ASYNCHRONOUS
ASSERTIONS

What are assertions?

public class ATM {

public void withdraw (Account a, int amount) {
int oldBalance = a.getBalance();
a.setBalance (oldBalance — amount) ;
assert a.getBalance() < oldBalance;

dispense (amount) ;

Assertions allow programmers to verify that their program is
In a certain status

What are assertions?

public class ATM {

public void withdraw (Account a, 1int amount) {
a.addTransaction (—amount, "ATM Withdrawal");

assert a.findTransaction (—amount, "ATM
Withdrawal") != null;

dispense (amount) ;

What is the problem here?

What are assertions?

Assertions are used to verify your assumptions
about the program

Evaluating assertions is expensive — especially if
they rely on expensive calculations themselves

Because of this, you may opt to remove them from
your production code

This leads to some implications...

What are assertions NOT?

public class ATM {

public void withdraw (Account a, 1int amount) {
assert amount > O0;
a.addTransaction (—amount, "ATM Withdrawal");

dispense (amount) ;

Assertions cannot be used to verify user or method inputs

What are assertions NOT?

public class ATM {

public void withdraw (Account a, 1int amount) {

assert a.addTransaction (—amount, "ATM
Withdrawal") == true;

dispense (amount) ;

Assertions cannot have side effects

ldea

If assertions are used only for debugging, we do
not need the control flow to be halted while we

evaluate the assertion
After all, we are sure that it is true anyway
Why not do it asynchronously?

Problem: By then, object values have probably
changed

Snapshotting

If we copy the stack and the heap at the time of
the assertion, we can make sure we still have the

correct data

That‘s expensive...
Thus, only copy objects that are really modified

Copy-on-write

Snapshotting

Copy-on-write automatically guarantees isolation,
preservance of identity, and consistent references

If many assertions are made, objects are copied
more than necessary

Snapshotting

Every assertion defines ist own epoch

Instead of having only a ,,modified” flag, objects
are checked whether they were changed in a later

epoch
Only then they have to be copied

Snapshotting

Of course, if the epochs match, copies can be
shared

Objects created after an assertion‘s epoch do not
have to be copied

In case of an error...

The user can decide how to handle assertion

errors:
Either the program terminates, throwing an
AssertionError, or
The user can handle the situation by using a handle to
the asynchronous evaluation

Discussion

,Handle into the future” in violation of the JLS

Evaluation

Microbenchmarks: Simple data structures,
synthetic benchmark: No significant improvement

JBB2000:

Perform 2800 checks

| ! | 1 1
Sync —+— : : 5
7z L 2threads ---x--- b
4 threads ---*---
6 threads -—&-
o o 8threads --m-
= 10 threads --—-& -
e TN TR P -+t S R —
] :
E :
g A e A e
2 4| X
-
L
2 P cccssmaman ““"E..““”””““.”“;l:-.;.;.*.-.‘.Fﬂ.“";’“““”””““““E -..-..r.‘..-..-.;..-..i..._.._.._.* -.-..:
e A ol el o G
1 e e Joommnmnmn s P Jonmnmnn e I | P
0 5000 10000 15000 20000 25000 30000

Per-check cost (# objects traversed)

Evaluation

Asynchronous assertions reduce the overhead by
approx. 90%

They scale good, at least as long as the checker
threads are not overloaded:

Sync
ASYNC = ===

Application
waiting

Snapshot
overhead .= .2

Normalized runtime

1.

o

OK > Overloaded
Assertion workload

Discussion

Fallback to synchronous assertions if checkers are
overloaded?

Profile assertions and execute simple ones
synchronously?

Mormalized time

Evaluation

2.2

1.8

1.6

1.4

1.2

Sharing copies helps:

Perform 2800 checks

I\Ilr.} sharingtd threadsl . I I e
Full 4 threads ---»--- : : o
L No sharing 10 threads ---%--- —— e 4
I e e S s i
. RS
ARy ...- :.'.'.'f'ﬁ'.'.‘.:: eeand E -
o g
_____________ G- A T D S S
| L | 1 1
0 5000 10000 15000 20000 25000

Per-check cost (# objects traversed)

30000

Mormalized time

2.2

Traverse 3000 objects per check

Mo slharing 4 threalds —_— :

Full 4 threads ---»---
No sharing 10 threads —- .. i,
1 I | 1
2000 10000 15000 20000

MNumber of checks

Discussion

Are the benchmarks used really meaningful?

Reception

Only two theseses reference the paper
Not in the Jikes Research Archive

Not available in other VMs

Why?

Discussion

Questions?

Discussion

