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Calling Contexts

● Calling Contexts
⁍ Sequence of active functions on call stack
⁍ Precisely capture sequence of active call sites

1)def a():
2) print('Here')

3)def b():
4) a()
5) a()
  
6)def main():
7) b()

main() at entry

b() at 7

a() at 5



  

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors



  

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors

● Failure location
⁍ For bug reports and debugging tools



  

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors

● Failure location
⁍ For bug reports and debugging tools

● Reverse engineering input formats
⁍ Contexts identify substructures



  

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors

● Failure location
⁍ For bug reports and debugging tools

● Reverse engineering input formats
⁍ Contexts identify substructures

● Security
⁍ Tracking the sources of information



  

Existing Approaches

● Full Contexts
⁍ stack walking, calling context trees, ...



  

● Full Contexts
⁍ stack walking, calling context trees, ...

● Context IDs
⁍ probabilistic contexts, profile inferred contexts, ...

Existing Approaches



  

Existing Approaches

● Problems
⁍ Full contexts are too expensive



  

Existing Approaches

● Problems
⁍ Full contexts are too expensive
⁍ IDs don't allow reverse lookup

Given an ID, to what context does it belong?
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Precise Context Features

● Encode many contexts to 1 integer
⁍ Uses multiple integers as necessary

● Reversible encoding

● Robust
⁍ Recursion, indirection, exceptions, ...

● Optimized using stack sizes and profiling
⁍ 1.9% - 3% overhead
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Precise Context Encoding

● Encode each context in a number
⁍ Compute the current context number online
⁍ Similar to Ball-Larus CFG path numbering



  

Basic Context Encoding

● Paths start at the root
● They may end anywhere
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Basic Context Encoding

● Paths start at the root
● They may end anywhere
● We reuse the solutions 

for common 
subproblemsd
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Basic Context Encoding

def c():
...
contextID += 1contextID += 1
d()
contextID -= 1contextID -= 1
...

Maintain the current ID online
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Basic Context Encoding
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for each function:
  Σ  # contexts for each caller



  

Basic Context Encoding
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Basic Context Encoding
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Basic Context Encoding
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Basic Context Encoding
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Basic Context Encoding
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Basic Context Encoding
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Recursion

● With recursion\cycles, numbering is unbounded.

d

a

cb



  

Recursion

● With recursion\cycles, numbering is unbounded.
⁍ Transform them into acyclic graphs.

d

a

cb

head

d

a

cb



  

Recursion

● With recursion\cycles, numbering is unbounded.
⁍ Transform them into acyclic graphs.

● Each back edge has a corresponding edge in 
the new acyclic graph.
⁍ Each cyclic path becomes a list of acyclic paths
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Recursion

● Push the current ID onto a context stack before 
recursive calls.

Instrumentation:
def d():

...
push(d, contextID)
contextID = 0
c()
contextID = pop()
...

head

d

a

cb



  

Recursion
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Recursion

● In the series of calls:    a→c→d→c→d
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Recursion

● In the series of calls:    a→c→d→c→d
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Precise Implicit Encoding

● Some contexts can be precisely identified by 
stack sizes
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Precise Implicit Encoding

● Some contexts can be precisely identified by 
stack sizes
⁍ We can use these when possible and fall back on 

explicit encoding when necessary.
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Precise Implicit Encoding

● Some contexts can be precisely identified by 
stack sizes
⁍ We can use these when possible and fall back on 

explicit encoding when necessary.

● Fall back on explicit encoding for contexts w/:
⁍ Variable stack allocation
⁍ Recursive paths
⁍ Conflicting contexts with the same size



  

Evaluation

● Implemented prototype using CIL
● Examined results on SPEC 2000 and a set of 

real world programs
● 32-bit IDs



  

Evaluation: Context Attributes
Program

Max Size 90% Size
# Contexts

Ours Full Ours Full

164.gzip 1 9 1 7 258

175.vpr 1 9 1 6 1553

176.gcc 20 136 3 15 169090

181.mcf 15 42 1 2 12920

186.crafty 35 41 11 23 27103471

197.parser 37 73 12 28 3023011

255.vortex 8 43 3 12 205004

256.bzip2 2 8 1 8 96

300.twolf 5 11 1 5 971



Program
Max Size 90% Size

# Contexts
Ours Full Ours Full

cmp 2.8.7 1 3 1 3 9

diff 2.8.7 1 7 1 5 34

sdiff 2.8.7 1 5 1 4 44

find 4.4.0 3 12 2 12 186

locate 4.4.0 1 9 1 9 65

grep 2.5.4 1 11 1 8 117

tar 1.16 4 40 3 31 1346

make 3.80 7 82 4 43 1789

alpine 2.0 12 29 7 18 7575

vim 6.0 11 31 6 10 3226



  

Context Stack Size Sufficiency
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Evaluation: Context Attributes

Program
Max Size 90% Size

Ours Full Ours Full

AVERAGE 8.7 39.2 3.2 13.7



  

Evaluation: Runtime

Basic Normalized Overhead
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Evaluation: Runtime

Implicit Normalized Overhead
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Evaluation

● Our method
⁍ Basic: 3.6% overhead
⁍ Hybrid: 1.9% overhead
⁍ Reversible
⁍ Multiple integers (1-3 in most cases)

● Compared to Probabilistic:
⁍ 3% overhead
⁍ One way
⁍ One integer



  

Related Work

Probabilistic Calling Context
[Bond, McKinley OOPSLA'07]

Breadcrumbs
[Bond, Baker, Guyer PLDI'10]

Inferred Call Path Profiling 
[Mytkowicz, Coughlin, Diwan  OOPSLA'09]

Efficient Path Profiling
[Ball, Larus  MICRO'96]
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