
PLDI 2006PLDI 2006

DieHard:
Probabilistic Memory Safety for
Unsafe Programming Languages

Emery Berger
University of Massachusetts

Amherst

Ben Zorn
Microsoft Research

Presented by:
Brian Norris

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!
 die-hard

 (adj.) strongly or fanatically determined or devoted

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!
 die-hard

 (adj.) strongly or fanatically determined or devoted

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!
 die-hard

 (adj.) strongly or fanatically determined or devoted

PLDI 2006PLDI 2006

Problems with Unsafe Languages

 C, C++: pervasive apps, but memory unsafe
 Numerous opportunities for security vulnerabilities,

errors
 Double free
 Invalid free
 Uninitialized reads
 Dangling pointers
 Buffer overflows (stack & heap)

PLDI 2006PLDI 2006

Current Approaches

 Unsound, may work or abort
 Windows, GNU libc, etc., Rx

 Unsound, will definitely continue
 Failure oblivious (Rinard) **

 Sound, definitely aborts (fail-safe)
 CCured, CRED, SAFECode

 Requires C source, programmer intervention
 30% to 20X slowdowns

 Good for debugging, less for deployment

PLDI 2006PLDI 2006

DieHard

 Sound execution (with high probability)
 Fully-randomized memory manager

 Increases odds of benign memory errors
 Ensures different heaps across users

 Replication
 Run multiple replicas simultaneously, vote on

results
 Detects crashing & non-crashing errors

 Trades space (and CPU?) for increased reliability

PLDI 2006PLDI 2006

Soundness for “Erroneous” Programs

 Consider infinite-heap allocator:
 All news fresh; ignore delete

 No dangling pointers, invalid frees, double frees
 Every object infinitely large

 No buffer overflows, data overwrites

 Transparent to correct program
 “Erroneous” programs sound

PLDI 2006PLDI 2006

Approximating Infinite Heaps

 Infinite) M-heaps: probabilistic soundness
 Option 1: Pad allocations & defer deallocations

+ Simple
– No protection from larger overflows

– pad = 8 bytes, overflow = 9 bytes…

– Deterministic: overflow crashes everyone
 Better: randomize heap

+ Probabilistic protection against errors
+Independent across heaps

? Efficient implementation…

PLDI 2006PLDI 2006

Randomized Heap Layout

 Bitmap-based, segregated size classes
 Bit represents one object of given size

 i.e., one bit = 2i+3 bytes, etc.
 Prevents fragmentation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

PLDI 2006PLDI 2006

Randomized Allocation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

malloc(sz):
 compute size class = ceil(log

2
 sz) – 3

 randomly probe bitmap for zero-bit (free)
 Fast: runtime O(1)

 M=2) E[# of probes] · 2

PLDI 2006PLDI 2006

Randomized Allocation

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

malloc(sz):
 compute size class = ceil(log

2
 sz) – 3

 randomly probe bitmap for zero-bit (free)
 Fast: runtime O(1)

 M=2) E[# of probes] · 2

PLDI 2006PLDI 2006

Randomized Deallocation

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

free(ptr):
 Ensure object valid (aligned)
 Check bitmap
 Reset bit

 Prevents invalid frees, double frees

PLDI 2006PLDI 2006

Randomized Deallocation

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

free(ptr):
 Ensure object valid (aligned)
 Check bitmap
 Reset bit

 Prevents invalid frees, double frees

PLDI 2006PLDI 2006

Randomized Deallocation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

free(ptr):
 Ensure object valid (aligned)
 Check bitmap
 Reset bit

 Prevents invalid frees, double frees

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

My Mozilla: “malignant” overflow

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

My Mozilla: “malignant” overflow

Your Mozilla: “benign” overflow

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

DieHard software architecture

 Each replica has different allocator
 “Output equivalent” – kill failed replicas

broadcast vote

input output

execute replicas

replica3seed3

replica1seed1

replica2seed2

PLDI 2006PLDI 2006

Results

 Analytical results
 Buffer overflows
 Dangling pointer errors
 Uninitialized reads

 Empirical results
 Runtime overhead
 Error avoidance

 Injected faults & actual applications

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Model overflow as write of live data
 Heap half full (max occupancy)

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Model overflow as write of live data
 Heap half full (max occupancy)

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Model overflow as write of live data
 Heap half full (max occupancy)

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at
least one replica

re
p

li
c
a
s

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at
least one replica

re
p

li
c
a
s

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at
least one replica

re
p

li
c
a
s

 P(Overflow in all replicas) = (1/2)3 = 1/8
 P(No overflow in ¸ 1 replica) = 1-(1/2)3 = 7/8

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 F = free space
 H = heap size
 N = # objects

worth of overflow
 k = replicas

 Overflow one object

PLDI 2006PLDI 2006

Empirical Results: Runtime

PLDI 2006PLDI 2006

Empirical Results: Runtime

PLDI 2006PLDI 2006

Empirical Results: Error Avoidance

 Injected faults:
 Dangling pointers (@50%, 10 allocations)

 glibc: crashes; DieHard: 9/10 correct
 Overflows (@1%, 4 bytes over)

 glibc: crashes 9/10, inf loop; DieHard: 10/10 correct

 Real faults:
 Avoids Squid web cache overflow

 Crashes BDW & glibc
 Avoids dangling pointer error in Mozilla

 DoS in glibc & Windows

PLDI 2006PLDI 2006

Conclusion

 Randomization + replicas = probabilistic
memory safety
 Useful point between absolute soundness (fail-stop)

and unsound
 Trades hardware resources (RAM, CPU) for

reliability
 Hardware trends

 Larger memories, multi-core CPUs
 Follows in footsteps of ECC memory, RAID

PLDI 2006PLDI 2006

Major Weakness

 Excessive memory, CPU usage
 Fallacy: we can forfeit extra memory and CPU

resources because they are becoming cheaper
 For production use (seriously?)

 Inconsistent comparisons

PLDI 2006PLDI 2006

Related Work

 Unsound, will definitely continue
 Failure oblivious (Rinald) [30, 32] **

 Introduced idea of “boundless memory blocks”
 Same benefits with less memory?

 DieHarder

	DieHard: Probabilistic Memory Safety for Unsafe Programming Languages
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Problems with Unsafe Languages
	Current Approaches
	Probabilistic Memory Safety
	Soundness for “Erroneous” Programs
	Approximating Infinite Heaps
	Randomized Heap Layout
	Slide 12
	Slide 13
	Randomized Deallocation
	Slide 15
	Slide 16
	Randomized Heaps & Reliability
	Slide 18
	Slide 19
	Slide 20
	DieHard software architecture
	Results
	Analytical Results: Buffer Overflows
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Empirical Results: Runtime
	Slide 31
	Slide 32
	Conclusion
	Slide 34
	Slide 35

