Dynamic Dependence Summaries

VIJAY KRISHNA PALEPU, GUOQING XU, and JAMES A. JONES, University of California,

Irvine

Software engineers construct modern-day software applications by building on existing software libraries
and components that they necessarily do not author themselves. Thus, contemporary software applications
rely heavily on existing standard and third-party libraries for their execution and behavior. As such, effective
runtime analysis of such a software application’s behavior is met with new challenges. To perform dynamic
analysis of a software application, all transitively dependent external libraries must also be monitored and
analyzed at each layer of the software application’s call stack. However, monitoring and analyzing large and
often numerous external libraries may prove to be prohibitively expensive. Moreover, an overabundance of
library-level analyses may obfuscate the details of the actual software application’s dynamic behavior. In
other words, the extensive use of existing libraries by a software application renders the results of its dynamic
analysis both expensive to compute and difficult to understand. We model software component behavior as
dynamically observed data- and control dependencies between inputs and outputs of a software component.
Such data- and control dependencies are monitored at a fine-grain instruction-level and are collected as
dynamic execution traces for software runs. As an approach to address the complexities and expenses
associated with analyzing dynamically observable behavior of software components, we summarize and reuse
the data- and control dependencies between the inputs and outputs of software components. Dynamically
monitored data- and control dependencies, between the inputs and outputs of software components, upon
summarization are called dynamic dependence summaries. Software components, equipped with dynamic
dependence summaries, afford the omission of their exhaustive runtime analysis. Nonetheless, the reuse
of dependence summaries would necessitate the abstraction of any concrete runtime information enclosed
within the summary, thus potentially causing a loss in the information modeled by the dependence summary.
Therefore, benefits to the efficiency of dynamic analyses that use such summarization may be afforded with
losses of accuracy. As such, we evaluate the potential accuracy loss and the potential performance gain with
the use of dynamic dependence summaries. Our results show, on average, a 13x speedup with the use of
dynamic dependence summaries, with an accuracy of 90% in a real-world software engineering task.

CCS Concepts: ® Software and its engineering — Software testing and debugging;
Additional Key Words and Phrases: Dynamic analysis, dependence analysis, summaries, dynamic slicing

ACM Reference Format:

Vijay Krishna Palepu, Guoqing Xu, and James A. Jones. 2017. Dynamic dependence summaries. ACM Trans.
Softw. Eng. Methodol. 25, 4, Article 30 (January 2017), 41 pages.

DOI: http://dx.doi.org/10.1145/2968444

This work is supported by the National Science Foundation under grants CCF-1116943, CAREER CCF-
1350837, CCR-0325197, CNS-1321179, CCF-140982, and CNS-1613023, and by the ONR under grants
N00014-14-1-0549 and N00014-16-1-2913.

Authors’ address: V. K. Palepu, 5243 Bren Hall, UC Irvine, Irvine CA 92697-3440; email: vpalepu@uci.edu;
G. Xu, 3212 Bren Hall, UC Irvine, Irvine CA 92697-3440; email: guoqingx@ics.uci.edu; J. A. Jones, 5214 Bren
Hall, UC Irvine, Irvine CA 92697-3440; email: jajones@uci.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2017 ACM 1049-331X/2017/01-ART30 $15.00

DOI: http://dx.doi.org/10.1145/2968444

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



http://dx.doi.org/10.1145/2968444
http://dx.doi.org/10.1145/2968444

30:2 V. K. Palepu et al.

1. INTRODUCTION

As the needs of society are increasingly accomplished with software systems, and those
software systems become more complex and interrelated, software developers are, to an
increasing extent, building components of software that interact with and build upon
existing software components. Rather than writing all needed functionality from the
low-level operating system to the high-level client interfaces, developers regularly use
features that were developed by others, provided by components such as APIs, libraries,
middleware, and infrastructures. Today’s reality is a scenario that was predicted in the
late 1960s by Mcllroy [1968].

Prior research has identified some of the challenges that can be faced when depending
on and assembling existing components, often called components, off-the-shelf (COTS).
One common challenge to reusing third-party components is that analysis tasks become
increasingly expensive as the extent and depth of component reuse increases (e.g., layer
upon layer of transitive component reuse). To properly analyze the program, the effects
of the underlying infrastructure and all of its layered components must be understood.
As such, an analysis that is complete and exhaustive must analyze all transitively
underlying components to determine how they affect the program under test.

Orso et al. [2001] discussed some of the challenges of performing analysis in the pres-
ence of external components and proposed abstract representations (i.e.,metadata) to
provide information about component functionality. Later, Orso et al. [2007] extended
these ideas for component metadata by specifying a concrete metadata scheme to enable
regression test selection in the presence of components. Although Orso’s solution for
regression test selection provides a powerful solution for the specific task of regression
test selection, the challenges of performing analysis in the presence of external com-
ponents extend to many other (more heavyweight) dynamic software analysis tasks.
For example, dynamic dependence analysis necessitates the tracing of data and control
flows through all encountered libraries and components during the whole execution.
Frequent profiling of methods in these large, and often numerous, libraries and compo-
nents contributes extensively to the already heavy runtime costs, making the analysis
often prohibitively expensive even for modestly sized software applications.

An important approach to reduce the costs of program analyses and provide such
metadata is to summarize the behaviors of these components. Once generated, compo-
nent summaries can be reused, or applied, during future executions of those compo-
nents to improve the efficiency for a given program analysis. Indeed, the static program
analysis community has extensively studied summary-based program analysis, with
the development of various techniques that summarize procedural effects to achieve
modular and efficient program analyses techniques (e.g., Salcianu and Rinard [2005],
Rountev et al. [2008], Xu et al. [2009], Yorsh et al. [2008], and Dillig et al. [2011]). How-
ever, as shown by prior research (e.g., Korel and Laski [1990] and Zhang and Gupta
[2004a]), static analysis can lead to overly conservative modeling of heap data effects,
thus resulting in potential losses in accuracy in the underlying dynamic analysis.

In this work, with dynamic dependence analysis as an example, we dynamically
compute dependence summary metadata that will characterize and capture external
effects of reused components for a modern object-oriented language, where we treat
each method as a component unto itself. We compute such summaries for methods that
are ancillary to the development task at hand. Examples of such ancillary methods
may include methods that are a part of standard libraries, external third-party code
modules, or sections of a large software system that are not under test. Such dynamic
dependence summary metadata can then be reused to model the external effects of
such methods during their subsequent executions. (Note: The demarcation of methods
as ancillary for a development task can be calibrated as needed by the developer.)

Dependence summaries are computed for a method by dynamically observing the
control- and data dependencies within some representative executions of the method,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:3

where each execution of the method results in a distinct dynamic dependence summary.
Such a set of dynamic dependence summaries, for a given method, are then abstracted
to remove any runtime data that is specific to their respective executions. Abstraction
of dynamic dependence summaries partly enables the reuse of the summaries for mod-
eling the external effects of subsequent executions of the method. That said, different
executions of the same method may exhibit different external heap data effects (i.e.,
due to different control flow paths), thus potentially resulting in differences in the dif-
ferent abstracted dynamic dependence summaries for the same method. To generically
model the varying external effects of such a method, the abstracted dynamic summaries
are aggregated into a single dynamic dependence summary. The resulting aggregated
dynamic dependence summary for a given method is used as a generic model of the
behavior of any subsequent execution of the method in question.

Such a summary-based approach to dynamic dependence analysis leads to improved
efficiency through reductions in execution trace sizes, trace-recording times, and de-
pendence analysis times. Dynamic dependence analysis forms the basis for a variety
of dynamic techniques, such as dynamic program slicing [Agrawal and Horgan 1990],
bloat analysis [Xu et al. 2010], tainting-based information flow analysis [Newsome
and Song 2005], and potential parallelism detection [Holewinski et al. 2012]. Thus,
such a summary-based approach stands to improve the efficiency (in space and time)
for all such techniques that rely on dynamic dependence analysis. Moreover, dynamic
dependence summaries, due to their reliance on dynamic information, stand to model
the external effects of dynamic dispatch, accesses of individual array elements, and
dynamically observed control flow with potentially substantial levels of precision.

Such potential gains in efficiency, due to creating and using dynamic dependence
summaries, are met with two potential sources of inaccuracies. First, a reliance on
dynamic data inherently renders our approach and the resulting dynamic dependence
summaries unsound, as a given set of executions of a method may not exhibit all
possible external heap data effects. Second, the aggregation of multiple dependence
summaries for a given method leads to a generic model of the external effects of a
method’s invocation. Such a generic model of a method’s external effects, when used
to describe the external effects of a specific invocation of the method, may introduce
spurious dependence relationships. As such, an aggregate dynamic dependence sum-
mary introduces imprecisions within the dependence summary of a single invocation
of a given method.

Given the trade-offs between efficiency and accuracy while using dynamic depen-
dence summaries, an assessment of the applicability of using such summaries is nec-
essary. The applicability of using such summaries is thus evaluated by studying the
trade-off between efficiency and accuracy. We evaluated the accuracy of dynamic de-
pendence summaries when modeling the future invocations of a given method, as a con-
sequence of using dynamically observed information to construct dynamic dependence
summaries and the aggregation step in our approach to build dependence summaries.
To carry out such an evaluation, we implemented our summary-based dynamic depen-
dence analysis and carried out empirical experimentation. We additionally studied the
performance gains afforded by a summary-based approach as a result of relying on
summarized components during the execution of the software. The first experiment in
our evaluation investigates the extent to which eight real-world software systems rely
on external components during the execution of the software systems. A second ex-
periment examines the impact of using summarized metadata on actual performance
costs, as against performing exhaustive analysis through all external components. The
third experiment in our evaluation investigates the extent of accuracy losses owing to
the process of creating summarized dependence metadata, with a purpose of reusing
such metadata. We finally present a case study that assesses the impact of using such
summarized metadata on dynamic slicing—a runtime technique that relies on dynamic

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:4 V. K. Palepu et al.

Execution Running Time 70,000 instructions
Il

executed;

1 ' i
T
20ms 250ms I15ms 200ms ! 18ms

100MB of
execution traces
Software
_\Metl]ods Invoke App;?::ation
" -calic-. = ] ICaII
=N P = e Depth

TN - — Methods el ._-"'. External
e el Return T Library

1 million instructions
executed;
10GB of execution
traces

Fig. 1. Conceptual illustration of the profiling costs of library and application code.

dependence analysis. The results of our evaluation show an average speed up of 13x
in the favor of a summary-based approach, with an accuracy of 90% in a real-world
software engineering task.

This article expands on our previous conference paper [Palepu et al. 2013] in the
following ways: (a) a more complete summarization analysis is now performed that
models dynamic control dependencies in addition to dynamic data dependencies; (b) an
algorithm for the aggregation of dynamic dependence summaries is presented for the
first time; (c) a new experiment that assesses the accuracies of dynamic dependent
summaries, independent of any runtime client analyses is presented for the first time;
and (d) experimental data for two additional subjects is included, lending greater
evidence of generalizability.

The main contributions of this work are the following:

(1) Definition of the technique for producing summarized dependence analysis results
for software components, which can enable improved efficiency of subsequent anal-
ysis tasks.

(2) Exposition of the process by which component analysis results are captured, en-
coded as dynamic dependence summaries, and reused for future analysis tasks.

(3) Evaluations of the impact of utilizing such summary metadata for dynamic analy-
ses in terms of both accuracy and efficiency.

2. MOTIVATION

Profiling software executions is necessary to analyze dynamic dependencies. As such,
our motivation for summarizing dependencies stems from the overwhelming and po-
tentially prohibitive costs of profiling executions of standard and third-party libraries
that support a software application’s execution. In this section, we clarify this idea with
the help of conceptual illustrations to motivate our work. To further support this idea,
we present the results of a pilot study with real-world software subjects that illustrate
the scale at which software libraries are typically used.

Software applications frequently execute methods from standard and third-party
libraries, resulting in significant runtime spent in the execution of library code. To
highlight this idea, Figure 1 pictorially illustrates four facets of an application’s ex-
ecution: (a) the chronology of executing instructions, progressing from left to right;
(b) successive method invocations with a deepening call stack, progressing from top
to bottom; (c) successive returns of method invocations, progressing from bottom to
top; and (d) a colored distinction between the execution of application code (in blue)
and library code (in orange). The application and library code are also separated by a
threshold in the vertical call depth of the method call stack, with the blue application
code above the threshold and the orange library code below.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:5

—~ T

—_—
[I\/Iﬂll II)IIIIIII{IIIIII yiiunm...n
Executing Executing Dependencies Between
Application Library Application and Library Instructions
Instruction Instruction

Executing Instructions and Their Dependencies for a Library Method

(a) A conceptual illustration of the influence and dependence of executing instructions in a library
method’s invocation (in orange) on the execution of application code (in blue)

Summarized Method Dependencies

Instruction Invoking the Library Method Executing Application Instruction

Dependence Reapplication of Saving on runtime However, summaries
summaries can be summaries saves profiling costs results may not perfectly
reapplied on future on runtime in smaller execution model future method
library invocations. profiling costs. traces. invocations.

(b) Summarized method dependencies for a single execution of a library method

Fig. 2. Conceptual illustration of dynamic dependence summaries.

The wide and deep valleys of orange in Figure 1 that depict library code execution
pictorially illustrate the significant execution time spent in executing library code
with extensive and deep call stacks compared to the brief sections of blue that depict
execution of application code. Although such standard and third-party libraries are
ancillary to the actual implementation and development of a software application,
these external libraries exert substantial influence on the eventual executions of the
software application. For instance, consider the put and get methods of the HashMap
collection from the Java standard library. Successive calls to the HashMap API can be
used to store (put) and retrieve (get) data at various points in an execution using a
key value, thus creating dynamic dependencies between the key and the data being
stored. Entirely ignoring the effects of invoking the HashMap methods will clearly result
in missed dependencies in a dynamic dependence graph. That said, applications often
rely on libraries heavily during executions. As a result, profiling the execution of library
code becomes an important and expensive facet of runtime analysis of software systems.
This notion of a runtime dependence on external libraries is illustrated in Figure 2(a).

Figure 2(a) shows a “zoomed-in” illustration of the executing instructions within a
library method call invoked from within the application code. The illustration shows
how executing instructions are data and control dependent on instructions executed
previously. In particular, the illustration depicts how executing library instructions
depends on application instructions, and in turn executing application instructions
are dependent on the execution of library instructions. Dependencies between the

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:6 V. K. Palepu et al.

execution of library and application instructions necessitate the runtime analysis of
library instructions to comprehensively analyze the software application’s executions.
Moreover, such runtime analysis of library instructions cannot be ignored even as they
substantially contribute to an application’s runtime as depicted in Figure 1.

The goal of exhaustively profiling library invocations is to monitor their effects on the
execution of the software application. As such, a natural idea to reduce the cost for ana-
lyzing library method invocations would be to summarize their effects. The summaries
of the effects of library method invocations can then be reused for future library method
invocations to model their influence on the software application’s execution—without
exhaustively profiling the library method invocations. This notion is illustrated in Fig-
ure 2(b), where instead of depicting all executed instructions of the library method
invocation and their dependencies, like in Figure 2(a), only the summarized method
dependencies and the execution of the application’s instructions are shown.

Unsoundness and imprecision. It is important to note that the summary-based dy-
namic dependence analysis can introduce both unsoundness and imprecision while
modeling dependencies between the inputs and outputs of future method invocations.
On one hand, the quality of a method’s summary relies on the coverage of the tests used
to train the summary. Thus, a summary may miss certain dependence relationships due
to the lack of test cases. On the other hand, the method summary aggregates informa-
tion from multiple executions of the method. Thus, the application of the summary for
a specific invocation may generate additional spurious dependence relationships that
would not have been added in a regular dependence analysis. However, the original
motivation of this work is to bring down the overwhelming and often prohibitive costs
of execution profiling for dynamic dependence analysis. As such, the goal of this work
with dynamic dependence summaries, despite their obvious potential for introducing
inaccuracies, is to investigate this trade-off to determine if and when the inaccura-
cies can be tolerated to benefit runtime efficiency and thus make dynamic dependence
analyses feasible.

Creating summaries statically. Further, it is worth noting that although this work
looks at dynamically creating dependence summaries, such summaries can indeed be
created statically. However, static analysis techniques are potentially conservative in
modeling heap data effects, as suggested by prior research (e.g., Korel and Laski [1990]
and Zhang and Gupta [2004a]). As such, method summaries that rely only on static
analysis may render overly conservative approximations of runtime heap data effects,
as in the cases of dynamic dispatch of polymorphic methods, access of individual array
elements, or dynamically observed control flow. For example, method summaries built
from static analysis are often imprecise in distinguishing among objects of different
subtypes that share a common supertype, making it particularly difficult for use in a
dynamic analysis. Additionally, statically built summaries are only possible with access
to the method binaries, prior to their execution, which may not always be possible, such
as in cases of metaprogramming where the components are loaded dynamically, from
remote URLs through custom, user-defined loaders, or in situations where the binaries
are rewritten on-the-fly (i.e., during the execution of the program).

Pilot Study. The preceding discussion was guided by conceptual illustrations to
describe the potentially prohibitive expense associated with runtime profiling of exter-
nal components for dynamic dependence analysis. To study this expense of analyzing
software executions, we carried out a pilot study. As a part of this pilot study, we inves-
tigated the number of runtime instructions! that get executed in a typical execution of

1A “runtime instruction” or an “instruction instance” is a dynamic instantiation of a static program instruc-
tion. A single static program instruction can be executed multiple times and can lead to multiple runtime
instructions.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:7

real-world, large-scale software systems and would need to be recorded and analyzed.
Additionally, to investigate how summarizing effects of external components can assist
with the expenses of dynamic analysis, we also studied the number of instructions
executed from within the Java standard library (i.e., rt.jar), which is essentially an
external library. The following four real world, large-scale subjects were used for this
pilot study: BLoaT (>41KLOCS), JytHoN (>245KL.0OCs), FOP (>102KLOCs), and PMD
(>60 KLOCs). These large-scale subjects were obtained from the DaCaro performance
benchmarks [Blackburn et al. 2006].

The results of our pilot study suggest that the executions of the large-scale soft-
ware systems that we selected are composed of 563 x 10® runtime instructions on aver-
age, with the breakdown of runtime instructions for each software system as follows:
BLoAT (391 x10° runtime instructions), JyraoN (1,734 x 10® runtime instructions), FOP
(110x10° runtime instructions), and PMD (18 x 10® runtime instructions). A reasonably
efficient scheme to record the execution of each runtime instruction in an execution
trace would approximately require 160 bits or 20 bytes of memory—32 bits each to
record the runtime instruction’s thread ID, owner class, owner method, bytecode offset,
and operand value.

Given this scheme and these subjects, an average execution of these benchmarks
requires 10GB of disk storage to record an execution trace of nearly 563x10° runtime
instructions. Apart from storing executions at such scale, analyzing them would also
be a significant challenge unto itself.

When counting only those runtime instructions that were executed from the Java
standard library (i.e., rt,jar), more than 490.75x10°® runtime instructions were exe-
cuted, with the breakdown for each software system as follows: BLoAT (239x10° run-
time instructions), JYrHoN (1,658x10° runtime instructions), FOP (57x10° runtime
instructions), and PMD (9x10° runtime instructions).

By summarizing only the lowest-level library (rt.jar), on average, nearly 65% of the
costs associated with recording and analyzing runtime instructions may be eliminated.
Such reductions are significant and can be made possible for dynamic dependence anal-
yses by appropriately summarizing the effects of library-specific runtime instructions.
Further, such projected reductions in space requirements were achieved when the Java
standard library was treated as the sole external component for all executions. Such
software applications often use several external libraries, thus presenting further av-
enues for summarization and potential cost savings.

3. OVERVIEW

We now present a high-level overview of our approach by the means of four principal
challenges involved in computing and using dynamic dependence summaries. We also
provide an overview of our resolutions for each challenge presented in this section. We
discuss these challenges in the context of a simple software program and its execution
that we use as a running example henceforth in this article. With such challenges as
background, along with informal descriptions of our approach to resolve those chal-
lenges, we present the formal concepts that define dynamic dependence summaries in
Section 4. In addition, we devote Section 5 to describe how such dynamic dependence
summaries for method invocations can be used for a summary-based dynamic depen-
dence analysis. We start by describing the running example, followed by discussions
for the following principle challenges: (1) defining dependence summaries with objects,
(2) abstracting concrete summaries, (3) accounting for varying method behavior, and
(4) reusing dynamic dependence summaries.

Running Example. Figure 3(a) shows the implementation of the main application
(lines 01 through 13) and the library IntList that supports the storage and retrieval

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:8 V. K. Palepu et al.

(A) CODE EXAMPLE

Main Application code Integer List Library code

01 void main() { 14 class IntList { 27 this.size = t;
02 IntList 1 = new IntList(); 15 int[] arr; 28 }

03 int num = 2; 16 int size; 29 int get(int i){

04 int j = 1; 17 IntList() { 30 int[] a = this.arr;
05 if (3 <= num) { 18 int[] tmp = new int[100]; 31 int ret = a[i];
06 1.add(j); 19 this.arr = tmp; 32 return ret;

o7 J ++; 20 this.size = 0; 33

08 goto 05; 21 } 34 }

09 } 22 void add(int i) {

10 23 int t = this.size;

11 int s = 0; 24 int[] a = this.arr;

12 int r = 1.get(s); 25 aft] = i;

13 } 26 t=t+1;

(B) EXECUTION TRACE (WITH DYNAMIC DEPENDENCIES) (C) EXECUTION TRACE (WITH SUMMARIZED DYNAMIC DEPENDENCIES)
n 01" void main() {
02'i Intlist 1 = new IntList();
ClS1 int[] tmp = new int[100];
19* this.arr = tmp;
20" this.size = 0;
02'r IntlList 1 = new IntList();
03! int num = 2;
e4' int j = 1;
05" if (j < num) {
7 e6'i 1.add(j);
=221 void add(int i) {
23" int t = this.size;

2, It e thisame

25! alt] = i;

e t=t+1;
N

n 01" void main() {
02'i Intlist 1 = new IntList();

02'r IntlList 1
03" int num =
e4' int j = 1;
05" if (j < num) {
06'i 1.add(j);

= new IntList();
2:

Execution Time
Execution Time

27 this.size = t;

Y
12'i int r = l.get(s);
29" int get(int i){

30? int[] a = this.%

31! int ret = a[i];
gﬂl return ret;
12'r int r = l.get(s); 12'r int r = l.get(s);

DEPENDENCE NOTATIONS
<source>— — — — — —D> <target> <source> ———————————> <target> <source> =———————————{> <target>
“Control Depends On” “Data Depends On” “Summary Depends On”

Fig. 3. Example program: code and execution trace (with dynamic dependencies).

of integer values (lines 14 through 34) in the form of a list. The main application
iteratively adds integer values (lines 03 through 9) into the IntList object created in
line 02. After the addition of integer values, lines 11 and 12 retrieve an integer value
from the IntList object. The IntList library supports the creation of a new list of
integers (lines 17 through 21), the addition of an integer value at the end of the integer
list (lines 22 through 28), and the retrieval of an integer value at a designated position
in the integer list (lines 29 through 33).

Example execution trace. Figure 3(b) shows the execution trace of a single run of the
application, along with the use of the IntList library. Each line in the trace is an event
depicting the execution of a single source code statement and is represented by the
source code statement itself along with the line number of the source code statement,
annotated with an integer i representing the i** execution of the statement. (Note: A
statement can be executed multiple times in a single program execution.) The execution
starts with the invocation of the main method, as shown in the first line of the execution
trace, and progresses “downward” with every succeeding line in the trace, as shown in

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:9

Figure 3. Execution events in the trace that depict invocation? of library methods are
annotated with the alphabet “i” (e.g., [067i1.2dda(3);]). Similarly, the completion of library
methods’ execution, after their return, is depicted with the alphabetical annotation
“r” (e.g., [06'ir.add(j);)). Additionally, execution of methods and instructions within the
IntList library are portrayed with textual indentations in the execution trace to better
represent the execution of library instructions.

Furthermore, dotted and solid edges with triangular arrowheads are used to por-
tray control and data dependencies, respectively, between different execution events in
Figure 3(b). The dependence edges are drawn starting from the dependent execution
event, with the edges ending (with the arrowhead) at the dependee execution event. For
instance, the solid edge —> implies that execution event is data dependent
on execution event [1g]].

Challenge 1: Defining Dependence Summaries with Objects. Horwitz et al.
[1990] pioneered summary-based dependence analysis, in which a summary edge of
a procedure relates an input parameter i with an output parameter o, depicting a
possible (direct or transitive) dependence of the computation of the value in output o
on the value in input ;. Such summary edges between a procedure’s inputs and outputs
abstracts away intermediate dependence relationships within the procedure.

However, modern object-oriented languages, such as Java, impose new challenges in
modeling such procedure inputs and outputs and the relationships between them that
existing techniques do not address. The notion of inputs and outputs for a method in an
object-oriented language, like Java, is much broader than those discussed in Horwitz
et al. [1990], because a method can access not only its arguments but potentially all
objects reachable from the arguments.

In this work specifically, for a single instance of a method invocation, inputs and
outputs are considered as a set of (heap or stack) locations where

(1) input locations exist before a given method invocation and can be read during the
method invocation, and

(2) output locations can be written to during the method’s invocation and are accessible
after the completion of the method invocation.

Example. Figure 4 illustrates the dynamic dependence summary for the method
invocation 067 1.ada(5);-—the method invocation’s inputs, outputs, and the dynamic de-
pendencies between them. Figure 4 shows the input and output sets for the method
invocation on the left- and right-hand sides, respectively. The input set contains the
heap or stack locations that served as the method invocation’s inputs. Similarly, the
output set contains heap or stack locations that were modified during the method in-
vocation and are available as its outputs. Arrows going from the output set to input
set depict the dependencies (direct or transitive) between the inputs and outputs. Fur-
ther, the owner-to-memaber relations between the different locations within the input
or output sets are also depicted graphically with an arrow going from the owner object
to the member. For instance, the relation 0% — size shows that size is a member of the
owner object 0°2. Such owner-to-member relations are also represented textually with
a dot separator (.) between the owner and member (e.g., 02 size).

Now, the invocation for the method void add(int i) accepts as inputs
the integer value j and receiver object [ and does not explicitly return any value.
However, a closer inspection suggests that the invocation results in the

21n this work, unless mentioned otherwise, a “method invocation” or “invocation” refers to a specific instance
in a series of runtime invocations of a single method within a program execution.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:10 V. K. Palepu et al.

06: 1l.add(3)

Input Set Output Set
(Before line 06) (After line 06)

i <—— o®arr[0]

0%size <—— o%size
——> owner-object-to-member-field edge
—> dynamic dependence edge

Fig. 4. Concrete dynamic dependence summary for the runtime invocation of the add method, as shown in
the example program execution trace in Figure 3.

modification of the first element in the arr data structure (denoted as 0°2.arr[0] in
Figure 4), and it updates the value in the field, 0°%.size. As such, the array element
(0%2.arr[0]) and the updated field (0°2.size) are available as outputs after the return of
the method. Moreover, the initial value of the field 0°2.size served as an input toward
the field’s update during the method invocation, even though it was not passed as
an actual argument to the method. Essentially, the inputs and outputs for a specific
method invocation are not restricted to the method’s actual arguments or a possible
return value. A method’s dependence summary should model such method inputs and
outputs, along with the dependencies between them, using the method invocation’s
constituent data and control flow.

Critically, each location in the input and output sets (e.g., size), where necessary,
is modeled using a combination of a root object (e.g., 0°2) and an access path that
specifies how the location is accessed from the parameter (e.g., 0°2.size) through a
series of member dereferences. Such modeling of inputs and outputs, and the dynamic
dependencies therein, would yield effective applications of dependence summaries for
downstream client analyses. The concepts of inputs, outputs, and access paths are
formally defined in Section 4.

Challenge 2: Abstracting Concrete Summaries. Figure 4 depicts the inputs, out-
puts, and the dependencies between them for a specific method invocation within a
program execution. We call such a model of dependencies that is tied to a specific
method invocation a concrete dynamic dependence summary, or simply concrete sum-
mary, as formally defined in Section 4. For example, the object 0°? is assigned to the
concrete value [ in the concrete dependence summary, as shown in Figure 4. Since the
value [ is tied to the specific method invocation [067:1.24a(j);], it might not be valid for
a different invocation of the method void add(int i). Hence, it follows that such con-
crete information in a dependence summary that is specific to a single invocation of a

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:11

Abstract Dependence summary
(modeling array element access)

@6: 1.add(j)

Abstract Dependence summary
06: 1l.add(j)

Input Set Output Set

(Before line 06) (After line 06) Input Set Output Set

(Before line 06) (After line 06)

p0.size <+——— pO.size
p0 <+—— pO.arr[0] p0.size <+ pO0.size
p1 <+—— pO.arr[p0.arr.index]

p0.size <+——— p0.arr.index

——> owner-object-to-member-field edge = —> dynamic dependence edge

Fig. 5. Abstract dynamic dependence summaries, with and without modeling array element access, for the
runtime invocation of add method at line 06, as shown in the example program execution in Figure 3.

given method prevents us from reusing or applying the summary for other invocations
of the method in question.

To enable the reuse of a concrete summary, the information tied to a specific method
invocation should be replaced with abstract information that may be applicable to all
possible invocations of the method. In turn, the substitute abstract information should
allow translation back to the concrete information that is specific to other invocations
of the given method. In other words, the abstraction of concrete summaries should, in
part, allow application of a method summary for all invocations of the method instead
of specific invocations.

Abstraction of method summaries is performed in this work by using symbolic names
for method arguments. As illustrated in Figure 4, the actual arguments for the method-
invocation [06"i1.add(3);, at line 02, are the concrete object / and the concrete variable j.
Upon abstraction of the concrete dynamic dependence summary for the given method
invocation, the concrete object [ and the concrete variable j are replaced by symbolic
names py and p;, respectively. As depicted in Figure 5(a), the final set of abstract
summary edges use the symbolic names py and p; instead of their counterparts in the
concrete summary.

Challenge 2.1: Abstracting Concrete Array Accesses. Precise handling of array ac-
cesses can be critically important in the dependence analysis of method invocations
within software systems. When an abstract summary involving an array access is ap-
plied at a method invocation, we wish to understand precisely which array element
is used or defined inside the method execution. Without such information, spurious
dependence relationships may be generated—any data retrieved from an array would
depend on any data added into the array. Precise handling of array accesses is chal-
lenging because the index used to access the array is not projected as an output of the
method, and thus no summary will contain its dependence information.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:12 V. K. Palepu et al.

To address this problem, we create a special symbolic name for each array index, as
shown in Figure 5(b). If the accessed array is an input or output of the method, the index
used to access the array is considered a (special) output (as shown in Figure 5(b)), and
thus the transitive dependence relationships leading to the computation of the index
would be included in the summary. If the index is a constant value (i.e., its computation
does not depend on any method input), this constant value is recorded in the summary.
In our example, index ¢ used in line 23 of Figure 3(a) is abstracted by a symbolic
name, pg.arr.index, which is dependent on the symbolic location py.size, as portrayed
in Figure 5(b). When the abstract summary is applied, or reused, for a future invocation
of the same method, we will be able to obtain the run-time value of py.size (before an
invocation to void add(int i)) and identify the array element that is accessed during
the invocation.

Challenge 3: Accounting for Varying Method Behavior. A set of concrete sum-
maries for a given method (e.g., void add(int i)) essentially represents the behavior
of as many individual invocations of the method in question. As such, the abstraction
of such a set of concrete summaries will result in an equal number of abstract dynamic
dependence summaries—one abstract dynamic dependence summary for one specific
invocation of the method in question. If all abstract dynamic dependence summaries
for the given method model the same set of abstract inputs, abstract outputs, and the
dynamic dependencies between those abstract inputs and outputs, then it is safe to say
that the method exhibits similar external heap data effects, or what we call method be-
havior, for each of its different invocations. In other words, if all invocations of a given
method result in the same abstract dynamic dependence summary, then the behavior
of any invocation of the method can be represented with that single abstract dynamic
dependence summary.

The challenge arises when different invocations of a given method exhibit different
external heap data effects, thus resulting in different abstract summaries, such as
differing sets of abstract inputs, abstract outputs, and dependence relations between
such inputs and outputs. The challenge is to accurately model the behavior of any
subsequent invocation of the given method by selecting a set of abstract inputs, abstract
outputs, and dependencies between the inputs and outputs from a divergent set of
abstract summaries that represent varying heap data effects of dynamically observed
method invocations. In other words, the resultant dynamic dependence summary for
a method should be able to model the correct set of heap data effects (as dynamic
dependencies between inputs and outputs) of any invocation of the method, in general.

Dynamic dependence summaries should account for variations in method invocations
if they are to be amenable for reuse, for any subsequent invocation of the given method.
Variations in external heap data effects for different invocations are observed under
two broad circumstances that we discuss in the following.

Challenge 3.1: Accounting for Polymorphic Methods. Different method invocations
for a given method may accept objects of different types that share a common super-
type as arguments. Although these objects share a common supertype, their fields can
differ significantly, or they might result in the execution of entirely different method
implementations, as in the event of polymorphism, resulting in different external heap
data effects, and thus abstract summaries between different invocations.

We overcome this problem by additionally recording the dynamically observed type
information of each input argument with the symbolic name representing the param-
eter. This enables the accurate modeling of the variances in method behavior due to
differing input argument types. Before a summary edge is made concrete (during the
dependence analysis), we first check whether the recorded type in the edge matches
the type of its corresponding actual parameter in the current execution and only apply
those summary edges that match.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:13

Challenge 3.2: Accounting for Divergent Control Flow. A similar problem arises
when different control flow paths are followed across different invocations of the same
method, even with the same type(s) of input argument(s). It is conceivable that the
resulting external heap data effects also vary from one invocation to another for such
methods, thus resulting in different abstract summaries for the same method.

In this work, abstract summaries from different method invocations that share the
common set of dynamically observed argument-types for a given method are aggregated
into a single overarching summary that we refer to as an aggregated abstract dynamic
dependence summary, or simply an aggregated summary. An aggregated summary
is created by simply performing set-union operations on the sets of abstract inputs,
abstract outputs, and the dependencies (between such inputs and outputs) from the
different abstract summaries that are being aggregated. Such an aggregated summary
serves as a generic model of the external heap data effects for any of the method’s
invocations that share the same dynamically observed argument types.

Challenge 4: Reusing Dynamic Dependence Summaries. An abstract dynamic
dependence summary represents a symbolic model of the heap data effects that are
a result of invoking a particular method in question. However, to be able to save
subsequent costs of analyzing the effects of such methods dynamically, the abstract
summary must be made concrete. In other words, the symbolic information in an ab-
stract summary must be substituted with runtime or concrete information to enable
the modeling of specific invocations of the given method, thus going beyond a generic
model of the method’s behavior. However, even such a concrete model of heap data
effects of a specific method invocation does not represent the dependencies between
those instructions that influence or depend on the method invocation. To be able to
use dynamic dependence summaries (concrete or abstract) toward modeling depen-
dencies between actual runtime instructions, it is important to transform the heap
data effects, which are essentially dependencies between the inputs and outputs of a
method invocation, into dependencies between runtime instructions that define and
use a method invocation’s inputs and outputs, respectively. We refer to such reuse of a
method’s dynamic dependence summary as summary application.

Summary application is carried out in two steps. First, symbolic names in a method
summary’s input and output sets are substituted or concretized with their respective
concrete (heap or stack) locations at a method invocation. Such concrete information
in the summary forms the actual (transitive or direct) dependence relationships be-
tween the method invocation’s actual inputs and outputs. Second, the dependencies
between the inputs and outputs of a method invocation are then used to derive run-
time dependencies between instructions that define or use those inputs and outputs. If
a specific output (location) of a method invocation is dependent on an input (location)
to the method invocation, we then determine that any runtime instruction that uses
the value from the output is dynamically dependent on any instruction that defines
the value in input to the method invocation.

Example. To better illustrate the idea of deriving dependencies between runtime
instructions from a method invocation’s dependence summary, consider Figure 6. The
figure depicts an execution trace for a sample program, both of which are presented
earlier in Figure 3(a) and (b). Each line in the execution trace shows the execution
of an individual program instruction that we call a runtime instruction or an in-
struction execution event.® The progress of the execution is denoted by a downward
arrow on the right that depicts the execution time. In addition, Figure 6 also portrays

3Note: A single program instruction can be executed multiple times and can lead to multiple instruction
execution events. For example, program instruction results in two events:
and &7 3% G < mm]

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:14 V. K. Palepu et al.

EXECUTION TRACE (WITH SUMMARIZED HEAP DATA EFFECTS)

INSTRUCTION EXECUTION EVENTS SNAPSHOTS OF RUNTIME MEMORY
_ 1 . .

61 void main() { ) 1.add(3) input set

02°1 IntList 1 = new IntList(); P T I mTEaes |

18! int[] tmp = new int[100]; :

19* this.arr = tmp; :

20" this.size = 0; !

02'r IntList 1 = new IntList();
03" int num = 2;

04" int j = 1;
05" if (j < num) {
061 1.add(j);
22¢ void add(int i) {

Execution Time

|
|
23! int t = this.size; | i
24 int[] a = this.arr; ’ !
25t alt] = i; |
26" t=1t+1; ‘ L
27" this.size = t;
Summarized 06'r 1.add(j);
Dynamic 07" Jj ++;

Dependence @8 goto ©5; | -4 rETm2l T :
05° if (j < num) {

11" int s = 0;4/3
12'i int r = 1.

= 1l.get(s);x< = _F __o__ -_ 9 __=__
29! int get(int i){
30" int[] a = this.arr; ____1.get(s)outputset
31! int ret = a[i]; !
32! return ret; |
12'r int po= 1.get(s E

ARROW NOTATIONS

Dependencies between <source > <target <source B <target

instruction execution event event>  upata Depends On” event> eVent> «summary DependsOn”  ©VeNt>

. <source <target <source <target
Rela?'ons between . memory ———————————————» memory memory ——————————————————@ memory
runtime memory locations location> “Depends On” location> location> “Same as” location>

. . <method <method <method <method
Notations for passing method .

ts and return value argument—— > invoke return —————————— D> retum

argumen location>  “Data Depends On” event> event> “Data Depends on” location>

Fig. 6. Example program execution trace with summarized heap data effects (i.e., dynamic dependence
summaries).

snapshots of the execution’s memory on the right-hand side of the execution trace,
taken at four different moments during the progress of the execution. These four snap-
shots of memory depict the inputs and outputs of the individual invocation of two
methods: 1.add(j) and 1.get(s). As such, these snapshots show the inputs to the
invocation events (i.e., [067:1.add(j);] and [127iint r = 1.get(s);)) and the outputs of the in-
vocations just after their return events (i.e., [06' 7 1.add(j);] and [12Trint r = 1.get(s);)). For
instance, the snapshot showing the inputs to the invocation event [06";1.244(3);] shows
the input arguments j and (the receiver object) 1. In addition, the memory locations
accessible from 1 (i.e., the field size) and the field array arr (along with arr’s elements)
are also depicted with a simple arrow going from 1 to its members (e.g., 1 — size). In

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:15

addition to showing the inputs and outputs to a method invocation, we also show how
its outputs are dependent on the inputs with an arrow going from a location in the
output set to a location in the input set. The arrow used to show such a dependency
has a black-filled triangular arrowhead (e.g., arr [0] —» j). The execution trace and
snapshots together also depict the method arguments’ dependence on the invocation
events and the dependence of the return event on a return value, if one exists. Such
relations between the invocation and return events and the actual memory values are
shown simply as data dependencies.

In Figure 6, consider the return event [127rint r = 1.get(s);| that is dependent on, or
uses, the return value ret. The value ret, in turn, is part of the output set to the
method invocation event [127]. When we follow the chain of summarized dependencies
between inputs and outputs, starting from ret that are highlighted in Figure 6, we
obtain the following sequence of memory locations that ends with the input j within

the input set for the method invocation 0677 1.2dd () ;]:

ret —» l—arr[0] —» j.

The input value j is in turn dependent on the invocation event [067:1.2da(3);), as de-
picted in the figure. Upon tracing the dependency for the event 0674, with respect to
the value j, we arrive at the runtime instruction that actually defines the
value j. In other words, the runtime instruction defined the value of j,
which was used to define the value at 1—>arr[0], that was finally used by the run-
time instruction as a return value. Such a long chain of dependencies between the
memory locations can be simply translated to a summarized dependency that the run-
time instruction has on the runtime instruction [041. Such a summarized dynamic
dependence is depicted on the left-hand side of the execution trace with an arrow going
from [1277int r = 1.get(s);| t0 [0474nt j = ;).

4. DYNAMIC DEPENDENCE SUMMARIES

This section formally defines concrete and abstract dependence summaries, the ag-
gregation of abstract summaries, and finally the concepts behind the application (or
reuse) of dynamic dependence summaries. These concepts as a whole present our
core technique that computes and uses summaries to improve the efficiency of dy-
namic dependence analysis. Our discussion in this section is in keeping with the
conventions of object-oriented programming, as available in the Java programming
language.

Method Invocations: Inputs and Outputs. The definitions of (concrete and ab-
stract) dependence summaries, their aggregation and reuse, are rooted in the notions
of inputs and outputs to method invocations and the notion of dynamic dependence.
As such, we first define what we mean by inputs and outputs for a method invocation,
followed by an overview of the definitions of dynamic dependence. We now introduce
the concepts of inputs and outputs for a method under the framework of access paths
and object graphs, which we define as follows.

Definition 1 (Access Path (AP)). For a member (f) (i.e., field or array element), an
access path is a sequence of memory locations leading to the access of the member ( f),
starting from a reference-typed object (0), with each preceding location in the sequence
being the owner of the succeeding location and each succeeding location being the
member of the preceding location.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:16 V. K. Palepu et al.

Notationally, an access path from an object o to field f with many intermediate
locations fi, fo... [, is denoted as [o — f1 — fo — ... = [, — f1, or simply as
[o -=» f]. In addition, an access path to an array element within an array f at index
[ is denoted as [o --» fII].

When stated differently, access-paths chain together a set of memory locations into
a series of owner-member relations (between the set of memory locations), in turn
informing how a certain field or array-element is accessed starting from a reference-
typed object. This allows us to introduce the notion of an object graph that can be
thought of as a set of access-paths that all start from a common reference-typed object.

Definition 2 (Object Graph (OG)). An object graph (g) is a graph rooted at a reference-
typed object (o) that contains a set of memory locations as nodes that are accessible
from the reference-typed object (0) via edges that represent owner-member relationships
and connect a owner memory location (reference-typed object) and a member memory
location (field or array element).

Note that the only way to access a memory location in an object graph (g) is to perform
a sequence of member (field or array element) dereferences on the root object that, in
turn, is represented as the access path of a member location in an object graph. As
such, each member location can be expressed as an access path within an object graph.
In Figure 4, we show two example object graphs reachable from parameter 0°? for an
invocation of the method void add(int i) before and after the execution of line 06. As
an extension and generalization of the example in Figure 4, we now define the concept
of a set of object graphs that are accessible from the arguments of a method invocation.

In this work, a method invocation refers to a specific instance in a series of runtime
invocations of a single method within a program execution and is denoted as ¢ :
mlag, a1, . . ., ay), where

¢ ¢ uniquely identifies a method invocation event,
e mis the method being invoked, and
® qp,ai,...,a, are actual arguments to the method.

Definition 3 (Accessible Object Graph Set (AOGS)). For a method invocation ¢ :
mlap, a1, - . ., ), the accessible object graph set (AOGS) is a set of object graphs that
are rooted at any reference-typed objects pointed to by the arguments (ag, a1, ..., a,)
and represented as G,.

Note: G° and G”** denote the AOGS immediately before and after the method
invocation ¢ : m(ay, a1, . .., a,), respectively.

Such a conceptualization of how memory locations are related and accessed during
method invocations enables us to account for the situation discussed in Section 3
(Challenge 1), where a method invocation potentially uses not only the arguments to
the invocation but also any memory location reachable from those arguments. Modeling
accessible memory locations enables the modeling of how fields of an object that is
passed as an argument are used or defined. Such a modeling of arguments, and their
accessible fields, is essential in modeling standard data structures such as linked lists,
trees, and graphs. Using such concepts of access paths, object graphs, and object graph
sets, we now define the inputs and outputs to a method invocation.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:17

Definition 4 (Input and Output Sets). For a method invocation ¢ : m(ay, a1, ..., a,,
the input set Z, and output set O, are defined as follows:

(1) Input set (Z.) is a set of memory locations that exist before the method invocation
and can be read during the method invocation such that [z, < ¢7* UP], where

o G is the AOGS immediately before the execution of m at ¢, and

e P, is the set of memory locations that represent actual parameters passed into
method invocation c.
(2) Output set (O.) is a set of memory locations that can be written to during the
method invocation and are accessible after the completion of the method invocation
such that [0, c 6" UL, U{ret} U (g}, Where

o5t is the AOGS immediately after the execution of m at ¢;

ret is the memory location containing the value to be returned,
Sret 18 the object graph defined by ret (if ret is of reference type); and
L. is a set of integer indices used in the accesses of the arrays referenced by

. N t
memory locations in G, G or g,.

Locations that are unreachable from a method argument via such access paths do
not escape the method invocation and have no impact beyond the scope of the method
invocation. Hence, such locations are discounted from a method invocation’s input and
output sets and eventually from the method’s dependence summary. As such, the input
and output sets can often be a subset of the accessible object graph sets for a method
invocation, as portrayed in Definition 4. Additionally, the indices used to access the
arrays in the object graphs are included in the output set. Tracking these indices is
necessary for the precise handling of array accesses, as described in Section 3. Note that
our approach treats static fields, which are globally accessible and used in a method
invocation, as additional arguments to a method. Similarly, since Java is a call-by-value
language, where the values of the actual parameters cannot be changed by the method,
P.—locations serving as arguments to a method invocation—is not part of the output
set.

Dynamic Dependencies. After defining the input and output sets for a method
invocation, the next step toward defining a concrete dependence summary is to define
dynamic dependencies between the inputs and outputs of a method invocation. We
now present the definitions of dynamic data and control dependence between memory
locations in a program execution.

In this work, we refer to the execution of a static program instruction, during the
program’s execution, as a runtime instruction, and it is denoted using the form a’
(i.e., the j** execution of the static program instruction a).

Definition 5 (Dynamic Dependence). Given two memory locations, /; and /3, memory
location /5 is said to be directly and dynamically dependent on memory location /; under
the following two conditions:

(1) Dynamic data dependence. A runtime instruction (a/) writes a value to the
memory location /3 that is computed using the value read from memory location /;.

(2) Dynamic control dependence. A runtime instruction o’ that writes a value to
the memory location /3 and the occurrence of a/ was predicated on the value at
memory location /.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:18 V. K. Palepu et al.

Using Definition 5, which defines relations of direct dependence between two memory
locations, transitive dependence between two memory locations (/; and /3) can be easily
established by following a sequence of direct dependencies from one location (I) to
the other (/1). Based on this definition of dynamic dependence, we can now establish
relations of direct or transitive dependencies between memory locations in the input
and output sets of a method invocation. Such a set of dynamic dependencies between the
input and output locations of a method invocation is essentially the concrete summary
of the method invocation.

Concrete Summaries. Informally, a concrete dynamic dependence summary, or
simply a concrete summary, is a set of (transitive or direct) dynamically observed data
or control dependencies between the inputs and outputs of a specific invocation of a
given method. Using the definitions for inputs and outputs for a method invocation and
dynamic data and control dependencies between memory locations, we formally define
concrete summaries as follows.

Definition 6 (Concrete Dynamic Dependence Summary). For a method invocation
event of the form c : m(ag, a1, ..., a,), the concrete dynamic dependence summary S, is
a Cartesian set Z, x O., where each element in the set is a transitive (or direct) dynamic
dependence of the locations in the output set (O.) upon the locations in the input set
(Ze).

Notationally, an access path—based concrete dynamic dependence summary is ex-
pressed in the form [Ui [o; ——* 7] < [o; —— g] )}, where

® o; -—» f] €L

[[Oj -—* g]] € O;

o; and o; are the objects pointed to by parameters a; and a;; and

[o;i --» f] and Jo; --» g] are access paths for heap locations f and g, respectively.

Abstract Summaries. As described in Section 3 (Challenge 2), concrete summaries
contain invocation-specific information and cannot be reused. Abstraction needs to
be performed to replace concrete information with suitable abstract information so
that the abstracted summaries are applicable to all other executions. The abstraction
process has two steps. In the first step, we express each node in an object graph that
is part the concrete summary with the corresponding root object and the access path
through which the node can be reached. The result of this step is a set of access path—
based concrete summary edges, as shown in the bottom part of Figure 4. In the second
step, we replace each concrete parameter object or variable with a symbolic name,
resulting in the final abstract summary that can be applied in other executions of the
method (as shown in the bottom parts of Figure 5). Note that in our approach, these
two steps are combined in one single summary generation phase. They are discussed
separately in the article for clarity of presentation.

Definition 7 (Abstract Dynamic Dependence Summary). Given a concrete dynamic
dependence summary of the form [Jifo; == 7T — [o; ——» &l}}, for a method invocation of the
form ¢ : may, ay, ..., a,), the abstract dynamic dependence summary is the symbolic
representation of the method invocation—specific runtime information in the concrete
summary, and the resulting access path—based abstract dynamic dependence summary
is of the form [Ui[p — /T= [p; &l Where p; and p; are the symbolic names for the
i*® and j** memory locations o; and o; that are pointed to by parameters a; and a;,
respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:19

Note: For concrete summary edges that model array element accesses as follows,
[oi === fUI] < [o; --» &]
[or —=» h] <— [, wherelis an actual index value within an array, and the corresponding
abstract summary edges are of the form
[ -~ f[findex]] = [p; -~ gl
[pr --» h] < findex, where f.index is the symbolic name for the actual index value
[ and f is the array.

Aggregate Dependence Summary. Eventually, abstract summaries computed for
all invocation events that invoke method m are combined, or aggregated, and used
as m’s summary for the future dependence analysis. This is done in the event where
different method invocations, for the given method, result in different or varying ab-
stract summaries as discussed in Section 3 (Challenge 3). The aggregation of different
abstract summaries performs two essential functions, as showcased in Algorithm 1.
First, the aggregation step creates and maintains separate aggregate summaries for
method invocations with different dynamically observed input argument types. Lines 6
through 14 in Algorithm 1 are used to create a signature for the method invocation
corresponding to a given abstract summary. The signature of a method invocation is
simply the string concatenation of the name of the invoked method and the types of
runtime arguments to the method invocation. This enables proper modeling of method
behavior of polymorphic methods and their invocations as discussed in Section 3
(Challenge 3.1).

ALGORITHM 1: Aggregation of Abstract Summaries for Method Invocations

Require:
1: Map aggregate_summaries < {} // aggregate abstract summaries mapped by method invocation
argument types
2: Set abstract_summaries // a set of abstract summaries as input
3: for each abstract summary J{[p; ——* f] < [p; ——* g} € abstract_summaries do

Object summary < U{[pi —=> f] < [pj ——> gl}

4
5:
6: // a) get method invocation information associated with the abstract summary.
7:  String inovked _method _name <« getMethodName(summary)

8:  List argument _types < getMethodInvokeArgumentTypes(summary)

9:

10:  //b) begin extraction of dynamically observed method-invocation signature.

11:  String signature < inovked_method _name // signature starts with invoked method’s name
12: for each argument type type € argument_types do

13: signature < append(signature, type)
14: end for
15:

16:  // c) begin aggregation of abstract summary.
17:  Object aggr-sumr < aggregate_summaries[signature] // aggregate summary for method invocation

signature

18:  for each access path—based dependency {[p; —=* f] < [p; == g]} € summary do

19: aggr_sumr.inputs < aggr_sumr.inputs J {[p; ==+ f]} // union of abstract inputs.

20: aggr_sumr.outputs < aggr_sumr.outputs U {[p j ——* g} // union of abstract outputs.

21: aggr_sumr.dependencies < aggr_sumr.dependencies U {[p; == f] <— [p; ——* g]} // union of

dependencies.

22:  end for

23:  aggregate_summaries|signature] < aggr_-sumr // update aggregate summary for method invocation
signature

24: end for

25: return aggregate_summaries

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:20 V. K. Palepu et al.

Second, for method invocations of a given method that share the same dynamically
observed input arguments types, an aggregate summary is created that results in
the generic modeling of the method’s varying control flow as discussed in Section 3
(Challenge 3.2). Lines 16 through 23 in Algorithm 1 handle the aggregation of different
abstract summaries that share the same input parameter types. Once the signature of
the method invocation is computed, it is used retrieve an existing aggregate summary
(line 17 in Algorithm 1). This is followed by lines 18 through 21 in Algorithm 1, which
perform a union of all inputs, outputs, and dependence edges of the abstract summary
with the existing aggregate summary, which is finally stored in line 23. It is worth
noting that a node (memory location) within an object graph may have multiple access
paths from the root object. For each such access path used in the method invocation, we
will generate a corresponding summary edge. Note that this treatment can potentially
introduce both unsoundness and imprecision and is further discussed in Section 9.

Summary Application. Aggregated abstract dynamic dependence summaries are
finally used to model the behavior of any subsequent invocations of their respective
methods, thus enabling the reuse of recorded method behavior. We refer to such a pro-
cess of reusing method behavior as the application of a dynamic dependence summary
for a method invocation, or simply summary application. Summary application for a
given method invocation is composed of two steps. First, we concretize the symbolic
information in the aggregated abstract summary. The dependencies within abstract
dependence summaries are made concrete by substituting the abstract symbolic in-
formation that represent the method’s arguments, in both the input and output sets,
with concrete runtime objects. The concrete runtime objects for the substitutions in the
input and output sets are collected just before and just after a method invocation, re-
spectively. This allows us to re-create a specific concrete model of the heap data effects
between the inputs and outputs of a specific method invocation. To illustrate, consider
the example of applying summaries at the invocation of the method add (line 06 in
Figure 3(a)) in a future execution of the program. The following three abstract sum-
mary edges are concretized into their respective concrete summary edges before being
recorded into the trace:

(1) Substituting py with 0°? and p; with i;

(2) Abstract Dependencies Concrete Dependencies
o [po -+ size] « [po --» size] o [0%% --» size] + [0°2 --» size]
e p1 < [po -—» arrlarr.index]] oi < [0°2 -5 arrlarr.index]]

e [po --» size] « arrindex o [0%2 -5 size] « arrindex.

Second, we translate the dynamic dependencies between the concrete summary’s
inputs and outputs for a given method invocation to summarized dynamic dependencies
between runtime instructions. It is important to remember that the reuse of dynamic
dependence summaries is done with goal of efficient computation and modeling of
dynamic dependencies between actual runtime instructions. As such, we extend the
dynamic dependencies between memory locations in the input and output sets of a
method invocation to the resulting dynamic dependencies between the actual runtime
instructions that define and use the memory locations in the input and output sets,
respectively. Such dependencies between runtime instructions derived from dynamic
dependence summaries are called summarized dynamic dependencies and are defined
as follows.

Definition 8 (Summarized Dynamic Dependence). Given two runtime instruction
a’ and b* and a method invocation of the form ¢ : m(ao, a1, ...,a,), there exists a

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:21

summarized dynamic dependence on a’ from " (represented as a/ «— b*) under the
following conditions:

e o’/ writes a memory location /; that belongs to the input set of a method invocation,
and b* reads a memory location /, that belongs to the output set of the same method
invocation; and

e there exists a relationship [p; --» f] « [p; --» g] in the abstract summary of the
invoked method such that
—the location [o; --» f] (before the call) is the same location as /1,

—and the location [o; --» g] (after the call) is the same location as /y,
where o; and o; are the concrete runtime objects for the symbolic values p; and p;,
respectively.

Note: There also exists a summary dependence edge of the form a; <— b; if two
pairs of relationships in the abstract summary that model an array element access

* [pj -—»&] < [pi ~-» flfindexl]; [pr --* h] < findex, and
[pr —-» vlv.index]] <— [pm --+ q]; [p: ——* u] < v.index such that

[om —-+ q] is the same location as [y,

[o; —-» g] is the same location as /1,

[oi === f] and [o, —-> v] refer to the same array object, and

values in [or --+ h] and [o; --+ u], which represent indicies, are equal.

As discussed in Section 2, two (abstract) array slots of the form [p; --» f[f.index]]
and v.index are considered to be the same location in an execution if (1) the two concrete
array objects in locations [o; --+ f] and [o, --» v] are the same, and (2) the values of the
inputs on which the two indices depend (i.e., [or --+ h] and [Jo; --+ «] in the definition)
are the same. A transitive edge is not added if one or both of the indices depend on
multiple inputs, as it is unclear how the indices are computed from these inputs and
how to compare their values. Note that this treatment can potentially introduce both
unsoundness and imprecision and is further discussed in Section 9.

5. USING DYNAMIC DEPENDENCE SUMMARIES FOR DYNAMIC DEPENDENCE ANALYSIS

As a part of our approach, we compute dynamic dependence information and dynamic
dependence summaries by analyzing program executions. Dynamic information for
program executions are generated and recorded in the form of execution traces during
a summary generation phase using a representative test executions. The dynamic de-
pendencies and consequently the dynamic dependence summaries are computed from
the execution traces and stored to a disk file for use in a future dynamic dependence
analysis. The computation and use of the dynamic dependence summaries are per-
formed in the following phases.

Phase I. Summary Generation Using Representative Executions. We produce
the abstract summaries for the methods being summarized (these can be user specified
in a configuration file by method, class, or package) by analyzing the execution traces.
For each method m, we find all instances of m’s execution, and for each instance in the
trace, we use a worklist-based algorithm to compute an abstract summary according
to the approach and definitions in Section 4. The result of the summary generation is
a mapping of inputs (formal method parameters or accessible fields) to outputs (formal
method parameters or accessible fields) that they influenced, expressed as abstract
summary edges, within aggregated dynamic dependence summaries.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:22 V. K. Palepu et al.

Phase II. Summary Application in Dependence Analysis. To apply the sum-
maries to dynamic dependence analyses, the developer would choose to instrument her
test case (i.e., program execution) supported by the dynamic dependence summaries
generated in the first phase. In the program’s execution, the instrumenter would in-
spect each method invocation to determine the existence of a corresponding dynamic
dependence summary. If the summary is not provided for a method invocation, the
program execution and its instrumentation proceed with exhaustive dependence pro-
filing. However, if a summary does exist for the method: (1) the abstract summary
edges are obtained, (2) the runtime concrete inputs and outputs are matched with the
symbolic names in the corresponding summary, and (3) the concretized summary edges
are recorded to the trace.

Phase III. Dependence Graph Computation and Use. A summary-based depen-
dence analysis profiles the execution of all methods except those that have abstract
dependence summaries. These dependence summaries are then used to carry out de-
pendence analysis by building a summary-based dynamic dependence graph. Before
presenting the summary-based dynamic dependence graph, we first define the regular
dynamic dependence graph.

Definition 9 (Dynamic Dependence Graph). A dynamic dependence graph (V, £) has
node set V € D x N, where each node is a static statement (¢ D) annotated with
an integer i (¢ N) representing the i*" execution of this statement. An edge e € £ of
the form a/ «— b* (a,b € D; j,k € N) denotes that the j™ execution of statement a
writes a (heap or stack) location that is then used by the £ execution of b without an
intervening write to that location.

A dynamic dependence graph essentially represents, or models, a program execution
and is shown for an example program execution in Figure 3(b). Based on the defini-
tions of summary edges and dynamic dependence graph, we give the definition of the
summary-based dependence graph.

Definition 10 (Summary-Based Dynamic Dependence Graph). A summary-based
dynamic data dependence graph (V,€ U 7) is a regular dynamic data dependence
graph augmented with an additional set of dependence edges 7 that denote summary
dependence edges (refer to Definition 8) between any two nodes a/ and b* (a/, b* € V).

A dynamic dependence graph is computed by recovering dependence relationships
from the trace, as described in Definition 9. When (concretized) summary edges are
encountered, the location matching approach described in Definition 8 is used to recover
the missing relationships to build a summarized dynamic dependence graph. Using
this summarized dynamic dependence graph, developers and automated techniques
can perform dynamic analyses, such as interrogative software debugging, bloat and
change impact analysis, and dynamic slicing, as discussed in Sections 1 and 2.

Program Instrumentation. The implementation of our summary-based depen-
dence analysis is based on the instrumentation and analysis of executable Java class
files. The goal of the instrumentation is to enable the generation of a detailed trace
that records the execution of each instruction in the program and the heap/stack loca-
tion it accesses. We assign a unique ID to each runtime object that is used to identify
the object and its fields in the execution trace. Program instrumentation involves the
addition of probe instructions within the executable code for instructions that require
runtime monitoring, thus enabling the requisite analysis of the executing instructions.
With the execution trace, we construct the dynamic data dependence graph, which
then enables client dynamic analysis techniques such as dynamic slicing. We perform

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:23

load-time bytecode instrumentation for classes that do not belong to the Java standard
library using ASM [Bruneton et al. 2002], a Java bytecode manipulation framework. In
contrast, we instrument the classes in the standard Java library prior to execution—
several of these classes cannot be instrumented during load time due to the technical
requirements of the JVM to load them prior to the instrumenter.

6. SUMMARY ABSTRACTION ALGORITHM

The algorithm for summary abstraction starts with computing a regular dependence
graph (line 3) and the transitive dependence relationships for each node on it (line 4).
Initially, the input set is contains all incoming objects (line 5), and the output set os
contains only the returned objects (line 6). The set sn contains the symbolic name for
each incoming and outgoing object. The worklist-based trace processing (lines 9 through
44) iteratively identifies and adds heap and stack locations into the input and output
sets and computes symbolic names for them (stored in set sn). After this processing
is done, each transitive dependence edge between statement executions s; --+ sg is
retrieved from map td (lines 45 through 52). If s; reads a variable/object in the input
set and sy writes a variable/object in the output set (line 46), we find each symbolic
name p, for a and each symbolic name p; for b (line 48) and add an abstract summary
edge p, --+ pp into the abstract edge set as. Eventually, sets as for all m’s executions
(in the training phase) are combined and used as m’s abstract summary. Algorithm 2
shows our handling only for the two most complicated cases (i.e., array reads and array
writes); the handling for all other cases is simpler and can be easily derived from the
two cases shown.

7. EVALUATION

The use of dynamic dependence summaries on dynamic analysis stands to result in
performance gains and accuracies losses in the underlying dynamic analysis. To study
such a trade-off between the accuracy and performance of dynamic analyses when
using dynamic dependence summaries, we ask the following research questions.

RQ1. What is the extent to which summaries potentially assist in cost saving?
RQ@2. What are the performance cost savings with the use of dynamic dependence
summaries for dynamic analyses?

RQ@3. How does the use of dynamic data and aggregation of concrete dynamic
dependence summaries affect the accuracy of dynamic analysis?

RQ®4. How does the use of dynamic dependence summaries affect the efficiency
and effectiveness of a runtime client analysis?

The first research question, RQ1, is designed to assess the extent of cost savings as a
result of creating and using dynamic dependence summaries toward dynamic analyses.
RQ?2 is designed to evaluate the actual performance cost savings, in space and time,
when analyzing dynamic dependencies within program executions by using dynamic
dependence summaries for designated components that are ancillary to the develop-
ment of the original program. RQ3 helps to investigate the accuracy of abstracted and
aggregated dynamic dependence summaries, independent of a downstream client anal-
ysis. Finally, R@Q4 is designed to understand the cumulative impact of the “efficiency
versus accuracy” trade-off when using dynamic dependence summaries for an actual
runtime client analysis.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:24 V. K. Palepu et al.

ALGORITHM 2: Generate an Abstract Summary From an Instruction-Level Execution Trace
for a Method

Require: An execution trace ¢, for method m
Objects 01, 09, . .., 0, passed into m from the caller, and o, returned from m
: Set as < 0 // a set of abstract summary edges
: Edge Set td :(s; --» s;) //transitive dependence relationships
: Dependence graph g = computeRegularDependenceGraph(t,,)
td = computeTransitiveClosureForEachNode(g)
Set is < {01,009, ..., o, } //input set
. Set os < {o,} //output set
: Map sn < {(01, {po}). (01, {p1}), ..., (0n. {pn}), (0r, {pr})} //initial symbolic names
: List wl < {01,009, ..., 0y, 0, } /finitial worklist
: while wl # ¢ do
10:  Object 0 < wl.pop()
11: for each statement execution s in ¢,, do

© 0T U WN

12: switch (s)

13: case “a = bl[i]”:

14: if 05 = o0 then

15: for each symbolic name p in sn(o) do
16: String p; < append(p, “.index”)
17: String p, < append(p, “.[”, pi, “1”)
18: if p, ¢ sn(o,) then

19: sn(oq) < sn(oq) U {py}

20: sn(i) < sn(i) U {p;}

21: wl <~ wl U {og}

22: end if

23: if 0 € is then

24: is < is U {0}

25: end if

26: 0s < 0s U {oq} U {i}

27: end for

28: end if

29: case “ali] =b™

30: if 0o, = 0 then

31: for each symbolic name p in sn(o) do
32: String p; < append(p, “.index”)
33: String pp < append(p, “.I”, pi, “1”)
34: if pp ¢ sn(op) then

35: sn(op) < snlop) U {pp}

36: sn(i) < sn(i) U {p;}

37: wl < wl U {op}

38: end if

39: 0s < os U {op} U {i}

40: end for

41: end if

42: end switch

43:  end for

44: end while
45: for each transitive dependence edge s; --» sg € td do
46:  if s; reads from a location a AND sy writes into a location b AND o, € is AND oy € os then

47 // a and b can be both variables and field locations
48: for each p, € sn(a), each pp € sn(b) do

49: as < asVU {pg --» pp}

50: end for

51: endif

52: end for

53: return as

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:25

Experimental Subjects. We implemented our technique to perform three experi-
ments and carry out a case study to answer the research questions. The evaluation
was performed on a quad-core Intel i7 3.07GHz machine running a 64-bit version of
OpendDK 7 JVM with a maximal heap size of 2GB.

This evaluation employs eight client programs: NaNoXML (>2.6 KSLOCs), PL-241
(>6.9 KSLOCS), Jtoras (>10 KSLOCs), ANTLR (>35 KSLOC), Broar (>41 KSLOC),
PMD (>60 KSLOC), FOP (>102 KSLOC), and JyrHon (>245 KSLOC). As part of this
empirical investigation, we summarized all methods in the Java standard library (i.e.,
rt.jar) that were executed by the different runs of the eight client programs. Further,
for each subject program, we considered the client code to be parts of the application
that were not contained within the Java standard library (rt. jar).

Multiple executions were monitored for NANOXML (20 executions), PL-241 (13 execu-
tions), and JTopras (12 executions), each with a different test input. ANTLR, BLoaT, PMD,
FOP, and JyrHON were executed and monitored using a single test input for each pro-
gram from the DaCaro benchmarks’ “small” configurations. We monitored, generated,
and stored (to disk) the execution traces for the resulting 40 executions across the eight
client programs. As such, fewer test executions were used for the client programs, as the
scale of their executions increased in terms of trace size (on disk) and execution times.

ANTLR, Broar, PMD, FOP, and JyTHON, with their test inputs, were obtained from the
DaCaro benchmarking suite [Blackburn et al. 2006]. NaANoXML and Jtopas and its test
cases are obtained by the Subject-artifact Infrastructure Repository [Do et al. 2005].
PL-241 is an SSA-based optimizing compiler, and its development and test inputs are a
product of a graduate-level course on advanced compiler construction at the University
of California, Irvine.

The client programs were chosen such that they were real-world subjects carrying
out nontrivial computations with system-level tests. It was important to select subjects
with system-wide tests to enable the execution of significant portions of the subjects,
thus resulting in the execution of a wide range of methods from the Java standard
library.

Independent Variable. We used the following independent variable for all exper-
iments: the dynamic dependence analysis used to detect data and control flows. We
performed our dynamic dependence analysis in two ways:

Treatment 1: Exhaustive Analysis. All components that are executed, whether core
or external, are instrumented and analyzed.

Treatment 2: Summary-Based Analysis. Only the program under test is instru-
mented and analyzed, and summaries from all external components are reused.

Answering RQ1: Potential Cost Savings Experiment. In this experiment, we as-
sess the potential cost savings that can be gained due to summarization during dynamic
monitoring and analysis of software executions. We present statistics of the recorded
executions of instructions, in whole program execution traces, as a distribution between
client code and third-party library code. Through the means of such a distribution, the
goal is to demonstrate the extent of library code execution within the execution of a
software system and thus the potential efficiency gains during summary-based runtime
monitoring of program executions.

Cost savings experiment dependent variables. We use the following two metrics to
assess the distribution of executions between client and library code:

Metric 1: Percentage of Client-Code Instructions (C). Number of recorded in-
stances of all client code instruction as a percentage of net recorded instances of
instructions in a whole program execution trace. This is computed as

_ (total instances of client instructions)

x 100.
(total instances of all instructions)

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:26 V. K. Palepu et al.

Table I. Distribution of Whole Execution Traces Across Client and Library Instructions

Whole Execution

Trace Size Percentage of Client Percentage of Library
Subject (instructions. x10%) Instructions (C) Instructions (L)
NanoXML 319.8 18.69 81.31
PL-241 1,110.7 26.43 73.57
JTOPAS 1,467.5 69.56 30.40
PMD 18,860.0 50.19 49.81
FOP 110,981.3 48.81 51.19
ANTLR 221,849.8 98.03 1.97
Broar 391,041.4 38.94 61.06
JYTHON 1,734,670.3 4.40 95.60

Metric 2: Percentage of Library-Code Instructions (L). Number of recorded in-
stances of all library code instructions as a percentage of net recorded instances of
all instructions in a whole program execution trace. This is formulated as

__ (total instances of library instructions)

L= x 100.

(total instances of all instructions)

Whole execution traces were produced for all eight client programs (NanoXML, PL-
241, Jroras, ANTLR, BLoaT, PMD, FOP, and JyrHoN) with the exhaustive instrumenta-
tion and analysis of all components. A single whole execution trace corresponds to a
single run of any given subject program. Instances of all recorded instructions within
an execution were designated to client code unless they belonged in the Java standard
library (rt.jar), where they were deemed as library code. The results of this experiment
are summarized in Table I.

Table I reports, for each client program, the average number of recorded instruction
instances in the whole execution traces obtained from each test execution of the client
program. Thus, for NanoXML, 20 different execution traces were captured, which on
an average contained more than 319,000 records of instruction executions. Table I also
reports the distribution of the whole program execution traces as percentages of client
and library code for the executions for a given subject. For instance, in an average
execution, NANOXML’s code accounted for a little more than 18% of all instruction
executions, whereas 80% of the execution trace was due to the execution of instructions
in external libraries.

Cost savings experiment results. The results in Table I show seven subjects, with the
exception of ANTLR rely heavily on the Java standard library. Only JTtoras, PMD, and
ANTLR, for the executions that we studied, rely more on the application code than on
the code from the Java standard library. However, in the cases of PMD and JTopas, the
contribution of library instructions is still substantial—30.4% instructions on average
in the executions of Jroras and 49.81% of instructions in the case of PMD. Even in
the case of ANTLR, the 1.97% instructions from ANTLR constitute the execution of a little
more than 4.3 million instructions from the Java libraries. The two most library-reliant
client programs are JyrHoN and NanoXML, with nearly 96% and 81% of the executed
instructions from the Java standard libraries, respectively.

Answering RQ2: Efficiency Experiment. In this experiment, we investigated the
impact of reused dependence summaries on the costs involved in performing dynamic
dependency analysis. As such, we employed the following two metrics (presented as
this experiment’s dependent variables) to assess the costs of using dynamic summaries.

Efficiency experiment dependent variables. For the two forms of dynamic analysis
(i.e., exhaustive and summarized), we measured the following metrics:

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:27

Table II. Efficiency Experiment Results

Exhaustive Summary
To Ty SE @instr. Tg Ss instr. || (Sp-Sg)

Subject (sec) (sec) | (T —To)/To x10%) (sec) | (Ts —To)/To x10%) Sg

Na~noXML | 0.07 527.74 7,538.14 32 1.70 23.29 7 0.76
PL-241 0.16 2,167.82 13,547.88 111 5.20 31.50 43 0.61
JTOPAS 0.12 2,533.02 21,107.50 147 8.44 69.33 113 0.23
ANTLR 0.22 1,463.94 6,653.29 22,185 || 1,078.38 4,900.74 | 21,748 0.02
Broar 0.99 2,258.63 2,282.75 39,104 762.31 769.79 15,227 0.61
PMD 0.25 131.86 537.22 1,886 50.58 205.47 947 0.50
FOP 0.50 703.04 1,416.42 11,098 271.39 546.15 5,417 0.51
JYTHON 0.29 || 17,531.19 60,451.36 | 173,467 668.58 2,304.45 7,632 0.96
Average 14,191.82 1,106.34 0.53

Note: To is the mean original running time of the program, and T’z s and Sgjs are mean running times of
whole execution analysis and mean trace size for each technique. (Tgs — To)/To shows the mean runtime
overheads for each technique. (Sg — Sg)/Sg shows the mean cost savings in trace sizes with summaries.

Metric 1: Execution Trace Size (S). Size of the execution trace required for each
analysis.
Metric 2: Execution Time (T). Time to run the execution with each analysis.

We ran each subject program with their test inputs under exhaustive and summary-
based treatments, thus resulting in a distinct whole program trace and a summarized
program trace for each execution. We collected performance statistics for each execu-
tion. We measured the size of the resulting trace with a global size counter that kept
track of the number of recorded runtime instructions. We also maintained a timer that
kept track of the elapsed time during a program’s execution. (Note: The performance
metrics were collected in the same manner for both summary and exhaustive execution
analyses.)

Table IT summarizes the results of this experiment. For the test runs of a given client
subject, Table II reports the mean execution running times and the mean execution
trace sizes for both treatments (i.e., exhaustive and summary based).

Efficiency experiment results. These results show that for the experimental subjects,
performing full instrumentation incurred substantial runtime and space overheads.
The summary-based analysis reduced the runtime overhead,* on average, from 14,192 x
(with exhaustive analysis) to 1,106 x (with summarized analysis), which shows 13x
speedup in the favor of a summary-based approach, on average. (Note: These execution
times include the time spent in I/O operations while storing execution traces to disk.)
The summary-based approach also reduced the resulting summarized execution traces
in size by 53% of the original exhaustive trace sizes. For the experimental subjects in
this work, the summary-based approach successfully caused demonstrable reductions
for seven subjects. However, the summary-based approach provided limited savings in
the case of ANTLR (2% savings in traces sizes; 1.3x speedup). That said, in absolute
terms, the 2% savings in trace size amounts to saving profiling costs of more than
4.3 million instruction executions. Conversely, the usage of summaries while profil-
ing JYTHON provides an overwhelming saving of nearly 96% in trace sizes and a 26 x
speedup.

Answering RQ3: Accuracy Experiment. Motivated by the savings found from Ex-
periment 2, we investigated the extent to which these savings were realized at the

4Runtime overhead is a measure of the slowdown of the original noninstrumented program in terms of a mul-

tiplicative factor of the original time. The overhead is computed ag "4Ving time with analysis)_(original running time)
(original running time)

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:28 V. K. Palepu et al.

expense of accuracy losses. As discussed in Section 1, inaccuracies are introduced in
dynamic dependence summaries due to (a) reliance on dynamically collected data and
(b) aggregation of multiple abstract summaries into a single aggregate summary. On
the one hand, different invocations of a method may exhibit possibly different external
heap data effects, and thus a reliance on dynamically collected data possibly may not
render unseen dependence relationships for a future method invocation. On the other
hand, the aggregation of dynamic summaries, which attempts to model external ef-
fects of multiple and varying method invocations, might result in spurious dependence
relationships. As such, in this accuracy experiment, we focus our investigation on the
inaccuracies introduced as a result of aggregating dynamic dependence summaries.

Using the concrete summaries created by the executions of NanoXML, Jroras, PL-
241, ANTLR, BLoar, FOP, PMD, and JyTtHON, we determined the accuracy of abstract
aggregated dynamic summaries. We compared each concrete summary for a given
method invocation to an aggregated abstract dependence summary of the respective
method. Such an aggregate summary was constructed by abstracting and aggregating
other concrete summaries of the method, which model other method invocations of
the given method within an individual execution. We first set aside a single concrete
summary for a given method that we wish to model with an aggregated dynamic depen-
dence summary within an execution; we will refer to such a concrete summary as the
hold-out summary. The method’s remaining concrete summaries from that execution
were then abstracted and aggregated to create an aggregate summary for the method.
Such an aggregated summary was then compared with the hold-out concrete sum-
mary in terms of the dependence relations between the method’s inputs and outputs
as captured in the two summaries. Multiple such aggregated summaries are created
and compared to a hold-out summary by iteratively treating each concrete summary
for a method as a hold-out summary. This enabled us to understand the extent of the
inaccuracies, as a result of the over/underapproximations, within the aggregated dy-
namic dependence summary when it was used to model the dependencies between the
concrete hold-out summary. To enable an appropriate comparison with the aggregated
abstract summary, the hold-out concrete summary was itself abstracted.

Accuracy experiment independent variable. To understand the effect of aggregation of
summaries, we created an aggregated abstract summary using only a sample of avail-
able concrete summaries for the given method. As such, for the accuracy experiment,
we used the following as our independent variable:

Sample Size (SS). The number of concrete summaries for a single method, within
a single program execution, selected for aggregation, as a percentage of the total
concrete summaries for the given method within the single program execution. For
a given method and program execution, this is computed as

|{concrete summaries selected for aggregation}|

SS = x 100.

|{total concrete summaries}|

We performed our investigation for the following five sample sizes: 1%, 10%, 25%,
50%, and 100%. These percentages represent fractions of the concrete summaries for
a method that are selected for creating an aggregated dynamic dependence summary.

The use of only a limited set of concrete summaries (i.e., SS = {1%, 10%, 25%,
50%)}) allowed us to simulate situations where we are unaware of certain dynamic
dependencies between the inputs and outputs of a method invocation because they
were never observed dynamically. In other words, such a modeling would possibly
underapproximate the actual dependencies in a method invocation.

Simultaneously, we also created aggregated dynamic dependence summaries by
using all available concrete summaries for a method within a given execution

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:29

(i.e., SS = 100%). Such a modeling allowed us to simulate situations where we modeled
every known dependency across all invocations for a given method within an execution,
thus potentially leading to overapproximations with spurious dependencies.

For each sample size, we obtained a random sample from the pool of concrete sum-
maries for a given method. For instance, a sample size of 100% would imply that we
use all available concrete summaries to create the aggregated summary. Similarly, a
sample size of 50% would mean that we select half of all method summaries, at random,
to construct the aggregate summary.

Note that for a method’s summaries to be aggregated at a sample size of 50%, at
least three concrete summaries must be present, with two available for aggregation
and one concrete summary acting as the hold-out summary. If for a given sampling size
the minimum number of summaries are not available to select a random sample, then
aggregation and comparison with the hold-out summary is abandoned, for the specific
sampling size, for the method in question.

Accuracy experiment dependent variables. To assess the inaccuracies by the means of
over/underapproximations within a dynamic dependence summary, we treat the hold-
out concrete summary as the ground truth. The hold-out summary is then compared
against the aggregated summary in terms of the dependence relations modeled by the
two methods. As such, we use the following metrics as our dependent variables:

Metric 1: Precision (P). The fraction of the dependence relations in the aggregate
summary that are also present in the hold-out summary. This is computed as

p_ |{dependencies in aggregate summary} N {dependencies in hold-out summary}|
N |{dependencies in aggregate summary}| ’

Metric 2: Recall (R). The fraction of the dependence relations in the hold-out sum-
mary that are also present in the aggregate summary. This is computed as

R |{dependencies in aggregate summary} N {dependencies in hold-out summary}|

|{dependencies in hold-out summary}|

Ideally, both precision and recall for the aggregate summary, with respect to the
hold-out summary, should be 1, suggesting a perfect modeling of the dependencies for
the method invocation represented by the hold-out summary. That said, a low precision
score would indicate that the aggregate summary modeled dynamic dependencies that
were not part of the hold-out concrete summary (i.e., overapproximation). At the same
time, a low recall score would indicate that the aggregate summary does not model
all dependencies that were a part of the hold-out concrete summary, resulting in an
underapproximate modeling of the method invocation’s dependencies.

The results for the accuracy experiment are summarized in Figures 7 and 8 as a
set of box plots that show the distribution of precision and recall scores along the
vertical axis, for randomly aggregated method summaries, using specific sampling
sizes. Each row in the figures contains the precision and recall box plots, shown in blue
and red, respectively, for a single client subject. For instance, the first row of Figure 8
represents the precision and recall scores for methods summarized across all executions
of NaANoXML. It is important to note that the summaries aggregated and compared to
one another belong to the same execution. The resulting scores of precision and recall
for the randomly created aggregated summaries are grouped by the sampling size and
shown within a single box of a box plot for a given subject program. Such a grouping of
the precision and recall distributions (i.e., by sampling sizes) allows us to understand

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:30 V. K. Palepu et al.

s 2 L JL JC _JC_ T _g4 . ; ; : .
] - ' g ' [l -
g < = —r B —_ —_ Q < | ° a
L o ° & s ° £ o
o < - 2 E 8 -
= . . . o < | s p g o
[=] T T T T T o T T T T T
1 10 25 50 100 1 10 25 50 100
Sample Size(%) / Subject: Antir Sample Size(%) / Subject: Antlr
w ] @ ]
sy —L JL L JL J| .87 ¢ ¢« ¢+ ¢+
| R N R : : ' : Bl : . . H o
29 : | : ; & 31 : : ] :
o E " —— - N @
o 2 o
i i 1 7T S +—s : ? ¢ :
1 10 25 50 100 1 10 25 50 100
Sample Size(%) / Subject: Bloat Sample Size(%) / Subject: Bloat
w© | @ | E
§o . § g g =91 : 3 : 5
z - ° g E E g = °
851 - H H . . £ S
o — 2 g ° -
o | z ) : : i = E . S %
o T T I T T [=] I T T I I
1 10 25 100 1 10 25 50 100
Sample Size(%) / Subject: Fop Sample Size(%) / Subject: Fop
© ] © |
§o1 § g g 8 =9S] - - - -
2 <] g g ] i g o]
E =] ¢ H 5 i s T o
8 . 5 ! : . gl o ; N ;
[=] T T T T T (=] T L T T T
1 10 25 50 100 1 10 25 50 100
Sample Size(%) / Subject: Pmd Sample Size(%) / Subject: Pmd
o ] w ] L}
s34 . L JL _JCL _JL | - : : : g
@ . i ] H i1 ] o
< —_ = —_ < | 2 S 2
g - . : ; =t & s
ol i H i i ol . . .
(=1 T T T T T (=] T T T T T
1 10 25 50 100 1 10 25 50 100
Sample Size(%) / Subject: Jython Sample Size(%) / Subject: Jython

Fig. 7. Assessing the accuracy of summary aggregation with precision and recall scores for ANTLR, BLOAT,
FOP, PMD, and JyrHON. Sample Size(%) represents the fraction of the concrete summaries for a given method
within a single program execution that are available for summary aggregation.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:31

08 1.0

Precision
0.4

0.2

0.0

08 1.0

Precision
0.6

0.4

0.0

08 1.0

Precision
0.6

0.4

0.0

Fig. 8.
JTOPAS,

E o ]
: ¢t ' !
i i . . o | 8 g g 2
: 8 & = . 3 3 &
] § B s B o N
- i L] — — @ @ °
8 n s £
o o &) o L e o
] g ! 2,'- T a 3 8 2
_ I || -
i L] o = o o o B
I I 1 T I = I I T I I
1 10 25 50 100 1 10 25 50 100
Sample Size(%) / Subject: NanoXML Sample Size(%) / Subject: NanoXML
2] o
g ] [}
[:+]
- o- — L L] o
| . H o o
= o
8 .
T ' [ i @
' ' ' ' o =
T i ‘ : ' < °
y o |
I I 1 T I = I I T I I
1 10 25 50 100 1 10 25 50 100
Sample Size(%) / Subject: Jtopas Sample Size(%) / Subject: Jtopas
3 <
- L]
= 4]
| 1
| _ o :
Bl
i, P |
] S E ] &
. §
. ! = S
. o B B T - a s o
I I 1 T I o I I T I I
1 10 25 50 100 1 10 25 50 100
Sample Size(%) / Subject: PL-241 Sample Size(%) / Subject: PL-241

Assessing the accuracy of summary aggregation with precision and recall scores for NanoXML,
and PL-241. Sample Size(%) represents the fraction of the concrete summaries for a given method

within a single program execution that are available for summary aggregation.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:32 V. K. Palepu et al.

the impact on accuracy at varying degrees of aggregation—from SS = 1%, which implies
limited aggregation, to S = 100%, which implies a high level of aggregation.

Accuracy experiment results.

Recall scores. The box plots in Figures 7 and 8 depict high median scores of recall for
randomly aggregated abstract summaries across method executions and even across
different subject programs, with the median recall score of 1.0 for all subjects and
sampling sizes. This suggests that all dependencies for nearly every given method
invocation in a single execution are being modeled. Note that a 1% sampling rate
would require nearly all method invocations for their respective methods to be similar
in behavior to attain a very high recall score. Such sound modeling could be attributed
to a possible consistency in the behavior of methods in the Java library as used by
NanoXML, Jroras, PL-241, ANTLR, BLoaT, FOP, PMD, and JYTHON.

Precision scores. All subjects continue to maintain a high median value of 1.0 for
precision scores for all of their randomly aggregated summaries with varying sampling
sizes. However, unlike with recall distributions, certain subjects, particularly ANTLR,
Broar, Jropas, and JyTHON, exhibit wider distributions of precision scores, suggesting
an overapproximation in the modeling of method invocations. Such distributions of
precision scores highlight the effect of spurious relations due to aggregation.

Taken as a whole, the plots for the precision and recall scores suggest that dynamic
dependence summaries can be effective at accurately modeling the external heap data
effects for reused methods within all experimental subjects presented in this article. Al-
though the results exhibit substantially high levels of precision and recall for dynamic
dependence summaries, they also indicate a less than perfect modeling of dynamic
dependencies for every single method invocation. This might manifest as possible inac-
curacies in downstream client analyses that rely on dynamic dependence summaries,
which we investigate next with a case study.

Answering RQ4: Summarized Dynamic Slicing Case Study. Motivated by the
cost savings found from the efficiency experiment (RQ2) and the accuracy measures
of dynamic dependence summaries from the accuracy experiment (RQ3), we next in-
vestigated the extent to which these savings are realized at the expense of accuracy
for an actual client analysis. In this case study, we investigate the impact of reused
dependence summaries on the accuracy of dynamic dependence analysis, specifically
dynamic slicing for debugging. As discussed in Section 1, and further in Section 9,
summary-based dynamic dependence analysis can be both unsound and imprecise.
However, the degree to which this affects the results of an analysis in practice is yet to
be known within the context of an actual software engineering technique. As such, this
case study is designed to answer this question, at least for our experimental software
subject, NaANoXML.

Using a training input of NanoXML, and the 20 subsequent faulty inputs, we inves-
tigate this issue by performing backward dynamic slicing to determine accuracy of the
slice. The training input for NANoXML, which is different from the 20 faulty inputs, is
used to generate dynamic summaries for the Java library methods used by NanoXML.
We injected corruptions, or “faults,” in the the 20 inputs to NaNoXML that resulted
in corrupt and incorrect execution state early in NanoXML’s execution—during the
reading of the data files. We identified our slicing criterion for each corruption across
the 20 inputs by observing the output stream and identifying the first point that the
output from the faulty input differs from the output of the correct input. In other
words, we define the slicing criterion as the output instruction (and its output data)
being executed at the moment that the test case output first violates the test oracle
(e.g., the first character difference). We then slice based on that instruction, the vari-
able that was used to hold the externally observed incorrect data, and the specific

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:33

Table Ill. Experiment 3 Results

‘ Metric ‘ Exhaustive ‘ Summary ‘
Found Bugs (ratio) 20/20 18/20
Mean Size of the Slice (# of runtime-instructions) 5019.2 7093.1
Mean Slicing Time (seconds) 84.5 67.2
Mean Program Runing Time (seconds) 527.74 1.70
Mean Program Runtime Overhead (ratio) 7538.1 23.3

execution instance of that instruction (remember, our traces include all execution in-
stances of each instruction). The goal was to localize the first runtime instruction in
each of NANOXMUL’s 20 executions that read in the incorrect data, which we treat as
the faulty instruction instance for the purpose of this experiment. As such, the faults
that we slice are “deep”—the fault execution occurs at the beginning of the execution
trace during the reading of input data, the propagation of the fault’s state infection
spans nearly the entire execution, and the slicing criterion is placed at the output
manifestation near the end of the execution.

Case study metrics. We present our results with the following metrics:

Metric 1: Found Bugs (B). The ratio of the dynamic slices that include the fault. This
metric determines the degree of unsoundness that the summary-based dynamic
analysis brings.

Metric 2: Size of the Slice (Sgjice). The size of the resulting slice as a set of runtime
instructions.

Metric 3: Slicing Time (Tgjce). The time required to compute the dynamic slice.

Metric 4: Program Runtime Overhead (RO). A measure of slowdown of the original
noninstrumented program in terms of a multiplicative factor of the original time.
The overhead is computed as

RO — (instrumented time) — (noninstrumented time)

(noninstrumented time)

We present our results for the case study in Table III and Figures 9 and 10. Table III
shows the aggregated data across all 20 bugs, whereas Figures 9 and 10 break down
results per bug. Figure 9 presents the size of the resulting slices for each bug for
each technique in terms of the unique source-code instructions in the slice. Figure 10
presents the time required to compute the dynamic slice.

Case study results. When examining the bugs that were being inspected, we found
that 18 out of the 20 bugs were localized in the dynamic slice that we computed with the
summary-based technique. Such a localization rate is attributed to faults propagating
through multiple dependency chains, and as such, the ability to slice back to the fault
depends on at least one such chain persisting. The exhaustive slicing technique found
100% of the bugs, as expected. The summary-based technique missed 2 out of the 20
bugs, and this was due to a missing dependency from the training of a summary.

It is also worth noting that the slice sizes on average are larger with the use of
dependence summaries, suggesting an introduction of spurious dependence edges by
the dynamic dependence summaries. However, certain slices are smaller when using
dependence summaries, suggesting dependence edges that were not modeled by the
summaries for certain methods. These effects are indicative of the unsound and im-
precise nature of how dependencies are modeled by dynamic dependence summaries.
Essentially, these results are congruent with the results presented in the accuracy

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:34 V. K. Palepu et al.

25000
mmm exhaustive
mmm summary

20000 I
15000 ‘
10000 ‘
5000 } }

Slice Sizes (no. of runtime instructions)

© o o
—

—— —
1 ———
S

o~
—

Pl
. |
3 —
I
4 —
5 —
|
6 —
]
I R
7__
- T
I
13—
15 E——

11

14 I———

1 I—— —

1 —

1 o ——— —
1

By ———————————

Bugs

Fig. 9. Slice sizes (Sjce)-

experiment (carried out to answer RQ3) that indicated small losses of accuracy on the
reuse of dynamic summaries.

Considering the costs of analyzing the program’s execution (indicated by the program
runtime overhead) and the cost of computing the dynamic slice, the costs for exhaustive
dynamic slicing are substantially more than the costs for summarized dynamic slic-
ing. Particularly, the runtime overhead costs of exhaustive monitoring of a program’s
execution were dramatically greater than those of the summary-based approach—and
these are costs that would be incurred for every execution to be sliced.

8. ANALYSIS AND DISCUSSION

In this section, we present a discussion of all four studies to draw more general conclu-
sions. In addition, we discuss each research question that motivated our evaluation, in
order. In our first experiment, we investigated the extent to which instructions from
the Java standard library code are a part of a software execution. With seven client
subject programs, there was a substantial reliance on the execution of instructions
from library code, with certain executions relying on up to 95% of the execution on
instructions from library code. A single execution of ANTLR showed the least reliance
(1.97%) on library code. That said, even the 1.97% reliance of library code amounted to
4.3 million instructions from the Java libraries in the case of ANTLR.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:35

250
mmm exhaustive
BEE summary

200

un
%4
o

100

50

Slice Times (seconds)
1 e A
1 e O I
1 5 A
1 Y I I

m <

© ~ © o o — ~ oM < n
— — — — — —

]
16
17 g
18====IIIII
19 g
20

Bugs

Fig. 10. Slicing time (Tsjice).

As such, to RQ1, we assess: A substantial number of instructions are executed with
the methods belonging to external libraries, thus suggesting potentially high cost
savings.

With the efficiency experiment, we investigated the extent of performance gains with
the use of a summary-based approach. In every measure of performance costs, we found
that as a whole, the use of summarized dynamic dependencies substantially reduced
costs. On average, for the 40 executions across the eight subjects, we observe a 13x
speedup in executions and a 53% savings in execution trace sizes. When examining the
results from Experiment 2, we find that the exhaustive technique often exceeded our
thresholds for costs, whereas the summary-based technique was efficient, in all but
one execution.

As such, to RQ2, we assess: The reuse of dynamic summaries caused the costs
involved in performing dynamic dependency analysis to be significantly reduced.

In terms of analysis accuracy, we evaluated the effects of aggregating concrete
summaries and using dynamically collected information to create dependence sum-
maries. We aggregated random samples of concrete summaries for individual method

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:36 V. K. Palepu et al.

invocations within a single execution and compared the resulting summary to hold-out
summaries. When examining the results from Experiment 3, we find that although
we are utilizing summarized results from within the same execution to approximate
the dependencies of external components, the summarization overapproximated de-
pendencies between inputs and outputs of methods in some cases.

We further inspected some instances of method invocations for which precise sum-
maries were not generated. Our anecdotal evidence revealed that imprecision in mod-
eling summaries in some cases occurs due to exceptional control flow exhibited by cor-
ner cases. For instance, consider the get (int index) method in java.util.ArrayList,
whose summary shows that its return value depends on an internal data array that
is a field to the ArrayList object, and the integer argument index, as showcased ear-
lier in Figure 6. However, certain invocations of the get(int) method would result
in an ArrayOutOfBounds unchecked exception, resulting in the lack of a return value
and thus exhibiting no outputs with dependencies on the method’s inputs. However,
such an invocation would still be modeled by a dependence summary that includes a
return value as an output, resulting in an incorrect method summarization. Similarly,
consider the get (Object key) method in java.util.HashSet that can either return an
object or a null value if the input key does not exist. Although the dynamic summary
for this method models both dependencies, in an actual invocation only one of the two
dependencies will be exhibited: “return value depends on object” or “return value de-
pends on null.” Thus, resulting in an overapproximated dependence summary for the
HashMap.get’s return value.

That said, in the majority of cases, the resulting summaries did exhibit sound and
precise approximations of the dynamic dependencies between inputs and outputs for
specific invocations of specific methods. Such accuracy results for different sampling
sizes and subject programs indicate that a method’s invocation may be summarized
effectively by monitoring only a sample of the method’s invocations instead of observ-
ing the totality of its invocations in a given execution. Based on these preliminary
findings, we speculate that methods exhibit a limited set of behaviors that may be
modeled by observing a limited number of invocations. As such, we envision practical
applications where we are able to use one set of method inputs to generate method
summaries and use the resulting summaries to model behavior of method invocations
that accept entirely different inputs. The accuracy results, specifically the recall scores
at 100% sampling sizes, suggest that method summaries are likely to comprehen-
sively model method behavior with greater degrees of training. However, the extent of
training necessary for generating comprehensive method summaries requires further
investigation, which we discuss as future work in Section 9.

As such, to RQ3, we assess: Dependence summaries created using dynamically
observed data resulted in the generation of sound dependence summaries within the
context of a single execution, with a perceptible loss of accuracy, leading to imprecise
dependence summaries in some cases.

To investigate the cumulative effects of using dynamic dependence summaries in a
real-world software engineering context, we used our summary-based approach in dy-
namic slicing with the goal of localizing bugs in program executions. We also examined
the accuracy of the summary-based dynamic slicing in the context of performance gains
made as a consequence of summarization. When examining the results of our dynamic
slicing case study, we find that although we are utilizing summarized results from a
past execution to approximate the dependencies of external components in subsequent
executions, the summarized slicing technique produced accurate results: 90% of the
bugs were found with the summary-based technique.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:37

As such, to RQ4, we assess: The reuse of dynamic summaries caused a small loss
of accuracy as a consequence of the gains in performance.

Taken as a whole, our results suggest that the reuse of dynamic summaries can
provide a way to make dynamic dependency analysis more feasible for real-world
use with modest losses in accuracy. In software development projects that are able
to tolerate inaccuracies (e.g., in noncritical systems), or for analyses that are more
heuristic in nature (e.g., bloat analysis), our results suggest that the trade-offs favor
reuse of dynamic summary information for external components.

Threats to Validity. Threats to external validity arise when the results of the ex-
periment are unable to be generalized to other situations. In this experiment, we eval-
uated the impact of using dynamic dependency summaries on eight client programs,
with their set of dependent external components, and thus we are unable to definitively
state that our findings will hold for programs in general. However, we are confident
that these results are indicative of the impacts of such summarization. The external
components in this study are the Java standard library, which is a dependency that
many other programs will also have and thus the effects on efficiency and effectiveness
of dynamic summarization of that common library is likely to hold for those programs.
Moreover, the significant gains exhibited in our results gives strong evidence that our
approach, at least, shows promise for use in practice.

Threats to construct validity arise when the metrics used for evaluation do not
accurately capture the concepts that they are meant to evaluate. Our experiments
measured the costs involved in performing tracing and dynamic dependence analysis in
terms of computational time and data storage. Although our results give an indication
of the degree of such costs, our implementation can be greatly optimized in both regards.
Our tracing information is verbose, and our implementation is not optimized. However,
this limitation does not affect the overall result, as this same implementation was used
for both treatment techniques (exhaustive and summarized)—that is, the direction and
magnitude of the difference between the results should not significantly change when
these factors are optimized. In addition, our experiments measured the inaccuracy
introduced in method summaries as a process of abstraction and aggregation. Although
these metrics give an indication of the accuracy of our results, they do not give a sense
for how these will affect either developer time or client analyses that build on such
results. Further studies will need to be conducted to assess the impact on such clients
of these analyses.

9. LIMITATIONS AND FUTURE WORK

Unsoundness and Imprecision. It is important to note that the summary-based
dynamic dependence analysis can introduce both unsoundness and imprecision. On
one hand, the quality of an abstract summary relies on the coverage of the tests used to
train the summary. Thus, a summary may miss certain dependence relationships due to
the lack of test cases. On the other hand, the abstract summary aggregates information
from multiple executions of the method. Thus, the application of the summary for a
specific invocation may generate additional spurious dependence relationships that
would not have been added in a regular dependence analysis.

To reduce these negative effects, it is important to find methods that are suitable
for summarization. Our experience shows that API methods in large libraries may be
good sources of summarizable methods because they often do not mutate client objects,
their behaviors are often relatively simple, and even similar under different clients.
In our evaluation (Section 7), the entire Java standard library is summarized to speed

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:38 V. K. Palepu et al.

up the dynamic slicing of a real-world application with perceptible, although limited,
losses in accuracy while abstracting dynamic dependence summaries.

Future work will develop ways to assess suitability of summarization for methods.
In addition, adequacy criteria will be developed to inform when the training phase has
sufficiently exercised the behaviors to summarize them.

Abstracting Multiple Array Accesses. Although our technique improves on exist-
ing work in distinguishing array index accesses, this improvement is limited to method
calls that access only a single index. We found that most of our studied methods ac-
cessed a single index. Even for methods that access multiple array locations (e.g.,
addAll in many of the java.util.* methods), they are often implemented by invoking
methods that access a single array location (e.g., add) multiple times. Hence, our tech-
nique can precisely handle array accesses for most of the common and frequently used
data structure methods.

Future work will provide yet further improvement to array summarization by devel-
oping ways to summarize access to multiple array indices. We envision techniques that
rely on light-weight instrumentation to accurately identify accesses to array elements.

Using Static Analysis for Summary Generation. Our approach to generate de-
pendence summaries improves on existing works by accounting for variance in method
behavior due to polymorphism. However, it still falls short in accurately modeling
variance in method behavior due to varying control flow paths followed by different
executions of the same method with the same input parameter types.

Future work will investigate hybrid approaches of dependence analysis to generate
accurate summaries with greater efficiency. Such a summary generation approach
would use static analysis to produce static summaries for all alternatives and light-
weight dynamic instrumentation to selectively choose the right summary edges from
the static summaries. We envision that light-weight instrumentation will account for
varying behavior due to dynamically observed control flow, accesses to individual array
elements, and dynamic dispatch. In addition, we will also investigate how dynamic
summaries compare to summaries computed with static analysis alone for various
expensive dynamic analyses in terms of performance and accuracy.

Further Extensions to Current Evaluation. Additionally in future work, we will
further expand our current evaluations on a larger set of applications and extend
it to address scalability issues for specific downstream dynamic client analyses (e.g.,
dynamic-slicing, bloat-, and change-impact analysis). We will also study the reuse
dynamic summaries at varying depths of the call stack during program executions.
Such an investigation would potentially extend the scope of summarization to any
given component within an application, not just library or external components.

Future studies will investigate the reuse of summaries when generated with one
client program and used in a completely different client program, as against gener-
ating and using summaries with executions of the same client program. The goal of
such studies will be to identify the extent of training necessary to model dependence
summaries for method behavior. We will also examine a plausible correlation between
the size of a method invocation, and the accuracy of the dependence summary, espe-
cially given that a wider set of dependencies would be exercised with longer method
invocations due to likely issues such as more complex control flow.

10. RELATED WORK

Although there exists a body of work related to the proposed technique, discussion in
this section focuses on techniques that are most closely related to ours.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:39

Summary-Based Program Analysis. Procedural summaries have been computed
and used widely in the static analysis community to achieve modularity and efficiency.
Summary functions for interprocedural analysis date back to the functional approach
in the work by Sharir and Pnueli [1981], with refinements for interprocedural, finite,
distributive, subset (IFDS) problems from Sagiv et al. [1996] and for interprocedu-
ral distributive environment (IDE) dataflow problems from Reps et al. [1995]. Yorsh
et al. [2008] use conditional microtransformers to represent and manipulate dataflow
functions. Rountev and colleagues ([Rountev et al. 2006, 2008]) propose a graph repre-
sentation of dataflow summary functions that generate and use summaries to reduce
the cost of whole-program IDE problems. Xu et al. [2009] propose a summary-based
analysis that computes access path—based summaries to speed up the context-free-
language (CFL)-reachability—based points-to analysis. Dillig et al. [2011] propose a
summary-based heap analysis targeted for program verification that performs strong
updates to heap locations at call sites. Ranganath and Hatcliff [2004] statically ana-
lyze the reachability of heap objects from a single thread for slicing concurrent Java
programs. Salcianu and Rinard [2005] propose a regular expression—based, purity and
side-effect analysis for Java to characterize the externally visible heap locations that
a given method mutates. Tang et al. [2015] propose a static analysis—based method
to summarize library methods specifically in the presence of callbacks in the library
methods. This is similar in spirit to the heap location—based dependence summariza-
tion as proposed in our work. Inspired by such static analyses, the work presented in
this article is the first technique to compute and use dynamic dependence summaries.
Dynamic dependence summaries can potentially better inform dependence information
more precisely than static dependence summaries by leveraging information collected
at runtime.

Dynamic Dependence Analysis. Since first being proposed by Agrawal and Horgan
[1990], dynamic dependence analysis has inspired a large body of work on a variety of
software engineering tasks from debugging to memory bloat analysis. Early work from
Kamkar et al. [1992] introduces the theory behind summary-based dependence slicing
for a stack-only language. Our approach attempts to be more general, in that it handles
all features of a modern object-oriented language. The work by Zhang and colleagues
[Zhang et al. 2003; Zhang and Gupta 2004a, 2004b; Zhang et al. 2006a; Zhang et al.
2006b] considerably improved the state of the art in dynamic dependence analysis and
its applications like dynamic slicing and fault localization. This work includes, for ex-
ample, a set of cost-effective dynamic slicing algorithms [Zhang et al. 2003; Zhang and
Gupta 2004a], a slice-pruning analysis that computes confidence values for instruc-
tions to select those that are most related to errors [Zhang et al. 2006a], a technique
that performs online compression of the execution trace [Zhang and Gupta 2004b], and
an event-based approach that reduces the cost by focusing on events instead of indi-
vidual instruction instances [Zhang et al. 2006b]. Apart from Zhang’s work, Wang and
Roychoudhury [2004] develop optimizations to compress bytecode execution traces for
sequential Java programs resulting in space efficiency. Moreover, they develop a slicing
algorithm applicable directly on the compressed bytecode traces. Hierarchical dynamic
slicing [Wang and Roychoudhury 2007] aims at guiding the programmer through large
and complex dependence chains in a dynamic slice, with debugging as the primary
application. Deng and Jones [2012] propose a dynamic dependence graph that encodes
frequency of inferred traversal to prioritize heavily trafficked flows. Xu et al. [2010] pro-
pose an abstraction-based approach to scale a class of dynamic analyses that need the
backward traversal of execution traces. This approach employs user-provided analysis-
specific information to define equivalence classes over instruction instances so that
dynamic slicing can be performed over bounded abstract domains instead of concrete

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



30:40 V. K. Palepu et al.

instruction instances, leading to space and time reduction. Our technique achieves
efficiency from a different angle—we use summaries generated for library classes to
speed up general dynamic data dependence analysis, and thus all dynamic analyses
that need dependence information may benefit from this technique.

11. CONCLUSIONS

This article presents a summary-based dynamic analysis approach to effectively per-
form dynamic analysis techniques for modern applications that use large object-
oriented libraries and components. During training, summaries are produced for li-
brary methods, which are later used for dependence analysis rendering improved effi-
ciency. To compute the summary for a library method, we first extract concrete depen-
dence relations between a method invocation’s inputs and outputs from its execution
trace and then abstract them with symbolic data. This symbolic data is then used dur-
ing subsequent analysis by replacing symbolic names with the new concrete data. Our
experimental results on real-world software found that a heavy reliance on external
components is a reality and that applying these summaries in the dependence analysis
can significantly save costs. Our results show that summary abstraction does well to
capture varying method behaviors despite potentially causing modest loss in accuracy.

REFERENCES

Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic program slicing. In Proceedings of the ACM SIGPLAN
1990 Conference on Programming Language Design and Implementation (PLDI’90). 246-256.

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, et al. 2006.
The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA06). 169-190.

E. Bruneton, R. Lenglet, and T. Coupaye. 2002. ASM: A code manipulation tool to implement adaptable
systems Paper presented at the meeting of Adaptable and Extensible Component Systems.

Fang Deng and James A. Jones. 2012. Weighted system dependence graph. In Proceedings of the 2012 IEEE
5th International Conference on Software Testing, Verification, and Validation (ICST’12). IEEE, Los
Alamitos, CA, 380—389.

Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. 2011. Precise and compact modular procedure
summaries for heap manipulating programs. In Proceedings of the ACM SIGPLAN 2011 Conference on
Programming Language Design and Implementation (PLDI’11). 567-5717.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empirical Software Engineering 10, 4,
405-435.

Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankan, Naznin Fauzia, Louis-Noel Pouchet,
Atanas Rountev, and P. Sadayappan. 2012. Dynamic trace-based analysis of vectorization potential of
applications. In Proceedings of the ACM SIGPLAN 2012 Conference on Programming Language Design
and Implementation (PLDI’'12). 371-382.

Susan Horwitz, Thomas Reps, and David Binkley. 1990. Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages and Systems 12, 1, 26—60.

Mariam Kamkar, Nahid Shahmehri, and Peter Fritzson. 1992. Interprocedural dynamic slicing. In Program-
ming Language Implementation and Logic Programming. Lecture Notes in Computer Science, Vol. 631.
370-384.

Bogdan Korel and Janusz Laski. 1990. Dynamic slicing of computer programs. Journal of Systems and
Software 13, 3, 187-195.

Doug Mcllroy. 1968. Mass-produced software components. In Proceedings of the NATO Conference on Soft-
ware Engineering. 88-98.

James Newsome and Dawn Song. 2005. Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. In Proceedings of the 12th Annual Network and
Distributed System Security Symposium (NDSS’05).

Alessandro Orso, Hyunsook Do, Gregg Rothermel, Mary Jean Harrold, and David S. Rosenblum. 2007.
Using component metadata to regression test component-based software: Research articles. Journal of
Software Testing, Verification and Reliability 17, 2, 61-94.

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



Dynamic Dependence Summaries 30:41

Alessandro Orso, Mary Jean Harrold, and David S. Rosenblum. 2001. Component metadata for software
engineering tasks. In Proceedings of the International Workshop on Engineering Distributed Objects.
129-144.

Vijay Krishna Palepu, Guoqing Xu, and James A. Jones. 2013. Improving efficiency of dynamic analysis with
dynamic dependence summaries. In Proceedings of the 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE’13). 59—69.

Venkatesh Prasad Ranganath and John Hatcliff. 2004. Pruning interference and ready dependence for slicing
concurrent Java programs. In Compiler Construction. Lecture Notes in Computer Science, Vol. 2995.
Springer, 39-56.

T. Reps, S. Horwitz, and M. Sagiv. 1995. Precise interprocedural dataflow analysis via graph reachability. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL95). 49-61.

Atanas Rountev, Scott Kagan, and Thomas Marlowe. 2006. Interprocedural dataflow analysis in the presence
of large libraries. In Compiler Construction. Lecture Notes in Computer Science, Vol. 3923. Springer,
2-16.

Atanas Rountev, Mariana Sharp, and Guoqing Xu. 2008. IDE dataflow analysis in the presence of large object-
oriented libraries. In Compiler Construction. Lecture Notes in Computer Science, Vol. 4959. Springer,
53—-68.

Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural dataflow analysis with appli-
cations to constant propagation. Theoretical Computer Science 167, 1-2, 131-170.

Alexandru Salcianu and Martin Rinard. 2005. Purity and side effect analysis for Java programs. In Proceed-
ings of the 6th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI'05). 199-215.

M. Sharir and A. Pnueli. 1981. Two approaches to interprocedural data flow analysis. In Program Flow
Analysis: Theory and Applications, S. Muchnick and N. Jones (Eds.). Prentice Hall, 189-234.

Hao Tang, Xiaoyin Wang, Lingming Zhang, Bing Xie, Lu Zhang, and Hong Mei. 2015. Summary-based
context-sensitive data-dependence analysis in presence of callbacks. ACM SIGPLAN Notices 50, 83-95.

Tao Wang and Abhik Roychoudhury. 2004. Using compressed bytecode traces for slicing Java programs. In
Proceedings of the International Conference on Software Engineering (ICSE’04). 512-521.

Tao Wang and Abhik Roychoudhury. 2007. Hierarchical dynamic slicing. In Proceedings of the 2007 Interna-
tional Symposium on Software Testing and Analysis (ISSTA07). 228-238.

Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, Edith Schonberg, and Gary Sevitsky. 2010.
Finding low-utility data structures. In Proceedings of the ACM SIGPLAN 2010 Conference on Program-
ming Language Design and Implementation (PLDI’10). 174-186.

Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-reachability-based points-to analysis
using context-sensitive must-not-alias analysis. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’09). 98-122.

Greta Yorsh, Eran Yahav, and Satish Chandra. 2008. Generating precise and concise procedure summaries.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL'08). 221-234.

Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006a. Pruning dynamic slices with confidence. In Pro-
ceedings of the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation
(PLDI’06). 169-180.

Xiangyu Zhang and Rajiv Gupta. 2004a. Cost effective dynamic program slicing. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation (PLDI’04). 94-106.

Xiangyu Zhang and Rajiv Gupta. 2004b. Whole execution traces. In Proceedings of the 37th International
Symposium on Microarchitecture (MICRO-37). 105-116.

Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2003. Precise dynamic slicing algorithms. In Proceedings
of the International Conference on Software Engineering (ICE’03). 319-329.

X. Zhang, S. Tallam, and R. Gupta. 2006b. Dynamic slicing long running programs through execution fast
forwarding. In Proceedings of the 13th Annual Fast Software Encryption Workshop (FSE’06). 81-91.

Received February 2015; revised June 2016; accepted July 2016

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 4, Article 30, Publication date: January 2017.



