
ASYNCHRONOUS

ASSERTIONS



What are assertions?

public class ATM {

…

public void withdraw(Account a, int amount) {

int oldBalance = a.getBalance();

a.setBalance(oldBalance - amount);

assert a.getBalance() < oldBalance;

dispense(amount);

}

}

Assertions allow programmers to verify that their program is

in a certain status



What are assertions?

public class ATM {

…

public void withdraw(Account a, int amount) {

a.addTransaction(-amount, "ATM Withdrawal");

assert a.findTransaction(-amount, "ATM assert a.findTransaction(-amount, "ATM 

Withdrawal") != null;

dispense(amount);

}

}

What is the problem here?



What are assertions?

� Assertions are used to verify your assumptions

about the program

� Evaluating assertions is expensive – especially if

they rely on expensive calculations themselvesthey rely on expensive calculations themselves

� Because of this, you may opt to remove them from

your production code

� This leads to some implications…



What are assertions NOT?

public class ATM {

…

public void withdraw(Account a, int amount) {

assert amount > 0;

a.addTransaction(-amount, "ATM Withdrawal");a.addTransaction(-amount, "ATM Withdrawal");

dispense(amount);

}

}

Assertions cannot be used to verify user or method inputs



What are assertions NOT?

public class ATM {

…

public void withdraw(Account a, int amount) {

assert a.addTransaction(-amount, "ATM 

Withdrawal") == true;

dispense(amount);

}

}

Assertions cannot have side effects



Idea

� If assertions are used only for debugging, we do 

not need the control flow to be halted while we

evaluate the assertion

� After all, we are sure that it is true anyway� After all, we are sure that it is true anyway

� Why not do it asynchronously?

� Problem: By then, object values have probably

changed



Snapshotting

� If we copy the stack and the heap at the time of

the assertion, we can make sure we still have the

correct data

� That‘s expensive…� That‘s expensive…

� Thus, only copy objects that are really modified

� Copy-on-write



Snapshotting

� Copy-on-write automatically guarantees isolation, 

preservance of identity, and consistent references

� If many assertions are made, objects are copied� If many assertions are made, objects are copied

more than necessary



Snapshotting

� Every assertion defines ist own epoch

� Instead of having only a „modified“ flag, objects

are checked whether they were changed in a later

epochepoch

� Only then they have to be copied



Snapshotting

� Of course, if the epochs match, copies can be

shared

� Objects created after an assertion‘s epoch do not � Objects created after an assertion‘s epoch do not 

have to be copied



In case of an error…

� The user can decide how to handle assertion

errors:

� Either the program terminates, throwing an 

AssertionError, or

� The user can handle the situation by using a handle to

the asynchronous evaluation



Discussion

� „Handle into the future“ in violation of the JLS



Evaluation

� Microbenchmarks: Simple data structures, 

synthetic benchmark: No significant improvement

� JBB2000:



Evaluation

� Asynchronous assertions reduce the overhead by

approx. 90%

� They scale good, at least as long as the checker

threads are not overloaded:threads are not overloaded:



Discussion

� Fallback to synchronous assertions if checkers are� Fallback to synchronous assertions if checkers are

overloaded?

� Profile assertions and execute simple ones

synchronously?



Evaluation

� Sharing copies helps:



Discussion

� Are the benchmarks used really meaningful?



Reception

� Only two theseses reference the paper

� Not in the Jikes Research Archive

� Not available in other VMs

� Why?� Why?



Discussion

� Questions?� Questions?



Discussion


