
Constraint-based Analysis

Harry Xu

CS 253/INF 212

Spring 2013

Acknowledgements

Many slides in this file were taken from Prof.
Crista Lope’s slides on functional programming
as well as slides provided by the authors of the
book Principles of Program Analysis available at

http://www2.imm.dtu.dk/~hrni/PPA/ppasup200
4.html

Lambda Calculus

Lambda calculus is a formal system for
expressing computation by way of variable
binding and substitution

Syntax

M ::= x (variable)

 | λx.M (abstraction)

 | MM (application)

Nothing else!
– No numbers

– No arithmetic operations

– No loops

– No etc.

Symbolic computation

Syntax reminder

λx.M function(x) { M }

LM, e.g. λx.N y apply L to M

L M

anonymous functions

Terminology – bound variables

λx.M

The binding operator λ binds the variable x in the

λ-term x.M

• M is called the scope of x

• x is said to be a bound variable

Terminology – free variables

Free variables are all symbols that aren’t bound (duh)

FV(x) = {x}

FV(MN) = FV(M) U FV(N)

FV(x.M) = FV(M) − x

Renaming of bound variables

λx.M = λy.(M[y/x]) if y not in FV(M)

α-conversion

i.e. you can replace x with y

aka “renaming”

Operational Semantics

• Evaluating function application: (λx.e1) e2

– Replace every x in e1 with e2

– Evaluate the resulting term

– Return the result of the evaluation

• Formally: “β-reduction” (aka “substitution”)
– (λ x.e1) e2 →β e1[e2/x]

– A term that can be β-reduced is a redex (reducible
expression)

– We omit β when obvious

Note again

• Computation = pure symbolic manipulation

– Replace some symbols with other symbols

Scoping etc.

• Scope of λ extends as far to the right as
possible

– λx.λy.xy is λx.(λy.(x y))

• Function application is left-associative

– xyz means (xy)z

Multiple arguments

• λ(x,y).e ???
– Doesn’t exist

• Solution: λx.λy.e [remember, (λx.(λy.e))]
– A function that takes x and returns another function that

takes y and returns e

– (λx.λy.e) a b→(λy.e[a/x]) b→e[a/x][b/y]

– “Currying” after Curry: transformation of multi-arg
functions into higher-order functions

• Multiple argument functions are nothing but
syntactic sugar

Boolean Values and Conditionals

• True = λx.λy.x

• False = λx.λy.y

• If-then-else = λa.λb.λc. a b c

Boolean Values and Conditionals

• If True M N = (λa.λb.λc.abc) True M N

 (λb.λc.True b c) M N
 (λc.True M c) N
 True M N
 = (λx.λy.x) M N
 (λy.M) N

 M

If

Numbers

• Numbers are counts of things, any things. Like
function applications!

– 0 = λf. λx. x

– 1 = λf. λx. (f x)

– 2 = λf. λx. (f (f x))

– 3 = λf. λx. (f (f (f x)))

– …

– N = λf. λx. (fN x)

Church numerals

Successor

• succ = λn. λf. λx. f (n f x)

– Want to try it on succ(1)?

– λn. λf. λx. f (n f x) (λf. λx. (f x))

 λf. λx. f ((λf. λx. (f x)) f x)

 λf. λx. f (f x)

1

2 !

Closures

• Function with free variables that are bound to
values in the enclosing environment

(lambda (x)

 (lambda (y)

 x+y))
closure

Function Execution by Substitution

 plus x y = x + y

1. plus 2 3 2 + 3 5

2. plus (2*3) (plus 4 5)

 plus 6 (4+5)

 plus 6 9

 6 + 9

 15

 (2*3) +(plus 4 5)

 6 + (4+5)

 6 + 9

 15

The final answer did not depend upon the order
in which reductions were performed

Blocks

let
 x = a * a
 y = b * b
in

 (x - y)/(x + y)

• a variable can have at most one definition
 in a block

• ordering of bindings does not matter

Layout Convention in Haskell
This convention allows us to omit many delimiters

let
 x = a * a
 y = b * b
in

 (x - y)/(x + y)

is the same as

let
 { x = a * a ;
 y = b * b ;}
in

 (x - y)/(x + y)

-renaming

let
 y = 2 * 2
 x = 3 + 4
 z = let
 x = 5 * 5
 w = x + y * x
 in
 w
 in
 x + y + z

let
 y = 2 * 2
 x = 3 + 4
 z = let
 x’ = 5 * 5
 w = x’ + y * x’
 in
 w
in
 x + y + z

Lexical Scoping

let
 y = 2 * 2
 x = 3 + 4
 z = let
 x = 5 * 5
 w = x + y * x
 in
 w
in
 x + y + z

Lexically closest definition of a
variable prevails.

Dynamic Dispatch Problem

Example

A Simple Functional Language

Examples

0-CFA Analysis

• Abstract domains (i.e., maps)

• Specification of the analysis

Abstract Domains

Example

A More Complicated Example

Abstract Domains

Specification of 0-CFA

Clauses for 0-CFA (1)

Clauses for 0-CFA (2)

Clauses for 0-CFA (3)

Clauses for 0-CFA (4)

Constraint-based 0-CFA (1)

Constraint-based 0-CFA (2)

Constraint-based 0-CFA (3)

Constraint-based 0-CFA (4)

Solving the Constraints (1)

Solving the Constraints (2)

Example

Iteration Steps

K-CFA

• An abstract value in K-CFA is a calling context
that records the last k dynamic call points (i.e.,
call sites)

• Contexts are sequences of labels of length at
most k and they will be updated whenever a
function application is analyzed

K-CFA for Imperative Languages

• A calling context is a sequence of call sites

• Compute a solution for a function under each
such calling context

• Scalability is the biggest challenge

