Breadcrumbs: Efficient Context
Sensitivity for Dynamic Bug
Detection Analyses

Basic Contribution

* Decoding a PCC value

— Human readable sequence of calls

* Evaluation
— Dynamic Race Detector
— Origin Tracking — Null Pointer Exception Diagnhosis

Basic PCC

* PCC

p' = f(p,c) = (Bp + ¢) mod 232
»p, = 0

>y = f(p, co)
» P, = f(p1, C1)
» D3 = f(le C3)

» P _ f(pi—1,Ci—1)

» P, = f(pn_l,cn_l)

Decoding PCC...

* Meaning
»p, =0 [main]
» pl = f(pol Co)
» Py = f(p1, Cy)

» P3 = f(le C;)
» P _ f(pi—l,ci—l)

»p, = 'f(pn _1C,_ 1) [return main]

Inverse, f ()

 Givenp’in
p' = f(p,c) = (3p + ¢) mod 2°7
— Find pand ¢
— for a given cand p’... pis unique.
— err... we want to find ¢
— but, in order to track back, p is required

Inverse, f ()

Givenp'inp’ = f(p,c¢) = (B3p + ¢) mod 232
— Find pand ¢

— Choose ac, thenp = f : (p',c)

» P,
» pn—l = f_l(pn'cn—l)
» Pp_2= f‘l(pn_l’cn_z)

» D _ f‘l(pi+1lcl-)

» Do = f_l(P1’Co)

Challenges?

* Difficult search problem
— Many Call sites ¢ to choose from (1000s)
° pn—l — f_l(pnlcn—l)

— Accurately choosing the right ¢,, _ ; will be difficult.
— Compounds the problem of deriving the right sequence.

100010 = 1030
possible calling
sequences. (thisis

minimum)

Reducing the Search Space

== reducing the probable Call sites
Static
Dynamic

Static

M6(){
M2()
)
M2(){
M7(){ M}”’
M2()
J M3(){
M1()
sl } M1
M2() M4(){)
} M1()
)
M5 ()

M1()

Issues with Static

class A { registerKeyPressEvent(e);
static { methodA(); }
} void HandleKeyPressEvent(e, arg)
{
public methodA(){ Display(“hello!”);
System.out.printin(“helloworld”); !
}
void Display()
public static void main(String[] args) { {
A objecta = new A();
} }
JVM JAVA/SWING

The possible call sites are incomplete.
Dynamic Analysis is then used to find the missing links.

Dynamic

e Calculate and store all PCC values at specific

call sites.
_1
_ ' M2()§
.p_f (p,C) / -M}l()
M3(){

p* p” p’ ML M1(){
}

M4()
p’,p’ M1()

}

a. 3 out of 1000 call sites (static)
b. Find all Per call site PCC values. See where p’is. (dynamic)

Issues with Dynamic

As always, too expensive.

Solution-

— hotThreshold
e Stop recording the PCC values after the threshold.

Issues with Solution

— You can’t guess accurately anymore.

M2(){

As always, the p* o ML)

Accuracy —Performance } o
M3(){

Tradeoff it M0
}

}

M4()

p’,p M1()

PCC Values are Client sites -
Extensibility

* The PCC values are generally calculated at
callsites.

* Thus, you can’t look at the program flow at all
points.

* So, you start storing the information at the
client sites (sites which are of interest to the
client, like suspicious bug locations, or
memory operations).

Evaluations

* No client

— PCC only

— T=100; 1,000; 10,000; 100,000; inf.
* Origin Tracking

— OT only

— T=100; 1,000; 10,000; 100,000; inf.
* Race Detection

— RD only
— T=100; 1,000; 10,000; 100,000; inf.

contd.

* PCConly—No Client
— “No threshold” adds as high as 90% overhead.

— T =100 to 1000, adds about 10 to 20%. Still too
high for production.

* Origin Tracking
— Direct application of PCC.

— Propagation of null values.
— The overheads are very similar to PCC only.

Overhead (%)

160 =
140 —
120 =

100 =

B No threshold
3 t= 100.000
3 t=10.000
/= 1.000
=100
[PCC only

Overhead (%)

160 —
140 —

120 —

== cs oT. t= 100000

B CS OT. no threshold

/] CS OT. t= 10000

t= 1000

100

contd.

* Race Detector - Pacer
— FastTrack Algorithm

* Significant Runtime and Space

— Calling contexts of all memory operations

— Overhead of PCC Decoding is very small compared
to the overhead of Pacer.

Take Away

* Add-on to the original PCC work
* Significant runtime overhead

— 10 to 20 % at the minimum. (if you want accurate
reconstruction of graphs.)

* Reconstruction not easy even at t = 10,000
sometimes.

Observations

* Space overhead was not talked about.

* Did not specify what call-depth is practically
useful

— Do you need 10+ levels of depth to debug?
— Would give a more practical picture.

 Can we use an arithmetic encoding function
instead, like in compression techniques?

