Efficiently and Precisely
Locating Memory Leaks
and Bloat

Hound: C/C++ Leak & Bloat Detecto

aaaaaaaaaaaaaaaaaaaa

Leak & Bloat ?

® |eak

® Reachability leaks(GCable, unreachable)

® Staleness leaks(unused, reachable)

® Bloat

® Unnecessary excess memory consumption

Tuesday, January 24, 12

Problem: Memory Inefficiency

® Jan/Feb 2008, over 150 Ieak-related bugs
were reported

® |deal world: Collect high-precision leak
reports from real programs with low-
overhead

aaaaaaaaaaaaaaaaaaaa

Hound: as a solution

® No false positive

® Data Sampling

® (Context-sensitive memory allocation

® Age-segregated memory allocation

® Virtual compaction

Tuesday, January 24, 12

Why Data Sampling?

aaaaaaaaaaaaaaaaaaaa

Why Data Sampling? cont’d

Why Data Sampling? cont’d

Full instrumentation

el

High runtime overhead (100X)

Why Data Sampling? cont’d

p

Hashtable

: obj:
—)[h(k)]f_

aaaaaaaaaaaaaaaaaaaa

Why Data Sampling? cont’d

Code sampling
(SWAT)

False positives

How to Data Sampling?

® A novel memory manager

® Segregate along 2-D

§ /.' Default Heap (PHKmalloc)

® allocation sites A e e
9 Lo Age-segregated heap [callsite 1)
é —
3k

o -8 w =
<

a'ge \' Age-segregated heap (callsite N) I
—

Tuesday, January 24, 12

Site Segregation

void * houndmalloc (size_t size) { To reduce memory overhead
Il compute hash of calling context.

int context = getContextHash(); $ Add an extra header word

E S = . o e .
Metadata * m = getMetadata(context); £ Initiate a new age-heap for a site only

I/ one more object allocated. m->liveCount++;)
exceeding a threshold, currently 64
Il use the age-segregated heap to

/I satisfy the request, if possible. £ Otherwise, allocate objects to a
if (m->getAgeHeap() 1= NULL) { conventional heap
return m->getAgeHeap()->malloc (size); }

else if (m->getLiveCount() >= 64) {

/[make a new heap.
m->initAgeHeap();
return m->getAgeHeap()->malloc (size); }

else {

/1 still below threshold:
/I get memory from standard allocator.

return phkmalloc_with_header (size, context);

1}

Tuesday, January 24, 12

Age Segregation

if ('h->activePage || h->activePage-
>bump == h->activePage->endOfPage) {

void * page = getNewPage();
PageEntry * e = createPageEntry (page);

e->bump = page;

e->endOfPage = page + PAGE_SIZE;
e->inUse = 0;

e->heap = h;

h->activePage = e;

Active page Full page Partially-freed page

16

) . 1D

32

2048

—L_

large

Each heap organizes as a collection of
pages.(for each size class)

Each page is an array of fixed-sized object
slots.

Meta data for each page(bump pointer, #

of |

ive objects, a bitmap tracks slots with

live objects)

Tuesday, January 24, 12

Age Segregation contd

® Keeps all filled pages on aging queue and
protects pages on the queue

® Due to cost, cannot protect all pages

All filled pages
ac —> I N |
2
rrrrr — R

a — i N N
Aging
Queue

Inact fp====< >

Tuesday, January 24, 12

Age Segregation cont'd

® T[he size of inactive list is controlled
adaptively

® | ow runtime overhead & Maximize Useful Info
® Re-evaluate size every |/8 CPU time
® Page faults > |.5% of total CPU time — Dec

® Page faults < 0.5% of total CPU time — Inc

® | ow runtime overhead >> useful info

Increase: P1 = Pi1 + max(min(Pa, P1)/32, 8)
Decrease: Pi = Pi - max(min(Pa, P1)/8, 8)

Tuesday, January 24, 12

Virtual Compaction

® Why!
® High fragmentation(potential)

® Recycles memory from age-segregated heaps
only when pages become empty

® JoWhom!

® Toward same sized pages

® Only for pages have less than 50% occupancy

Tuesday, January 24, 12

Virtual Compaction cont’d

e How!

® Performing a bitwise AND of
several candidate pages’ object
bitmap

® Merge them onto a single
physical page (mremap call)

® Remap target(physical) page to
both virtual pages

Tuesday, January 24, 12

Hound Runtime Overhea

Hound Runtime Overhead

B GNU libe BHound

allocation-intensive SPECint2006 servers

N

—
o

—

o
(4]

Normalized Execution Time

o

Tuesday, January 24, 12

Hound Memory Overhead

SPECint2006

B DL malloc B Hound

-

Normalized Heap Consumption

Tuesday, January 24, 12

Staleness Computation Accuracy

® Recall(measure the quality of classifier)

® true positives / (true positives + false negatives)
® cs.

® Consider a report identifies | allocation site
as the source stale data

® |f this report failed to identify 9 other sites
that had stale data

® recall=0.]

Tuesday, January 24, 12

Staleness Computation Accuracy cont'd

Only underestimate!

1

0.9

0.8

0.7

0.6

0.5 -

0.4 -

03 -

0.2 -

0.1 -

0_

Hashtable Squid Gimp Hashtable Squid Gimp

Recall (objects) Recall(sites)

No false positives; ~30% false negatives

Tuesday, January 24, 12

Appropriate result

Data sampling
(Hound)

>/

No false positives

Questions for Discussion

® Can we appropriately combine two results
from Hound and SWAT to make a more
decent result?

Tuesday, January 24, 12

