
IBM Research

February 1, 2012 © 2006 IBM Corporation

Accurate, Efficient, and Adaptive Calling Context
Profiling

Xiaotong Zhuang Mauricio J. Serrano Harold W. Cain Jong-Deok Choi

Presented by
Brian Norris

IBM Research

© 2006 IBM Corporation2

Overview

Earliest of four “calling context” papers we've studied
Bond and McKinley, “Probabilistic Calling Context” (2007)

Sumner, Zheng, Weeratunge, and Zhang, “Precise Calling Context
Encoding” (2010)

Bond, Baker, and Guyer, “Breadcrumbs: Efficient Context
Sensitivity for Dynamic Bug Detection Analyses” (2010)

All reference this paper
All have some criticism for this paper

IBM Research

© 2006 IBM Corporation3

Outline

 Introduction

 Existing Approaches

 Our Approach: Adaptive Bursting

 Results

 Related Work

 Conclusion and Future Work

IBM Research

© 2006 IBM Corporation4

Motivation

What is a calling context ?
Methods that are on the stack when an event happens

Applications of calling context information
Optimizations based on profiling: inlining, devirtualization, etc..

Program understanding

Large server applications have a complex method-level profile

Debugging

IBM Research

© 2006 IBM Corporation5

Examples
A

CB

D

Call Graph (CG)

1

1

2

4

A

B

C

C

D

Calling-Context Tree (CCT)

1 2

1 2

D
2

A

B C

D

Call Tree (CT)

D

C

D

C

D

 Call Tree: complete calling context info, but huge tree

 Call Graph: no context information

 Calling Context Tree: merges identical child nodes of the same
parent node → much smaller than Call Tree

IBM Research

© 2006 IBM Corporation6

Collecting Calling Context Profile

 Existing approaches incur high-overhead
OO program: highly interprocedural

Exhaustive: 50x overhead?

 New approach
Reduce overhead while maintaining high accuracy

Use an adaptive scheme:

Bursty mode sampling

Disable bursts when similar contexts are found

Re-enable bursts when accuracy could be decreased

IBM Research

© 2006 IBM Corporation7

Contributions

 Improved:

Efficiency

Accuracy

Portability (i.e., doesn't rely on HW features)

 New metric (overlap vs. hot-edge coverage)

 Rigorous comparison of efficiency and accuracy

IBM Research

© 2006 IBM Corporation8

Outline

 Introduction

 Existing Approaches

 Our Approach: Adaptive Bursting

 Results

 Related Work

 Conclusion and Future Work

IBM Research

© 2006 IBM Corporation9

Building CCT: Exhaustive Approach

Capture all calls and returns

High instrumentation cost:

Authors' experiments indicate 50 times slowdown based
on JVMPI

IBM Research

© 2006 IBM Corporation10

Building CCT: Sampled Stack Walking

At each sampling point, walk the full stack back

What about long method calls?

Stack-walking is quite efficient (at 10 ms interval)

But on some platforms, the interval cannot be smaller

Sacrifice accuracy

SI: Sampling Interval

SI time

Stack walking

IBM Research

© 2006 IBM Corporation11

Building CCT: Bursting

At each sampling point, capture a burst of method calls and
returns

Useful to build call graph profiles, not useful for CCT

BI: Burst Interval

SI: Sampling Interval

time
SIBI

bursts of calls/returns

IBM Research

© 2006 IBM Corporation12

Building CCT: Static Bursting

Perform stack walking before each burst

Gets expensive with longer burst intervals or shorter sampling
intervals for a precise CCT

BI: Burst Interval

SI: Sampling Interval

time
SI

bursts of calls/returns

BI

IBM Research

© 2006 IBM Corporation13

Outline

 Introduction

 Existing Approaches

 Our Approach: Adaptive Bursting

 Results

 Related Work

 Conclusion and Future Work

IBM Research

© 2006 IBM Corporation14

Adaptive Bursting: Reduce Redundant Bursts

Control flow is highly repetitive (e.g. loops) → bursts are
redundant

Selectively disable previously sampled calling contexts

Call stack information can serve as a good signature → a
hash of methods on the stack at the beginning of the burst

Use a history table to record if similar burst has occurred
earlier

IBM Research

© 2006 IBM Corporation15

Overview of Adaptive Bursting

sample point
reached

N

hash

skip the
burst Y

Weight
compensation/

feedback?

enabledisable

Build stack signature and check
in the history table

perform the burst
with weight
adjustment

perform
the burst

feedback

history
table

CCT

reenable
mechanism

IBM Research

© 2006 IBM Corporation16

Adaptive Bursting: Weight Compensation

Disabling redundant bursts loses CCT edge weights

Statistically reenable some of the disabled bursts, with a
Reenable Ratio (RR) between 0 and 1.

The probability a burst is reenabled is RR. Every counter
value added to the CCT is multiplied by 1/RR.

Ex. RR = 0.25, enable 1 per 4 disabled bursts, multiply
each counter by 4.

IBM Research

© 2006 IBM Corporation17

Weight Compensation Example

time

A->B->C->D A->B->C->D A->B->C->E A->B->C->E A->B->C->D

sig1 sig2 sig3 sig4 sig5

burst1 burst2 burst3 burst4 burst5

Assume sig1=sig2=sig3=sig4=sig5

A

B

C

E

Static Bursting

D

5

5

3 2

Adaptive Bursting
w/o reenable

A

B

C

D

1

1

1

Adaptive Bursting w/
reenable ratio=0.5

A

B

C

D

1

1

1

A

B

C

ED

5

5

3 2

A

B

C

D

2

2

2

A

B

C

2

2

E
2

+ + =

x 2 x 2

IBM Research

© 2006 IBM Corporation18

Outline

 Introduction

 Existing Approaches

 Our Approach: Adaptive Bursting

 Results

 Related Work

 Conclusion and Future Work

IBM Research

© 2006 IBM Corporation19

Benchmarks & Setup

Two configurations: Windows/Sun JVM, AIX/J9-3tier

Sampling Interval=10ms, Burst Interval=0.2ms.

Re-enable Ratio=0.05, History Table 2048 entries.

IBM Research

© 2006 IBM Corporation20

Measuring the Accuracy of Calling Context

Degree of Overlap

Focus on measuring the completeness of a CCT against the
complete CCT

Hot-edge Coverage

Focus on the coverage of hot edges (above a threshold)

Formal definitions explained in the paper.

IBM Research

© 2006 IBM Corporation21

Results—Degree of Overlap

Average: stack walk (49.8%), adaptive (68.8%), adaptive w/
reenable (85.2%), static burst (91.4%).

IBM Research

© 2006 IBM Corporation22

Results—Hot-edge Coverage

Average: stack walk (52.9%), adaptive (79.1%), adaptive w/
reenable (88.2%), static burst (88.1%).

IBM Research

© 2006 IBM Corporation23

Results—Slowdown

Average: stack walk (<1%), adaptive (14.8%), adaptive w/
reenable (18.8%), static burst (117%)

JVMPI is inefficient

IBM Research

© 2006 IBM Corporation24

Results—Percentage of Disabled Bursts

Both approaches disabled most bursts

Reenablement only adds small % of bursts (RR = 5%)

IBM Research

© 2006 IBM Corporation25

Summary of Results

JVMPI-based adaptive bursting

A modest slowdown

85% degree of overlap

88% hot-edge coverage

Sampled stack walking

Negligible slowdown

Around 50% degree of overlap and hot-edge coverage

Bad for large server benchmark JAS (0% coverage)

Static bursting

Accuracy is close to adaptive bursting (<6%)

Slowdown 6 times higher

IBM Research

© 2006 IBM Corporation26

Outline

 Introduction

 Existing Approaches

 Our Approach: Adaptive Bursting

 Results

 Related Work

 Conclusion and Future Work

IBM Research

© 2006 IBM Corporation27

Related Work

Exhaustive approach: Ammons et. el. [PLDI-97], Spivey [SPE-
04],

Sampling-based approach: Arnold & Sweeney [IBM TR-00],
Froyd et. el. [ICS-05], Whaley [Java Grande-00]

Context Sensitive Inlining: Hazelwood & Grove [CGO-03]

IBM Research

© 2006 IBM Corporation28

Outline

 Introduction

 Existing Approaches

 Our Approach: Adaptive Bursting

 Results

 Related Work

 Conclusion, Future Work, Criticism/Discussion

IBM Research

© 2006 IBM Corporation29

Conclusion

 Novel, efficient construction of accurate CCT

Accuracy: 80% to 90%.

Moderate overhead with JVMPI

~6% overhead observed with JVM-based instrumentation.

 Formal definitions of two metrics for evaluating CCT accuracy

Degree of overlap

Hot-edge coverage

Extensive measurements using a large number of benchmark
programs, including a very large commercial J2EE Java
application

IBM Research

© 2006 IBM Corporation30

Future Work

 Further reduce the overhead

Better instrumentation (alternatives to JVMPI)

M. Bond suggested using PCC to identify history

 Call site information

 Applications: context sensitive optimizations

Lock contention analysis?

Object allocation analysis

Method inlining

IBM Research

© 2006 IBM Corporation31

Criticism/Discussion

 Cold path coverage?

Insufficient cold path coverage

Rare bugs can't be discovered

 Overlap vs. Hot Edge Coverage: which is better?

IBM Research

© 2006 IBM Corporation32

Discussion

	Accurate, Efficient, and Adaptive Calling Context Profiling
	Slide 2
	Outline
	Motivation
	Examples for Call Tree, Call Graph and Calling Context Tree
	Collecting Calling Context Profile
	Slide 7
	Slide 8
	Building CCT: Exhaustive Approach
	Building CCT: Sampled Stack Walking
	Building CCT: Bursting
	Building CCT: Static Bursting
	Slide 13
	Our Adaptive Bursting: Reduce Redundant Bursts
	Overview of Our Adaptive Bursting
	Adaptive Bursting: Weight Compensation
	Weight Compensation Example
	Slide 18
	Benchmarks & Setup
	Measuring the Accuracy of Calling Context
	Results—Degree of Overlap
	Results—Hot-edge Coverage
	Results—Slowdown
	Results—Percentage of Disabled Bursts
	Summary of Results
	Slide 26
	Related Work
	Slide 28
	Conclusion
	Future Work
	Slide 31
	PowerPoint Presentation

