A FRAMEWORK FOR
REDUCING THE COST OF
INSTRUMENTED CODE

Known from...

Continuous Path and Edge Profiling
Bug Isolation via Remote Program Sampling

Low-overhead Memory Leak Detection using
Adaptive Statistical Profiling (SWAT)

Accurate, Efficient, and Adaptive Calling Context
Profiling

Problem

JIT compilers need run-time sampling to make
decisions

Sampling code is expensive, sometimes reaching
30% to 10000%

How to switch profiling on and off?

Wishlist

Toggle instrumentation at any point in the lifecycle
of the program

Dynamically adjust the trade-off between accuracy
and performance

Adapt to different instrumentations
Portability
Deterministic behavior

Sampling Framework

Checking

Method Entry

Instrumented

Legend

Non-instrumented
Basic Block

Instrumented
Basic Block

Branch if sample
condition is frue

Edges already
existing between
basic blocks

Edges added
between instrumented
and non-instrumented
code

How to trigger instrumentation?

Samples should be statistically accurate —
reproducibility would be even better

Hardware / OS interrupts are not fine grained
enough

Operations following expensive ops are more likely
to be sampled

Compiler-inserted counters

Each nth check leads to a sample
The program maintains a global counter
Maintaining the counter is reasonably cheap

What if the resetValue is equal to the number of
loop iterations?

Compiler-inserted counters

Benchmark Time-based () | Counter-based ()
201 _compress 58 a8
202_jess 01 95
209_dh GG 95
213 _javac o4 7o
222 _mpegandio (Y 095
227 _mtrt a1 6T
228 _jack 45 94
opt-compiler 5t (i
pBOB fiti BT
Volano 27 71l
Average is 54

Space Optimizations

Keeping a second (instrumented) copy of the code
can be expensive and is often unnecessary

Non-instructed nodes do not have to be
duplicated:

Checking Instrumented Checking Instrumented

Space Optimizations

Violates Invariant 1:

Number of checks in the code is not influenced by the
instrumentation being executed

Space Optimization

Variation-1 (maintains invariant)
Checking Instrumented

Method Enfry

i -
— -
-

—_—
——
—_—
S

Space Optimization

Variation-2 (violates invariant)

\. ‘/ Non-instrumented instruction

Instrurmented instruction

7=

Bl |nhstrumentation

_—"HEm
O Branch if sample condition
is true

Evaluation

Using Jalapeno VM
Call-Edge instrumentation
Field-Access instrumentation

Evaluation

Variation-() Variation-2
All Backedges | Method entry | Maximum space Field-
Benchmarks Checks (%) | Onlv (%) | Only (%) Overhead (KB) Call-edge (%) | access (%)
201 compress 5.9 3.1 -2.0 40 -2.5 102.1
202 _jess 6.3 4.2 2.3 5 2.3 55.7
200 _db ¥ * * 45 * 3.5
213 _javac 1.3 (.6 2.1 128 2.1 14.2
222 _mpegaudio 8.4 7.9 0.9 157 (0.9 02.7
227 _mtrt 0.9 (0.6 * a7 * 60.1
228 _jack 6.1 1.3 * 87 - 43.2
opt-compiler 2.6 1.6 1.5 103 1.5 48.3
pBOB 2.4 * 2.7 300 2.7 39.1
Volano 2.7 (0.6 1.4 36 1.4 1.4
| Average | 3.6 | 2.3 | 0.8 | 84 || 0.8 | 41.2 |

Evaluation

.}‘
;:‘ 6L o Perfect profile
%]f e Sampled profile
2 K-
=3
= 4+ li®
=
b
=
£ 2-
= L

] L] P . @

- “.
0 . U AR R AT A

L] I Ll
0 10 20 30 40 50
Call edges

Summary

Arnold-Ryder Framework gives good results while
drastically reducing the performance overhead

As seen in other papers, there are some drawbacks
which can be addressed by modifying the
framework

