
PLDI 2006PLDI 2006

DieHard:
Probabilistic Memory Safety for
Unsafe Programming Languages

Emery Berger
University of Massachusetts

Amherst

Ben Zorn
Microsoft Research

Presented by:
Brian Norris

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!
 die-hard

 (adj.) strongly or fanatically determined or devoted

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!
 die-hard

 (adj.) strongly or fanatically determined or devoted

PLDI 2006PLDI 2006

Frivolity

 Happy Leap Day!
 die-hard

 (adj.) strongly or fanatically determined or devoted

PLDI 2006PLDI 2006

Problems with Unsafe Languages

 C, C++: pervasive apps, but memory unsafe
 Numerous opportunities for security vulnerabilities,

errors
 Double free
 Invalid free
 Uninitialized reads
 Dangling pointers
 Buffer overflows (stack & heap)

PLDI 2006PLDI 2006

Current Approaches

 Unsound, may work or abort
 Windows, GNU libc, etc., Rx

 Unsound, will definitely continue
 Failure oblivious (Rinard) **

 Sound, definitely aborts (fail-safe)
 CCured, CRED, SAFECode

 Requires C source, programmer intervention
 30% to 20X slowdowns

 Good for debugging, less for deployment

PLDI 2006PLDI 2006

DieHard

 Sound execution (with high probability)
 Fully-randomized memory manager

 Increases odds of benign memory errors
 Ensures different heaps across users

 Replication
 Run multiple replicas simultaneously, vote on

results
 Detects crashing & non-crashing errors

 Trades space (and CPU?) for increased reliability

PLDI 2006PLDI 2006

Soundness for “Erroneous” Programs

 Consider infinite-heap allocator:
 All news fresh; ignore delete

 No dangling pointers, invalid frees, double frees
 Every object infinitely large

 No buffer overflows, data overwrites

 Transparent to correct program
 “Erroneous” programs sound

PLDI 2006PLDI 2006

Approximating Infinite Heaps

 Infinite) M-heaps: probabilistic soundness
 Option 1: Pad allocations & defer deallocations

+ Simple
– No protection from larger overflows

– pad = 8 bytes, overflow = 9 bytes…

– Deterministic: overflow crashes everyone
 Better: randomize heap

+ Probabilistic protection against errors
+Independent across heaps

? Efficient implementation…

PLDI 2006PLDI 2006

Randomized Heap Layout

 Bitmap-based, segregated size classes
 Bit represents one object of given size

 i.e., one bit = 2i+3 bytes, etc.
 Prevents fragmentation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

PLDI 2006PLDI 2006

Randomized Allocation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

malloc(sz):
 compute size class = ceil(log

2
 sz) – 3

 randomly probe bitmap for zero-bit (free)
 Fast: runtime O(1)

 M=2) E[# of probes] · 2

PLDI 2006PLDI 2006

Randomized Allocation

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

malloc(sz):
 compute size class = ceil(log

2
 sz) – 3

 randomly probe bitmap for zero-bit (free)
 Fast: runtime O(1)

 M=2) E[# of probes] · 2

PLDI 2006PLDI 2006

Randomized Deallocation

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

free(ptr):
 Ensure object valid (aligned)
 Check bitmap
 Reset bit

 Prevents invalid frees, double frees

PLDI 2006PLDI 2006

Randomized Deallocation

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

free(ptr):
 Ensure object valid (aligned)
 Check bitmap
 Reset bit

 Prevents invalid frees, double frees

PLDI 2006PLDI 2006

Randomized Deallocation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

free(ptr):
 Ensure object valid (aligned)
 Check bitmap
 Reset bit

 Prevents invalid frees, double frees

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

My Mozilla: “malignant” overflow

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

My Mozilla: “malignant” overflow

Your Mozilla: “benign” overflow

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent

PLDI 2006PLDI 2006

DieHard software architecture

 Each replica has different allocator
 “Output equivalent” – kill failed replicas

broadcast vote

input output

execute replicas

replica3seed3

replica1seed1

replica2seed2

PLDI 2006PLDI 2006

Results

 Analytical results
 Buffer overflows
 Dangling pointer errors
 Uninitialized reads

 Empirical results
 Runtime overhead
 Error avoidance

 Injected faults & actual applications

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Model overflow as write of live data
 Heap half full (max occupancy)

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Model overflow as write of live data
 Heap half full (max occupancy)

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Model overflow as write of live data
 Heap half full (max occupancy)

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at
least one replica

re
p

li
c
a
s

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at
least one replica

re
p

li
c
a
s

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at
least one replica

re
p

li
c
a
s

 P(Overflow in all replicas) = (1/2)3 = 1/8
 P(No overflow in ¸ 1 replica) = 1-(1/2)3 = 7/8

PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

 F = free space
 H = heap size
 N = # objects

worth of overflow
 k = replicas

 Overflow one object

PLDI 2006PLDI 2006

Empirical Results: Runtime

PLDI 2006PLDI 2006

Empirical Results: Runtime

PLDI 2006PLDI 2006

Empirical Results: Error Avoidance

 Injected faults:
 Dangling pointers (@50%, 10 allocations)

 glibc: crashes; DieHard: 9/10 correct
 Overflows (@1%, 4 bytes over)

 glibc: crashes 9/10, inf loop; DieHard: 10/10 correct

 Real faults:
 Avoids Squid web cache overflow

 Crashes BDW & glibc
 Avoids dangling pointer error in Mozilla

 DoS in glibc & Windows

PLDI 2006PLDI 2006

Conclusion

 Randomization + replicas = probabilistic
memory safety
 Useful point between absolute soundness (fail-stop)

and unsound
 Trades hardware resources (RAM, CPU) for

reliability
 Hardware trends

 Larger memories, multi-core CPUs
 Follows in footsteps of ECC memory, RAID

PLDI 2006PLDI 2006

Major Weakness

 Excessive memory, CPU usage
 Fallacy: we can forfeit extra memory and CPU

resources because they are becoming cheaper
 For production use (seriously?)

 Inconsistent comparisons

PLDI 2006PLDI 2006

Related Work

 Unsound, will definitely continue
 Failure oblivious (Rinald) [30, 32] **

 Introduced idea of “boundless memory blocks”
 Same benefits with less memory?

 DieHarder

	DieHard: Probabilistic Memory Safety for Unsafe Programming Languages
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Problems with Unsafe Languages
	Current Approaches
	Probabilistic Memory Safety
	Soundness for “Erroneous” Programs
	Approximating Infinite Heaps
	Randomized Heap Layout
	Slide 12
	Slide 13
	Randomized Deallocation
	Slide 15
	Slide 16
	Randomized Heaps & Reliability
	Slide 18
	Slide 19
	Slide 20
	DieHard software architecture
	Results
	Analytical Results: Buffer Overflows
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Empirical Results: Runtime
	Slide 31
	Slide 32
	Conclusion
	Slide 34
	Slide 35

