
Breadcrumbs: Efficient Context
Sensitivity for Dynamic Bug

Detection Analyses

Bond, Baker and Guyer

Basic Contribution

• Decoding a PCC value

– Human readable sequence of calls

• Evaluation

– Dynamic Race Detector

– Origin Tracking – Null Pointer Exception Diagnosis

Basic PCC

• PCC
 𝑝′ = 𝑓 𝑝, 𝑐 = 3𝑝 + 𝑐 𝑚𝑜𝑑 232

» 𝑝𝑜
 = 0 [main]

» 𝑝1
 = 𝑓(𝑝𝑜,

𝑐𝑜)

» 𝑝2
 = 𝑓(𝑝1,

𝑐1)

» 𝑝3
 = 𝑓(𝑝2,

𝑐2)

 .

 .

» 𝑝𝑖 =
𝑓(𝑝𝑖 − 1,

𝑐𝑖 − 1)

.

 .

» 𝑝𝑛
 = 𝑓(𝑝𝑛 − 1,

𝑐𝑛 − 1) [return main]

Decoding PCC…

• Meaning

» 𝑝𝑜
 = 0 [main]

» 𝑝1
 = 𝑓(𝑝𝑜,

𝑐𝑜)

» 𝑝2
 = 𝑓(𝑝1,

𝑐1)

» 𝑝3
 = 𝑓(𝑝2,

𝑐2)

 .

 .

» 𝑝𝑖 =
𝑓(𝑝𝑖 − 1,

𝑐𝑖 − 1)

.

 .

» 𝒑𝒏
 = 𝑓(𝑝𝑛 − 1,

𝒄𝒏 − 𝟏) [return main]

Inverse, f
-1
()

• Given p’ in
𝑝′ = 𝑓 𝑝, 𝑐 = 3𝑝 + 𝑐 𝑚𝑜𝑑 232

– Find p and c

– for a given c and p’ … p is unique.

– err… we want to find c

– but, in order to track back, p is required

Inverse, f
-1
()

• Given p’ in 𝑝′ = 𝑓 𝑝, 𝑐 = 3𝑝 + 𝑐 𝑚𝑜𝑑 232

– Find p and c

– Choose a c, then 𝑝 = 𝑓
− 1

𝑝′, 𝑐
» 𝑝𝑛

 [return main]

» 𝑝𝑛 − 1
 = 𝑓 − 1(𝑝𝑛 , 𝒄𝒏 − 𝟏)

» 𝑝𝑛 − 2 = 𝑓 − 1(𝑝𝑛 − 1,
𝑐𝑛 − 2)

 .

 .

» 𝑝𝑖 =
𝑓 − 1(𝑝𝑖 + 1,

𝑐𝑖)

.

 .

» 𝑝0
 = 𝑓 − 1(𝑝1,

𝑐0) [main]

Challenges?

• Difficult search problem

– Many Call sites c to choose from (1000s)

• 𝑝𝑛 − 1
 = 𝑓 − 1(𝑝𝑛 , 𝒄𝒏 − 𝟏)

– Accurately choosing the right 𝒄𝒏 − 𝟏 will be difficult.

– Compounds the problem of deriving the right sequence.

𝒄𝟏𝟎 𝒄𝟗

𝒄𝟓 𝒄𝟔

𝒄𝟕

𝒄𝟖

𝒄𝟐
𝒄𝟑

𝒄𝟒

𝒄𝟏
𝒄𝟎

100010 = 1030

possible calling
sequences. (this is

minimum)

Reducing the Search Space

• == reducing the probable Call sites

• Static

• Dynamic

Static

M1(){

}

M2(){

}
M1()

M4(){

}
M1()

M5(){

}
M1()

M3(){

}

M1()

M8(){

}
M2()

M7(){

}
M2()

M6(){

}
M2()

Issues with Static

class A {
static { methodA(); }
}

public methodA(){
System.out.println(“helloworld”);
}

public static void main(String[] args) {
A objecta = new A();
}

registerKeyPressEvent(e);

void HandleKeyPressEvent(e, arg)
{
 Display(“hello!”);
}

void Display()
{

}

JVM JAVA/SWING

The possible call sites are incomplete.
Dynamic Analysis is then used to find the missing links.

Dynamic

• Calculate and store all PCC values at specific
call sites.

• 𝑝 = 𝑓
− 1

𝑝′, 𝑐

a. 3 out of 1000 call sites (static)
b. Find all Per call site PCC values. See where p’ is. (dynamic)

M1(){

}

M2(){

}
M1()

M4(){

}
M1()

M3(){

}
M1() p*, p’’, p’

p’ ., p.
’

p’*, p
.

p’

Issues with Dynamic

• As always, too expensive.

• Solution-
– hotThreshold

• Stop recording the PCC values after the threshold.

• Issues with Solution
– You can’t guess accurately anymore.

• As always, the
Accuracy –Performance
Tradeoff

M1(){

}

M2(){

}
M1()

M4(){

}
M1()

M3(){

}
M1() p.*, p*, p’’ p’

p’ ., p.
’

p’*, p
.

p’

PCC Values are Client sites -
Extensibility

• The PCC values are generally calculated at
callsites.

• Thus, you can’t look at the program flow at all
points.

• So, you start storing the information at the
client sites (sites which are of interest to the
client, like suspicious bug locations, or
memory operations).

Evaluations

• No client
– PCC only

– T= 100; 1,000; 10,000; 100,000; inf.

• Origin Tracking
– OT only

– T= 100; 1,000; 10,000; 100,000; inf.

• Race Detection
– RD only

– T= 100; 1,000; 10,000; 100,000; inf.

contd.

• PCC only – No Client

– “No threshold” adds as high as 90% overhead.

– T = 100 to 1000, adds about 10 to 20%. Still too
high for production.

• Origin Tracking

– Direct application of PCC.

– Propagation of null values.

– The overheads are very similar to PCC only.

contd.

• Race Detector - Pacer

– FastTrack Algorithm

• Significant Runtime and Space

– Calling contexts of all memory operations

– Overhead of PCC Decoding is very small compared
to the overhead of Pacer.

Take Away

• Add-on to the original PCC work

• Significant runtime overhead

– 10 to 20 % at the minimum. (if you want accurate
reconstruction of graphs.)

• Reconstruction not easy even at t = 10,000
sometimes.

Observations

• Space overhead was not talked about.

• Did not specify what call-depth is practically
useful

– Do you need 10+ levels of depth to debug?

– Would give a more practical picture.

• Can we use an arithmetic encoding function
instead, like in compression techniques?

