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Problems with Unsafe Languages

 C, C++: pervasive apps, but memory unsafe
 Numerous opportunities for security vulnerabilities, 

errors
 Double free
 Invalid free
 Uninitialized reads
 Dangling pointers
 Buffer overflows (stack & heap)
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Current Approaches

 Unsound, may work or abort
 Windows, GNU libc, etc., Rx

 Unsound, will definitely continue
 Failure oblivious (Rinard) **

 Sound, definitely aborts (fail-safe)
 CCured, CRED, SAFECode

 Requires C source, programmer intervention
 30% to 20X slowdowns

 Good for debugging, less for deployment
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DieHard

 Sound execution (with high probability)
 Fully-randomized memory manager

 Increases odds of benign memory errors
 Ensures different heaps across users

 Replication
 Run multiple replicas simultaneously, vote on 

results
 Detects crashing & non-crashing errors

 Trades space (and CPU?) for increased reliability
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Soundness for “Erroneous” Programs

 Consider infinite-heap allocator:
 All news fresh; ignore delete

 No dangling pointers, invalid frees, double frees
 Every object infinitely large

 No buffer overflows, data overwrites

 Transparent to correct program
 “Erroneous” programs sound
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Approximating Infinite Heaps

 Infinite ) M-heaps: probabilistic soundness
 Option 1: Pad allocations & defer deallocations

+ Simple
– No protection from larger overflows

– pad = 8 bytes, overflow = 9 bytes…

– Deterministic: overflow crashes everyone
 Better: randomize heap

+ Probabilistic protection against errors
+Independent across heaps

? Efficient implementation…
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Randomized Heap Layout

 Bitmap-based, segregated size classes
 Bit represents one object of given size

 i.e., one bit = 2i+3 bytes, etc.
 Prevents fragmentation

00000001 1010 10
size = 2i+3 2i+4 2i+5

                                                                

metadata

heap



PLDI 2006PLDI 2006

Randomized Allocation

00000001 1010 10
size = 2i+3 2i+4 2i+5

                                                            

metadata

heap    

malloc(sz):
 compute size class = ceil(log

2
 sz) – 3

 randomly probe bitmap for zero-bit (free)
 Fast: runtime O(1)

 M=2 ) E[# of probes] · 2
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Randomized Deallocation
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heap    

free(ptr):
 Ensure object valid (aligned)
 Check bitmap
 Reset bit

 Prevents invalid frees, double frees
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Randomized Deallocation
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Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent
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Randomized Heaps & Reliability

2 34 5 3 1 6

object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

My Mozilla: “malignant” overflow

Your Mozilla: “benign” overflow

 Objects randomly spread across heap
 Different run = different heap

 Errors across heaps independent
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DieHard software architecture

 Each replica has different allocator
 “Output equivalent” – kill failed replicas

broadcast vote

input output

execute replicas

replica3seed3

replica1seed1

replica2seed2
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Results

 Analytical results
 Buffer overflows
 Dangling pointer errors
 Uninitialized reads

 Empirical results
 Runtime overhead
 Error avoidance

 Injected faults & actual applications
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Analytical Results: Buffer Overflows

 Model overflow as write of live data
 Heap half full (max occupancy)
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Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at 
least one replica
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Analytical Results: Buffer Overflows

 Replicas: Increase odds of avoiding overflow in at 
least one replica

re
p
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a
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 P(Overflow in all replicas) = (1/2)3 = 1/8
 P(No overflow in ¸ 1 replica) = 1-(1/2)3 = 7/8
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Analytical Results: Buffer Overflows

 F = free space
 H = heap size
 N = # objects 

worth of overflow
 k = replicas

 Overflow one object
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Empirical Results: Runtime
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Empirical Results: Error Avoidance

 Injected faults:
 Dangling pointers (@50%, 10 allocations)

 glibc: crashes; DieHard: 9/10 correct
 Overflows (@1%, 4 bytes over)

 glibc: crashes 9/10, inf loop; DieHard: 10/10 correct

 Real faults:
 Avoids Squid web cache overflow

 Crashes BDW & glibc
 Avoids dangling pointer error in Mozilla

 DoS in glibc & Windows
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Conclusion

 Randomization + replicas = probabilistic 
memory safety
 Useful point between absolute soundness (fail-stop) 

and unsound
 Trades hardware resources (RAM, CPU) for 

reliability
 Hardware trends

 Larger memories, multi-core CPUs
 Follows in footsteps of ECC memory, RAID
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Major Weakness

 Excessive memory, CPU usage
 Fallacy: we can forfeit extra memory and CPU 

resources because they are becoming cheaper
 For production use (seriously?)

 Inconsistent comparisons
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Related Work

 Unsound, will definitely continue
 Failure oblivious (Rinald) [30, 32] **

 Introduced idea of “boundless memory blocks”
 Same benefits with less memory?

 DieHarder
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