y3} 0 {fn x => x!,fn y => y3}
y 0 0 {fn x => x!,fn y => y3}




A More Complicated Example

let g = (fun £ x => (£! (fn y => y2)3)%4)>
in (g® (fn z => 27)8)?

Abbreviations:

f = fun f x => (fl (fn y => Y2)3)4
idy, = fny = y2
id, = fnz => z'

One guess of a 0-CFA analysis result:

Elp(l) = {f} Elp(ﬁ‘) = {f} ﬁ]p(f) = {f}
Cp(2) = 0 Cp(7) =0 pp(e) = {f}
Cp3) = fidy}  Cp(8 = {idz}  pp(x) = {idy,idz}
Cp(4) = 0 Cp(9) = 0 ppy) = 0
Cp(®) = {f}  Cy10) = 0 Pp(z) = 0



Abstract Domains

Formally:
€ Val = P(Term) abstract values
5 € Env = Var — Val abstract environments
C € Cache = Lab — Val abstract caches

An abstract value v is a set of terms of the forms
e fn x => ¢
o fun f x => ¢g

When is a proposed guess (fﬁ,f}) of an analysis results an accept-
able 0O-CFA analysis for the program?



Specification of 0-CFA

(C,p) Ee means that (C,p) is an acceptable Control Flow Analysis
of the expression e

The relation = has functionality:

= : (Cache x Env x Exp) — {true, false}



Clauses for 0-CFA (1)
(C,p) = ¢t always
(C,p) =2t iff  p(=) C C(O)

(C,p) = (let = t3* in t2)*
it (Cp) A (CR) EtR A
C(f1) Cp(z) A C(L) CC(0)




Clauses for 0-CFA (2)

=~ . £ £ {
(C,p) = (if ty’ then Lell else ng)g

iff  (C,p) E=tg A
(C,p) =ttt A (Cp)

0o
— 2N

C(£1) CCW) A C(tr) CC)

G optr)
iff (G g A (Gh)

460
= {5




Clauses for 0-CFA (3)

(C,p) = (£n = => tQ)! iff {fn & => 10} C C(¥)

(C,p) |= (15 t22)*

iff  (C,p) =t A (Cp) =t A
R < [

(V(
C(t2) Cp(z) A C(o) C CO)




Clauses for 0-CFA (4)

(C,p) = (fun f x => eg)? iff {fun f z => eg} C C(¥)

= £ ¢
(C,p) = (¢ ﬁgz)f
iff (G, =t A (Ch) R A

o D <o O

C(t2) C plz) A C(Ly) CC)) A

C(L2) C p(x) A C(o) C C(E) A
{fun f = => t2} C 5(f) )



Constraint-based 0-CFA (1)

C«[[ex]] is a set of constraints of the form
Ihs C rhs

{t} C rhs’ = Ihs C rhs

where

rhs ::

C) | r(x)

lhs == C) | r(z) | {t}

and all occurrences of ¢t are of the form fn = => eg Or fun f x => eg



Constraint-based O0-CFA (2)

Cill(fn @ => e0)] = {{fn @ => eg} CC() } U Culleol

Cull(fun f 2 => ¢0)’] = {{fun f & => g} CC(£) } U Cilleo]
U {{fun f = => eo} C r(f) }

CI(H €)1 = e[t ] v Ce[t2]

U (SR | = (o « > ) € Term,)
U (ICCEEEEIEIE®)] | = (i - > ) € Term.)
o (SRR | = (run f = ) € Torm,)
U (IS | = (o f © -> 1) € Term,)



Cx

Cx

Constraint-based 0-CFA (3)

[T =0
[z°] = {r(z) C C(¥) }

[(if tgﬂ then t‘il else f )] = C*[[f ]]LJC*[[f ]]L.JC*[[f 2]]
U {C(41) CC(¥) }
U {C(4) C C(¥) }

Cll(tet z = t5 in £2)1] = CL[£ ] U C[t2]

U {C(41) Cr(z) } U{C(la) CC) }

Cul(ty op t2)] = Callt1 ] U Calit]



Constraint-based 0-CFA (4)

C+[((fn x => x1)? (fn y => y3)4)°] =

{ {fn x => x1} C C(2),

r(x) C C(1),

{fn y => y>} C C(4),

r(y) € C(3),

{fn x => x1} C C(2) = C(4) C r(x),
{fn x => x1} C C(2) = C(1) C C(5),
{fn y => y3} C C(2) = C(4) Cr(y),
{fn y => y3} CC(2) = C(3) C C(5) }



Solving the Constraints (1)

Input: a set of constraints Cy[[e]
Output: the least solution (C, ) to the constraints

Data structures: a graph with one node for each C(¥) and r(x)
and zero, one or two edges for each constraint
N C*IIE*]]

e \W: the worklist of the nodes whose outgoing edges should be tra-
versed

e D: an array that for each node gives an element of ﬁl*

e E: an array that for each node gives a list of constraints influenced
(and outgoing edges)

Auxiliary procedure:
procedure add(q,d) is if = (d C DJq]) then Dlq] := DJq] U d;
W = cons(q,W);



Solving the Constraints (2)

Step 1
W = nil;
for ¢ in Nodes do Dlq] := 0; E[q] := nil;
Step 2
for ce in Cx[ex]] do
case cc of {t} C p: add(p,{t});
p1 € p2: Elp1] := cons(cc,E[p1]);
{t} Cp=p1 Cpa: E[p1] := cons(cc,E[p1D);
E[p] := cons(ecc,E[p]):
Step 3
while W # nil do
g := head(W); W := tail(W);
for ce in Elq] do
case ce of py1 C po: add(ps, Dlp1]);
{t} Cp=p1 Cpo: ifte Dlp] then add(p2, Dp1]);
Step 4

for ¢ in Labs do C(#) := D[C(#)]; for z in Vary do p(z) := D[r(z)];



Example

Initialisation of data structures

p D[p] E [p]

C(1) 0 [idz € C(2) = C(1) C C(5)]

C(2) | idg | [idy € C(2) = C(3) C C(5), idy € C(2) = C(4) C r(y),
idy C C(2) = C(1) C C(5), idy C C(2) = C(4) C r(x)]

C(3) 0 lidy € C(2) = C(3) € C(5)]

C(4) | id, |[idy C C(2) = C(4) C r(y), idz C C(2) = C(4) C r(x)]

C(5) 0 [ ]

r(x) 0 [r(x) € C(1)]

r(y) 0 [r(y) € C(3)]




Iteration steps

Iteration Steps

W | [C(4),C(2)] | [r(x),C(2)] | [C(1),C(] | [C(B),C)] | [C2)] | T[]
p D(p] D(p] D(p] D(p] Dlp] | D[p]
C(1) 0 1] idy id,, id, | idy
C(2) idy id idy Idg idy Idg
C(3) 0 ) ) 0 ) 0
C(4) id,, id,, id,, id,, id, | idy
C(5) 0 1] 0 id, idy, | idy
r(x) 0 id, id, id,, id, | id,
r(y) 0 0 0 0 1] 0




K-CFA

* An abstract value in K-CFA is a calling context

that records the last k dynamic call points (i.e.,
call sites)

* Contexts are sequences of labels of length at
most k and they will be updated whenever a
function application is analyzed



K-CFA for Imperative Languages

* A calling context is a sequence of call sites

 Compute a solution for a function under each
such calling context

* Scalability is the biggest challenge



