JOLT:
REDUCING OBJECT CHURN

What is Object Churn?
2y

Allocation of intermediate objects with short lifespans

[Mitchell, Sevitsky 06]

int foo() {
return bar().length;

}
String bar() {

return new String(“foobar”); »

J

Churn is a Problem

A natural result of abstraction
Common in large component-based applications

Reduces program performance
Puts pressure on GC
Inhibits parallelization (temp objects are synchronized)
Requires unnecessary CPU cycles

Hard to eliminate

Escape analysis? Objects escape allocating function
Refactoring? It requires cross-component changes

What is escape analysis?
S S

-1 Typical defensive copying approach to returning a compound value

public class Point {
private int x, y;
public Point(int x, int y) {
this.x = x; this.y = y;
}
public Point(Point p) { this(p.x, p.y); }
public int getX() { return x; }
public int getY() { returny; }

}

public class Component {

private Point location;

public Point getLocation() { return new Point(location);}

public double getDistanceFrom(Component other) {

Point otherLocation = other.getLocation();
int deltaX = otherLocation.getX() - location.getX();
int deltaY = otherLocation.getY() - location.getY();
return Math.sqrt(deltaX*deltaX + deltaY*deltaY);

What is escape analysis? cont’d

A smart JVM can see what is going on and optimize
away the allocation of the defensive copy

public double getDistanceFrom(Component other) {
Point otherLocation = new Point(other.x, other.y);
int deltaX = otherLocation.x - location.x;
int deltaY = otherLocation.y - location.y;
return Math.sqgrt(deltaX*deltaX + deltaY*deltaY);

What is escape analysis? cont’d

Point is truly thread-local and its lifetime is known to
be bounded by the basic block, it can be either stack-

allocated or optimized away entirely.

public double getDistanceFrom(Component other) {
int tempX = other.x, tempY = other.y;
int deltaX = tempX - location.x;

int deltaY = tempY - location.y;
return Math.sqgrt(deltaX*deltaX + deltaY*deltaY);

}

Jolt: Our Contribution

Automatic runtime churn reduction (in a JIT compiler)
Lightweight dynamic analyses, simple optimization
Implemented in IBM’s J9 JVM

Ran on large component-based benchmarks

Removes 4x as many allocs as escape analysis alone
Speedups of up to 15%

Objects Escape Allocation Context

e
~1 Traditional EA: hands tied

-1 Several escape analyses explore up the stack to
add context [Blanchet 99, Whaley 99, Gay 00]

-1 Object allocation optimization based on escape
analysis
o Do not perform well component-

based applications &

o Largely because many churn objects @
escape their allocating functions

Houston, We Have a Solution

- |
Jolt uses a two-part solution:

#1. Dynamic analyses find churn-laden subprograms

= Rooted at a function
= Only as many contexts as functions in program

= Subprograms can contain many churned objects

m=)2. Selectively inline portions of

subprogram into root to —> &

create context
= Churned objects no longer °
escape context

= Can now run escape analysis

Step 1: Find Roots: Churn Analysis

Goal: Identify roots of churn-laden subprograms
Operate on static call graph (JIT’s domain)
Use dynamic heap information to track churn

Use three dynamic analyses inspired by [Dufour 07]:
Capture
%Capture
%Control

Capture

Capture(f) = # objs allocated by f or descendants that

die before f returns

In example:
Capture(f) = 4

Answers: Enough churn in /Z./\

the subprogram rooted at f
to be worth optimizing?
High Capture = YES

%Capture

%Capture(f) = % objs allocated by f or descendants

that die before f returns

In example:
%Capture(f) = 4/6

Answers: Better to root at f /Z./\

than at parent of f?
High %Capture > YES

%Control

%Control(f) = % objs allocated that are captured by f

but not captured by descendants

In example:
%Control(f) = 3/6

Answers: Better to root at f /Z./\

than at child of f?
High %Control = YES

All Together Now

Three analyses together pinpoint subprogram root

!

High Capture: %Capture | ———
Worth optimizing

% Control

High %Capture:
Better f than parent

I

~.
7\

e

High %Control: Capture

Better f than child

How to Compute Analyses

Goals:
Efficient runtime mechanism
Thread-safe
Simple to add to existing JIT code

Solution: Track heap allocation pointer, GC
Requires thread-local heaps (TLHs) & copy collector
Supported by virtually all modern JVMs

Alternative solution works for any JVM + GC
Details in Appendix

Computing Analyses with TLHs
SN2 1

1. Choose to sample function f
2. Track thread local heap alloc pointer through f’s child calls

3. Run GC at the end of f
4. Compute capture and control
[tlhp(start(f))

Computed from
sampling runs on
children

tlhp(start(c,)) :
tlhp(end(c,))

Capture(f)

%Capture(f) = |Capture(f)I\/ |Alloc(f) |

%Control(f) = | Capture(f) | -2]| Capture(c)|
| Alloc(f) |

Alloc(f) < thp(start(c,))

thp(end(c,)) '

\ tlhp(end(f))

Step 2: Optimize: Smart Inlining

S22
-1 Churn analyses identified subprogram roots
= Now, inline subprogram to expose allocs to EA

o Respect JIT optimization constraints (size bound)
1 We can do better than inlining whole subprogram

Only need to inline
functions that add churned
allocation sites to root

Step 2: Optimize: Smart Inlining
S 1S

-1 Goal: inline descendants that expose most # of
churned allocs to EA

o While still respecting size bound
-1 NP-Hard problem! (can solve Knapsack)

Which children to
inline to get closest to

size bound without
exceeding it?

Knapsack Approximation
19|

- Simple poly-time approximation:
o Inline child with greatest ratio of object

allocations to code size
= I %capture(f) = objs alloc’d in c are churned

o Repeat until size limit is reached

o But greedy = short-sighted!

/

/ Al FEE B will never be inlined because
A will never be inlined

Churn Analyses to the Rescue
20 |

- Would like to inline child if its subprogram has
churn elimination potential

-1 We already have an approximation: alloc(c)
o Recall that alloc(c) is num allocs in entire subprogram

-1 So: feed Knapsack approx alloc(c) instead of
number of local object allocations in c

AO0t / High alloc

A inlined because subprogram has

high alloc; then B inlined

Eliminating Allocations

Once descendants have been inlined, pass to
Escape Analysis

Use JIT’s existing EA

Because of smart inlining, objects’ allocation sites in f,
lifetimes don’t escape f

EA eliminates allocations via stack allocation or scalar
replacement

Bonus: improvements in EA == better JOLT

Experimental Methodology

Implemented Jolt in IBM’s J9 JVM
Fully automatic, transparent

Ran on large-scale benchmarks
Eclipse
JPetStore on Spring
TPC-W on JBoss
SPECjbb2005
DaCapo

Results

Eclipse 0.4%
JPetStore on Spring 0.7%
TPCW on JBoss 0.0%
SPECjbb2005 9.6%
DaCapo 3.4%

EA performs poorly on large component-based apps

Median ratio: 4.3x as many objects removed by Jolt
Still many more to go

Median speedup: 4.8%

Additional Experiments

Runtime overhead acceptable

Average compilation overhead: 32% longer
Acceptable for long-running programs (< 15 s)
Often outweighed by speedup

Average profiling overhead: 1.0%

Run at 1 sample per 100k function invocations

Combination of churn analyses and inlining
performs better than either alone

In every case, Jolt outperformed separate
configurations

Summary

Jolt reduces object churn
Transparently at runtime
In large applications
Easy to implement
Uses existing JIT technologies heavily
Two-part approach

Dynamic churn analyses: capture and control
Pinpoint roots of good subprograms
Smart inlining

Uses analyses and Knapsack approximation to inline
beneficial functions into root

Thanks!

