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Modern SAT solvers are extremely efficient at solving boolean satisfiability problems, enabling a wide spectrum
of techniques for checking, verifying, and validating real-world programs. What remains challenging, though,
is how to encode a domain problem (e.g., model checking) into a SAT formula because the same problem can
have multiple distinct encodings, which can yield performance results that are orders-of-magnitude apart,
regardless of the underlying solvers used. We develop SATUNE, a tool that can automatically synthesize SAT
encoders for different problem domains. SATUNE employs a DSL that allows developers to express domain
problems at a high level and a search algorithm that can effectively find efficient solutions. The search process
is guided by observations made over example encodings and their performance for the domain and hence
SATUNE can quickly synthesize a high-performance encoder by incorporating patterns from examples that
yield good performance. A thorough evaluation with JMCR, SyPet, Dirk, Hexiom, Sudoku, and KillerSudoku
demonstrates that SATUNE can easily synthesize high-performance encoders for different domains including
model checking, synthesis, and games. These encoders generate constraint problems that are often several
orders of magnitude faster to solve than the original encodings used by the tools.
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1 Introduction

Modern software analysis — from path-sensitive analysis [Dillig et al. 2008; Shi et al. 2018; Xie
and Aiken 2005; Zuo et al. 2019], through symbolic execution [Cadar et al. 2008; Godefroid et al.
2005; Sen et al. 2005], to verification and model checking [Burckhardt et al. 2007; Demsky and Lam
2015; Desai et al. 2013; Flanagan and Qadeer 2002; Huang 2015a; Sigurbjarnarson et al. 2016] —
relies heavily on constraint solving. Analyses are formulated into constraint problems that are
subsequently fed to a constraint solver; a significant portion of the computation is done by the
solver that uses a search-based algorithm to determine the satisfiability of the input constraints. The
past decade has seen a variety of constraint solvers used in software analysis techniques, including
SAT, SMT, MaxSAT, or model counting, but under the hood of all of the advanced solvers is the
boolean satisfiability problem (SAT), which has been extensively studied for about five decades.
A SAT constraint is often encoded into a conjunctive normal form (CNF), which is a conjunction
(and) of clauses and each clause is a disjunction (or) of literals. Each literal is either a propositional
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Table 1. Performance of different encodings of a randomly generated total order constraint. The total time
includes both solving time and encoding time.

Total Order Encoding Solving Time(s) | Total Time (s)
Pairwise Encoding 1.17 1.46
Inequality Encoding using Binary 0.01 0.11
Inequality Encoding using One Hot 942.26 1038.75
Inequality Encoding using Unary 0.44 0.59

variable (a) or the negation of a variable (1). A SAT solver attempts to assign true/false values
to boolean variables in the constraint in a way so that the entire formula can evaluate to true.
Solving a constraint requires exploring a huge search space. To improve efficiency, a great number
of optimizations [Audemard and Simon 2014, 2015; Davis et al. 1962; Davis and Putnam 1960;
Kautz and Selman 2006, 2003; Xu et al. 2008] have been proposed and implemented in the past to
effectively prune the search space.

While modern SAT solvers are often efficient, their performance is highly dependent on the
encoding of a constraint. There are often many different ways to encode a problem domain into
SAT, and not all of them yield good results [Brain et al. 2016; Inala et al. 2016; Manthey et al. 2012;
Martins et al. 2011]. Often times choices that initially appear to be good turn out not to be the
best choices. It is typically labor-intensive to explore all of the different options for encoding. The
best encoding choice can even be hard to predict for people who are intimately familiar with the
algorithms behind the SAT solvers. For example, the best choice often depends on low-level details
of how SAT solvers operate and how these low-level details interact with the structure of the
given constraint problem. In many cases, the best encoding also depends on what parts of the
constraint problem turn out to be difficult, how the selected encodings interact with the constraints’
characteristics, etc.

The difficulty of finding good encodings is well-known. An article [Bjérk 2009] that interviews
several SAT experts states “the common points picked up during the different interviews is that the
encoding does have a big impact on the efficiency of the SAT solver, that finding a good encoding takes
much effort, and that encoding quality does not depend much on easily measured properties like size
or number of variables. The interviewees usually suggest starting with a simple encoding which is
iteratively improved.”

To illustrate the potential impact of encoding choice, we evaluated the performance of several dif-
ferent encodings for total orders on randomly generated order constraint problems. Total orders are
commonly used in constraint-based model checking of multi-threaded programs—CheckFence [Bur-
ckhardt et al. 2007], SATCheck [Demsky and Lam 2015], and MCR [Huang 2015a] all encode total
orders into constraint problems. Two common strategies have been used for encoding order con-
straints: a pairwise encoding that allocates a variable for each pair of items in the total order that
encodes their relative order, and a translation into inequality constraints over variables. The latter
requires SAT encoding of the values of these variables, for which three approaches have been
proposed: Binary, One Hot, and Unary. Details of these approaches are discussed in Section 2.
Table 1 summarizes the performance results of these encodings. As shown, the choice of encoding
is clearly important—the times between the best and worst choices are four orders-of-magnitude
apart.

Challenges. Determining the right encoding for a problem domain is challenging in the fol-
lowing two major aspects. First, the relative efficiency of different encoding strategies changes when
the SAT formula grows. For example, although the pairwise encoding strategy, which is used in
CheckFence [Burckhardt et al. 2007] and SATCheck [Demsky and Lam 2015], is thought to be more
performant than inequality-based encoding in general cases, our experiments show that inequality-
based encoding of total orders (generated by model checkers) outperforms their pairwise encoding
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by an order of magnitude. Developers’ understanding of these different strategies is often based
on microbenchmarks. However, when small constraints are integrated into a large satisfiability
formula, the relative efficiency of these encodings can change dramatically.

Second, the relative efficiency of different encoding strategies changes across domains. There are
many factors that go into the efficiency of an encoding. For example, unit propagation is known to
be important to optimize for [Bordeaux and Marques-Silva 2012], but constraints are not always
amenable to unit propagation. For example, unit propagation is less useful in the case of a not-equals
constraint on integer variables. For equals constraints on integer variables, there is a trade off
between optimizing for encoding size and for propagation. Understanding these encoding trade offs
is typically a tedious and labor-intensive process, requiring extensive experiments with different
encoding techniques and domain problems.

State of the art. There exists a large body of work [O’Mahony et al. 2008; Singh et al. 2009;
Singh and Solar-Lezama 2016; Xu et al. 2008] on optimizing performance for SAT solvers. Most
of these optimizations focus on low-level formula rewrites [Inala et al. 2016] or autotuning of
a set of candidate rewrites [O’Mahony et al. 2008; Xu et al. 2008], assuming that encoding of a
domain problem into a formula is done. However, as shown above, encoding can have a huge impact
on performance and, hence, opportunities are rather limited if a tool takes an encoded formula
as a starting point for optimization. Our major insight in this paper is that if we shift our focus
from tuning the process of solving an encoded formula to tuning the encoding process itself, massive
opportunities exist and large gains are possible!

SATUNE. Based on this insight, we developed SATUNE, a novel approach that can synthesize
high-performance, domain-specific SAT encoders. SATUNE focuses on encoding optimization, which
is independent of constraint solving — after a constraint is encoded, the developer can use any
backend solver to solve the constraint. Traditionally, developers of analysis tools that incorporate
SAT solvers would have to manually decide which encoding strategies (based on prior knowledge
and/or their experience) to use to translate their problem into SAT and then manually write
code to implement this encoding. This is a daunting task, which is tedious, time-consuming, and
labor-intensive, and often ends up with suboptimal encodings and unsatisfactory performance.
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Fig. 1. SATUNE Synthesis Architecture

SATUNE allows the developer to express a domain problem with a novel domain-specific language
(§4), which provides a means for the developer to specify domain-related constraints while abstract-
ing away low-level SAT-related details. Given a constraint problem provided by the developer using
the DSL, SATUNE runs a simulated annealing-based optimization process to find the best encoding
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that respects the constraints specified in the DSL. Figure 1 presents an overview of the SATUNE
synthesis framework. Given a set of training problems from the client expressed in SATUNE’s DSL,
SATUNE’s tuning framework searches the space of encoding strategies on these example problems. It
then measures the time taken by the SAT solver for each encoding strategy to evaluate that strategy.
This process repeats until the search budget is exhausted. Once the process finishes, SATUNE has
synthesized encoders that are tuned for the given client.

The information expressed in the DSL allows SATUNE to differentiate between different use
cases of the same types of constraints and is critical for SATUNE to effectively generalize encoders
to different problem instances. To further improve efficiency, SATUNE implements a range of
sophisticated analyses (§6) for globally optimizing encoding strategies. Table 2 shows the details of
these analyses, including their names and whether they are new techniques proposed by us or used
before in the literature. On top of these analyses, we propose novel order graph analyses (§6.2.1) as
well as graph-based encoding as an optimization to encode integer variables drawn from a discrete
set (§7). For certain problems, these analyses are worthwhile as they expose unseen opportunities;
in other cases, they do not lead to additional efficiency. To determine when these analyses are
beneficial, SATUNE employs a tuning framework to learn which analyses are worth performing for
a given problem domain.

While much effort has been made to improve the efficiency of the optimization process, applying
it on every single problem instance will still incur large overheads, defeating the purpose of
optimization. The good news is that we found the best encoding strategy often holds across problem
instances in a given domain (§5). As such, SATUNE applies this optimization process on a small
number of problems to learn a high-performance encoding strategy that can be subsequently
used, without incurring any overhead, to encode other problems in the same domain. The domain
constraints expressed in the DSL enable SATUNE to generalize the encoding it learns from a set of
examples to new problems. As such, the optimization effort only has a one-time cost that can be
effectively amortized across future solving of similar problems in the same domain.

Table 2. A set of analyses and optimizations used by SATUNE. As marked clearly in the table, some of the
techniques are proposed by us in this work and others are used in previous work.

Analysis Reference
Integer variable domain reduction for discrete sets Proposed in this work (§6.2.2)
A graph-based encoding for integer variables Proposed in this work (§7)
Pure literal elimination (§6.1.1) [Davis et al. 1962]
Representing order as inequalities (§6.1.2) [Kalhauge and Palsberg 2018]
Exactly-one constraints (§6.1.3) [Frisch and Giannaros 2010]
Techniques for encoding variable ordering (§6.1.4) [Iser et al. 2012]

Summary of Results. We have evaluated SATUNE on a set of real-world software analysis and
game applications. Our results show that the SATUNE-synthesized encodings outperform those
hand developed by an overall geometric mean of 10X for our benchmarks.

2 Background in SAT Encoding

This section provides a gentle introduction to commonly used encoding strategies for two major
categories of constraints: (1) constraints on integers drawn from discrete sets and (2) orders on
discrete sets. They are both used widely in software analysis tools.

Integer Variable Encodings. We first discuss several issues that arise in how these encodings
interact. To illustrate how integer variables are encoded, consider variable x taken from the set of
values {0, 1, 3}. Such encoding is used widely in SAT-based model checkers. Next, we discuss a few
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commonly used encoding strategies for integer variables drawn from discrete sets. n denotes the
size of a set:

One Hot: The one-hot encoding uses a boolean variable b; to represent each value v; that the
integer variable may have. For our example, the one-hot encoding allocates 3 variables: by, by,
and b3, representing the fact x = 0, x = 1, and x = 3, respectively. For example, if x turns out
to have the value 3, the corresponding variable b3 would be true. It then generates constraints
to ensure the variable can only have one value. Exactly-one constraints can be formalized as:
AtLeastOne({bg, b1, ..., by }) A AtMostOne({bg, b1, ..., by }). At-Least-One constraints can be simply
encoded as by V by V .. V b,. For our example, following constraint is generated to ensure that x
has at least one value: by V by V bs. For encoding At-Most-One constraints, previous literature
proposed different encodings [Holldobler and Nguyen 2013] including, but not limited to binomial,
commander variable, and sequential counter encodings.

The binomial encoding [Frisch and Giannaros 2010] generates constraints to ensure the variable
can have at most one value (Vi,j # i,b; = =b;). For our example, it enforces the following
constraints: by = —by, by = —b3, and by = —bs. This encoding does not require extra boolean
variables. It requires O(n?) clauses to ensure that the integer variable has exactly one value.

In the commander variable encoding [Klieber and Kwon 2007a], variables are partitioned into
groups of size m and "a commander variable" ¢; is assigned to each group. If we assume groups of
size m = 2 in the previous example, by and b; are grouped together with a commander variable cg
and by is grouped together with a command variable c¢;. This encoding generates the following four
types of constraints. (1) In each group, at most one variable can be true. The binomial encoding is
used to encode this constraint. (2) If the commander variable is true, at least one of the variables in
the group must be true. In our example, —¢o V by V by enforces this constraint for the first group.
(3) No variables in the group can be true if the corresponding commander variable is false. In the
example, the encoding generates ¢y V —by and ¢y V —b;. (4) At most one of the commander variables
can be true. If there are more than m commander variables, then the encoding recursively applies
the same strategy to the commander variables. This encoding employs O(n) auxiliary variables and
requires O(n) clauses to encode the at-most-one constraint.

The sequential counter [Sinz 2005] is another technique to encode at-most-one constraints.
It encodes the partial sum s; = Z;:l b; for increasing values of i up to the final i = n. After
simplification, this encoding generates the following constraint:

(—lbl \% 81) A ("bn \% —|Sn_1) A /\1<i<n((_'bi \% Si) A (_'Si—l \% Si) A ("bi \% —|Si_1))

For our example, this encoding requires two auxiliary variables s; and se and it generates the
constraint (—bg V s1) A (mb3 V =1s3) A (=b1 V s2) A (=81 V s2) A (=by V =s1). In general, this encoding
utilizes n — 1 auxiliary variables and requires 3n — 4 clauses to encode the at-most-one constraint.
One advantage of the one hot encoding is that it incorporates binary constraints that work
well with the propagation behavior of SAT solvers [Matsunaga 2015]. For example, when a SAT
solver branches on a boolean variable used for one-hot encoding, if the solver has decided the
value for the integer variable, it may be able to propagate this decision to other variables. However,
the negatives of this encoding are: (1) as shown in the example, it requires at least O(n) number
of boolean variables, (2) depending on the selected encoding, it requires O(n) — O(n?) clauses
to ensure that the integer variable has only one value, and (3) it requires a constraint to ensure
that the integer variable at least has a value. Solving these many constraints is time-consuming
— equality constraints between variables have O(n) clauses while inequality constraints between
integer variables have O(n?) clauses.
Unary: The unary encoding uses n — 1 boolean variables to encode the value of the integer variable.
The idea is that a boolean variable b; is true if the encoded value is larger than the value v; from

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.



146:6 Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

the discrete set. the transition from 1 to 0 encodes the value. For our example, this encoding would
generate the variables by and by, as well as the clause b; = by. The constraint x = 0 is encoded
as by A -b1, x = 1 is encoded as by A —by, and x = 3 is encoded as by A b;. The positives of this
encoding are: (1) it requires only O(n) clauses to implement, and (2) inequality constraints between
integer variables have O(n) clauses. Its negatives are: (1) it may not work as well as one-hot with
the propagation behavior of SAT solvers and (2) it also requires a large number of boolean variables.
Equality constraints between integer variables have O(n) clauses.

Binary Index: The binary index approach encodes, in the binary format, an index into the set of
discrete values. For our example, this encoding would generate the variables by and by, and the
clause —(bg A b1) to ensure that index is in range. Under this encoding, x = 0 (00) would be encoded
as =by A —=by, x = 1 (01) would be encoded as by A —b1, and x = 2 (10) would be encoded as —by A by.
The positives here are: (1) it requires only O(log(n)) variables, (2) it does not require any clauses
to ensure that the integer variable has only one value, and (3) equality and inequality constraints
can be encoded efficiently with O(log(n)) clauses. The negative of this encoding is: (1) it may not
work well with the propagation of SAT solvers. It sometimes requires inequality constraints to
ensure that the integer variable has a value if the size of the discrete set is not a power of two.
If the values are not dense, (i.e., there are holes between), the binary index encoding can require
additional constraints. We discussed this in more detail in Section 7.

Order Encodings. Another major category of constraints is partial and total orders over discrete

sets. Similarly, we use n to denote the size of the discrete set.
Pairwise Encoding: Both total and partial orders over sets can be encoded by using boolean
variables to represent the order of each pair of elements in the set. In the case of a total order, a
single boolean variable is used for each pair (v;, v;) — b;; being true indicates that v; is ordered first
and b;; being false indicates that v; is ordered first. To be consistent with the notations for partial
orders (discussed shortly), we use the shorthand b;; to denote a total order where j > i; it is simply
the negation of variable b;;. In the case of a partial order, a pair of boolean variables is used. For
each pair (v;, v;), b;j being true indicates that v; is ordered first and bj; being true indicates that
v; is ordered first. Partial orders must then add the clause —b;; V —bj; to ensure that the encoding
cannot order both items first.

Both encodings use the following transitivity constraints: Vi, j, k : b;j A bjr = bji. The positive

for the pairwise encoding is that it works well with the propagation behaviors of SAT solvers
because a single variable corresponds to a client-level predicate. The negatives for this encoding
are: (1) it requires O(n?) boolean variables and (2) O(n®) clauses.
Inequality-Based Encodings: Total orders can also be encoded as a system of inequalities. Each
item v; in the order is encoded as an integer variable x; in the range of [0, n — 1]. We then encode
the constraint v;— >v; (i.e.,—> denote ordered-before) with the inequality x; < x;. The positives of
this approach are (1) it requires only O(nlog(n)) boolean variables and (2) transitivity constraints
come for free. The negatives here are: (1) order constraints become more complicated and (2) it
may not work well with SAT solver propagation behaviors.

3 Motivation

To motivate the discussion, let us consider sample constraints from two different domains: Sudoku
and a SAT-based model checker. In Sudoku, boxes are filled in with numbers from one to nine
and two boxes in the same row, column, or block cannot be assigned the same number. As such, a
common constraint in Sudoku is that variable x drawn from [1, 9] and variable y drawn from the
set [1, 9] are not equal, i.e., =(x == y). Some of these boxes have been pre-filled, so certain numbers
are not possible and additional constraints are needed to rule out such possibilities. For example,
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if the number 2 is prefilled in a box, then we need —x = 2 for the row containing the box. Since
these are all not-equal constraints, the benefit from the SAT solver performing unit propagation
may be reduced (which is a simple technique that can simplify a clause if the clause contains a
single literal) if it guesses a SAT variable. As a result, encoding x and y as binary indices might be a
reasonable choice.

In the domain of concurrency model checking, for instance, model checkers may need a constraint
to represent the following assertion: if a load L reads from a store S, then the value read by L should

be the same as the value written by S, that is, S Lf) L = Lyaue = Svalue- In this case, if the SAT
solver decides a value for the boolean variable indicates that L reads from the store S, and knows
the values of the boolean variables that encode the value of either L or S, it can propagate the value
to the other operation (and potentially many more through other constraints). Thus, optimizing for
unit propagation is potentially beneficial.

We make two observations on the above examples. First, constraint characteristics differ across
domains. It is clear to see that while both domains generate equality constraints over integers, the
properties of constraints differ significantly. For example, variables in Sudoku often have similar
sets of possible values and thus encoding each variable as a binary index into the same set is a
reasonable choice. On the contrary, for model checkers [Burckhardt et al. 2007; Demsky and Lam
2015], program variables may have very different sets of possible values. Encoding every program
variable using binary index can generate an excessive number of variables as well as constraints that
enforce each variable has a valid value. Clearly, there are many factors in choosing an encoding and
different factors may point to different encoding choices. Knowing the relative performance impact
of these factors is difficult and can typically only be achieved by labor-intensive experimentation.

The second observation is that different problems in the same domain often require constraints
of similar natures. For example, the not-equal property of Sudoku constraints holds not only for
Sudoku, but also for other board games. For program-analysis-related applications, they need
constraints to model variable relationships and hence their constraints all share similar properties
to the model checking constraints stated above. This observation indicates that the best encoding
learned from small examples in a domain can often hold universally in the domain.

4 SatunNE DSL

We begin by presenting the constraint language SATUNE takes as input. Figure 2 presents the
grammar for the language. A constraint problem is given by a prog term in the grammar. While we
present a textual grammar for purposes of exposition, SATUNE’s implementation accepts constraints
via a C, C++, Java, or Python native interface.

The constraint DSL incorporates common abstractions for exploring different SAT encodings.
The DSL contains the following three state abstractions: variables drawn from discrete sets of
integers, orders (both total and partial) over discrete sets, and boolean variables. The constructs
in the language are also motivated by the fact that they are used across many tools. For exam-
ple, total and partial orders are extensively used by analyses of concurrent executions including
SATCheck [Demsky and Lam 2015], CheckFence [Burckhardt et al. 2007], MemSAT [Torlak et al.
2010], JMCR [Huang 2015a], RVPredict [Huang et al. 2014], Dirk [Kalhauge and Palsberg 2018],
CPPMem [Batty et al. 2011], Nitpick [Blanchette et al. 2011]. Variables drawn from discrete sets
are used by Alloy [Jackson 2002], Paradox [Claessen and SAtirensson 2003], CPPMem [Batty et al.
2011], CheckFence [Burckhardt et al. 2007], Nitpick [Blanchette et al. 2011], Package Managers, etc.

The constraint language supports basic operations on integer expressions: addition, subtraction,
and the application of table-defined functions. Both addition and subtraction define a range set
of the valid results. It is possible for addition or subtraction to overflow, and this will set the
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intlist := int| intlist, int
setdecl := set sname type {intlist}
booldecl := boolean bname | boolean bname = bexpr
orderdecl := total oname setdecl | partial oname setdecl
vdecl := var vname in sname | var vname = vexpr
vexpr := vname | int | sname : vexpr + vexpr # bexpr |

sname : vexpr — vexpr # bexpr |

f(vexpr,* vexpr) # bexpr

bexpr :=  vexpr comp vexpr | p(vexpr,” vexpr) # bexpr |
oname : int— >int | bname |!bexpr |
bexpr boolop bexpr
boolop = ||&|=|®|=
comp = =|<[L]>]2
assert := assert(bexpr)

setdecl” booldecl® orderdecl” vdecl® assert”

prog

Fig. 2. SATuNE Constraint Language Grammar

corresponding boolean expression bexpr that follows the # to true'. Clients can define functions
using tables. In table-defined functions, the relation between the function’s output and its input is
represented as a table. Each row in a table contains a set of integer values for each of the function
inputs and the corresponding integer value for the output. Each such function declares its range
set. While table-driven functions do not overflow, they may accept inputs that do not match any
entry in the table. In this case, the corresponding boolean expression is set to true. The constraint
language supports two classes of predicates on integer expressions: standard comparison operators
as well as table-defined predicates.

The DSL also allows clients to write constraints on both total and partial orders over discrete
sets. SATUNE requires the elements of these sets to be integers for convenience of representation,
but assigns no meaning to the integer elements. Clients can then use predicates on the order of
these elements in boolean expressions.

The constraint language also provides clients with boolean variables and standard boolean
connectives (not, and, or, xor, iff, and implication) that can be used with any predicate.

SATUNE does not directly use existing constraint DSLs such as SMTLib [Initiative 2018] because
they do not provide a mechanism to label the different uses of variables and sets with types. These
labels allow SATUNE to differentiate between variables that serve different roles in the encoding
and thus may benefit from using different encoding strategies.

set RF rfset {1, 2}

set VS1 valueset {100, 101, 102}

set VS2 valueset {100, 101, 102}

set VL valueset {101, 102, 103}

var loadrf in RF

var storevall in VS1

var storeval2 in VS2

var loadval in VL

assert((loadrf = 1) => (storevall = loadval))

assert((loadrf = 2) => (storeval2 = loadval))
Fig. 3. Example Constraints in SATUNE DSL.

1The SATUNE implementation allows the client to select the directionality of the implication between overflow occurring
and the truth value of the overflow boolean expression as iff, =, or .
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Example. Figure 3 presents an example reads-from constraint with two stores and a load that
might be used by a model checker. The keyword set declares a set. We declare the set RF to contain
the set of stores. We also declare sets VS1, VS2, and VL to contain the set of values for two stores
and a load. Each set has a type label that SATUNE uses to synthesize encoders that generalize
across different problem instances. For example, here we the label rfset for the reads-from set and
valueset for sets of load and store values, because these two different types of sets are different use
cases and thus may benefit from different encodings. SATUNE can synthesize different encodings
and optimizations for sets with different labels. The keyword var declares variables. We declare the
variable loadrf to be taken from the set of values RF. This variable will be used to encode which
store a load reads from. After the variable declarations, we declare the constraints to be satisfied.
The first assertion declares the constraint that if the load reads from the first store, then the load
must have the same value as the first store.

Limitations SATUNE focuses on autotuning the encoding and targets a commonly used subset of
constraints that is more restricted than most existing SMT solvers support. SATUNE currently does
not support set operations (union, intersection, transitive closure, etc.) and universal quantification
in propositional logic. Also, it does not support complex arithmetic operations on integer variables
such as multiplication or division. The current version of SATUNE only implements at-least-one
and at-most-one constraints for the one hot encoding. These constraints are a restricted form
of cardinality constraints. Cardinality constraints encode at-most-k and at-least-k constraints.
Cardinality constraints are widely used in various domains [Bailleux and Boufkhad 2003; Cabon
et al. 1999; Kuechlin and Sinz 2000], and different encodings exist to encode them into SAT [Frisch
and Giannaros 2010; Sinz 2005; Zhou 2020]. There are also different encodings available for a
generalization of cardinality constraint, Pseudo-Boolean constraints [Aavani 2011; Bailleux et al.
2009; Warners 1998]. In the future, SATUNE can be extended to implement these types of constraints
in order to be used in a wider range of applications.

5 Overview

SATUNE has two phases: an example-driven learning phase in which it synthesizes an encoder,
as well as a deployment phase where it uses the synthesized encoder to encode new problems.
To use SATUNE, developers first need to modify their application to generate constraints in the
SaTuNE DSL. Since SATUNE’s DSL includes abstractions that are commonly already present in such
applications along with full support for boolean constraints, this step is straightforward, requiring
only minimum user effort. SATUNE requires a set of examples to use to synthesize an encoder — in
the case of the Sudoku example, this would be a set of Sudoku puzzles.

5.1 Synthesizing Encoders

SATUNE starts the synthesis process with a set of seed encoders. The process uses a simulated
annealing algorithm to explore a space of possible encoders. In each round of simulated annealing,
it evaluates the fitness of the current encoders by measuring the time the solver takes to solve the
example with the given encoding. SATUNE then mutates these encoders and repeats. While the
one-hot encoding works well for Sudoku, Killer Sudoku (a variant of Sudoku) has a wider variety of
different types of constraints and despite its similarities surprisingly benefits less from the one-hot
encoding. The tuner would likely decide to encode Killer Sudoku constraints using the binary
index encoding to minimize both the size of the constraints and the number of variables.

Note that in the model checking example, integer variables are used for two distinct purposes —
encoding the read-from relation and encoding variable values. These two different purposes may
not share the same optimal encoding. SATUNE supports labeling different use cases and synthesizes
encoders that individually optimize the encodings for the distinct use cases. For the example, the
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developer may label, with one type, the integer variable that tracks which store the load L reads
from, and, with another type, the integer variables that contain values. As such, SATUNE can encode
the read-from relation using the one-hot encoding so that when a SAT solver guesses a value used
by the one-hot relation, unit propagation allows it to propagate values accessed by the load and
store. However, if the set of possible values is large, SATUNE may use the binary index encoding to
minimize the number of variables.

5.2 Optimization and Encoding Framework
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Fig. 4. Overview of SATUNE’s optimizations and encoding framework

Figure 4 presents an overview of SATUNE’s optimizations and encoding framework. SATUNE
is structured as a pipeline of optimizations followed by an encoding framework. SATUNE always
performs common sub-expression elimination and truth propagation online as constraints are
generated by the client. SATUNE supports incremental solving, but it can only perform its optimiza-
tions and encoding selection during the first solve call. SATUNE contains a set of core optimizations
shown in the green rectangle. Section 6 presents a set of optimizations SATUNE uses, including those
previously known (Section 6.1) as well as new optimizations this work develops (Section 6.2). These
optimizations are not guaranteed to benefit all problem domains, and thus these optimizations are
under the control of the tuning framework. After the optimizations are performed, SATUNE then
encodes the optimized problem domain into CNF SAT. Section 7 describes the encoding process
in more detail. The graph-based encoder attempts to globally optimize binary index encodings of
integer values. The base encoders and variable ordering then perform the work of encoding the
remaining encodings. Finally, the CNF converter implements these encodings in CNF SAT.

6 SATUNE’s Candidate Optimizations

Implementing sophisticated optimizations to enable better SAT encodings can sometimes yield
significant performance improvements. For some problem domains, optimizations in SATUNE may
enable it to simplify the problem before encoding and thus generate simpler encodings. However,
for other domains, the propagation built into the SAT solver will outperform these optimizations.
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SATUNE implements a wide range of optimizations, many of which may not improve performance
for a specific domain. SATUNE uses a tuning framework that learns which set of optimizations to
use for a specific domain. For problem domains that do not benefit from the optimization, the tuner
will simply disable the optimization and avoid the associated overhead. This section discusses the
candidate optimizations available in SATUNE.

We begin by discussing SATUNE’s internal representation of the constraints. SATUNE represents a
constraint as an And-Inverter-Graph (AIG) [Chambers et al. 2009; Manolios and Vroon 2007] where
nodes are represented as objects and can either be a predicate, a boolean variable, or an AND
boolean operation. Edges are encoded as pointers and we steal the lowest bit to record whether the
edge is a negation.

As clients use SATUNE’s API to specify constraints, SATUNE translates these constraints into AIGs
on SATUNE's predicates and boolean variables and, SATUNE uses hashing to detect and eliminate
redundant expressions. When an expression is asserted as a constraint, SATUNE propagates its truth
value to any expression that it appears in.

SATUNE does not currently attempt to encode the constraints on the fly as the client generates
them. Several of SATUNE’s analyses require complete knowledge of the constraints and thus cannot
safely encode the constraints until the client has finished generating them and called SATUNE’s
solve procedure.

The polarity of a boolean expression is positive if the expression appears with an even number
of negations and negative if the expression appears with an odd number of negations. Polarity is
important because an expression e that appears in a given context with a positive polarity can only
contribute in that context to satisfying the overall set of constraints by being true. Knowing the
polarity of expressions is thus important for several of SATUNE’s analysis as well as SATUNE’s SAT
encoding procedures. Thus, SATUNE computes the polarity of all nodes in its AIG as the first step
in its solve procedure. All other transformations in its pipeline maintain this polarity information
in the AIG.

In the remainder of this section, we discuss a set of optimizations SATUNE chooses from to
optimize for a particular problem domain, including ones proposed before and adapted to our
setting (Section 6.1) as well as several new ones developed in this work (Section 6.2).

6.1 Existing Optimizations Used by SATUNE

SATUNE implements several optimizations and encoding techniques from the literature that have
been demonstrated to be useful.

6.1.1 Pure Literal Elimination SATUNE includes an optimization pass that simplifies constraints
by eliminating boolean variables that appear in a single polarity, i.e., pure literal. If a boolean variable
only appears in the positive polarity it can be assigned the boolean value true, and if it only appears
in the negative polarity it can be assigned to false [Davis et al. 1962; Davis and Putnam 1960]. While
SAT solvers commonly implement this optimization, performing it before encoding can potentially
allow SATUNE to simplify constraints enabling further optimizations and simplifications to the
encodings.

6.1.2 Order Conversion Recall from Section 2 that SATUNE supports two different encodings
for total orders. One approach to encoding total orders is to create an integer variable for every item
in the underlying set. An order constraint then becomes an inequality constraint [Huang 2015b;
Kalhauge and Palsberg 2018]. For example, the order constraint a— > b becomes the inequality
Xq < xp. Both x, and x;, are integer variables drawn from a discrete set.

SATUNE optionally applies this conversion. The conversion is applied before the integer-specific
optimizations and encoding passes such that the converted order can leverage these optimizations.
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6.1.3 Exactly-one Constraints Both the one hot and the binary index encodings require con-
straints to ensure that a variable has exactly one value. Recall from Section 2 that exactly-
one constraints for one hot encoding can be formalized as: AtLeastOne({bg, b1,...,bn}) A
AtMostOne({bg, b1, ..., by }). SATUNE implements three encodings for the at least one constraint:
the Binomial [Frisch and Giannaros 2010] encoding, the Commander Variable [Klieber and Kwon
2007a] encoding, and the Sequential Counter [Sinz 2005] encoding. As discussed earlier, these
encodings make different tradeoffs in number of clauses and/or extra boolean variables to enforce
the constraint. The binary index encoding also requires a constraint because there are often unused
encoding values and SATUNE must ensure that the variable has one of the used encoding values.

For binary index encodings, a constraint is only needed if there are unused encoding values.
There are two ways to generate a constraint that ensures that the encoding has a value. The first
approach is to generate a constraint that is a disjunction (or) of all the valid values for the encoding.
The second approach is to generate a constraint that ensures that the encoding does not have one of
the unused values. This approach starts with a less than constraint to ensure that the encoding does
not have a value larger than the largest used encoding. The approach then generates a constraint
for each unused encoding below this maximum value that ensures that the encoding is not assigned
the given unused value.

For each encoding instance, SATUNE computes an approximate ratio of the total clause size
generated by the first approach to the total clause size generated by the second approach. The tuner
selects a threshold and SATUNE uses the first approach if the ratio is smaller than the threshold and
the second approach if the ratio is larger than the threshold.

6.1.4 Variable Ordering The order of variables can surprisingly influence SAT solving time [Iser
et al. 2012]. SATUNE uses three strategies to order variables: (1) order variables in the order that
they are used by the client, (2) order variables in the order that the client creates them, or (3) order
variables in the reverse order that the client creates them. The tuner selects which strategy to use.

6.2 New Optimizations

In addition to the existing techniques, we develop a set of new optimizations that specifically target
SAT problems generated by a software analysis and include them in SATUNE’s toolbox as candidate
optimizations.

6.2.1 Optimization of Orders Consider, for example, the potential use by a model checker of
total orders to model the execution of concurrent code. Such a client might create a set with an
item for each step in the execution. It would then enforce intra-thread order (program order) and
thread creation and joining by asserting the appropriate order constraints. This straightforward
use case would result in the order being constructed on a larger set than is strictly necessary.
The complexity of encoding orders grows super-linearly with the size of an order. Thus, it can
be potentially useful to decompose and simplify constraints on an order into constraints on one
or more smaller orders. To illustrate the idea, consider the example shown in Figure 5 in which
non-order constraints are omitted. Without reasoning about the full set of constraints, we cannot
determine the relative ordering of items 1 and 2 or items 3 and 4. But we can determine that item 2
can be safely ordered before item 3 because (1) a constraint on the order of item 2 and 3 appears
only in the positive polarity and (2) this selection does not contradict any other order constraints.
We discuss the order optimizations in more detail for total orders. SATUNE also implements a
variation of these optimizations for partial orders; we omit details due to space constraints, but
they generally involve minor adaptations to the optimizations for total orders. SATUNE constructs
an order graph to reason about order constraints. An order graph corresponds to a specific declared
order. An order graph contains a vertex v, for each item a in the order’s set. There is an edge from
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set baseset orderlabel {1, 2, 3, 4}
total exorder baseset
assert(exorder: 1->2
assert(exorder: 2->1
assert(exorder: 2->3
assert(exorder: 3->4
assert(exorder: 4->3 | ...
Fig. 5. Order constraint decomposition example with ellipsis (...) indicating omitted non-order constraints.

NN N

a vertex v, to a second vertex vj, if an order predicate a— > b appears with positive polarity or an
order predicate b— > a appears with negative polarity. If SATUNE determines that a specific order
predicate must be true, the mustbetrue predicate is true for the corresponding edge.

Transitive Must Be True Analysis: SATUNE includes an optional analysis that performs a
depth-first traversal over the edges in the order graph that satisfy the mustbetrue predicate. This
traversal allows SATUNE to compute more precise information associated with edges. For order
constraints that are implied by transitivity, this analysis marks those edges with the mustbetrue
predicate (Figure 6). This analysis marks order constraints that would contradict order constraints
that must be true (i.e., the source of the edge is reachable from the destination by following only
edges with the mustbetrue predicate) with the mustbefalse predicate.

True

6 RIAA ] e

Fig. 6. v1 is ordered before va. v2 is ordered before v3. So, it can be inferred vy is ordered before v3.

Local Must Analysis: SATUNE includes an optional analysis that propagates the information
it learns about order predicates that must be true to the opposite order predicate. For example, if
SATUNE determines that a must be ordered before b, then the predicate b— > a must be false.

Vertex Elimination: Consider a vertex in the order graph for which all incoming edges must
be true and all outgoing edges must be true. The corresponding item can be eliminated and the
constraints replaced with constraints on the order of the sources of the incoming edges relative to
the sources of the outgoing edges. SATUNE includes an optional optimization that eliminates such
vertices (Figure 7).

Fig. 7. Example of Vertex Elimination analysis. All the incoming and outgoing
edges from/to vs are true. vs is removed and the corresponding edges are

added.

Must Edge Pruning: Consider an edge (v,, vp) for which (1) the edge satisfies the mustbetrue
predicate and (2) either v, has no other outgoing edges or v;, has no other incoming edges. We can
then safely merge the items v, and v;, without affecting order constraints on other items. SATUNE
includes an optional optimization that prunes such edges (Figure 8).
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Fig. 8. Edge (vg,vp) is true and either v, has no other outgoing edges or vy,
has no other incoming edges. So, v, and v}, can be merged.

Order Decomposition: This optimization decomposes an order into two or more smaller orders
to optimize for the fact that the encoding cost for orders is superlinear. SATUNE runs a strongly
connected component analysis on the edges that may (or must) be true. The result of this analysis
is a DAG of strongly connected components. Edges between strongly connected components can
simply be made true and the corresponding constraints replaced with the appropriate truth value.
If a strongly connected component contains more than one vertex, SATUNE generates a new order
for the nodes in the strongly connected component (Figure 9).

Fig. 9. The order graph corresponds to Figure 5. Edge (v2,v3) can be made
true and the original order can be decomposed into the orders O1 and O2.

Partial Orders: SATUNE implements similar optimizations for partial orders. One key difference
is that SATUNE can perform strength reduction on partial orders to replace them with total orders. In
general, encoding a partial order is more costly than encoding a total order. There are fewer encoding
choices and the choices require more boolean variables and constraints. The only difference between
a partial order and a total order is that a partial order allows for both a— > b and b— > a to be
false, while a total order requires one of the two to be true. If a partial order only contains order
constraints with positive polarity, it can be converted into a total order. SATUNE implements this
optimization in the order decomposition stage of the partial order analysis.

6.2.2 Integer Variable Domain Reduction Clients can assert equalities or inequalities between
integer variables and constants. SATUNE reasons about potential values for integer variables to
reduce the number of possible values that it must encode. This optional analysis examines all
equalities and inequalities that are asserted between integer variables and constants and then
updates the domain of the corresponding integer variable. SMT solvers [de Moura and Bjerner
2008] use similar techniques to propagate values from equality constraints and linear inequalities,
but to our knowledge, they do not include optimizations that reduce the range for variables taken
over discrete sets.

7 Encoding

This section discusses how SATUNE optimizes the implementation of specific encodings. Optimizing
encoding is not only a matter of selecting which encodings to use for individual integer variables.
It is also a matter of optimizing how the encodings for different variables affect the encoding of
constraints between these variables.

With a naive encoding strategy for variables, comparisons between two different variables over a
set must be encoded as an enumeration of all cases. For example, if x is taken from the set {0, 1} and
y is taken from the set {0, 1, 2}, then x = y is typically encoded as ((x == 0) A (y == 0)) V ((x ==
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1)A(y == 1)). If x and y were taken from the same set and encoded using the binary index encoding
in the same way, the constraint could be encoded by a "bitwise" comparison of the boolean variables
that comprise the binary index. This alternative circuit-based encoding grows as the log of the
size of the set.

This brings up the question of what are the necessary conditions for comparing two variable
encodings using a circuit-based encoding instead of an enumeration-based encoding. To make this
discussion precise, we introduce the following notation. For an integer variable x drawn from the
set {x1, Xa, ..., xn, }, we define e, (x;) to be the binary value that encodes the integer x;.

It is safe to use circuit-based encodings of x = y, if the following conditions are satisfied:

(1) The encodings for x and y must encode all shared values in the same way. Vi,j.1 < i <
Ny, 1 < j<ny,xi = y; = ex(x;) = ey(y))
(2) The encodings for x and y must not use the same encoding for different values. Vi, j.1 < i <

ne, 1 < j < nyxi # Y5 = ex(x;) # ey (y)).

It is also possible to use circuit-based encodings for comparisons such as x < y or x < y. The
corresponding condition for x < y is:

(1) Vi,j 1 <i<ngl <j<ngx <y; & ex(x;) < ey(y))
7.1 Constraint Subgraph

We next define the constraint subgraph that SATUNE uses to track which comparison predicates to
encode as circuits. We represent the constraint subgraph as a set of vertices V¢, a set of equality
edges Ezguahty, and a set of inequality edges Efx;qe quality” There is a vertex vs € VI in the graph that
SATUNE uses to represent all integer variables drawn from the same declared set S. If there is an
equality predicate between a variable x represented by vx and a variable y represented by vy that
is to be encoded as a circuit, then there is an edge (vx,vy) € Ezguahty. If there is an inequality
predicate between a variable x represented by vy and a variable y represented by vy that is to be
encoded as a circuit, then there is an edge (vx, vy) € E9 Note that the constraint subgraph

inequality
loses information—it does not distinguish whether an inequality predicate is <, <, >, or >.

7.2 Encoding Graph

SATUNE next converts the constraint subgraph into an encoding graph. There is a vertex in the
encoding graph for each integer value in each vertex of the constraint graph—the set of vertices in
the encoding graph is: V¢9 = {{vx, x) | vx € VI, x € X}. Equality constraints on the encoding are
modeled as equality edges; the equality edges are defined as follows: E:guahty = {{{vx, x), (vy,y)) |
zguahty,x € vx,y € vy}. Inequality constraints on the encoding are modeled as
inequality edges; the inequality edges are defined as follows: Efri quality = {{vx, x), vy, y)) |
(vx,vy) € Eicriquahty V (vy,vx) € Efriquahty,x € vx, Yy € vy, x < y}. Note that the inequality edges
in the encoding graph are directed towards the larger value.

The encoding graph defines the constraints on valid encodings. Solving the constraints from
Section 7 on the encoding graph yields a valid encoding. In general, we suspect that encodings
that use a minimal number of variables are likely to be better. Thus, we wish to find the solution to

(vx,vy) € E

these constraints that requires the minimal number of boolean variables. Note that the optimal
encoding problem is NP-hard as graph coloring can be reduced to an encoding that uses only
equality constraints. We next describe our heuristic for solving this problem. Algorithm 1 presents
pseudocode for this algorithm. As a working example, consider four integer variables w, x, y, z
that are drawn from sets s,, = {0,5}, s = {0,2,7}, s, = {0,2,8}, and s; = {0, 2,5, 8}, respectively.
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These variables appear in the following constraint predicates: w < x, x = y, and y = z. Figures 10a
and 10b present the constraint subgraph and encoding graph for the example, respectively.

Algorithm 1: Encoding Algorithm

Result: Circuit-based Encoding
for ein E°Y ~UE? . do
equality inequality
if val(src(e)) == val(dst(e)) then
‘ mergeNodes(src(e), dst(e));

end
end
S atty iy

strengthenEqualities(Eequamy, Einequality

eg
sorted

for ein E:OZE do
if | inEdges(src(e)) |== 0 then
‘ src(e).encoding = 0;

=topologicalSort(E’? )

inequality

else

‘ src(e).encoding=MaxEncoding(inEdges(src(e)))+1;
end

end

for vin V9 (in decreasing order of degree) do
if v.encoding == UNASSIGNED then
‘ v.encoding = minAvailable(equalityNeighbors(v));

end
end

The first pass identifies vertices that must have the same encoding and merges them. This pass
finds edges between two vertices that both have the same integer value. Such vertices must share
the same encoding to ensure that comparisons function correctly. SATUNE merges these vertices
together and the newly merged vertex has all of the edges that the previous two vertices contained
(minus the self-edge).

The remainder of the encoding process will be structured as two passes: a first pass assigns
encodings for vertices with inequalities and the second pass assigns encodings for vertices that
only have equalities. Since the first pass will assign encodings for all vertices that have inequalities,
we need to make sure that this initial assignment correctly accounts for equality constraints. Thus,
we strengthen an equality edge ((vx,x), (vy,y)) to an inequality edge if both of the vertices
(vx, x) and (vy, y) at the endpoints of an equality edge also have inequality edges. SATUNE then
topologically sorts the encoding graph considering only the inequality edges. In topological order,
it assigns encodings to vertices that have at least one incoming or outgoing inequality edge. If a
vertex has no incoming inequality edges but it does have outgoing equality edges, it is assigned the
encoding 0. Vertices with at least one incoming inequality edge are assigned an encoding that is one
larger than the largest encoding value of the sources of the incoming inequality edges. Figure 10c
presents the example encoding graph after solving for inequalities.

Finally, SATUNE assigns encodings for vertices that have no inequality edges. SATUNE’s algorithm
uses a standard greedy graph coloring algorithm to assign colors at this point—it processes these
vertices one by one in decreasing order of degree. For each vertex, it assigns as an encoding the
smallest non-negative integer that is not already in use by a vertex that shares an edge with the
current vertex. Figure 10d presents the final encoding results for the running example. Note that
the generated encoding can encode the same number in different ways for different sets, e.g., 5,,
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and 5;, and that the generated encodings are not necessarily monotonic, e.g., 8;, ; has a smaller
encoding value than 5.

In some cases, SATUNE is able to use the same encoding for multiple different values from the
same set if those values cannot be distinguished using the comparison operations in the problem. If
a variable from such a set is used in a function or arithmetic operation, this outcome is not sound.
In that case, SATUNE adds edges between all encoding graph nodes for the same set to force them
to have different encodings.

(o) —(0.)
=N/
G \eﬁ" WV
%ﬁ#‘!ﬁ’é‘!

QEOO

Z

Equal

(b) Encoding Graph: Splitting each node in
(a) Constraint Subgraph constraint subgraph into its integer values.

(c) Merging vertexes that have the same value and
are connected and then assigning encoding for
vertexes with inequalities. The green numbers

indicate the encoding for the corresponding (d) Assign encoding to vertexes that only have
integer values. equalities.

Fig. 10. The process of building constraint subgraph and encoding graph to encode the example as a circuit.

7.3 Constructing Constraint Subgraphs

We next discuss the heuristics we use for constructing constraint subgraphs. Comparisons between
variables in the same constraint subgraph use circuit-based encodings. We begin by considering
some factors in this decision. Our first consideration is the number of clauses that are generated by
the encoding. The size of an enumerative encoding for equality becomes large if the intersection of
the two sets is large. A second consideration is the size of the encodings. If we place variables over
sets with little overlap into the same constraint subgraph, we can potentially increase the size of
the encoding. This incurs two costs: (1) it increases the number of boolean variables used by the
encoding and (2) it increases the number of clauses that must be generated to ensure that variables
have valid values.

Our constraint subgraph construction uses a greedy merging algorithm. It considers two factors
when merging nodes: (1) could this merge require allocating new boolean variables in the encoding
and (2) do the nodes have substantial overlap in their values.
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7.4 CNF Generation

SATUNE implements a variation of the NICE [Chambers et al. 2009; Manolios and Vroon 2007]
algorithm to generate CNF constraints. The original implementation of NICE uses hashing to elimi-
nate duplicate expressions. Most of the benefits from detecting duplicate expressions are already
obtained by SATUNE’s detection of common subexpressions when constructing the intermediate
representation. The second modification is that in certain cases, the NICE CNF generation algorithm
needs to know the polarity of expressions. Since SATUNE already has computed the polarity of
expressions in its intermediate representation, it simply uses those precomputed polarities.

These two modifications together allow SATUNE to implement a variation of the NICE algorithm
that does not require keeping the complete set of boolean constraints in memory. SATUNE can thus
immediately translate constraints into CNF and output them to the solver as it encodes them. This
significantly reduces the memory consumption and the time taken by the CNF generation phase.

7.5 Incremental Solving

SATUNE supports incremental solving. It supports the addition of new constraints on integer vari-
ables. While it is conceptually straightforward to support incremental solving on order constraints,
it would require disabling optimizations as not all of our order optimizations are safe in the presence
of new order constraints.

8 Tuner Framework

Recall from Section 1 that SATUNE can operate in two modes: a learning mode in which it learns
an encoding specifically for the given client and a deployment mode in which it uses the learned
encoding strategy. As presented in Sections 6 and 7, SATUNE incorporates a wide range of specialized
optimizations and encoding strategies but not all of them are expected to be beneficial for a given
problem domain. In its learning mode, SATUNE explores different configurations of optimizations
and encodings to find the settings that provide the best performance for a specific problem type. In
addition to various optimizations, SATUNE incorporates a wide range of general and optimization-
specific heuristics (due to space limitations, not all are mentioned in the paper) that can be fully
tuned for each user-specified type. Due to the large set of tunable settings and SATUNE’s support for
user-specified types, the space of potential settings is much too large to exhaustively enumerate.

8.1 Tuner Architecture

The tuner framework consists of three primary components: language support, integration with
analysis and optimizations, and tuner algorithm. Making a tuner work requires tight integration
between these three components. Language support allows clients to tag variables with labels that
identify different use cases. The idea is that these variables can potentially benefit from different
encodings based on their different use cases.

The next component is the integration with the analyses and optimizations. The design of the
analyses and optimizations is important to provide the tuner with (1) sufficient freedom to optimize
the constraint and (2) reasonable settings such that the tuner results generalize across problems
and can easily be learned.

Finally, the tuner algorithm explores the search space efficiently to find a good set of optimizations
and encodings for all variables. One component of our tuning algorithm is that for some problem
domains, different problem instances can benefit from different encodings. Thus for such problem
domains, it can be useful to have more than one encoding strategy that are then solved in parallel.
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8.2 Tuner Algorithm

SATUNE implements a variation of Simulated Annealing (SA) [Van Laarhoven and Aarts 1987] for
exploring the search space and finding the best settings. In general, an SA algorithm is a probabilistic
technique for finding the approximate maximum and it works as follows. At each step, a solution
close to the current one is selected and evaluated. Based on the performance of the solution, the
SA algorithm decides whether to keep the setting. To avoid getting stuck in a local maxima, it is
necessary to sometime accept worse settings in order to find better settings. A temperature is used
to select how willing the SA algorithm is to accept a non-optimal solution. In the beginning, the
temperature is high and there is a higher chance of accepting worse solutions. As the algorithm
progresses, the temperature decreases and the algorithm is less likely to accept bad solutions and
explore new solutions spaces. Because of this property, the algorithm can avoid getting caught at
local maxima which are better than any nearby solutions but are not globally optimal.

The standard Simulated Annealing (SA) algorithm searches for a single encoding/optimization
that works best for all the problems in the training set. Using the standard algorithm to produce
multiple different encodings would just generate a set of (potentially identical) encodings that
work well for the same set of problems. However, the goal of the tuner is to find multiple different
encodings that are complementary — for each problem instance there should be at least on encoding
that performs well. The tuner needs to find a set of complementary encodings such that the
combination of the encodings yields the best performance for all the problems in the training test
set.

Thus, SATUNE implements its own variation of Simulated Annealing (SA) to find sets of encodings.
The execution time is used to evaluate each generated encoding strategy (i.e., the less execution
time the better encoding). The tuning algorithm uses a weighted scoring algorithm that gives points
based on how good an encoding is relative to other encodings (e.g.,, 1st place gets 3"~ ! points, 2nd
place gets 3”2 points, 3rd place gets 3”3 points, and so on). If there is an encoding that does
very well on a subset of problems on which other encodings do not perform well, it can receive
many points for those problems. At each iteration, the tuner picks the best n encodings for the
next iteration of the SA algorithm. At each round, a new random encoding strategy is generated
based on the best n encoding strategies the previous round found. Once the SA budget is exhausted,
SATUNE computes the set of n encodings out of all generated encoding that minimize the expected
total time for running in parallel on the training set.

The degree of parallelism is a decision that needs to be made based on the problem domain. If
there is an encoding that performs relatively well on all the test cases, using a single encoding
suffices. When SATUNE is used on clients that benefit from different encodings, multiple encodings
can run in parallel if multiple encodings provide sufficient benefit. In SATuNE AAZs benchmarks,
having one encoding for most of the cases was sufficient. For many benchmarks using 2 encodings
in parallel does yield better performance. However, the performance gain is typically less than
2x compared to running a single encoding and thus not sufficient to cover the cost of running 2
solvers. As such, to be consistent in the evaluation section, we report numbers for n = 1 for all the
benchmarks.

The choice of problems in the training set is important. As is the case in other ML and Al learning
algorithms, if the training set is small or it contains non-representative problems, the learned
encoding would be biased toward the training set.

Example. Consider the following scenario: A client wants to learn 2 best encodings to minimize
the total time if we run them in parallel. The learning process is conducted on four problems:
Problem A, Problem B, Problem C, and Problem D. Let Strategy 1 and Strategy 2 be the best
encoding strategies from the previous iteration of the tuning algorithm. These strategies are utilized
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to randomly generate Strategy 3 and 4. Table 3 shows example execution time of each encoding for
each problem.
Table 3. Execution time of each encoding for each problem. Numbers are in seconds.

Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4
Problem A 2.0 112.0 753.0 519.0
Problem B 800.0 681.0 119.0 260.0
Problem C 14.0 69.0 454.0 29.0
Problem D 892.0 329.0 243.0 1100.0

The weighted scoring algorithm computes the score of each encoding strategy for each problem
(i.e., Table 4). Once the score is assigned, SATUNE picks the set of two encodings with the highest
score. For our example, Strategy 1 and 3 will be selected for the next iteration with a total score of
36 for all problems.

Table 4. SATUNE’s weighted scoring algorithm assign points to strategies for each problem.

Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4
Problem A 9 3 0 1
Problem B 0 1 9 3
Problem C 9 1 0 3
Problem D 1 3 9 0

9 Evaluation

We evaluate SATUNE on constraint problems generated by three real-world tools: JMCR [Huang
2015b], a Java-based model checker; SyPet [Feng et al. 2017a], a component-based synthesis
tool for APIs; and Dirk [Kalhauge and Palsberg 2018], a deadlock predictor. We also evaluate
SATUNE on three puzzle games: Sudoku, Hexiom, and Killer Sudoku. For each benchmark, we used
the original implementation of the benchmark and swapped the SMT/SAT Solver with SATUNE
making minimal modifications to add support for SATUNE. We have made SATUNE available at
http://plrg.ics.uci.edu/satune/.

The SAT solver used plays a key role in the performance of constraint solving. In order to make
the comparison fair, we modified all the SAT-based benchmark implementations to use the same
solver as SATUNE, Glucose [Audemard and Simon 2009], with the exception of the benchmarks that
use SAT4], i.e., SyPet. For SyPet, we used the Glucose strategies from the SAT4J Solver [Le Berre and
Parrain 2010]. Thus, the SATUNE implementation and the baseline implementations only differ in
the encodings they use. However, Dirk and JMCR encode constraints in SMT and use Z3 [de Moura
and Bjerner 2008] to solve them. Thus, we could not replace the underlying solver with Glucose
for these benchmarks.

Based on our initial experiments, some encodings appear more efficient for simple problem
instances. However, these encodings may not be optimal for more complex SAT problems in the
same domain. In order to reduce bias in training, the learning set must contain a diverse set of
problem instances. Thus, we partitioned test cases into two, three, and four sets based on the
availability of problem instances for each benchmark. Each partition includes problem instances
with different difficulty levels. For each benchmark, in n-fold cross-validation, one partition is left
out for testing, and the rest of n-1 partitions are employed to learn the encoding. This procedure is
repeated for each partition. For each test case, only the test results have reported in the figures.

SATUNE can translate given problems in its DSL to SMT LIB v2.0, the standard input language
for SMT solvers. Variables over discrete sets and total orders are translated into the integer theory
in SMT LIB. SATUNE’s translator also supports Alloy [Jackson 2002]. We used SATUNE’s translator
to compare SATUNE against: Z3 [de Moura and Bjerner 2008], SMTRat [Corzilius et al. 2015],
MathSAT [Bruttomesso et al. 2008], and Alloy.
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All of our experiments were run on identical machines, each with a Xeon(R) CPU E3-1246 v3
3.5GHz processor and 32GB memory running Ubuntu Linux 18.04. Each machine ran only one
instance of SATUNE. We set time limits for each problem. Each test case for the tool benchmarks
consisted of many constraint problems: we set a per constraint problem time limit for JMCR of 100
seconds, for SyPet of 100 seconds, and for Dirk of 1,000 seconds. The game test cases consist of a
single constraint problem: we set a time limit for Hexiom of 1,000 seconds, for Sudoku of 2,000
seconds, and for KillerSudoku of 2,000 seconds. The duration for the learning experiment depends
on the time budget and it varies from a couple of hours (e.g., SyPet), to two weeks (e.g., Dirk). We
report the time it took SATUNE to synthesize each of our encodings. We did not attempt to minimize
the SA budget for synthesizing encodings — it is possible that similar results could be achieved
more quickly by providing a smaller SA budget.

All of the benchmarks generate multiple constraint problems. The later problems depend on the
results from the previous problems. This is an issue for comparison because different constraint
solvers might find different answers to a problem, and these different answers could lead to easier
or harder problems to solve later. To make the problems comparable for our evaluation, we modified
these tools to serialize SATUNE problems to disk and recorded the results from the original baseline
solver. We then used the recorded problems for our evaluation. For all the benchmarks, we validated
SATUNE's results against the baseline’s results.

9.1 JMCR

JMCR [Huang 2015b] is a stateless model checker that implements the Maximal Causality Reduction
model checking algorithm. It constructs ordering constraints over executions to generate new
possible schedules and enforces that at least one load returns a different value in the new schedule.
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Fig. 11. SATUNE’s test set results of four-fold cross-validation are compared with the execution time of Z3(the
baseline), SMTRat, and MathSAT for each JMCR problem

Figure 11 presents the test result for each test case. For example, the SATUNE bar for the Account
test case shows the aggregated SAT solving time of all Account’s SAT problems with the encoding
that SATUNE synthesized by learning from the Allocation, Derby, and MergeSort test cases. This
process is repeated for three other test cases (i.e., four-fold cross-validation) and we reported the
testing result for each of them in Figure 11.

The baseline encoding uses the integer theory of SMT to represent ordering constraints. We
encoded these constraints as total orders in SATUNE. In order to evaluate the performance of
SATUNE, we selected the four most difficult test cases in JMCR’s original test suite. In total, JMCR
test cases contain more than 100 SAT problems.

Figure 11 presents the SAT solving time for each test case. Lower is better. We use logarithmic
scales throughout this paper, and so SATUNE is significantly faster than the baseline on
most benchmarks. The encodings that SATUNE synthesized outperform JMCR’s original encoding
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and other SMT solvers by several orders of magnitude in most of the cases. SMT solvers are
general purpose solvers and unlike SATUNE, they don’t optimize the encoding for each client and
consequently, they are slower than SATUNE. As an example of a synthesized encoding, SATUNE
synthesized an encoding for the first partition that encodes orders pairwise and runs SATUNE’s
order optimizations. On average, SATUNE synthesized each of these encodings in about five days.

9.2 SyPet

SyPet is a type-directed tool for component-based synthesis, which uses a compact Petri-net
representation to model relationships between methods in an API [Feng et al. 2017a]. For a given
target method signature S, SyPet uses reachability analysis to determine the sequences of method
calls that could be used to synthesize an implementation of S. SyPet guarantees that the synthesized
components type-check and pass all test cases.

SyPet uses the one-hot encoding for the possible ways of completing holes in a program sketch.
There is a finite set of possible ways to fill the holes and we map the holes to variables over discrete
sets in SATUNE. SyPet uses incremental solving for the baseline encoding. Although SATUNE supports
incremental solving, our synthesis framework and translator does not. However, the synthesized
encoder could be used with SyPet in incremental mode. To make the comparison fair, we report
non-incremental results for the baseline, for SATUNE, and for other solvers. We used all four available
test cases from the original test suite [Feng et al. 2017b]. In total, these test cases contain more than
140 SAT problems. Figure 12 presents the total SAT solving time for each test case.
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Fig. 12. SATUNE’s test set results of four-fold cross-validation are compared with the execution time of Z3,
SMTRat, MathSAT, Alloy, and the baseline (i.e., SAT4) with glucose strategies) for each SyPet problem

Figure 12 shows the test results for each SyPet test case. For example, the SATUNE bar for the
Math test case shows the aggregated SAT solving time for all Math’s SAT problems with the
encoding that SATUNE synthesized by learning from the Geometry, Joda, and XML test cases. This
process is repeated for the three other test cases (i.e., four-fold cross-validation) and we report the
testing result for each in Figure 12. SATUNE improves the performance of SyPet by several orders of
magnitude on all test cases. We also compare SATUNE to several SMT solvers and SATUNE is faster
than these solvers for all test cases. As an example of a synthesized encoding, SATUNE synthesized
an encoding for the first partition that uses the binary index encoding. It also uses the integer
variable domain reduction optimization together with the encoding graph. On average, SATUNE
synthesized each of these encodings in less than an hour.

9.3 Dirk

Dirk [Kalhauge and Palsberg 2018] is a deadlock and data-race predictor for Java. It uses Z3 to model
execution constraints. Dirk uses ordering constraints to represent the happens-before relation
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for lock release and acquire events. Dirk uses the integer theory of SMT to represent the happens
before relation in the program [Kalhauge and Palsberg 2018]. Dirk adds a non-standard constraint
that two events happen at the same time. This constraint cannot be directly represented as a total
order. While SATUNE could be modified to support this constraint, we do not believe that it is
commonly used. So instead, we preprocessed the constraints to eliminate this constraint. Due to
this translation process, it is not possible to support incremental solving for this benchmark in
SATUNE. We instead disable incremental solving in Dirk for the comparison.
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Fig. 13. SATUNE’s test set results of two-fold cross-validation are compared with the execution time of Z3(the
baseline), SMTRat, MathSAT for each Dirk problem

Figure 13 reports the SAT solving time for each test case. Test cases are separated into two sets
and the learned encoding from one set is tested on the other set. This process is repeated for the
other set (i.e., two-fold cross-validation) and we reported the testing result for each of them in
Figure 13. The encoding that SATUNE synthesized is faster for every test case than the baseline
encoding (Z3) for Dirk and sometimes outperforms the baseline encoding by several orders of
magnitude. SATUNE is also faster than the other SMT solvers for all of the test cases. In total, the
test cases incorporate more than 200 SMT problems.

SATUNE synthesized an encoding for the first partition that encodes orders using pairwise
encoding and then uses the order optimizations to simplify the order constraints. On average,
SATUNE synthesized the encoding for each partition in about two weeks of learning.

Puzzles. We evaluated SATUNE on three puzzles: Hexiom, Sudoku, and Killer Sudoku. All of these
puzzles mainly employ integer variables and at-most-one constraints. 'SATUNE-V2’ bar represents
results for a version of SATUNE that supports the commander variable encoding [Klieber and Kwon
2007a] as well as The sequential counter [Sinz 2005] for at-most-one constraints. The rest of this
section provides more details about each of these puzzles.

94 Hexiom

Hexiom is a game in which a player moves numbered tiles on a hexagonal board until the numbers
on the tiles match the number of its neighbors. The baseline encoding uses the one hot encoding to
represent the tile number of each cell if it is occupied [Gualandi 2012]. In the SATUNE version of the
puzzle, the tile number for each cell is a variable drawn from a discrete set. SATUNE can generate
the same encoding as the baseline, if it uses one hot encoding. The Hexiom test cases were based
on ones from the original online puzzle. But since most of them were easy to solve for the SAT
solver, we modified the test cases to generate more difficult problems.

Figure 14 presents the solving time for SATUNE (both version 1 and 2), the baseline solver, the
SMT solvers, and Alloy. SATUNE is better than the baseline encoding in most of the test cases.
SATUNE synthesized the following encodings for each partition: it encoded integers as unary in all
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Fig. 14. SATUNE’s test set results of three-fold cross-validation are compared with the execution time of Z3,
SMTRat, MathSAT, Alloy, and the baseline for each Hexiom problem

partitions. Integer domain reduction pass is enabled in two partitions. In the other partition that
incorporates relatively easy problems, SATUNE disabled this pass which caused a minor slowdown
for larger size problems. SATUNE kept graph encoding optimizations deactivated in all partitions.
On average, SATUNE synthesized each of these encodings in about six hours.

9.5 Sudoku

Sudoku is a popular puzzle which has both backtracking and constraint-based solvers, the latter is
faster and more scalable [Lynce and Ouaknine 2006; Pfeiffer et al. 2013; Weber 2005]. The baseline
solver uses the one hot encoding and allocates a boolean variable for each possible value in each
cell. We used a variation of Sudoku generator [Ardi 2015] to generate test cases with large sizes,
e.g., 36X36, which are more time-consuming for the SAT Solver to solve.
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Fig. 15. SATUNE’s test set results of three-fold cross validation are compared with the execution time of Z3,
SMTRat, MathSAT, Alloy, original solver (i.e., PicoSAT [Biere 2008]), and our baseline (i.e., glucose) for each
Sudoku problem

Figure 15 presents the solving time of each test case in the three-fold cross-validation compared
with solving time of the baseline encoding and the other SMT solvers. For most of the test cases,
SATUNE’s synthesized encodings outperformed the baseline and other solvers. SATUNE synthesized
the following encodings for the three partitions: All three partitions encoded integer variables
using One hot encoding. Two partitions used the sequential counter technique to solve at-most-one
constraints and reversed the order of boolean variables. However, the other partition that contains
relatively easy problems used binomial (naive) encoding and kept the original variable ordering.
In all partitions, the integer optimization pass is enabled and the graph encoding optimization is
deactivated. On average, SATUNE synthesized the encoding for each partition in about five days.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.



SATUNE: Synthesizing Efficient SAT Encoders 146:25

9.6 Killer Sudoku

Killer Sudoku extends Sudoku with cages. The Killer Sudoku encoding extends the Sudoku encoding
by enumerating the possible values for cells in each cage to implement the sum constraint. The
Killer Sudoku baseline performs some preprocessing to reduce the number of variables by assigning
common values to a new boolean variable in each cell [Airobert 2016].
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Fig. 16. SATUNE’s test set results of three-fold cross-validation are compared with the execution time of Z3,
SMTRat, MathSAT, Alloy, original solver (i.e., PicoSAT [Biere 2008]), and the baseline (i.e., glucose) for each
Killer Sudoku problem

Figure 16 presents the solving time for each test case in the three-fold cross-validation compared
with solving time of the baseline and other solvers. For most of the test cases, SATUNE’s synthesized
encodings outperformed the baseline and other solvers.

SATUNE synthesized the following encoding strategies for three partitions. Each encoded integer
variables using binary index. Two partitions kept the original variable ordering and the other one
changed it to the order of variable creation. For two partitions, SATUNE encoded integer variables
using the integer domain reduction pass and SATUNE could outperform the baseline encoding.
However, this pass causes a minor slowdown for relatively easy problems. SATUNE kept graph
encoding optimizations disabled for all partitions. On average, SATUNE synthesized each of these
encodings in about two hours.

9.7 Deployment Phase

Recall from Section 5 that SATUNE has two phases: learning phase and deployment phase. Once the
encoders are synthesized in the learning phase, the client can switch into SATUNE’s deployment
mode, and use the encoders to encode new problems. This section evaluates the performance of
SATUNE in the deployment phase for JMCR, Dirk, and SyPet benchmarks. The ideal methodology
is to, first, run the benchmarks with the baseline solver and measure the total end-to-end time,
serialization time, and SAT solving time. Then, swap in SATUNE with the synthesized encoders
and carrying out the same measurements and compare the numbers. This methodology works
well for deterministic benchmarks. Many benchmarks including JMCR, Dirk, and SyPet are non-
deterministic as: (1) they generate a series of SAT problems, (2) these problems often have many
different solutions, and (3) the solution that is found for a SAT problem will can affect which
problems are generated later. If one uses two different constraint solving frameworks, the client
executions can quickly diverge and one constraint solving framework can randomly receive a much
easier set of problems. To make results comparable across frameworks, we modified the clients
to serialize out the generated constraint problems so that all constraint frameworks solve exactly
the same set of problems. Figure 17 presents the break-down of the execution time that includes
the application time, the baseline solving time, and SATUNE’s solving time for three benchmarks
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of JMCR, Dirk, and SyPet. On average, SATUNE reduced the solving time by 94% in these three
benchmarks.
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Fig. 17. The break-down of the end-to-end time for Dirk, JMCR, and SyPet. The application time is the time
that is spent purely in the application code, i.e., the total end-to-end time minus the serialization time and
solving time.

10 Related Work

Alloy is a relational logic intended for describing structural properties [Jackson 2002]. It leverages
Kodkod [Torlak and Jackson 2007], a SAT-based relational model finder, to translate its constraints
into SAT. SATUNE’s language differs from Alloy since it is intended to have a support commonly-
used abstractions for which multiple good SAT encodings exist and the SATUNE language is in
general a lower-level language that is primarily targeted towards supporting client applications.
Kodkod also uses sophisticated optimizations including auto-compacting circuits and symmetry
breaking to simplify the given constraints. However, contrary to SATUNE, it does not attempt to
tune its encoding strategy for specific domains. Enfragmo [Aavani et al. 2012] has a high-level
language extending first-order logic for solving combinatorial search problems. It has no support for
order constraints and synthesizing domain-specific encodings. Some frameworks have high-level
languages to hide the complexity of SAT solvers from the user without incorporating any domain-
specific encodings and optimizations [Metodi and Codish 2012]. Other frameworks implement a
collection of encodings and techniques without any tuning [Gecode 2016].

Much work has been done on developing encodings to SAT[Abio and Stuckey 2014; Bailleux and
Boufkhad 2003; Chebiryak and Kroening 2008; Chen 2010; Gent and Lynce 2005; Samer and Veith
2009; Tamura et al. 2013, 2009; Tanjo et al. 2011, 2012]. Several different encodings are known for
variables drawn from discrete sets [Biere et al. 2014; Bjork 2009; Frisch and Giannaros 2010; Klieber
and Kwon 2007b] and we have implemented the most common ones. SATUNE could be extended to
support more of these encodings.

Satisfiability modulo theories (SMT) solvers support constraints that overlap with SATUNE’s
constraint language [Barrett et al. 2011; Bouton et al. 2009; Bruttomesso et al. 2008; Corzilius
et al. 2015; de Moura and Bjerner 2008; Dutertre and de Moura 2006]. SMT generalizes boolean
satisfiability by replacing boolean variables with predicates over a variety of theories. The predicates
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over these theories are then solved by specialized solvers. SATUNE does not use specialized solvers,
but rather translates its constraint language directly into SAT. This approach has trade-offs in that
the translation approach does not leverage the performance benefits of domain-specific solvers.
Although some constraints in the SATUNE language overlap with SMT theories, SATUNE is not
intended to replace SMT solvers but rather to explore the benefits of automatically tuning encodings.
Eager SMT solvers take a similar solving strategy to SATUNE and directly translate constraints from
other theories into SAT [Brummayer and Biere 2009; Ganesh and Dill 2007; Jha et al. 2009]. SATUNE
differs from this work in that it supports multiple encodings and is targeted towards automatically
tuning encodings rather than supporting other constraint theories.

There is some prior work that attempts to tune encodings automatically [Brain et al. 2016; Inala
et al. 2016]. OPTCNEF [Inala et al. 2016], which is the closest work to SATUNE, extracts patterns from
a given problem in a specific domain, and synthesizes encodings to convert bit-vector terms to low-
level CNF clauses. Other work has developed techniques for automatically generating propagation
complete encodings that optimize for unit propagation [Brain et al. 2016]. The key difference
between SATUNE and the prior work is that the prior work focuses on different approaches for
generating constraints for the same underlying representation (encoding) of the problem domain
state into SAT variables, while SATUNE can also tune the underlying representations for the problem
domain state into SAT variables.

Many constraint problems are solved by translation into SAT, including planning [Kautz and
Selman 2006; Rintanen 2014; Robinson et al. 2008], circuit security [WINOGRAD and MAHMOODI
2009; Yu et al. 2017], SAT-based model checking [Burckhardt et al. 2007; Demsky and Lam 2015;
Timm et al. 2017; Xie and Aiken 2005], test generation [Nguyen et al. 2015; Sen et al. 2013; Tanno
et al. 2015], scheduling [Béjar and Manya 2000; Gent and Lynce 2005; Zhang et al. 2004], and
verification [Chung 2017; Turkmen et al. 2015]. Encodings are mostly hard-coded in SAT-based
frameworks and to our knowledge, no other framework automatically tunes encodings for clients.

Al techniques and learning have been widely used in the SAT solving domain [Gent et al. 2010;
Haim and Walsh 2009; Inala et al. 2016; Liang et al. 2018; Musliu [n.d.]; Singh et al. 2009; Wu
2017]. There are frameworks that can learn the best solver for each problem type using bit-level
information [Kurin et al. 2019; Liang et al. 2016; O’Mahony et al. 2008; Xu et al. 2008]. Prior work
and SATUNE are largely complementary and it could be beneficial for SATUNE to employ them for
client-specific SAT solvers or constraint rewrites [Singh and Solar-Lezama 2016] in addition to
SATUNE’s encoding optimizations. As future work, SATUNE can integrate with prior work to provide
more information from its higher level abstraction in order to improve the learning process carried
out in the bit-level.

11 Conclusion

This paper presents SATUNE, a tool for automatically synthesizing the encodings of constraints
into SAT. Traditionally discovering a good SAT encoding for a problem domain required much
effort to explore the many different options. SATUNE supports a range of encoding strategies and
optimizations and automatically selects combinations that yield good performance for a given
problem domain. Our evaluation shows that SATUNE is able to synthesize encodings that are
significantly faster than the original encodings used by our benchmarks.

Acknowledgments

We thank the anonymous reviewers for their thorough and insightful comments that helped
us substantially improve the paper. This work is supported by the National Science Foundation
grants CNS-1703598, OAC-1740210, CNS-1703598, CNS-1763172, CCF-2006948, CNS-2007737, and
CNS-2006437, as well as ONR grants N00014-16-1-2913 and N00014-18-1-2037.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.



146:28 Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

References

Amir Aavani. 2011. Translating Pseudo-Boolean Constraints into CNF. In Theory and Applications of Satisfiability Testing -
SAT 2011, Karem A. Sakallah and Laurent Simon (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 357-359.

Amir Aavani, Xiongnan (Newman) Wu, Shahab Tasharrofi, Eugenia Ternovska, and David Mitchell. 2012. Enfragmo: A
System for Modelling and Solving Search Problems with Logic. In Logic for Programming, Artificial Intelligence, and
Reasoning, Nikolaj Bjerner and Andrei Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 15-22.

Ignasi Abio and Peter J Stuckey. 2014. Encoding linear constraints into SAT. In International Conference on Principles and
Practice of Constraint Programming. Springer, 75-91.

Airobert. 2016. SAT Based Killer Sudoku. https://github.com/UvA-KR16/KilerSudoku

Taufan Ardi. 2015. SAT Based Sudoku Solver in Python. https://github.com/taufanardi/sudoku-sat-solver

Gilles Audemard and Laurent Simon. 2009. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the
21st International Joint Conference on Artifical Intelligence (Pasadena, California, USA). Morgan Kaufmann Publishers Inc.,
399-404.

Gilles Audemard and Laurent Simon. 2014. Lazy Clause Exchange Policy for Parallel SAT Solvers. In Theory and Applications
of Satisfiability Testing (SAT ’14). 197-205.

Gilles Audemard and Laurent Simon. 2015. Glucose and Syrup in the SAT Race 2015.

Olivier Bailleux and Yacine Boufkhad. 2003. Efficient CNF Encoding of Boolean Cardinality Constraints, Vol. 2833. 108-122.
https://doi.org/10.1007/978-3-540-45193-8_8

Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. 2009. New Encodings of Pseudo-Boolean Constraints into CNF,
Vol. 5584. 181-194. https://doi.org/10.1007/978-3-642-02777-2_19

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c, Tim King, Andrew Reynolds,
and Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV
’11) (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 171-177.
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf Snowbird, Utah.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

Ramoén Béjar and Felip Manya. 2000. Solving the round robin problem using propositional logic. In AAAI/IAAL 262-266.

Armin Biere. 2008. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation 4 (2008), 75-97.

Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey. 2014. Detecting Cardinality Constraints in CNF. In
Theory and Applications of Satisfiability Testing — SAT 2014, Carsten Sinz and Uwe Egly (Eds.). Springer International
Publishing, Cham, 285-301.

Magnus Bjork. 2009. Successful SAT Encoding Techniques. Journal on Satisfiability, Boolean Modeling, and Computation 7
(July 2009), 189-201.

Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and Susmit Sarkar. 2011. Nitpicking C++ Concurrency.
In Proceedings of the 13th International ACM SIGPLAN Symposium on Principles and Practices of Declarative Programming.
113-124. http://doi.acm.org/10.1145/2003476.2003493

Lucas Bordeaux and Joao Marques-Silva. 2012. Knowledge compilation with empowerment. In International Conference on
Current Trends in Theory and Practice of Computer Science. Springer, 612-624.

Thomas Bouton, Diego Caminha B de Oliveira, David Déharbe, and Pascal Fontaine. 2009. veriT: an open, trustable and
efficient SMT-solver. In International Conference on Automated Deduction. Springer, 151-156.

Martin Brain, Liana Hadarean, Daniel Kroening, and Ruben Martins. 2016. Automatic Generation of Propagation Complete
SAT Encodings. In Verification, Model Checking, and Abstract Interpretation, Barbara Jobstmann and K. Rustan M. Leino
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 536-556.

Robert Brummayer and Armin Biere. 2009. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays. In TACAS (Lecture
Notes in Computer Science, Vol. 5505). Springer, 174-177.

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebastiani. 2008. The Math-
SATACA#4 SMT Solver. In Computer Aided Verification, Aarti Gupta and Sharad Malik (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 299-303.

Sebastian Burckhardt, Rajeev Alur, and Milo MK Martin. 2007. CheckFence: Checking consistency of concurrent data types
on relaxed memory models. In ACM SIGPLAN Notices, Vol. 42. ACM, 12-21.

Bertrand Cabon, Simon de Givry, Lionel Lobjois, Thomas Schiex, and Joost Warners. 1999. Radio Link Frequency Assignment.
Constraints 4 (02 1999), 79-89. https://doi.org/10.1023/A:1009812409930

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation. 209-224.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.


https://github.com/UvA-KR16/KilerSudoku
https://github.com/taufanardi/sudoku-sat-solver
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-642-02777-2_19
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://doi.acm.org/10.1145/2003476.2003493
https://doi.org/10.1023/A:1009812409930

SATUNE: Synthesizing Efficient SAT Encoders 146:29

B. Chambers, P. Manolios, and D. Vroon. 2009. Faster SAT solving with better CNF generation. In 2009 Design, Automation
& Test in Europe Conference & Exhibition (DATE).

Yury Chebiryak and Daniel Kroening. 2008. An efficient SAT encoding of circuit codes. In 2008 International Symposium on
Information Theory and Its Applications. IEEE, 1-4.

Jingchao Chen. 2010. A new SAT encoding of the at-most-one constraint. Proc. Constraint Modelling and Reformulation
(2010).

Insang Chung. 2017. A SAT-based method for basis path testing using KodKod. International Journal of Applied Engineering
Research 12, 18 (2017), 7294-7305.

Koen Claessen and Niklas SAtrensson. 2003. New Techniques that Improve MACE-style Finite Model Finding. In Proceedings
of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications.

Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika Abraham. 2015. SMT-RAT: An Open Source
C++ Toolbox for Strategic and Parallel SMT Solving. In Theory and Applications of Satisfiability Testing — SAT 2015, Marijn
Heule and Sean Weaver (Eds.). Springer International Publishing, Cham, 360-368.

Martin Davis, George Logemann, and Donald W. Loveland. 1962. A machine program for theorem-proving. Commun. ACM
5,7 (1962), 394-397. https://doi.org/10.1145/368273.368557

Martin Davis and Hilary Putnam. 1960. A Computing Procedure for Quantification Theory. 7 ACM 7, 3 (1960), 201-215.
https://doi.org/10.1145/321033.321034

Leonardo de Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Computer
Science, Vol. 4963). Springer, 337-340.

Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model checking for SC and TSO. In ACM SIGPLAN
Notices, Vol. 50. ACM, 20-36.

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien Zufferey. 2013. P: Safe Asynchronous
Event-driven Programming. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 321-332.

Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, Complete and Scalable Path-sensitive Analysis. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Implementation. 270-280.

Bruno Dutertre and Leonardo de Moura. 2006. The Yices SMT solver. Technical Report. SRI International.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017a. Component-based Synthesis for Complex
APIs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL
2017). ACM, New York, NY, USA, 599-612. https://doi.org/10.1145/3009837.3009851

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. 2017b. SyPet. https://github.com/utopia-
group/sypet

Cormac Flanagan and Shaz Qadeer. 2002. Predicate Abstraction for Software Verification. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 191-202.

Alan M. Frisch and Paul A. Giannaros. 2010. SAT Encodings of the At-Most-k Constraint. Some Old, Some New, Some Fast,
Some Slow. In Proceedings of the Tenth International Workshop of Constraint Modelling and Reformulation.

Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-vectors and Arrays. In Proceedings of the 19th International
Conference on Computer Aided Verification (Berlin, Germany). 519-531. http://dl.acm.org/citation.cfm?id=1770351.1770421

Gecode. 2016. Generic Constraint Development Environment. https://www.gecode.org/

Ian Gent, Lars Kotthoff, Ian Miguel, and Peter Nightingale. 2010. Machine learning for constraint solver design-A case
study for the alldifferent constraint. arXiv preprint arXiv:1008.4326 (2010).

Jan P Gent and Inés Lynce. 2005. A SAT encoding for the social golfer problem. Modelling and Solving Problems with
Constraints 2 (2005).

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Automated Random Testing. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and Implementation. 213-223.

Hugo Musso Gualandi. 2012. Using an industrial-strength SAT solver to solve the Hexiom puzzle. https://github.com/hugomg/
hexiom

Shai Haim and Toby Walsh. 2009. Restart strategy selection using machine learning techniques. In International Conference
on Theory and Applications of Satisfiability Testing. Springer, 312-325.

Steffen Holldobler and Van-Hau Nguyen. 2013. An Efficient Encoding of the at-most-one Constraint.

Jeff Huang. 2015a. Stateless Model Checking Concurrent Programs with Maximal Causality Reduction. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA). 165-174.
https://doi.org/10.1145/2737924.2737975

Jeff Huang. 2015b. Stateless Model Checking Concurrent Programs with Maximal Causality Reduction. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.


https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/3009837.3009851
https://github.com/utopia-group/sypet
https://github.com/utopia-group/sypet
http://dl.acm.org/citation.cfm?id=1770351.1770421
https://www.gecode.org/
https://github.com/hugomg/hexiom
https://github.com/hugomg/hexiom
https://doi.org/10.1145/2737924.2737975

146:30 Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

ACM, New York, NY, USA, 165-174. https://doi.org/10.1145/2737924.2737975

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow
Abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom). 337-348. https://doi.org/10.1145/2594291.2594315

Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama. 2016. Synthesis of Domain Specific CNF Encoders for
Bit-Vector Solvers. In SAT (Lecture Notes in Computer Science, Vol. 9710). Springer, 302-320.

SMT LIB Initiative. 2018. SMT-LIB The Satisfiability Modulo Theories Library. http://smtlib.cs.uiowa.edu/index.shtml

Markus Iser, Mana Taghdiri, and Carsten Sinz. 2012. Optimizing MiniSAT Variable Orderings for the Relational Model
Finder Kodkod. In Theory and Applications of Satisfiability Testing — SAT 2012, Alessandro Cimatti and Roberto Sebastiani
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 483-484.

Daniel Jackson. 2002. Alloy: A lightweight object modelling notation. ACM Transactions on Software Engineering and
Methodology 11, 2 (2002), 256-290.

Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. 2009. Beaver: Engineering an Efficient SMT Solver for Bit-Vector
Artithmetic. In Proc. 21st International Conference on Computer-Aided verification (CAV) (Lecture Notes in Computer Science,
Vol. 5643). 668—674.

Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction. Proc. ACM Program. Lang. 2, OOPSLA,
Article 146 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276516

Henry Kautz and Bart Selman. 2006. SATPLANO04: Planning as satisfiability. Working Notes on the Fifth International Planning
Competition (IPC-2006) (2006), 45-46.

Henry A. Kautz and Bart Selman. 2003. Ten Challenges Redux: Recent Progress in Propositional Reasoning and Search.
In Principles and Practice of Constraint Programming - CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland,
September 29 - October 3, 2003, Proceedings. 1-18.

Will Klieber and Gihwon Kwon. 2007a. Efficient CNF Encoding for Selecting 1 from N Objects.

Will Klieber and Gihwon Kwon. 2007b. Efficient CNF Encoding for Selecting 1 from N Objects. In Proceedings of the Fourth
Workshop on Constraint in Formal Verification.

Wolfgang Kuechlin and Carsten Sinz. 2000. Proving Consistency Assertions for Automotive Product Data Management. 7.
Autom. Reasoning 24 (02 2000), 145-163. https://doi.org/10.1023/A:1006370506164

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. 2019. Improving SAT Solver Heuristics with Graph
Networks and Reinforcement Learning. arXiv:1909.11830 [cs.LG]

Daniel Le Berre and Anne Parrain. 2010. The Sat4;j library, release 2.2. JSAT 7 (01 2010), 59-6.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. 2016. Learning Rate Based Branching Heuristic for
SAT Solvers. In SAT (Lecture Notes in Computer Science, Vol. 9710). Springer, 123-140.

Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh. 2018. Machine Learning-Based
Restart Policy for CDCL SAT Solvers. In International Conference on Theory and Applications of Satisfiability Testing.
Springer, 94-110.

InAls Lynce and JoAril Ouaknine. 2006. Sudoku as a SAT problem.

Panagiotis Manolios and Daron Vroon. 2007. Efficient Circuit to CNF Conversion. In Proceedings of the 10th International
Conference on Theory and Applications of Satisfiability Testing (SAT).

Norbert Manthey, Marijn JH Heule, and Armin Biere. 2012. Automated reencoding of boolean formulas. In Haifa Verification
Conference. Springer, 102-117.

R. Martins, V. Manquinho, and I. Lynce. 2011. Exploiting Cardinality Encodings in Parallel Maximum Satisfiability. In 2011
IEEE 23rd International Conference on Tools with Artificial Intelligence. 313-320.

Y. Matsunaga. 2015. Accelerating SAT-based Boolean matching for heterogeneous FPGAs using one-hot encoding and
CEGAR technique. In The 20th Asia and South Pacific Design Automation Conference. 255-260.

Amit Metodi and Michael Codish. 2012. Compiling finite domain constraints to SAT with BEE. Theory and Practice of Logic
Programming 12, 4-5 (2012), 465-483.

Nysret Musliu. [n.d.]. Applying Machine Learning for Solver Selection in Scheduling: A Case Study. ([n.d.]).

Cuong Nguyen, Hiroaki Yoshida, Mukul Prasad, Indradeep Ghosh, and Koushik Sen. 2015. Generating Succinct Test Cases
Using Don’t Care Analysis. In 2015 IEEE 8th International Conference on Software Testing, Verification and Validation
(ICST). IEEE, 1-10.

Eoin O’Mahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry O’Sullivan. 2008. Using case-based reasoning
in an algorithm portfolio for constraint solving. In Irish conference on artificial intelligence and cognitive science. 210-216.

Uwe Pfeiffer, Tomas Karnagel, and Guido Scheffler. 2013. A Sudoku-Solver for Large Puzzles using SAT. In LPAR-17-short.
short papers for 17th International Conference on Logic for Programming, Artificial intelligence, and Reasoning. (EPiC Series
in Computing, Vol. 13), Andrei Voronkov, Geoff Sutcliffe, Matthias Baaz, and Christian Ferm\"uller (Eds.). EasyChair,
52-57. https://doi.org/10.29007/79mc

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.


https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/2594291.2594315
http://smtlib.cs.uiowa.edu/index.shtml
https://doi.org/10.1145/3276516
https://doi.org/10.1023/A:1006370506164
https://arxiv.org/abs/1909.11830
https://doi.org/10.29007/79mc

SATUNE: Synthesizing Efficient SAT Encoders 146:31

Jussi Rintanen. 2014. Madagascar: Scalable planning with SAT. Proceedings of the 8th International Planning Competition
(IPC-2014) 21 (2014).

Nathan Robinson, Charles Gretton, Duc Nghia Pham, and Abdul Sattar. 2008. A Compact and Efficient SAT Encoding for
Planning.. In ICAPS. 296-303.

Marko Samer and Helmut Veith. 2009. Encoding treewidth into SAT. In International Conference on Theory and Applications
of Satisfiability Testing. Springer, 45-50.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and dynamic
analysis framework for JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
488-498.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing Engine for C. In Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 263-272.

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and Precise Sparse
Value Flow Analysis for Million Lines of Code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Philadelphia, PA, USA). 693-706.

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. 2016. Push-Button Verification of File Systems via
Crash Refinement. In 12th USENIX Symposium on Operating Systems Design and Implementation. 1-16.

Rishabh Singh, Joseph P. Near, Vijar Ganesh, and Martin Rinard. 2009. AvatarSAT: An Auto-Tuning Boolean SAT Solver.
Technical Report MIT-CSAIL-TR-2009-039. Massachusetts Institute of Technology.

Rohit Singh and Armando Solar-Lezama. 2016. SWAPPER: A framework for automatic generation of formula simplifiers
based on conditional rewrite rules. In FMCAD. IEEE, 185-192.

Carsten Sinz. 2005. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In Principles and Practice of
Constraint Programming - CP 2005, Peter van Beek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 827-831.

Naoyuki Tamura, Mutsunori Banbara, and Takehide Soh. 2013. Compiling pseudo-boolean constraints to SAT with order
encoding. In 2013 IEEE 25th International Conference on Tools with Artificial Intelligence. IEEE, 1020-1027.

Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. 2009. Compiling finite linear CSP into SAT.
Constraints 14, 2 (2009), 254-272.

Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. 2011. A compact and efficient SAT-encoding of finite domain
CSP. In International Conference on Theory and Applications of Satisfiability Testing. Springer, 375-376.

Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. 2012. Azucar: A SAT-Based CSP Solver Using Compact Order
Encoding. In Theory and Applications of Satisfiability Testing — SAT 2012, Alessandro Cimatti and Roberto Sebastiani
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 456-462.

Haruto Tanno, Xiaojing Zhang, Takashi Hoshino, and Koushik Sen. 2015. TesMa and CATG: automated test generation
tools for models of enterprise applications. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 2. IEEE, 717-720.

Nils Timm, Stefan Gruner, and Prince Sibanda. 2017. Model Checking of Concurrent Software Systems via Heuristic-Guided
SAT Solving. In International Conference on Fundamentals of Software Engineering. Springer, 244-259.

Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In Tools and Algorithms for the Construction
and Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings. 632-647.

Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT: Checking Axiomatic Specifications of Memory Models. In
Proceedings of the 2010 Conference on Programming Language Design and Implementation. 341-350. http://doi.acm.org/10.
1145/1809028.1806635

Fatih Turkmen, Jerry den Hartog, Silvio Ranise, and Nicola Zannone. 2015. Analysis of XACML policies with SMT. In
International Conference on Principles of Security and Trust. Springer, 115-134.

Peter JM Van Laarhoven and Emile HL Aarts. 1987. Simulated annealing. In Simulated annealing: Theory and applications.
Springer, 7-15.

Joost P. Warners. 1998. A linear-time transformation of linear inequalities into conjunctive normal form. Inform. Process.
Lett. 68, 2 (1998), 63 — 69. https://doi.org/10.1016/S0020-0190(98)00144-6

Tjark Weber. 2005. A SAT-based Sudoku Solver. In LPAR-12, The 12th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, Short Paper Proceedings, Geoff Sutcliffe and Andrei Voronkov (Eds.). 11-15.

TED WINOGRAD and HAMID MAHMOODI. 2009. Programmable Gates Using Hybrid CMOS-STT Design to Prevent IC
Reverse Engineering. (2009).

Haoze Wu. 2017. Improving SAT-solving with Machine Learning. In Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA, 787-788. http://doi.acm.org/10.1145/3017680.
3022464

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.


http://doi.acm.org/10.1145/1809028.1806635
http://doi.acm.org/10.1145/1809028.1806635
https://doi.org/10.1016/S0020-0190(98)00144-6
http://doi.acm.org/10.1145/3017680.3022464
http://doi.acm.org/10.1145/3017680.3022464

146:32 Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky

Yichen Xie and Alex Aiken. 2005. Saturn: A SAT-based tool for bug detection. In International Conference on Computer
Aided Verification. Springer, 139-143.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2008. SATzilla: portfolio-based algorithm selection for SAT.
Journal of artificial intelligence research 32 (2008), 565-606.

Cunxi Yu, Xiangyu Zhang, Duo Liu, Maciej Ciesielski, and Daniel Holcomb. 2017. Incremental SAT-based reverse engineering
of camouflaged logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36, 10 (2017),
1647-1659.

Hantao Zhang, Dapeng Li, and Haiou Shen. 2004. A SAT Based Scheduler for Tournament Schedules.. In SAT.

Neng-Fa Zhou. 2020. Yet Another Comparison of SAT Encodings for the At-Most-K Constraint. arXiv:2005.06274 [cs.LO]

Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang, Guoqing Harry Xu, Linzhang Wang, and
Xuandong Li. 2019. Grapple: A Graph System for Static Finite-State Property Checking of Large-Scale System Code. In
Proceedings of European Computer System Conference.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 146. Publication date: November 2020.


https://arxiv.org/abs/2005.06274

	Abstract
	1 Introduction
	2 Background in SAT Encoding
	3 Motivation
	4 Satune DSL
	5 Overview
	5.1 Synthesizing Encoders
	5.2 Optimization and Encoding Framework

	6 Satune's Candidate Optimizations
	6.1 Existing Optimizations Used by Satune
	6.2 New Optimizations

	7 Encoding
	7.1 Constraint Subgraph
	7.2 Encoding Graph
	7.3 Constructing Constraint Subgraphs
	7.4 CNF Generation
	7.5 Incremental Solving

	8 Tuner Framework
	8.1 Tuner Architecture
	8.2 Tuner Algorithm

	9 Evaluation
	9.1 JMCR
	9.2 SyPet
	9.3 Dirk
	9.4 Hexiom
	9.5 Sudoku
	9.6 Killer Sudoku
	9.7 Deployment Phase

	10 Related Work
	11 Conclusion
	References

