.['IH

IBM Research

Accurate, Efficient, and Adaptive Calling Context
Profiling

Xiaotong Zhuang Mauricio J. Serrano Harold W. Cain Jong-Deok Choi

Presented by
Brian Norris

February 1, 2012 © 2006 IBM Corporation

Im
)

IBM Research

Overview

@ Earliest of four “calling context” papers we've studied
@ Bond and McKinley, “Probabilistic Calling Context” (2007)

@ Sumner, Zheng, Weeratunge, and Zhang, “Precise Calling Context
Encoding” (2010)

@ Bond, Baker, and Guyer, “Breadcrumbs: Efficient Context
Sensitivity for Dynamic Bug Detection Analyses” (2010)

@ All reference this paper
@ All have some criticism for this paper

2 © 2006 IBM Corporation

IBM Research

Outline

" Introduction

" Existing Approaches

" Qur Approach: Adaptive Bursting
" Results

" Related Work

" Conclusion and Future Work

3 © 2006 IBM Corporation

IBM Research

Motivation

@What is a calling context ?
@ Methods that are on the stack when an event happens

jawa . lang . ArravIndexzCOutOf BoundsException: 3 := 3 Call Trace:
at jawva.util Vector. elemnsntdt (Vector. java: 427) [handle sysrg+8x58/0xc6
at junit . =samples VectorTest testElementit (Vector o - :
at sun.reflect HativebMethodiccessorInpl involkel| [l wr1te_§ys rq_trigger+0x23/0x23
at =zun.reflect NativeMethodiccessorInpl . invole(k [] UfS_WFI!.'tE+HKhﬁ,-"BXE2
at =un.reflect DelegatingMethodiccessorInpl inwve [1 sys write+8x3c/0x62
at jawva.lang.reflect . Method. inwvoke(Hethod. java: - [] syscall call+8x7/0xb

@ Applications of calling context information
@ Optimizations based on profiling: inlining, devirtualization, etc..

@ Program understanding

@ Large server applications have a complex method-level profile
@ Debugging

4 © 2006 IBM Corporation

IBM Research

Examples
% - R
B> O L @ ©
oD@ 5) © © éDZ
2@
Call Tree (CT) Call Graph (CG) Calling-Context Tree (CCT)

@ Call Tree: complete calling context info, but huge tree

@ Call Graph: no context information

@ Calling Context Tree: merges identical child nodes of the same
parent node -» much smaller than Call Tree

© 2006 IBM Corporation

IBM Research

Collecting Calling Context Profile

@ EXxisting approaches incur high-overhead
@ OO program: highly interprocedural

@ Exhaustive: 50x overhead?

@ New approach
@ Reduce overhead while maintaining high accuracy

@ Use an adaptive scheme:

@ Bursty mode sampling
@ Disable bursts when similar contexts are found
@ Re-enable bursts when accuracy could be decreased

6 © 2006 IBM Corporation

IBM Research

Contributions

@ Improved:
@ Efficiency

@ Accuracy
@ Portability (i.e., doesn't rely on HW features)

@ New metric (overlap vs. hot-edge coverage)
@ Rigorous comparison of efficiency and accuracy

7 © 2006 IBM Corporation

IBM Research

Outline

" Introduction

" Existing Approaches

" Qur Approach: Adaptive Bursting
" Results

" Related Work

" Conclusion and Future Work

8 © 2006 IBM Corporation

IBM Research

Building CCT: Exhaustive Approach

@ Capture all calls and returns

@ High instrumentation cost:

@ Authors' experiments indicate 50 times slowdown based
on JVMPI

o] © 2006 IBM Corporation

IBM Research

Building CCT: Sampled Stack Walking

%

[\
n
~—
QO
(@)
o
=
S
Y
>
«

S time

SlI: Sampling Interval

@ At each sampling point, walk the full stack back
@ What about long method calls?

@ Stack-walking is quite efficient (at 10 ms interval)
@ But on some platforms, the interval cannot be smaller
@ Sacrifice accuracy

10 © 2006 IBM Corporation

IBM Research

Building CCT: Bursting

bursts of calls/returns

T T T :
time
<—BI—>| « S|

Y

Bl: Burst Interval
Sl: Sampling Interval

@ At each sampling point, capture a burst of method calls and
returns

@ Useful to build call graph profiles, not useful for CCT

© 2006 IBM Corporation

11

IBM Research

Building CCT: Static Bursting

bursts of calls/returns

A
LT >
time

[T
T
LT

A

Bl < S|

Bl: Burst Interval
Sl: Sampling Interval

@ Perform stack walking before each burst

@ Gets expensive with longer burst intervals or shorter sampling
intervals for a precise CCT

12 © 2006 IBM Corporation

IBM Research

Outline

" Introduction

" Existing Approaches

" Qur Approach: Adaptive Bursting
" Results

" Related Work

" Conclusion and Future Work

13 © 2006 IBM Corporation

IBM Research

Adaptive Bursting: Reduce Redundant Bursts

@ Control flow is highly repetitive (e.g. loops) = bursts are
redundant

@ Selectively disable previously sampled calling contexts

@ Call stack information can serve as a good sighature = a
hash of methods on the stack at the beginning of the burst

@ Use a history table to record if similar burst has occurred
earlier

14 © 2006 IBM Corporation

IBM Research

Overview of Adaptive Bursting

sample point
reached

|

mistory

~ table

.o |

| ce

Build stack signature and check J .
in the history table ~ j«----—-- hash .
disable enable)
reenable
mechanism : \ z
Weight
compensation/ \ Z
N feedback? —— — —
skip the
burst ‘ cct |
perform the burst perform | |
with weight the burst | % |
adjustment | — > oo
g I
feedback

15

|

|

|

|

]
A
i
i
|
|
|
|
i
|

© 2006 IBM Corporation

IBM Research

Adaptive Bursting: Weight Compensation

@ Disabling redundant bursts loses CCT edge weights

@ Statistically reenable some of the disabled bursts, with a
Reenable Ratio (RR) between 0 and 1.

@ The probability a burst is reenabled is RR. Every counter
value added to the CCT is multiplied by 1/RR.

@ EX. RR = 0.25, enable 1 per 4 disabled bursts, multiply
each counter by 4.

16 © 2006 IBM Corporation

IBM Research

Weight Compensation Example

Assume sigl=sig2=sig3=sig4=sig5

sigl sig2 sig3 sig4 sigh
burstl burst2 burst3 burst4 bursts
A->B->C->D| |A->B->C->D| |A->B->C->E| |A->B->C->E| |A->B->C->D ‘
time
X 2 X 2
A CAD CAD CAD CAD CAD
5 1 1 2 2 5
1] == 2] == 2 — 5
3 &3) 1 1 2 >) 3
D> D> D> D> &ED D>
Static Bursting Adaptive Bursting Adaptive Bursting w/
w/o reenable reenable ratio=0.5

17 © 2006 IBM Corporation

IBM Research

Outline

" Introduction

" Existing Approaches

" Qur Approach: Adaptive Bursting
" Results

" Related Work

" Conclusion and Future Work

18 © 2006 IBM Corporation

IBM Research

Benchmarks & Setup

PLAT Call Graph CCT

NAME DESCRIPTION FORM |# nodes |#edges |# nodes

checkit jvm98 - check program x86 088 1827 9115
compress jvm98 - Modified Lempel -Ziv method x86 721 1227 7581
db jvm88 - database simulation xB86 744 1310 8666
ipsixql Persistent XML -database x86 802 1330 9439
jack jvm98 - Java Parser Generator x86 987 1996 58422
javac jvm98 - java compiler xB86 1505 4144 917986
specjbb Java business application x86 2467 5368 66792
jess jvm98 - Expert Shell System x86 1101 2106 24194
kawa Java -based Scheme system xB86 2454 5496 | 4305657
mpegaudio [jvm98 - decompress audio files x86 898 1516 14019
JAS SpecJAppServer2004.:3 tier java server AlX 6918 14597 | 256189

@ Two configurations: Windows/Sun JVM, AlIX/J9-3tier
@ Sampling Interval=10ms, Burst Interval=0.2ms.
@ Re-enable Ratio=0.05, History Table 2048 entries.

© 2006 IBM Corporation

19

IBM Research

Measuring the Accuracy of Calling Context

@ Degree of Overlap

@ Focus on measuring the completeness of a CCT against the
complete CCT

@ Hot-edge Coverage
@ Focus on the coverage of hot edges (above a threshold)

@ Formal definitions explained in the paper.

20 © 2006 IBM Corporation

IBM Research

Results—Degree of Overlap

E stack walk @ adaptive [adaptive with re-enable 1 static burst

= 100

|_

3

1)) 80 N

o

o

S 60 -

5

B

a 40 4

0

o

3

Y 20 N

o

©

o
N) T A& G .0 = > O .0 &
R = o) ¢ . Y NS Dl i O @ &)
© {{-.Q

@ Average: stack walk (49.8%), adaptive (68.8%), adaptive w/
reenable (85.2%), static burst (91.4%)).

21 © 2006 IBM Corporation

IBM Research

Results—Hot-edge Coverage

100 N stack walk EEEEN adaptive I adaptive with re-enable [static burst

ow
o
|

10% (%)

(9)]
o
|

I
O
1

threshold

P
o
|

o
|

hot-edge coverage w.r.t the complete CCT

A =) 0 L N O N0 % >
O @ o . RS SNSRI\ ¢ @

&.D \%'E:
'\ Q N "{& >
o

2
&QE’Q' >

@ Average: stack walk (52.9%), adaptive (79.1%), adaptive w/
reenable (88.2%), static burst (88.1%).

22 © 2006 IBM Corporation

IBM Research

Results—Slowdown

I adaptive [adaptive with re-enable [static burst
160 o i

140 ~

- -k
]
o
|
1
|
]

slowdown (%)

g o o
o o o
I | |

]
]

[B
L -
| |

S T | AT T

B P ¥ 'wlf“‘ W @ 0 P W §O R

&x® Goti\(?@ W’ et vy \E‘ang@ﬁ V@@

@ Average: stack walk (<1%), adaptive (14.8%), adaptive w/
reenable (18.8%), static burst (117%)

o

@ JVMPI is inefficient

23 © 2006 IBM Corporation

IBM Research

Results—Percentage of Disabled Bursts

100 E acdaptive 1 adaptive with re-enable

3 e b B

" _

® 80 —

|

=]

o

S 60 -

=]

[4v3

n

=

w5 40

[1h]

(@)

S

T 20 -

e

[1h}

o

O [[[[I I I I I I I I
W 5 S N O a0 2 2 W0 O 2
O eo ¥ g @ NS SR S & S
& o ¢ Ve YN e e

o

“{\Q

@ Both approaches disabled most bursts
@ Reenablement only adds small % of bursts (RR = 5%)

24 © 2006 IBM Corporation

IBM Research

Summary of Results

@ JVMPI-based adaptive bursting
@ A modest slowdown
@ 85% degree of overlap
@ 88% hot-edge coverage

@ Sampled stack walking
@ Negligible slowdown
@ Around 50% degree of overlap and hot-edge coverage
@ Bad for large server benchmark JAS (0% coverage)

@ Static bursting
@ Accuracy is close to adaptive bursting (<6%)
@ Slowdown 6 times higher

25 © 2006 IBM Corporation

IBM Research

Outline

" Introduction

" Existing Approaches

" Qur Approach: Adaptive Bursting
" Results

" Related Work

" Conclusion and Future Work

26 © 2006 IBM Corporation

IBM Research

Related Work

@ Exhaustive approach: Ammons et. el. [PLDI-97], Spivey [SPE-
04],

@ Sampling-based approach: Arnold & Sweeney [IBM TR-00],
Froyd et. el. [ICS-05], Whaley [Java Grande-00]

@ Context Sensitive Inlining: Hazelwood & Grove [CGO-03]

27 © 2006 IBM Corporation

IBM Research

Outline

" Introduction

" Existing Approaches

" Qur Approach: Adaptive Bursting
" Results

" Related Work

" Conclusion, Future Work, Criticism/Discussion

28 © 2006 IBM Corporation

IBM Research

Conclusion

@ Novel, efficient construction of accurate CCT
@ Accuracy: 80% to 90%.

@ Moderate overhead with JVMPI
@ ~6% overhead observed with JVM-based instrumentation.

@ Formal definitions of two metrics for evaluating CCT accuracy
@ Degree of overlap

@ Hot-edge coverage

@Extensive measurements using a large number of benchmark
programs, including a very large commercial J2EE Java
application

29 © 2006 IBM Corporation

IBM Research

Future Work

@ Further reduce the overhead
@ Better instrumentation (alternatives to JVMPI)
@ M. Bond suggested using PCC to identify history

@ Call site information

@ Applications: context sensitive optimizations
@ Lock contention analysis?

@ Object allocation analysis

@ Method inlining

30 © 2006 IBM Corporation

IBM Research

Criticism/Discussion

@ Cold path coverage?
@ Insufficient cold path coverage
@ Rare bugs can't be discovered

@ Overlap vs. Hot Edge Coverage: which is better?

31 © 2006 IBM Corporation

IBM Research

Discussion

32 © 2006 IBM Corporation

	Accurate, Efficient, and Adaptive Calling Context Profiling
	Slide 2
	Outline
	Motivation
	Examples for Call Tree, Call Graph and Calling Context Tree
	Collecting Calling Context Profile
	Slide 7
	Slide 8
	Building CCT: Exhaustive Approach
	Building CCT: Sampled Stack Walking
	Building CCT: Bursting
	Building CCT: Static Bursting
	Slide 13
	Our Adaptive Bursting: Reduce Redundant Bursts
	Overview of Our Adaptive Bursting
	Adaptive Bursting: Weight Compensation
	Weight Compensation Example
	Slide 18
	Benchmarks & Setup
	Measuring the Accuracy of Calling Context
	Results—Degree of Overlap
	Results—Hot-edge Coverage
	Results—Slowdown
	Results—Percentage of Disabled Bursts
	Summary of Results
	Slide 26
	Related Work
	Slide 28
	Conclusion
	Future Work
	Slide 31
	PowerPoint Presentation

