
Precise Calling Context Encoding

Nick Sumner
Yunhui Zheng

Dasarath Weeratunge
Xiangyu Zhang

What Are Calling Contexts?

● Calling Contexts
⁍ Sequence of active functions on call stack
⁍ Precisely capture sequence of active call sites

Calling Contexts

● Calling Contexts
⁍ Sequence of active functions on call stack
⁍ Precisely capture sequence of active call sites

1)def a():
2) print('Here')

3)def b():
4) a()
5) a()

6)def main():
7) b()

Calling Contexts

● Calling Contexts
⁍ Sequence of active functions on call stack
⁍ Precisely capture sequence of active call sites

1)def a():
2) print('Here')

3)def b():
4) a()
5) a()

6)def main():
7) b()

main() at entry

b() at 7

a() at 5

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors

● Failure location
⁍ For bug reports and debugging tools

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors

● Failure location
⁍ For bug reports and debugging tools

● Reverse engineering input formats
⁍ Contexts identify substructures

Why Calling Contexts?

● Context sensitive profiling
⁍ Identify subtle program behaviors

● Failure location
⁍ For bug reports and debugging tools

● Reverse engineering input formats
⁍ Contexts identify substructures

● Security
⁍ Tracking the sources of information

Existing Approaches

● Full Contexts
⁍ stack walking, calling context trees, ...

● Full Contexts
⁍ stack walking, calling context trees, ...

● Context IDs
⁍ probabilistic contexts, profile inferred contexts, ...

Existing Approaches

Existing Approaches

● Problems
⁍ Full contexts are too expensive

Existing Approaches

● Problems
⁍ Full contexts are too expensive
⁍ IDs don't allow reverse lookup

Given an ID, to what context does it belong?

Precise Context Features

● Encode many contexts to 1 integer
⁍ Uses multiple integers as necessary

Precise Context Features

● Encode many contexts to 1 integer
⁍ Uses multiple integers as necessary

● Reversible encoding

Precise Context Features

● Encode many contexts to 1 integer
⁍ Uses multiple integers as necessary

● Reversible encoding

● Robust
⁍ Recursion, indirection, exceptions, ...

Precise Context Features

● Encode many contexts to 1 integer
⁍ Uses multiple integers as necessary

● Reversible encoding

● Robust
⁍ Recursion, indirection, exceptions, ...

● Optimized using stack sizes and profiling
⁍ 1.9% - 3% overhead

Precise Context Encoding

Each context is a path in
the call graph

d

a

e f

cb

a()

Precise Context Encoding

Each context is a path in
the call graph

d

a

e f

cb

b()

d()

e()

Precise Context Encoding

Use unique path
numbering over the
call graph

d

a

e f

cb

Precise Context Encoding

Use unique path
numbering over the
call graph

d

a

e f

cb 1

Precise Context Encoding

Use unique path
numbering over the
call graph

d

a

e f

cb 1

2

Precise Context Encoding

● Encode each context in a number
⁍ Compute the current context number online
⁍ Similar to Ball-Larus CFG path numbering

Basic Context Encoding

● Paths start at the root
● They may end anywhere

d

a

e f

cb

a() ≈ main()

Basic Context Encoding

● Paths start at the root
● They may end anywhere

d

a

e f

cb
0

0

0

Basic Context Encoding

● Paths start at the root
● They may end anywhere

d

a

e f

cb

0 & 1

0

0

0

Basic Context Encoding

● Paths start at the root
● They may end anywhere

d

a

e f

cb
+1

0 & 1

0 0

0

Basic Context Encoding

● Paths start at the root
● They may end anywhere
● We reuse the solutions

for common
subproblemsd

a

e f

cb
+10 0

0

0 & 1

0 & 10 & 1

Basic Context Encoding

def c():
...
contextID += 1contextID += 1
d()
contextID -= 1contextID -= 1
...

Maintain the current ID online

d

a

e f

cb
+10 0

0

0 & 1

0 & 10 & 1

Basic Context Encoding

d

a

e f

cb

1

1 1

2

22

● Count # of contexts
per function

Basic Context Encoding

d

a

e f

cb

1

1 1

2

22

● Count # of contexts
per function

for each function:
 Σ # contexts for each caller

Basic Context Encoding

a

e f

cb

1

1 1

d
2

22

● Count # of contexts
per function

0 1
IDs

Basic Context Encoding

d

a

e f

cb

1

1 1

2

22

● Use instrumentation
to partition ID space

+1

IDs
b c

0 1

Basic Context Encoding

foo

ba c
3 4 2

...

9

Basic Context Encoding

foo

ba c
3 4 2

...

9

0 1 2 3 4 5 6 7 8

IDs

Basic Context Encoding

foo

ba c
3 4 2

...

a a a

0 1 2 3 4 5 6 7 8

IDs

Basic Context Encoding

foo

ba c
3 4 2

...

a a a b b b b

0 1 2 3 4 5 6 7 8

IDs

Basic Context Encoding

foo

ba c
3 4 2

...

+3

a a a b b b b

0 1 2 3 4 5 6 7 8

IDs

Basic Context Encoding

foo

ba c
3 4 2

...

+3

a a a b b b b c c

0 1 2 3 4 5 6 7 8

IDs

Basic Context Encoding

foo

ba c
3 4 2

...

+3
+7

a a a b b b b c c

0 1 2 3 4 5 6 7 8

IDs

Basic Context Encoding

d

a

e g

cb

1

1 1

2

22

● Use instrumentation
to partition ID space

● Decoding simply
reverses the process

+1

Recursion

● With recursion\cycles, numbering is unbounded.

d

a

cb

Recursion

● With recursion\cycles, numbering is unbounded.
⁍ Transform them into acyclic graphs.

d

a

cb

head

d

a

cb

Recursion

● With recursion\cycles, numbering is unbounded.
⁍ Transform them into acyclic graphs.

● Each back edge has a corresponding edge in
the new acyclic graph.
⁍ Each cyclic path becomes a list of acyclic paths

d

a

cb

head

d

a

cb

Recursion

● Push the current ID onto a context stack before
recursive calls.

Instrumentation:
def d():

...
push(d, contextID)
contextID = 0
c()
contextID = pop()
...

head

d

a

cb

Recursion

● In the series of calls: a→c→d→c→d

head

d

a

cb
+1

+1

Last
Called

ID

a 0

Recursion

● In the series of calls: a→c→d→c→d

head

d

a

cb
+1

+1

Last
Called

ID

a 0

c 1

Recursion

● In the series of calls: a→c→d→c→d

head

d

a

cb
+1

+1

Last
Called ID

a 0

c 1

d 2

Recursion

● In the series of calls: a→c→d→c→d

head

d

a

cb
+1

+1

ID Context Stack

Last
Called ID

a 0

c 1

d 2

c 0 || 2

Recursion

● In the series of calls: a→c→d→c→d

Last
Called ID

a 0

c 1

d 2

c 0 || 2

d 1 || 2

head

d

a

cb
+1

+1

Precise Implicit Encoding

● Some contexts can be precisely identified by
stack sizes

Call a

Call b
Call c

10

5

Call Stack

size:15

Call a

Call c

10

Call Stack

size:10

Precise Implicit Encoding

● Some contexts can be precisely identified by
stack sizes
⁍ We can use these when possible and fall back on

explicit encoding when necessary.

Call a

Call b
Call c

10

5

Call Stack

size:15

Call a

Call c

10

Call Stack

size:10

Precise Implicit Encoding

● Some contexts can be precisely identified by
stack sizes
⁍ We can use these when possible and fall back on

explicit encoding when necessary.

Call a

Call b
Call c

10

5

Call Stack

size:15

Call a 10

Call Stack

size:15

Call d
Call c

5

Precise Implicit Encoding

● Some contexts can be precisely identified by
stack sizes
⁍ We can use these when possible and fall back on

explicit encoding when necessary.

● Fall back on explicit encoding for contexts w/:
⁍ Variable stack allocation
⁍ Recursive paths
⁍ Conflicting contexts with the same size

Evaluation

● Implemented prototype using CIL
● Examined results on SPEC 2000 and a set of

real world programs
● 32-bit IDs

Evaluation: Context Attributes
Program

Max Size 90% Size
Contexts

Ours Full Ours Full

164.gzip 1 9 1 7 258

175.vpr 1 9 1 6 1553

176.gcc 20 136 3 15 169090

181.mcf 15 42 1 2 12920

186.crafty 35 41 11 23 27103471

197.parser 37 73 12 28 3023011

255.vortex 8 43 3 12 205004

256.bzip2 2 8 1 8 96

300.twolf 5 11 1 5 971

Program
Max Size 90% Size

Contexts
Ours Full Ours Full

cmp 2.8.7 1 3 1 3 9

diff 2.8.7 1 7 1 5 34

sdiff 2.8.7 1 5 1 4 44

find 4.4.0 3 12 2 12 186

locate 4.4.0 1 9 1 9 65

grep 2.5.4 1 11 1 8 117

tar 1.16 4 40 3 31 1346

make 3.80 7 82 4 43 1789

alpine 2.0 12 29 7 18 7575

vim 6.0 11 31 6 10 3226

Context Stack Size Sufficiency

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70
IDs

D
yn

a
m

ic
 C

o
nt

e
xt

s

Make

Our Contexts

Full Contexts

Evaluation: Context Attributes

Program
Max Size 90% Size

Ours Full Ours Full

AVERAGE 8.7 39.2 3.2 13.7

Evaluation: Runtime

Basic Normalized Overhead
C

m
p

 2
.8

.7

D
if

f
2

. 8
.7

S
d

if
f

2
.8

.7

F
in

d
 4

.4
.0

L
o

c
a

te
 4

.4
.0

G
re

p
 2

.5
.4

T
a

r
1

.1
6

M
a

k
e

 3
.8

.0

V
im

 6

16
4

.g
z i

p

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

18
6

.c
r a

ft
y

19
7

.p
a

rs
e

r

2
5

5
.v

o
rt

e
x

2
5

6
.b

z i
p

2

3
0

0
.t

w
o

lf

A
V

E
R

A
G

E

1

1.02

1.04

1.06

1.08

1.1

Evaluation: Runtime

Implicit Normalized Overhead
C

m
p

 2
.8

.7

D
if

f
2

. 8
.7

S
d

if
f

2
.8

.7

F
in

d
 4

.4
.0

L
o

c
a

te
 4

.4
.0

G
re

p
 2

.5
.4

T
a

r
1

.1
6

M
a

k
e

 3
.8

.0

V
im

 6

16
4

.g
z i

p

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

18
6

.c
r a

ft
y

19
7

.p
a

rs
e

r

2
5

5
.v

o
rt

e
x

2
5

6
.b

z i
p

2

3
0

0
.t

w
o

lf

A
V

E
R

A
G

E

1

1.02

1.04

1.06

1.08

1.1

Evaluation

● Our method
⁍ Basic: 3.6% overhead
⁍ Hybrid: 1.9% overhead
⁍ Reversible
⁍ Multiple integers (1-3 in most cases)

● Compared to Probabilistic:
⁍ 3% overhead
⁍ One way
⁍ One integer

Related Work

Probabilistic Calling Context
[Bond, McKinley OOPSLA'07]

Breadcrumbs
[Bond, Baker, Guyer PLDI'10]

Inferred Call Path Profiling
[Mytkowicz, Coughlin, Diwan OOPSLA'09]

Efficient Path Profiling
[Ball, Larus MICRO'96]

Conclusions

Lower Overhead Higher Overhead

Partial
Context Info

PCC (Hashing)
Breadcrumbs

Inferred Call Paths

Full Context
Info

Stack Walking
Calling Context Trees

Conclusions

Lower Overhead Higher Overhead

Partial
Context Info

PCC (Hashing)
Breadcrumbs

Inferred Call Paths

Full Context
Info

Precise Calling
Context Encoding

Stack Walking
Calling Context Trees

 Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

