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ABSTRACT

Over the past decade, the pervasive use of object-oriented languages and the in-

creasing complexity of problems solved by computer software have led to the prolifera-

tion of large-scale framework-intensive applications. These applications are typically

built by combining standard packages (e.g., J2EE application server frameworks),

third-party layers for domain-specific functionality, and in-house solutions. While

employing libraries and frameworks eases the development effort, it can be expen-

sive to invoke the general APIs provided by these libraries, especially when they are

used for simple tasks. As a result, many applications suffer from excessive memory

footprint caused by chronic runtime bloat that significantly impacts scalability and

performance. In addition, programmers are taught to pay more attention to abstrac-

tions and models, and to leave the performance optimization to the runtime system.

While a few redundant objects, calls, and field copies may seem insignificant, the

problem quickly gets exacerbated due to nesting and layering. At some point, these

inefficiencies accumulate, and compilers (e.g., the JIT in a JVM) can no longer elim-

inate them, since layers of abstractions grow to be deep, dynamic, and well beyond

the capabilities of compiler analysis.

In this dissertation, the term bloat is used to refer to the general phenomenon

of using excessive work and memory to achieve seemingly simple tasks. Bloat exists

commonly in large-scale object-oriented programs and it is a major challenge that
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stands in the way of bridging the productivity-performance gap between managed and

unmanaged languages. The overarching goal of our work is to find large bloat-related

optimization opportunities, with a small amount of developer time. As a fundamental

methodology to achieve this goal, we advocate tool-assisted manual optimization, in

order to combine developer insight with the automated tool support. In particular, we

have designed, implemented, and evaluated code checking techniques accomplished by

bytecode-level static analysis, and runtime optimization techniques achieved by VM-

level dynamic analysis, for detecting and removing runtime bloat in large framework-

intensive Java applications. These techniques can be used to (1) help a programmer

detect the root cause if a problem is seen; (2) remove frequently-occurring bloat

patterns; and (3) prevent bloat from occurring in an early stage of development.

Incorporating these techniques in an existing Java compiler or virtual machine will

lead to increased developer productivity by helping programmers quickly locate bloat-

related performance bottlenecks, as well as improved scalability of large programs by

optimizing away bloat at run time. In addition, it is possible to generalize these

approaches to handle similar problems in programs written in other object-oriented

languages (e.g., C#), so that non-Java communities would also benefit from them.

While these techniques are designed specifically to solve the bloat problem, many

of them are applications of more general (theoretical) frameworks developed in the

dissertation that can be instantiated to solve other problems.

Bloat contains wasteful operations that, while not strictly necessary for the for-

ward progress, are executed nevertheless. We propose novel dynamic analysis tech-

niques to detect such wasteful operations and to produce information that is necessary

for the programmer to pinpoint the performance bottlenecks. One such analysis, as
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the first contribution of this dissertation, is copy profiling. This analysis is designed

based on an important observation that the wasteful operations often consist of data

copy activities that move data among heap locations without any useful computation.

By profiling copies, this analysis looks for program regions containing large volumes

of copies and data structures whose construction involves data copied frequently from

other data structures.

Different from this “from-symptom-to-cause” approach that finds bloat from the

symptoms through which it manifests, the second dynamic analysis this dissertation

advocates attempts to capture directly the center of bloat, which is the set of oper-

ations that, while expensive to execute, produce values of little benefit. Detecting

the operations that have high cost-benefit rates is, thus, an important step towards

tracking down the causes of performance problems. In order to compute cost and

benefit efficiently, we propose a novel technique, called abstract dynamic thin slicing,

that performs dynamic thin slicing over bounded abstract domains. We demonstrate,

using real-world examples, that this technique can also be adopted to solve a range of

backward data flow problems efficiently. With the help of a variety of data aggregation

approaches, these analyses can help a programmer quickly find potential performance

problems.

The accumulation of bloat effects may result in memory leaks, which occur when

object references that are no longer needed are unnecessarily maintained. Existing

dynamic analyses for leak detection track fine-grained information about individual

objects, producing results that are hard to interpret and lack precision. The third

contribution of the dissertation is a novel container-based heap-tracking technique,

based on the observation that many memory leaks in Java programs occur due to
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containers that keep references to unused data entries. By profiling containers and

understanding their semantics, it is much easier to track down the causes of memory

leak problems, compared to existing leak detection approaches based on the tracking

of arbitrary objects.

Although container profiling is effective in detecting container-induced memory

leaks, it has difficulties dealing with leaks that are caused by general unnecessary

references instead of containers. In order to help programmers identify the root

causes of these general leaks, we propose a specification-based dynamic technique

called LeakChaser, as the fourth contribution of this dissertation. LeakChaser brings

high-level application semantics into low-level leak detection by allowing programmers

to specify and infer object liveness properties. This new technique exploits object

lifetime relationships and uses varying levels of abstraction to help both experts and

novices quickly explore the leaky behavior to pinpoint the leak cause.

Using these four dynamic analyses, we have found many interesting bloat patterns

that can be regularly observed in the execution of large Java programs. A further step

to avoid bloat is to develop static analyses that can find and remove such patterns

during application development, so that small performance issues can be prevented

before they accumulate and become significant.

One interesting pattern is the inefficient use of Java containers. The fifth contri-

bution of this dissertation is a static analysis that identifies inefficiencies in the use of

containers, regardless of inputs and runs. Specifically, this static analysis detects

underutilized and overpopulated containers by employing a context-free-language
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(CFL)-reachability formulation of container operations, and by exploiting container-

specific properties. The analysis is client-driven and demand-driven. It always gen-

erates highly-precise reports, but trades soundness for scalability. We show that this

analysis exhibits small false positive rates, and large optimization opportunities can

be found by inspecting the generated reports.

Another bloat pattern that we have regularly observed is constructing and initial-

izing data structures that are invariant across loop iterations. As the sixth contri-

bution of this dissertation, we develop a static analysis that uses a type and effect

system to help programmers find such loop-invariant data structures. Instead of trans-

forming a program to hoist these data structures automatically (which must be over-

conservative and thus becomes ineffective in practice), we advocate a semi-automated

approach that uses the static analysis to compute hoistability measurements. These

measurements indicate how likely it is that these data structures can be hoisted, and

are presented to the user for manual inspection. Our experimental results indicate

that the proposed technique can be useful both in the development phase (for find-

ing small performance issues before they accumulate) and in performance tuning (for

identifying significant performance bottlenecks).

In conclusion, despite the existence of a number of profiling tools, this disserta-

tion attempts to establish more systematic ways of identifying run-time inefficiencies.

The dynamic analyses presented in the dissertation are implemented in J9 (a com-

mercial JVM developed by IBM) and Jikes RVM (an open-source JVM written in

Java). The static analyses are implemented in Soot, a popular Java program analysis

framework. All of the proposed analyses have been shown to scale to real-world Java

applications. Our experimental results strongly suggest that these techniques can
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be used in practice to find and remove bloat in large-scale applications, leading to

performance gains. We hope that with the help of the analyses we have developed,

performance tuning could be made much easier and will no longer be a daunting

task that requires special skills and experience. Developers should be able to easily

understand performance and perform optimizations, when they are assisted by good

tools and do not need to focus on every low-level detail of the execution behavior and

the analysis process. The productivity-performance gap between managed languages

and unmanaged languages could be further reduced by using these techniques and

tools so that performance would no longer be an issue that stands in the way of using

object-oriented languages to implement performance-critical systems. Furthermore,

we hope that the examples and patterns discovered by this dissertation can be used

to raise the awareness of bloat in real-world software development—developers should

understand the performance impact of their decisions and should try to avoid these

bloat patterns in order to have high-performance implementations.
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CHAPTER 1: Introduction

A major and sustained technology trend in the past few decades is the prolif-

eration of software designed to solve problems with increasing levels of complexity.

These computer programs range from stand-alone desktop applications developed to

meet our individual needs and interests, to large-scale long-running servers that can

process requests for many millions of concurrent users. Thanks to the advancement of

object-oriented programming languages and the standardization of software manage-

ment processes, the difficulty of developing and maintaining modern programs keep

decreasing. Much of these achievements is due to the community-wide recognition of

abstraction and reuse: software should be designed in a modular way so that specifi-

cations and implementations are well separated, functional components communicate

with each other only through interfaces, and component interfaces are declared as

general as possible in order to provide services in a variety of different contexts. The

concretization of these ideas has led to an explosion of patterns [42, 53, 73, 78], mod-

els [25, 151], and development methodologies [2, 52], which have been considered as

the most important software development guidelines that every programmer should

know.

However, while software reuse makes development tasks easier, it often comes

with certain kinds of excess, leading to performance degradation. Implementation

details are hidden from the external users, who have to (and are encouraged to)

rely on general-purpose APIs to fulfill their specific requests. When their needs are
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much narrower than the service that these APIs can provide, wasteful operations

start emerging. For example, a study from [92] shows that the conversion of a single

date field from a SOAP data source to a Java object can require more than 200

method calls and the generation of 70 objects. Programmers are not aware of the

potential performance problems, because they believe the runtime system (e.g., the

just-in-time (JIT) compiler) can eliminate these inefficiencies behind the scenes. In

addition, the pervasive use of managed languages such as Java and C# makes it

possible for programmers to take their attention away from issues of memory usage,

because whenever an object becomes unreachable, it is reclaimed by the garbage

collector. Programmers are thus encouraged to create objects, taking it for granted

that creating and reclaiming objects is free. In a large program that is typically built

on top of many layers of frameworks and libraries, a small set of inefficiencies can

multiply and quickly get magnified to cause significant slowdown of the system. When

the call stack grows to be deep, the usefulness of the compiler analyses in a runtime

system becomes limited and the optimizer can no longer remove these inefficiencies.

In this dissertation, the term bloat is used to refer to the general phenomenon of

using excessive work and memory to achieve seemingly simple tasks. Bloat commonly

exists in large-scale object-oriented applications, and impacts significantly their per-

formance and scalability. A program that suffers severe bloat such as a memory leak

can crash due to OutOfMemory errors. In most cases, excessive memory consumption

and significant slowdown may be seen in programs that contain bloated operations.

It is important to find and remove these wasteful operations in large-scale and long-

running applications. This need is motivated not only by the desire to reduce the
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running time and memory usage of these applications. Software maintainers often in-

terpret the growing amount of inefficiency as a result of lack of support from the hard-

ware side, and intend to perform expensive system upgrades (e.g., memory increase,

replacement of CPUs with more cores, use of higher-speed network devices, etc.)

to help an application reach the expected performance line, which could have been

achieved by (more) efficient use of memory and (more) careful choice of operations.

For example, as revealed by a recent study [6] conducted at IBM Research, fixing

memory and execution inefficiencies (without any system upgrade) has increased the

throughput of a large document management server more than twice as much as the

alternative that tackles the problem by improving both the quality and the quantity

of hardware. Hence, the elimination of bloat can lead to reduced requirements for the

execution environment, resulting in significant savings in power and cost. Removing

bloat is especially relevant as multicore systems get popular: the excess that exists

in memory consumption and execution becomes increasingly painful because memory

bandwidth per core goes down, and we cannot rely on speed increases to ameliorate

ever-increasing levels of inefficiency.

1.1 Challenges

The JIT’s difficulty Bloat cannot be easily removed. Modern JITs have

sophisticated optimizers that offer important performance improvements, but they

are often unable to remove the penalty of bloat. One problem is that the code in

large applications is relatively free of hot spots. Table 1.1 shows a breakdown of the

top ten methods from a commercial document management server. This application

executes over 60,000 methods, with no single method contributing more than 3.19%

3



method CPU time

HashMap.get 3.19%
Id.isId 2.84%
String.regionMatches 2.12%
CharToByteUTF8.convert 2.04%
String.hashCode 1.77%
String.charAt 1.70%
SimpleCharStream.<init> 1.65%
ThreadLocalMap.get 1.32%
String.toUpperCase 1.30%

Table 1.1: In a commercial document management server, no single frequently-
executed method can be optimized for easy performance gains.

to total application time, and only 14 methods contributing more than 1%. JITs

are faced with a number of important methods, and have to rely heavily on the

object inliner to combine together code into larger, hopefully optimizable, regions.

Forming perfect code regions, and then optimizing them, is an immensely challenging

problem [124]. Method inlining is determined based on control flow profiling, and

it is not necessary for the frequently-executed regions to contain large optimization

opportunities, which are, in many cases, related to data creation and propagation

(e.g., non-escaping objects). In addition, optimizations that can be easily performed

by a programmer (e.g., moving an invocation of a side-effect-free method out of a loop)

can require orders of magnitude greater JIT effort to achieve the same effect. That call

may ultimately perform thousands of method invocations with call stacks hundreds

deep, and allocate many objects. Automatically performing such a transformation

requires a number of powerful analyses to work together. If language features that

restrict optimization (e.g., reflection and precise exceptions) are taken into account,

there is little hope that a performance bottleneck can be identified and removed
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by a fully automated solution. As an example, a study described later found that

to perform the seemingly simple task of inserting a single small document in the

database, the document server invokes 25,000 methods and creates 3000 temporary

objects, even after JIT optimizations. However, with less than one person-week of

manual tuning, a performance expert was able to reduce the object creation rate by

66%. Such results indicate that vast improvements are possible when tuning is made

easier with more powerful tool support.

The human experts’ difficulty While with manual tuning a skillful perfor-

mance expert may find larger optimization opportunities, it is not easy as well for

her to perform the tuning task, primarily due to the lack of good tools. Despite the

existence of many profilers [51, 80, 109], the information that they report is far from

being sufficient for a programmer to locate the performance bottleneck. For exam-

ple, in most cases, JProfiler can report the numbers of instances of different types

during the execution. However, the fact that type java.util.HashMap$Entry has the

highest number of instances tells the programmer nothing about the HashMaps that

hold these entries and the calling contexts under which the elements are added to

the HashMaps. In addition to the limitation with the existing tool technology, tuning

requires deep understanding of implementation logic and a great deal of programming

experience. Thus, there are often only a handful of programmers who are capable of

manually performing this task, which can involve many (iterative) cycles of program

inspection, cost measurement and analysis, configuration change, and source code

modification, and can be extremely time-consuming.
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1.2 Compiler-Assisted Manual Tuning: Bloat Detection via
Program Analysis

Program analysis targeting performance problems The goal of this

dissertation is to develop compiler and tool support that can help a programmer

detect and remove bloat throughout the entire software development process. Our

objective is not to replace JIT optimizations, but to complement them, thus making

it easier to perform tuning that targets runtime bloat. Through a combination of

metrics and analyses focused on bloat, we hope to quickly guide developers to the

problematic areas of the application, allowing them to transform the program to

eliminate the problem. The techniques we have designed range from static analyses

that find wasteful operations in the early stage of development, to dynamic analyses

that detect bloat based on various kinds of heuristics and symptoms being observed

during the execution. The static analyses can be easily incorporated in existing coding

assistance tools to give programmers warnings whenever inefficiency is seen, and to

transform the program to avoid the potential bloat. The dynamic analyses can be

either implemented in offline diagnosis tools, or embedded in Java Virtual Machines

(JVM) to offer both coarse-grained and fine-grained problem diagnosis with varying

time (i.e., 50% through 70×) and space (i.e., up to 2×) overheads.

1.2.1 Dynamic Analyses That Detect Bloat by Making Sense

of Heaps and Executions

One of the most difficult tasks during performance tuning is making sense of

the heap, with its large number of objects, and of the execution that may have

millions of method invocations and last for hours and days. We have developed four

dynamic analysis techniques that exploit activity profiling and garbage collection
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runs to expose bloat symptoms. The essence of these techniques is to highlight

performance-impacting activities in programs. Understanding these activities makes

it possible for programmers to make more sense of execution behavior and heap

usage, so that they can quickly recognize the problems and perform appropriate

design and/or implementation modifications to overcome them.

Existing compilers and tools focus on control flow (e.g., method execution times

and frequencies) when making optimization decisions. However, in large-scale sys-

tems, data-based activities are sometimes stronger signs of excess than control-based

ones. Examples of such symptoms include excessive data copying, operations of high

cost and little benefit, problematic container behaviors, and stale objects (that are

reachable in the object graph but not used for a long time). The first part of this

dissertation presents four dynamic analyses that identify inefficiencies by focusing on

such interesting data-based activities.

Profiling copies to make sense of data flow Bloat often occurs due

to unnecessary work along data flows. Such work may consist of data copy activities

that move data among heap locations without any useful computation. By optimizing

copies, one is likely to remove the objects that carry copied values, and the method

calls that allocate and populate these objects. We design a dynamic analysis (de-

scribed in Chapter 3) [156] that looks for program regions containing large volumes

of copies, and data structures whose construction involves data copied frequently from

other data structures. By detecting frequently-occurring copy chains and computing

copy volumes for data structures, the analysis can quickly guide developers to the

problematic areas of the application.
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Abstract dynamic slicing to make sense of cost and benefit Object-

oriented programming encourages the creation of interfaces with general functionali-

ties. While these interfaces can be used in different contexts, it is often the case that

the service they provide is more general than what a specific client needs, leading

to wasteful operations and runtime bloat. A common effect of these operations is

that they produce values that could have been obtained in much easier ways. It is

possible for a programmer to quickly detect performance bottlenecks, if she can un-

derstand the cost of producing a certain value and the benefit of consuming it. We

propose a run-time cost-benefit analysis (described in Chapter 4) [155] that can help a

programmer understand accurately the performance of her program and find the rea-

sons for performance problems seen during program execution. The cost and benefit

computation is based on a novel technique called abstract dynamic thin slicing, that

applies dynamic slicing over bounded abstract domains, leading to a tunable analysis

framework with adjustable abstractions and memory usage. This technique can serve

as the foundation for efficiently solving a set of backward dynamic flow problems that

exhibit bounded-domain properties.

Profiling container operations to make sense of (unnecessary) refer-

ence holding An important source of bloat is the inefficient use of containers. For

example, failure to remove objects from containers can lead to a memory leak, result-

ing in performance degradation and a program crash. We develop a dynamic analysis

(described in Chapter 5) [158] to detect memory leaks by profiling container opera-

tions, based on the observation that many memory leaks in Java programs occur due

to containers that keep references to unused data entries. Compared to existing dy-

namic leak detection techniques that are based on heap differencing and fine-grained
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object tracking, container profiling has fewer false positives and is capable of quickly

directing the programmer to the problematic container that is exactly the cause of

the leak.

Checking and inferring object lifetime invariants to make sense of

object lifetime relationships While the container profiling technique can pre-

cisely detect container-related memory leaks, many real-world leak problems are not

caused by containers, but by simple unnecessary references that programmers forget

to invalidate. To help programmers narrow down the causes of these leaks, we design

a run-time analysis that exploits invariants on object lifetimes.

For many objects, implicit invariants may exist among their lifetimes, such as

“object a references object b and when a dies, b will also die”. These invariants hold

for most of the execution and if, occasionally, they are violated (e.g., a is garbage col-

lected but b is not, because there exists an unnecessary reference from another object

to b), a memory leak may occur. We develop a multi-level dynamic technique called

LeakChaser (described in Chapter 6) [157] that exploits such (lifetime) relationships

to detect Java memory leaks. At the lowest level of this approach is a small set of

basic assertions (such as diesBefore(a, b)) that can be employed by users to spec-

ify these relationships. These assertions are checked regularly at garbage collection

runs. We then introduce high-level application semantics into the analysis by con-

sidering transactions, which are periodically-occurring events during the execution.

Objects that are supposed to be specific to a particular transaction (i.e., they should

be transaction-local), but instead are observed by the analysis to be shared among

transactions, are flagged as potentially leaking. At the highest-level of the approach

is an inference algorithm. The user only needs to tell the tool an object which defines

9



the duration of the transaction. The algorithm automatically infers the correspond-

ing transaction-local and shared objects based on their lifetimes, in order to detect

memory leaks. This approach provides users at different levels of skills and code fa-

miliarity with sufficient flexibility to specify memory leak properties, and generates

reports containing adequate semantic information to facilitate understanding.

Summary Our dynamic analysis work addresses the challenge of automatically

detecting bloated computations that fall out of the purview of conventional JIT op-

timization strategies. In general, existing bloat detection work can be classified into

two major categories: manual tuning methods (i.e., mostly based on measurements

of bloat) [49, 50, 96, 97], and fully automated performance optimization techniques

such as the entire field of JIT technology [8] and the research from [124]. The work

described in this dissertation sits in between: we provide sophisticated analyses to

support manual tuning, guiding programmers to the program regions where bloat is

most likely to exist, and then allowing human experts to perform the code modifi-

cation and refactoring. By doing so, we hope to help the programmers quickly get

through the hardest part of the tuning process—finding the likely bloated regions—

and yet use their (human) insight to perform application-specific optimizations.

1.2.2 Static Analyses That Remove and Prevent Bloat

Using the dynamic analyses, we have identified a number of common bloat pat-

terns that are regularly seen during the executions of large Java applications. We

have developed static analysis tools that can identify these patterns early during de-

velopment, in order to allow a programmer to inspect the code to eliminate them

before program execution.
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Detecting inefficiently-used containers to avoid bloat We found that

a significant source of runtime bloat is the inefficient use of containers. To find and

prevent container inefficiencies early in development, we develop a static analysis

(described in Chapter 7) [159] that can identify two specific types of container inef-

ficiencies, namely, underutilized container and overpopulated container. This work

proposes the first static analysis to identify bloat: this analysis automatically extracts

container semantics and does not require any user annotations. We focus on two ab-

stract container operations ADD and GET, and the analysis detects heap stores and

loads that concretize them based on the context-free-language (CFL) reachability for-

mulation of points-to analysis. The second step of the analysis is to approximate the

frequencies of the identified stores/loads to/from heap locations based on the nest-

ing relationships among the loops where they are located. If the number of ADD

operations is very small, the container is underutilized. If the number of ADD op-

erations is significantly larger than that number of GET operations, the containers

is overpopulated because many elements are not retrieved at all. Reports generated

from this analysis have been shown to be more precise than those produced by the

corresponding dynamic analysis.

Hoisting invariant loop data structures to remove bloat Another im-

portant bloat pattern that we have regularly observed is the construction and ini-

tialization of data structures that are invariant across loop iterations. We develop a

static analysis (described in Chapter 8) [161] that can help programmers find such

data structures. The analysis focuses on logical data structures that may be hoisted.

Specifically, we design a novel type and effect system that identifies, for each data

structure created in the loop, its hoistable part. The larger this part is, the more likely
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this data structure can be hoisted. In order to quantify this likelihood, our analysis

computes hoistability measurements. These measurements are eventually presented

to the user for further manual inspection. Our experimental results indicate that the

proposed technique can be useful both in the development phase for finding small per-

formance problems, and in the tuning phase for identifying significant performance

bottlenecks.

Summary The static analysis work presented in this dissertation is the first

attempt to detect performance problems using static compiler-based approaches. All

existing techniques targeting bloat are dynamic approaches that try to locate perfor-

mance problems by identifying suspicious run-time bloat-indicating behaviors. Our

insight is that some of these behaviors are the dynamic reflection of certain static

properties inherent in the source code of the program, which can be easily seen at

compile time. By finding these properties, a static analysis can also identify potential

performance issues, despite the lack of run-time information such as method execution

frequencies and object allocation counts.

1.3 Impact

Our techniques are based on novel insights into programming languages and on

empirical studies of large-scale and long-running applications, and thus, can be more

precise in detecting bloat and more effective at removing inefficiencies than prior

approaches. The detection and diagnosis techniques rely on observations of different

bloat effects, and novel analysis algorithms to perform both light-weight and heavy-

weight profiling efficiently. At the center of these bloat effects are suspicious data-

based activities. They are better indicators of bloat than what has been traditionally
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thought of as performance-related properties, such as execution time and numbers

of objects created. In addition, checking and inferring object liveness properties

can bridge the gap between performance problems and traditional specification-based

research. This may open up new research directions where the existing body of

software verification and validation techniques can be employed to find memory bloat

effects, which are non-functional and essentially caused by inefficient use of memory.

The static analysis work presented in the dissertation is the first attempt to under-

stand performance issues related to runtime bloat in object-oriented languages with

the help of static approaches. The success of these analyses has demonstrated that

it is possible to identify certain kinds of bloat at compile time, thus providing new

insights for future development of static bloat detectors and compiler optimizations.

The work in this dissertation has immediate practical impact because the static

analyses can be incorporated in existing coding-assistance tools (e.g., Eclipse) to

find inefficiencies during software development, while the dynamic analyses can be

embedded as a JVM service that can be enabled when problem diagnosis is needed.

The broader impact of this work is that it sheds new light on performance opti-

mization of large applications, and demonstrates the viability of quickly finding and

removing performance bottlenecks with the support of systematic techniques that

can make more sense of the execution, the heap and resource usage, and the be-

havior of containers. This attention to typical patterns of inefficiencies (e.g., copies

and loop-invariant data structures) can also help with benchmark design and future

improvements in code optimization technology. Benchmark designers can use met-

rics that target certain bloat patterns to ensure that the benchmarks exhibit the
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categories of bloat that occur in real-world applications. If benchmark suites con-

tain such bloat measurements, researchers could use these metrics to evaluate any

proposed bloat detection/optimization techniques. In addition, future compiler de-

sign can take into account these frequently-observed bloat patterns, and can include

optimization techniques that work specifically for each such pattern.
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CHAPTER 2: Analysis Frameworks

This chapter presents infrastructures that we have implemented for our dynamic

and static analyses. An important component required by many dynamic analysis

techniques described in this dissertation is a framework that supports whole-program

information flow tracking. This chapter first introduces one general information flow

tracking framework we have developed. It is used in both the copy profiler (Chap-

ter 3) [156] and the cost-benefit analysis (Chapter 4) [159]. Second, we present the

platforms and environments used to implement the dynamic [155–158] and static

analyses [159,161]. Finally, the chapter presents the benchmarks and platforms used

in the experimental studies.

2.1 Dynamic Analysis Implementation

We implemented the copy profiling (discussed in Chapter 3) and the cost-benefit

analysis (discussed in Chapter 4) in J9 (build 2.4, J2RE 1.5.0 for Linux x86-32), a com-

mercial Java Virtual Machine developed by IBM [144]. This JVM is highly versatile

and is used as the basis for many of IBM’s product offerings from embedded devices

to enterprise solutions. By piggy-backing the analyses on J9’s JIT compiler, we are

able to apply and evaluate the developed techniques on large and long-running Java

programs such as database servers, JSP/servlet containers, and application servers.

This makes it possible to find problems in these real-world applications, which are

widely used and have significant impact on the software industry. While implemented
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in J9, these analyses are general enough to be migrated to other JVMs and runtime

systems such as Microsoft’s common language runtime (CLR) [143]. The analyses

were built as JVM services. Enabling/disabling them can be controlled by specific

command line options (e.g., -Xjit:...) used to invoke the JVM. We ran the JVM in

the JIT-only mode to avoid the effort to modify the interpreter, whose source code is

not available to us.

The LeakChaser memory leak detector (described in Chapter 6) was implemented

in Jikes RVM 3.1.0, an open source Java-in-Java Virtual Machine. We piggy-pack the

analysis on its garbage collector (GC), and check the specified liveness properties at

the end of each GC run. Similarly to other dynamic analyses presented in this dis-

sertation, the LeakChaser tracking and analysis were implemented as a JVM service

that can be switched on/off by using different Jikes RVM command line options.

The implementation of the container-based memory leak detector (Chapter 5)

exploits the common JVM Tool Interface (JVMTI) [145], which is supported by all

commercial JVMs. The reason why we did not choose to implement this technique in

a JVM is that it does not rely on any VM-internal information and the event callbacks

provided by JVMTI are sufficient to perform the needed profiling.

2.2 Dynamic Information Flow Infrastructure

As a key component of our dynamic analysis framework (used in [155, 156] and

implemented in J9), this infrastructure tracks the flow of data and performs the pre-

defined (side-effect-free) operations as instructions are executed. Each piece of data

used during the execution is associated with a piece of tracking data, which is up-

dated when its corresponding execution data is updated. Tracking data is contained
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Figure 2.1: Representation of an object in the Java heap and its shadow memory. f,
g, and h represent the fields in this object. d represents a constant offset.

in a shadow memory, which is separate from the memory space created for the exe-

cution. Our information flow infrastructure supports shadowing of all memory in the

application, including local variables, static fields, arrays, and instance fields.

Shadow variable A local variable is shadowed simply by introducing an extra

variable of the same type on the stack.

Shadow heap Shadowing of static fields, arrays and instance fields is supported

by the use of a shadow heap [102]. The shadow heap is a contiguous region of memory

equal in size to the Java heap. To allow quick access to shadow information, there is

a constant distance between the shadow heap and the Java heap. Thus, the scratch

space for every byte of data in the Java heap can be referenced by adding this constant

offset to its address. The size of the tracking data equals the size of its corresponding

data in the Java heap. While the creation of the shadow heap introduces 2× space

overhead, it has not limited us from collecting data from large-scale and long-running
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applications such as the aforementioned document management server (built on top

of the WebSphere application server and DB2 database server). In fact, with 1GB

Java heap and 1GB shadow heap, we were able to successfully run all programs we

encountered, including large production web server applications.

Tagging objects In addition to the tracking data, the infrastructures supports

object tagging. For example, we often need to tag each run-time object with its

allocation site in order to relate the run-time behavior of the object to the source

code that creates it. In other cases, calling contexts are also associated with objects

to enable context-sensitive diagnosis [20,21,155,156]. One way of implementing object

tagging is to store the associated information into the object headers. For example,

for some JVMs such as Jikes RVM, each object header has a few free bytes that are

not used by the VM, and these free bytes can be employed to store the tag. However,

in J9, most bytes in an object header are used by the garbage collector, and modifying

them can crash the JVM at run time. Our infrastructure (implemented in J9) stores

the tag into the shadow heap. The shadow space corresponding to an object header

contains the tag for the object. Because an object header in J9 takes two words (i.e.,

8 bytes), the infrastructure allows us to tag objects with up to 8 bytes data; this

space is much larger than the free bytes in the object header. A representation of the

Java heap and shadow heap is shown in Figure 2.1, where the constant offset between

the two heaps is 0x10000.

Tracking stack The infrastructure also supports the passing of tracking data

interprocedurally through parameters and return values. This is achieved by the use

of a tracking stack, which is similar to the Java call stack. Tracking data for the

actual parameters is pushed onto the stack at a call site, and is popped at the entry
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of the callee that the call site invokes. Similarly, tracking data for the return variable

is pushed onto the stack at the return site, and is popped immediately after the call

returns. The tracking of exceptional data flow is not supported in our framework,

because it usually does not carry important data across method invocations.

Flow transfer function and framework This infrastructure is designed in

a way so that it can be easily parameterized and reused for a wide variety of dynamic

analyses that require information flow tracking, such as taint analysis [38,59,103,108],

null origin tracking [24], web security analysis [60], and information flow strength

measurement [88]. Such reuse requires the definition of flow transfer function for each

instruction, which can be given by implementing the callback interfaces defined by the

infrastructure. There are two types of callbacks: compile-time inlining callback and

run-time invocation callback. Functions implementing compile-time inlining callback

interfaces are actually never invoked. Instead, code in them is “inlined” into the

executing program when the JIT compiles the program. This type of interface is

suitable for simple instrumentation that needs to perform only Java operations and

does not rely on internal VM support. On the other hand, functions implementing

run-time invocation callback interfaces are invoked at run time. Our framework only

inserts calls to these functions at appropriate positions during compilation. This

type of interface is suitable for heavy-weight instrumentation that usually maintains

data structures external to the Java program, performs non-Java operations such as

storing pointer values, and requires special JVM supports such as sampling and object

graph traversal during garbage collection. Of course, larger run-time overhead can

be incurred by this type of instrumentation.
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The user also needs to provide a “report” function, and a parameter that tells

the infrastructure when the report should be generated (e.g., the JVM shuts down,

a garbage collection run occurs, or a sampling period completes). The framework

automatically invokes the function when the specified event is triggered, to analyze

the profiled data and generate a report.

2.3 Static Analysis Implementations

Our static analysis and transformation techniques are implemented in Soot [132,

147] (version 2.3.0), a popular program analysis framework for Java. The analyses

make use of the Spark component [83] in Soot to obtain context-insensitive points-

to information. The work on inefficiently-used container detection [159] also uses

the Sridhran-Bodik framework [134] implemented in Soot to solve the context-free-

language (CFL)-reachability formulation of container behaviors. The detailed de-

scription of CFL-reachability and the formulation can be found in Chapter 7.

2.4 Benchmarks and Execution Platforms

A common set of benchmarks that we use to evaluate both our static and dy-

namic analyses is DaCapo [15,17,40] (version 2006-10-MR1), which contains 11 open

source, real-world applications with non-trivial memory loads. In addition to this set

of programs, the work of copy-profiling [156] is evaluated using the IBM document

management server and the SPECJbb 2000 benchmark. For the cost-benefit anal-

ysis [155], we also considered the additional 7 programs included in a new version

of DaCapo as of October 2009, which are typically widely-used server applications

running on top of layers of frameworks and libraries. The benchmark set for static
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analyses additionally includes programs from SPECjvm98 [139] and Ashes [10], and

some other well-known Java applications such as muffin (a WWW filtering system)

and polyglot (an extensible compiler framework).

Experiments for copy profiling [156] and cost-benefit analysis [155] were under-

taken on a machine with a 1.99GHZ Dual Core AMD Opteron processor, running

Linux 2.6.9. The programs were run with JIT optimizations turned off to collect

data from the unmodified source programs. The work on LeakChaser [157], container

profiling [158], and all the static analyses [159,161] were evaluated on a machine with

an Intel Xeon 2.80GHz processor, running Linux 2.6.9.
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CHAPTER 3: Making Sense of Copy Chains

One important symptom of runtime bloat is the existence of large volumes of

copies in bloated regions: data is transferred from one object to another, with no

computation done on it. Long copy chains can often be seen, simply to form objects

of certain types required by APIs of one framework from their original representations

used in another framework. The aforementioned example (in Chapter 1) of the SOAP

protocol clearly illustrates this point: the original objects are wrapped in a way so

that they can be passed to the SOAP layer for network transmission, and the SOAP

representations are unwrapped on the other side of the network to obtain the data.

This entire process does not contain any computation on the data that is transmitted.

In this example, while data copying is a necessary step for the network transmission,

the observation of large volumes of copies may quickly remind the user to consider

the overall design and architecture of the application. Is it really worth the use of

SOAP? Is there any cheaper way of transmitting data if the format of the data is

simple enough?

If the SOAP example exhibits design issues, the following example that can be

observed in the document management server reveals bloat caused by a programmer’s

mistake. The server extracts name-value pairs from a cookie that the client transmits

in a serialized, string form. The methods that use these name-value pairs expect Java

objects, not strings. They invoke a library method to decode the cookie string into

a Java HashMap, yet another transient form of this very simple data. In the common
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Figure 3.1: The steps a commercial document management server uses to decode a
cookie; the original version tokenizes and returns the entire map, even if the caller
needs only one name-value pair.

case, the caller extracts one or two elements from the 8-element map, and never

uses that map again. Figure 3.1 illustrates the steps necessary to decode a cookie

in this application.1 Decoding a single cookie, an operation that occurs repeatedly,

costs 1000 method invocations and 35 temporary objects, after JIT optimizations. A

hand-optimized specialization for the common case that only requires one name-value

pair invokes 4 invocations and constructs 2 temporary objects.

The inefficiencies at the heart of the SOAP example and the cookie decoding

example are common to many bloated implementations. In these implementations,

there is often a chain of information flow that carries values from one storage location

to another, often via temporary objects [97]; e.g., as visualized in Figure 3.1. Bloat of

this form manifests itself in a number of ways: temporary structures to carry values,

1We thank Nick Mitchell for providing this illustration.
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and a large number of method invocations that allocate and initialize these structures,

and copy data between them.

In our experience, it is this data copying activity that is an excellent indicator

of bloat. When copy activities are reduced through code transformations, this often

reduces the need for creating and deallocating the corresponding objects, and for

invoking methods on these objects. For example, the optimized cookie decoding in

Figure 3.1 eliminates the cost of constructing the HashMap and the related key-value

pairs.

Section 3.1 provides an example of the amount of copy activities in a server ap-

plication, and shows how they are not handled well by the JIT in a state-of-the-art

JVM. This example illustrates the need to track copy operations and to provide a

programmer with useful summarization of chains of such operations. For example,

consider the cookie decoding in Figure 3.1(b). It is neither the result of tuning the

HashMap put or get methods, nor of tuning the HashMap data structure. To special-

ize this scenario requires understanding the chains of copies: which storage locations

carry values, and which methods contain the copies. During program execution, there

will be billions of copy chains. In Section 3.2, we introduce an abstraction, the copy

graph, that concisely summarizes chains of copies.

3.1 Profiling Copy Activity

A copy operation is a pair of a heap load and a heap store instructions that

transfers a value, unmodified, from one heap location to another. A copy profile

counts the number of copies; a copy operation is associated with the method that

performed the write to the heap. Although the profiling tracks the propagation
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Figure 3.2: A breakdown of activity in a document processing server application.
The baseline, at 100%, is the original code run with JIT optimizations disabled. This
baseline is compared to the original code with JIT optimizations enabled, and to an
implementation with a dozen hand-tunings.

through stack locations (in order to determine whether a store is the second half of a

copy), the profiling reports do not include that level of detail. Since stack variables

will likely be assigned to registers, chains of copies between stack locations will usually

involve only register transfer operations. They are also more likely to be optimized

by conventional dataflow analysis.

Figure 3.2 shows a comparison of four scenarios of the document management

server, executing in the IBM J9 production JVM. The baseline, at 100%, represents

the behavior of the original code, with JIT optimizations disabled, during a 10 minute

load run. This baseline is compared to the original code with JIT optimizations en-

abled, and to a version of the code that had been hand-tuned (both with and without

JIT optimizations). The figure also shows the number of comparison operations, the
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number of ALU operations, and the total number of loads and stores. While the

JIT successfully reduces the number of ALU operations and loads/stores, it does not

affect significantly the number of copies and comparisons.

3.2 Profiling Copy Chains and Copy Graph

Individual copies are usually part of longer copy chains. Optimizing for bloat

requires understanding the chains as a whole, as they may span large code regions

that need to be examined and transformed. We now show how to form an abstraction,

the copy graph, that can be used to identify chains of copies.

3.2.1 Copy Chain

Definition 3.2.1 (Copy chain). A copy chain is a sequence of copies that carry a

value through two or more heap storage locations. Each copy chain node is a heap

location. Each edge represents a sequence of copies that transfers a value from one

heap location to another, abstracting away the intermediate copies via stack locations,

parameter passing, and value returns.

The heap locations of interest are fields of objects and elements of arrays. A copy

chain ends if the value it carries is the operand of a computation, which produces a

new value, or is an argument to a native method. It is important to note that, in a

copy chain, each maximal-length subsequence of stack copies is abstracted by a single

edge directly connecting two heap locations.

The code in Figure 3.3 is used for illustration throughout this chapter. The exam-

ple is based on a common usage scenario of Java collections. A simple implementation

of a data structure List is used by a client ListClient. ListClient declares two
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1 class List{

2 Object[] elems; int count;

3 List(){ elems = new Object[1000]; }

4 List(List l){ this(); // call default constructor

5 for(Iterator it = l.iterator(); it.hasNext();)

6 { add(it.next()); } }

7 void add(Object m){

8 Object[] t = this.elems;

9 t[count++] = m;

10 }

11 Object get(int ind){

12 Object[] t = this.elems;

13 Object p = t[ind]; return p;

14 }

15 Iterator iterator(){

16 return new ListIterator(this);

17 }

18 }

19 class ListIterator{

20 int pos = 0; List list;

21 ListIterator(List l){

22 this.list = l;

23 }

24 boolean hasNext(){ return pos < list.count - 1;}

25 Object next(){ return list.get(pos ++);}

26 }

27 class ListClient{

28 List myList;

29 ListClient(List l){ myList = l; }

30 ListClient slowClone(){

31 List j = new List(myList);

32 return new ListClient(j);

33 }

34 ListClient fastClone(){

35 return new ListClient(myList);

36 }

37 }

38 static void main(String[] args){

39 List data1 = new List();

40 for(int i = 0; i < 1000; i++)data1.add(new Integer(i));

41 List data2 = new List();

42 for(int i = 0; i<5; i++){data2.add(new String(args[i]));

43 System.out.println(data2.get(i));}

44 ListClient c1 = new ListClient(data1);

45 ListClient c2 = new ListClient(data2);

46 ListClient new_c1 = c1.slowClone();

47 ListClient new_c2 = c2.fastClone();

48 }

Figure 3.3: Copy profiling running example.

clone methods fastClone and slowClone, which return a new ListClient object

by reusing the old backing list and by copying list elements, respectively. The entry
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6   add(it.next()); 

…

9   t[count++] = m; 

25   return list.get(pos ++);

…

…

13   p = t[ind]; return p; 

…

Read(O3.ELM)

Step 2Write(O3.ELM)

Step 3

Step 1

Figure 3.4: A copy chain due to ListClient.slowClone. Line numbers 6, 9, 13, and
25 correspond to the code in Figure 3.3.

method main creates two lists data1 and data2 and initializes them with 1000 In-

teger and 5 String objects (lines 40 and 42). The two lists are then passed into two

ListClient objects and eventually two new ListClient objects are created by call-

ing slowClone and fastClone. For simplicity, the approach is described at the level

of Java source code, although our implementation works with a lower-level virtual

machine intermediate representation (IR).

Figure 3.4 depicts the steps in the creation of a single-edge copy chain. This

chain results from the invocation of slowClone (line 46) which copies Integer object

references from the array referenced by field elems of one List to the array referenced

by field elems of another List. The source array and the target array will be denoted

by O3 since they are created at line 3 in the code. (For now, the reader can ignore

the naming scheme; it will be discussed shortly.) The copy chain in Figure 3.4 is

O3.ELM → O3.ELM , where ELM represents any array element.

To represent the source and the sink of the data propagated along a copy chain, we

can augment the chain with two nodes: a producer node added at the beginning, and a

consumer node added at the end. The producer node can be a constant value, a new X
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expression, or a computation operation representing the creation of a new value. The

consumer node has only one instance (denoted by C ) in the copy graph, showing that

the data goes to a computation operation or to a native method. These two types of

nodes are not heap locations, and are added solely for the purpose of subsequent client

analyses. Note that not every chain has these two special nodes. For the producer

node, we are interested only in reference-typed values because they are important

for further analysis and program understanding. Thus, chains that propagate values

of primitive types do not have producer nodes. Not every piece of data goes to a

consumer and therefore not every chain has a consumer node. The absence of a

consumer is a strong symptom of bloat and can be used to identify performance

problems. An example of a full augmented copy chain starting from producer O42

(i.e., new String) is O42 → O3.ELM → C. This chain ends in consumer node C

because the data goes into method println which eventually calls native method

write.

3.2.2 Copy Graph

Profiling copy chains can be extremely space expensive, because it requires main-

taining a distinct node for each heap location on each copy chain, regardless of whether

chains have shared heap locations. In addition, for each heap location, it is necessary

to maintain the history information regarding all chains that go through this location,

which may incur significant running time overhead. To make the analysis scale to

large applications, we apply a series of abstractions on copy chains. These abstrac-

tions are also essential for producing summarized reports that do not overwhelm the

tool user with millions of chains. The first abstraction is to merge all copy chains
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in a copy graph, so that nodes shared among chains do not need to be maintained

separately. In addition, the copy graph construction algorithm can be designed to

profile only graph edges (i.e., one-hop heap copy), which is much more efficient than

profiling of entire chains.

Definition 3.2.2 (Copy graph). A copy graph G = (N , E) has node set N ⊆ AL∪

IF∪SF ∪{C}. Here AL is the domain of allocation sites Oi which serve as producer

nodes and do not have any incoming edges. IF is the domain of instance field nodes

Oi .f . SF is the domain of static field nodes. C is the consumer node; it has only

incoming edges. The edge set is E ⊆ N × Integer × Integer × N . Each edge is

annotated with two integer values: the frequency of the heap copy and the number of

copied bytes (i.e., 1, 2, 4, or 8).

There could be many different ways to map the run-time execution to these ab-

stractions. The rest of this section describes the mapping used in our current work;

future work could explore other choices with varying cost, precision, and usefulness

for tool users.

Object naming scheme Following an abstraction technique widely adopted in

static analysis, an allocation site is used to represent the set of run-time instances that

it creates. Similarly, all heap locations that an instance field dereference expression

a.f represents are projected to a set of nodes {Oi.f} such that the objects that a

points to are projected to set {Oi}. Applying this abstraction reduces the number

of allocation site nodes AL and instance field nodes IF . Each element of an array

a is represented by a special field node Oa .ELM , where Oa denotes the allocation

site of a and ELM represents the field name. Individual array elements are not
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Figure 3.5: Partial copy graph with context-insensitive and context-sensitive object
naming.

distinguished: considering each element separately may introduce infeasible time and

space overhead.

For illustration, consider the partial copy graph in Figure 3.5(a). The figure shows

only paths starting from nodes in method main in the running example. An allocation

site is named Oi, where i is the number of the code line containing the site. Each

copy graph edge is annotated with two numbers: its frequency and the number of

bytes it copies. For example, edge O40
1000,4
−−−→ O3.ELM copies the Integer objects

created at line 40 into the array referenced by data1’s elems field. This edge consists

of a sequence of copies via parameter passing (line 40 and line 9). This sequence

of copies occurs 1000 times, and each time 4 bytes of data are transferred. Both

O40
1000,4
−−−→ O3.ELM and O3.ELM

1000,4
−−−→ O3.ELM are hot edges: their frequencies

and the total number of bytes copied are much larger than those of other edges.
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When there exists a performance problem in the program, a better design might be

needed to eliminate these copies.

It is important to note again that nodes that represent different objects may

be merged due to the employed abstraction. For example, although variable t at

line 9 points to different objects at run time, the array element node t[count++] is

represented by a single node O3.ELM , regardless of the List object that owns the

array. Consider the self-pointing edge
1000,4
−−−→ at node O3.ELM . The edge captures the

data flow illustrated in Figure 3.4. This sequence of copies moves object references

from the array pointed-to by O39.elems to the array pointed-to by O31.elems. Since

both arrays are represented by O3, their elements are merged into O3.ELM in the

copy graph and this self-pointing edge is generated.

Merging of nodes could lead to spurious copy chains that are inferred from the

copy graph. For example, from Figure 3.5(a), one could imprecisely conclude that

both O40 and O42 will eventually be consumed, because both edges
1000,4
−−−→ and

5,4
−→ can

lead to consumer node C . The cause of the problem is the context-insensitive object

naming scheme, which maps each run-time object to its allocation site, regardless of

the larger data structure in which the object appears. In order to model copy chains

more precisely, we introduce a context-sensitive object naming scheme.

3.2.3 Context Sensitivity

When naming a run-time object, a context-sensitive copy graph construction al-

gorithm takes into account both the allocation site and the calling context of the

method in which the object is allocated. Existing static analysis work proposes two
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major types of context sensitivity for object-oriented programs: call-chain-based con-

text sensitivity (i.e., k-CFA) [125], which considers a sequence of call sites invoking

the analyzed method, and object-sensitivity [91], in which the context is the sequence

of static abstractions of the objects (i.e., allocation sites) that are run-time receivers

of methods preceding the analyzed method on the call stack. Of particular interest for

our work is the object-sensitive naming scheme because, to a large degree, it reflects

object ownership and is suitable for improving the analysis precision for real-world

applications making use of a large number of object-oriented data structures.

Figure 3.5(b) shows the 1-object-sensitive version of the copy graph, in which

an object is named using its allocation site together with the allocation site of the

receiver object of the method in which the object is created. For objects created

in a constructor, the context is usually their run-time owner. By adding context

sensitivity, paths that start from O40 and O42 do not share any nodes. Note that there

are no contexts for nodes O39, . . . , O45 because they are created in static method main

which does not have a receiver object. Although longer context strings may increase

precision, our tool limits the length of the context to 1 since it could be prohibitively

expensive (both in time and space) to employ longer contexts in a dynamic analysis.

3.3 Copy Graph Construction

This section presents the details of the copy profiling technique. As the program

executes and application data is read or written, the information flow analysis pre-

sented in Chapter 2 updates the corresponding tracking data.

The copy graph construction algorithm consists of two main components: (1)

“compile time” instrumentation, which occurs at run time during JIT compilation,
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Figure 3.6: Data structure overview.

and (2) run-time profiling. To avoid having to modify both the interpreter and the

JIT, we run the VM in a JIT-only mode such that all methods in the program are

compiled by the JIT prior to their first invocation, allowing the tool to track data

flow throughout the entire program.

3.3.1 Data Structure Design

The data structure design for the copy graph is important for minimizing overhead.

The goal of the design is to allow efficient mapping from a run-time heap location
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to its name (which in our analysis is a copy graph node address). Figure 3.6 shows

an overview of the data structures for the copy graph. Static field nodes are stored

in a singly-linked-list that is constructed at instrumentation time. The node address

is hard-coded in the generated executable code, so that the retrieval of nodes does

not contribute to running time (thus, the analysis does not need to use the shadow

locations for static fields). Each node has an edge pointer, which points to a linked

list of copy graph edges that leave this node. Edge adding occurs at run time. If an

existing edge is found for a pair of a source node and a target node, a new edge is not

added. Instead, the frequency field of the existing edge is incremented. The size field

(i.e., number of bytes) can be determined at compile time by inspecting the type of

data that the copy transfers.

Allocation site nodes and instance field nodes are implemented using arrays to

allow fast access. For each allocation site, a unique integer ID is generated at compile

time (the IDs start from 0). The ID is used as the index into an array of allocation

headers. Each allocation header corresponds to one ID, and points to an array of

allocation nodes and to an array of field nodes, both specific to this ID. For a context-

insensitive copy graph, the allocation node array for the ID has only one element.

For the context-sensitive copy graph that requires a unique allocation node for each

calling context (i.e., the allocation site ID of the receiver object of the surrounding

method), each element of the allocation node array corresponds to a different calling

context. In the current implementation the array does not grow dynamically, thus

the number of calling contexts for each allocation site is limited to a pre-defined value

c. We have experimented with different values of c and these results are reported in

Section 3.6. An encoding function maps an allocation site ID representing a context
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to a value in [0, c –1]; currently, we use a simple mod operation contextAllocId % c to

encode contexts. As reported in Section 3.6, very few contexts for an object have

conflicts (i.e., they map to the same value) when using this function. A default c

value of 4 was used for the studies described in Section 3.6.

The field node array is created similarly. The order of different fields in the array

is dependent on the offsets of these fields in the class. We build a class metadata

table at the time the class is resolved by the JIT. The table sorts fields based on their

offsets, and maps each field to a unique ID (starting from 0) indicating its order in the

field node array. For each instance field declared in the type (and all its supertypes)

instantiated at the allocation site, there are 1 (i.e., for context-insensitive naming)

or c (i.e., for 1-object-sensitive naming) entries in the field node array. For example,

consider an instance field dereference a.f for which the allocation site ID of the object

pointed-to by a is 1000, the corresponding context allocation ID is 245, the offset of f

is 12, and this offset (at compile time) is mapped to field ID i = class metadata[12].

The corresponding copy graph node address can be obtained from the element with

index c ∗ i + 245 % c in the array pointed-to by column Fields of alloc headers[1000].

3.3.2 Instrumentation Relation CG ⇒a CG′

Our instrumenter takes the assembly-like J9 intermediate representation (IR) as

input, and feeds the instrumented IR to the code generator. The goal of the instru-

mentation is to insert code to propagate the address of a copy graph node at run

time. The copy graph node represents the heap location from which a piece of data

comes.
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[1. local=alloc]
SH (i) = (AllocID(new O), SH (this)&0xFFFFFFFF )
CG′ = CG ∪ CreateAllocHeaderEntry(O, AllocID(new O))
E ⊢ SH (i) : addr rhs

shadow i = addr rhs

CG ⇒i=new O CG′

[2. local=static]
E ⊢ F : addr rhs

CG′ = CG
shadow i = addr rhs

CG ⇒i=F CG′

[3. local=instance field dereference]
E ⊢ (SH (a), Offset(f)) : addr rhs

CG′ = CG
shadow i = addr rhs

CG ⇒i=a.f CG′

[4. local=local]
CG′ = CG
shadow i = shadow j

CG ⇒i=j CG′

[5. static=local]
E ⊢ F : addr lhs

CG′ = CG ∪CreateEdge(shadow i, addr lhs )

CG ⇒F=i CG′

[6. instance field dereference=local]
E ⊢ (SH (a), Offset(f)) : addr lhs

CG′ = CG ∪CreateEdge(addr lhs , shadow i)

CG ⇒a.f=i CG′

[7. local=computation]
edgec = CreateEdge(shadow c,C )
edged = CreateEdge(shadowd, C )
CG′ = CG ∪ edgec ∪ edged

CG ⇒i=c+d CG′

Figure 3.7: Run-time effects of instrumentation.

The intraprocedural instrumentation is illustrated at a high-level in Figure 3.7.

Based on the techniques described earlier, the name environment E maps each heap

location to the address of its corresponding copy graph node. Function SH (i.e.,

shadow heap) returns, for each object, its allocation site ID and its context allocation

site ID. For example, E ⊢ SH (i) : addr rhs in rule 1 says that given the (allocation

ID, context ID) pair for the heap object pointed-to by local variable i, E maps this

pair to the copy graph node at address addr rhs . Here addr rhs and addr lhs represent

the addresses of the copy graph nodes for the heap locations corresponding to the

right/left-hand-side expressions of an instruction. Each rule describes the update of

the copy graph (i.e., CG) for a type of instruction, with unprimed and primed symbols

representing the copy graph before and after the instruction is executed.

In rule 1, the shadow of local variable i is assigned the address of the copy graph

allocation node representing the newly-created heap object. If the method containing
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the allocation site is an instance method, the context object is the object referenced

by this. The bit operation (& 0xFFFFFFFF ) retrieves the lower 4 bytes from the

shadow heap location, which stores the allocation site ID for this itself (while the

higher 4 bytes contain the allocation site ID of this’s context). A static method does

not have a context.

Before each call site in a caller, the shadow variables for the actual parameters are

pushed on the tracking stack, and they are popped at the entry of the callee method.

Similarly, at the exit of the callee method, the shadow variable for the returned value

is pushed, and it is popped after the call site in the caller. Data carried by exception

flow is not tracked by the tool.

Once a heap load operation is seen (rules 2 and 3), the address of the node

representing the heap location is stored in the shadow variable. Upon a heap store

(rules 5 and 6), an edge with the source node address (contained in the shadow

variable) and target node address (obtained from the heap location) is created, and

the graph is updated with this new edge. In rule 7, once data comes to a computation

instruction, we create edges to connect the copy graph node for each participating

variable with the consumer node C .

3.4 Copy Graph Client Analyses

This section presents three client analyses implemented in J9. These clients ana-

lyze the copy graph and generate reports that are useful for understanding run-time

behavior and pinpointing performance bottlenecks.
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3.4.1 Hot Copy Chains

Given a copy chain with frequency n and data size s, its copy volume is n × s.

The copy volume of a chain is the total amount of data transmitted along that

chain. Chains with large copy volumes are more likely to be sources of performance

problem. Another important metric is chain length—the longer a copy chain is, the

more wasteful memory operations it contains. Considering both factors, we compute

a waste factor (WF) for each chain as the product of length and copy volume. The

goal of the hot chain analysis is to find copy chains that have large WF values.

The first issue is how to recover chains from copy graph edges. We use a brute-

force approach which traverses the copy graph and computes the set of all distinct

paths whose length is smaller than a pre-defined threshold value. If a path is a true

copy chain, all its edges should have the same frequency. Based on this observation,

the WF for each path is computed by using its smallest edge frequency as the path

frequency. The resulting copy graph paths are ranked based on their WF values, and

the top paths are reported. An example of a chain reported for benchmark antlr from

DaCapo is as follows:

(355162, 2):
array[antlr/PreservingFileWriter:61].ELM

— [java/io/BufferedWriter.write:198, 177581, 2] →
array[java/io/BufferedWriter:108].ELM

— [sun/io/CharToByteUTF8.convert:262, 177759, 2] →
array[sun/nio/cs/StreamEncoder$ConverterSE:237].ELM

The chain contains three nodes connected by two edges. The pair (355162,2) shows

the WF and the chain length. Each node in this example is an array element node.

For instance field nodes and array element nodes, the allocation site of the base ob-

ject is also shown. In this example, line 61 in class antlr.PreservingFileWriter creates

the array whose elements are the sources of the copy chain. An edge shows the method
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where its last copy operation occurs (e.g., line 198 in method java.io.BufferedWriter.write),

the edge frequency (e.g., 177581), and the data size (e.g., 2 bytes).

3.4.2 Clone Detector

Many applications make expensive clones of objects. A cloned object can be ob-

tained via field-to-field copies from another object (e.g., as usually done in clone

methods), or by adding data held by another object during initialization (e.g., many

container classes have constructors that can initialize an object from another con-

tainer object). Although clones are sometimes necessary, they indicate the existence

of wasteful operations and redundant data. For instance, in our running example,

slowClone initializes a new list by copying data from an existing list. Invoking this

method many times may cause performance problems. The goal of this analysis is to

find pairs of allocation sites, each of which represents the top (i.e., root) of a heap

object subgraphs, such that a large amount of data is copied from one subgraph to

the other.

For each copy graph edge O1.f
a,b
−→ O2.g, where f and g are instance fields, the

value of a × b is counted as part of the direct flow from O1 to O2. The total direct

flow for pair (O1, O2) shows how many bytes are copied from fields of O1 to fields

of O2. Next, the analysis considers the indirect flow between objects. Suppose that

some field of O1 points to an object O3, and some field of O2 points to an object O4.

Furthermore, suppose that there is direct flow (i.e., some copy volume) from O3 to

O4. In addition to attributing this copy volume to the pair (O3, O4), we want to also

attribute it to the pair (O1, O2). This is done because O1 may potentially be the root

of an object subgraph for a data structure containing O3. Similarly, O2 may be the

40



root of a data structure containing O4. If copying is occurring for the entire data

structures, the copy volume reported for pair (O1, O2) should reflect this.

The analysis considers all objects Oi reachable from O1 along reference chains of

a pre-defined length (length 3 was used for the experiments). Similarly, all objects

Oj reachable from O2 along reference chains of this length are considered. The copy

volume reported for (O1, O2) is the sum of the direct copy volumes for all such pairs

(Oi, Oj), including the direct flow from O1 to O2. To determine all relationships of

the form “O′ points to O”, the analysis considers chains such that O is the producer

node—that is, the value propagated along the chain is a reference to O. For any field

node O′.h in such a chain, object O′ points to object O.

In the running example, slowClone illustrates this approach. At line 31, a new

List object is created. Its field elems points to an array which is initialized with

the contents of the array pointed to by the List created at line 39. In the first step

of the analysis, volume 4000 is associated with the two array objects (1000 copies of

4-byte references to Integer objects). This volume is then also attributed to the two

List objects, represented by pair (O39, O31), and to the two ListClient objects that

own the lists, represented by pair (O44, O32). Ultimately, the reason for this entire

copy volume is the cloning of a ListClient object, even though it manifests in the

copying of the array data owned by this ListClient. Reporting the pair (O44, O32)

highlights this underlying cause.

3.4.3 Not Assigned To Heap (NATH)

The third client analysis detects allocation sites that are instantiated many times

and whose object references do not flow to the heap. For instance, O44 and O45 in the
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running example represent objects whose references are never assigned to any heap

object or static field. These allocation sites are likely to represent the tops of tempo-

rary data structures that are constructed many times to provide simple services. For

example, we have observed an application that creates GregorianCalendar objects

inside a loop. These objects are used to construct the date fields of other objects.

This causes significant performance degradation, as construction of GregorianCalen-

dar objects is very expensive. In addition, these objects are usually temporary and

short-lived, which may lead to frequent garbage collection. A simple fix that moves

the object construction out of the loop can solve the problem. The escape analysis

performed by a JIT usually does not remove this type of bloat, because many such

objects escape the method where they are created, and are eventually captured far

away from the method. Using copy graph, this analysis can be easily performed by

finding all allocation nodes that do not have outgoing edges. These nodes are ranked

based on the numbers of times that they are instantiated. Using the information

provided by this analysis, we have found in Eclipse 3.1 a few places where NATH ob-

jects are heavily used. Running time reduction can be achieved after a simple manual

optimization that avoids the creation of these objects.

3.4.4 Other Potential Clients

There are a variety of performance analyses that can take advantage of the copy

graph. For example, one can measure and identify useless data by finding nodes

that cannot reach the consumer node, and by aggregating them based on the objects

that they belong to. As another example, developers of large applications usually

maintain a performance regression test suite, which will be executed across versions
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of a program to guarantee that no performance degradation results from the changes.

However, these performance regression tests can easily fail due to bug fixes or the

addition of new features that involve extra memory copies and method invocations.

It is labor-intensive to find the cause of these failures. Differentiating the copy graphs

constructed from the runs of two versions of the program with the same input data can

potentially help pinpoint performance problems that are introduced by the changes.

A possible direction for future work is to investigate these interesting copy-graph-

based analyses.

3.5 Using Copy Profiles to Find Bloat

This section presents three case studies of using copy profiles, both flat and ones

derived from the copy graph, to pinpoint sources of useless work.

3.5.1 DaCapo Bloat

Inspecting the total copy count of the DaCapo bloat benchmark, we found a

high volume of data copies. Averaged across all method invocations, 28% of all

operations were copies from one heap location to another. This indicated that there

were big opportunities for optimizing away excessive computations and temporary

object construction.

When inspecting the cumulative copy profile (i.e., a copy profile that counts copies

in a method and any methods it invokes), we found that approximately 50% of all

data copies came from a variety of toString and append methods. Inspecting the

source code, we found that most of these calls centered around code of the form:

Assert.isTrue(cond, "bug: " + node). This benchmark was written prior to

the existence of the Java assert keyword. This coding pattern meant that debugging
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logic resulted in entire data structures being serialized to strings, even though most

of the time the strings themselves were unused; the isTrue method does not use the

second parameter, if the first parameter is true. We made a simple modification to

eliminate the temporary strings created during the most important copying methods2.

This resulted in a 65% reduction in objects created, and a 29–35% reduction in

execution time (depending on the JVM used; we tried Sun 1.6.0 10 and IBM 1.6.0

SR2).

The DaCapo suite is geared towards JVM and hardware designers. In the design

of this suite, it is important to distinguish inefficiencies that a JIT could possibly

eliminate from ones that require a programmer with good tools.

3.5.2 Java 5 GregorianCalendar

A recurring problem with the Java 1.5 standard libraries is the slow performance

of calendar-related classes [142]. Many users experienced a 50× slowdown when up-

grading from Java 1.4 to Java 1.5. The problems centered around methods in class

GregorianCalendar, which is an important part of date formatting and parsing. We

ran the test case provided by a user and constructed a context-sensitive copy graph.

The test case makes intensive calls of the before, after, and equals methods. The

report of hot copy chains includes a family of hot chains with the following structure:

array[Calendar:907].ELM
— [Calendar.clone:2168,510000] →

array[Calendar:2169].ELM

2We commented out the toString methods of Block, FlowGraph, RegisterAllocator,
Liveness, Node, Tree, Label, MemberRef, Instruction, NameAndType, LocalVariable, Field,
and Constant.
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This chain (and others similar to it, for the fields of a calendar) suggests that clone

is invoked many times to copy values from one Calendar to another. To confirm this,

we ran the clone detector and the top four pairs of allocation sites were as follows:

340000: (GregorianCalendar[GregorianCalendarTest:11],array[Calendar:2168])

340000: (array[Calendar:906],array[Calendar:2168])

340000: (array[Calendar:907],array:[Calendar:2169])

340000: (array[Calendar:908],array[Calendar:2170])

The first pair shows that an array created at line 2168 of Calendar gets a large amount

of data from the GregorianCalendar object created in the test case. The remaining

three pairs of allocation sites also suggest the occurrence of clones, because the first

group of objects (i.e., at lines 906, 907, 908) are arrays created in the constructor

of Calendar, while the second group (i.e., at lines 2168, 2169, and 2170) are arrays

created in clone. By examining the code, we found that clone creates a new object

by deep copying all array fields from the old Calendar object. These copies also

include the cloning of a time zone from the zone field of the existing object. Upon

further inspection, we found the cause of the slowdown: methods before, after, and

equals invoke method compareTo to compare two GregorianCalendar objects, which

is implemented by comparing the current times (in milliseconds) obtained from these

objects. However, getMillisof does not compute time directly from the existing

calendar object, but instead makes a clone of the calendar and obtains the time from

the clone.

The JDK 1.4 implementation of Calendar does not clone any objects. This is

because the 1.4 implementation of getMillisof mistakenly changes the internal state

of the object when computing the current time. In order to avoid touching the internal
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state, the implementers of JDK 1.5 made the decision to clone the calendar and get

the time from the clone. Of course, it is not a perfect solution as it fixes the original

bug at the cost of introducing a significant performance problem. Our tool highlighted

the useless work being done in order to work around the getMillisof issue.

3.5.3 DaCapo Eclipse

As a large framework-based application, Eclipse suffers from performance prob-

lems that result from the pile-up of wasteful operations in its plugins. These problems

impact usability, and even programmers’ choice when comparing Java development

tools [68]. We ran Eclipse 3.1 from the DaCapo benchmark set and used the NATH

analysis to identify allocation sites whose run-time objects are never assigned to the

heap. The top nine allocation sites are shown below:

(1) 295,004: org/eclipse/jdt/internal/compiler/ISourceElementRequestor$MethodInfo

[SourceElementParser:968]

(2) 161,169: .../SimpleWordSet[SimpleWordSet:58]

(3) 145,987: .../ISourceElementRequestor$FieldInfo[SourceElementParser:1074]

(4) 46,603: .../ContentTypeCatalog$7[ContentTypeCatalog:523]

(5) 46,186: .../ISourceElementRequestor$TypeInfo[SourceElementParser:1190]

(6) 45,813: .../Path[PackageFragment:309]

(7) 44,703, .../Path[CompilationUnit:786]

(8) 37,201, .../ContentTypeHandler[ContentTypeMatcher:50]

(9) 30,939, .../HashtableOfObject[HashtableOfObject:123]

Each line shows an allocation site and the number of times it is instantiated. For ex-

ample, the first line is for an allocation site at line 968 in class SourceElementParser,
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which creates 295004 objects of type ISourceElementRequestor$MethodInfo. Sites

4 and 8 are from plugin org.eclipse.core.resources. The remaining sites are located in

org.eclipse.jdt.core. Because the Eclipse 3.1 release does not contain the source code

for org.eclipse.core.resources, we inspected only the seven sites in the JDT plugin.

The first site is located in class SourceElementParser, which is a key part of the

JDT compiler. JDT provides many source code manipulation functionalities that can

be used for various purposes, such as automated formatting and refactoring. The

observer pattern is used to provide source code element objects when a client needs

them. Method notifySourceElementRequestor, which contains this site, plays the

observer role: once a requestor (i.e., a client) asks for a compilation unit node (i.e., a

class), the method notifies all child elements (i.e., methods) of the compilation unit by

calling method enterMethod, which will subsequently notify source code statements

in each method. Method enterMethod takes a MethodInfo object as input; this

object contains all necessary information for the method that needs to be notified.

The site creates MethodInfo objects which are then provided to enterMethod.

Because enterMethod is defined in an interface, we checked all implementations of

the method. Surprisingly, none of these implementations invoke any methods on this

parameter object. They extract all information about the method to be notified from

fields of the object; these fields are previously set by notifySourceElementRequestor.

The third and the fifth allocation sites from above tell the same story: these hundreds

of thousands of objects are created solely for the purpose of carrying data across one-

level method invocations. It is expensive to create and reclaim these objects, and

to perform the corresponding heap copies. We modified the interface and all related

implementations to pass data directly through parameters. This modification reduces
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Class Modification #Objs #GCs Time(s)

Original — 273991250 478 143.6

MethodInfo, Field- Directly pass the data 272461138 460 139.6
Info, TypeInfo

PackageFragment Get IResource 272429471 448 138.3
directly from String

SimpleWordSet In-place rehash 272395776 430 136.8

HashtableOfObject In-place rehash 272320499 424 134.0

Table 3.1: Eclipse 3.1 performance problems, fixes, and performance improvements.

the number of allocated objects by millions and improves the running time by 2.8%.

In large applications with no single hot spot, significant performance improvements

are possible by accumulating several such “small” improvements, as illustrated below.

Table 3.1 shows a list of several problems we identified with the help of the analy-

ses. For each problem, the table shows the problematic class (Class), our code modifi-

cation, the number of allocated objects (#Objs), the total number of GC invocations

(#GCs), and the running times. Row Original characterizes the original execution.

Each subsequent row shows the cumulative improvements due to our changes in the

JDT plugin. The second row corresponds to allocation sites 1, 3, and 5 listed above,

the third row is for sites 6 and 7, the fourth row is for site 2, and the last row is for

site 9.

By modifying the code to eliminate redundant copies and the related creation of

objects, we successfully reduced the number of GC runs, the number of allocated

objects, and the total running time. With the help of the tool, it took us only a few

hours to find these problems and to make modifications in a large application we had

never studied before.
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It is important to note that this effort just scratches the surface: significant per-

formance improvement may be possible if a developer or a performance expert care-

fully examines the tool reports (with different tests and workloads) and eliminates

the identified useless work. This is the kind of manual tuning that is already being

done today for large Java applications with performance problems that cannot be

attributed to a single hot spot. This tedious and labor-intensive process can be made

more efficient and effective by the dynamic analyses proposed in our work. Future

studies should investigate such potential performance improvements for a broad range

of Java applications.

3.6 Copy Graph Characteristics

This section presents characteristics of the copy graph and its construction. The

maximum heap size specified for each run was 500Mb. Hence, the size of shadow for

each run was 500Mb. IBM DMS is the IBM document management server, which

is run on top of a J2EE application server. Each DaCapo benchmark was run with

large workload for two iterations, and the running time for the second iteration is

shown. SPECjbb and IBM DMS are server applications that report throughput, not

total running time; both were run for 30 minutes with a standard workload.

Table 3.2 presents the time and space overhead of context-insensitive copy graphs.

The second column, labeled Torig , presents the original running times in seconds. The

remaining columns show the total numbers of nodes N0 and edges E0, the amount

of memory M0 needed by the analysis (in megabytes), the running times T0 (in

seconds), and the performance slowdowns (shown in parentheses). The slowdown for
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each program is T0/Torig. Because the shadow heap is 500Mb, the space overhead of

the copy graph is M0–500.

In Table 3.3, Table 3.4, and Table 3.5, the same measurements are reported for

1-object-sensitive copy graphs. To understand the impact of the number of context

slots (i.e., parameter c from Section 3.3.1), we experimented with values 4, 8 and 16

when constructing the 1-object-sensitive copy graph. The slowdown for each program

was calculated as Ti/Torig (the original time from Table 3.2), where i ∈ {4, 8, 16}.

The copy graph itself consumes a relatively small amount of memory. Other than

for IBM DMS, the space overhead of the copy graph does not exceed 27Mb even when

using 16 context slots. As expected, a context-sensitive copy graph consumes more

memory than the context-insensitive one, and using more context slots leads to larger

space overhead.

The running time overheads for profiling the context-insensitive copy graph and

the three versions of 1-object-sensitive copy graphs are, on average, 36×, 37×, 37×,

and 37× respectively. This overhead is not surprising because the analysis tracks the

execution of every instruction in the program. The overhead also comes from syn-

chronization performed by the instrumentation of allocation sites, which sequentially

executes the allocation handler to create allocation header elements. The current

implementation provides a general facility for mapping an object address to a context

ID. This is done even for the context-insensitive analysis, where the ID is always

0. Since the cost of this mapping is negligible, we have not created a specialized

context-insensitive implementation. Hence, the difference between the running times

of profiling context-insensitive and context-sensitive copy graphs is noise. The only
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Program Original Context-insensitive
Torig(s) #N0 #E0 M0(Mb) T0(s) (×)

antlr 8.9 12516 56703 503.7 284.2 (31.9)
bloat 157.5 14058 14471 502.2 9812.2 (62.4)
chart 32.5 18113 12810 502.5 1053.2 (32.4)
fop 3.6 12419 7675 501.8 38.2 (10.6)
pmd 46.6 11289 8418 501.7 1542.4 (33.1)
jython 74.7 25653 21893 503.2 2826.1 (37.8)
xalan 64.8 13505 28678 502.6 3030.5 (46.8)
hsqldb 13.5 12294 9102 501.7 350.0 (25.9)
luindex 12.1 10154 10227 501.6 583.4 (48.2)
lusearch 19.2 8390 13849 501.5 662.8 (34.5)
eclipse 124.7 34074 52957 506.5 4343.8 (34.8)
SPECjbb 1800* 17146 12637 502.4 1800*
IBM DMS 1800* 147517 87531 519.6 1800*

Table 3.2: Copy graph size and time/space overhead, part 1. Shown are the original
running time Torig , as well as the total numbers of graph nodes N0 and edges E0,
the total amount of memory consumed M0, the running time T0, and the slowdown
(shown in parentheses) when using a context-insensitive copy graph.

significant difference between context-insensitive and context-sensitive analysis is the

space overhead.

Although significant, these overheads have not hindered us from running the tool

on any programs, including real world large-scale production applications. It was

an intentional design decision not to focus on the performance of the analysis, but

instead focus on the content collected and on demonstrating that the results are useful

for finding performance problems in real programs. Now that the value of the tool

has been established, a possible future direction is to use sampling-based profiling to

obtain the same or similar results. Another possibility is to employ static pre-analyses

that reduce the cost of the subsequent dynamic analysis.
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Program 1-object-sensitive (c = 4)
#N4 #E4 M4(Mb) T4(s) (×)

antlr 48556 112907 506.9 294.8 (33.1)
bloat 54960 35678 504.3 10182.9 (64.7)
chart 69438 25951 504.6 1079.4 (33.2)
fop 47893 11985 503.1 37.4 (10.4)
pmd 43740 15576 503.0 1586.7 (34.0)
jython 95493 32256 505.8 2865.6 (38.4)
xalan 52485 55367 504.9 2983.3 (46.0)
hsqldb 47666 13432 503.0 358.0 (26.5)
luindex 39319 17695 502.8 568.7 (47.0)
lusearch 32354 22163 502.6 643.5 (33.5)
eclipse 131065 124043 512.3 4521.5 (36.3)
SPECjbb 66102 23909 503.3 1800*
IBM DMS 193707 180187 533.7 1800*

Table 3.3: Copy graph size and time/space overhead, part 2. The columns report the
same measurements as Table 3.2, but for 1-object sensitive copy graph with 4 context
slots.

Program 1-object-sensitive (c = 8)
#N8 #E8 M8(Mb) T8(s) (×)

antlr 96609 159042 510.2 300.7 (33.8)
bloat 109494 48840 506.5 10147.4 (64.4)
chart 137945 39133 507.3 1054.4 (32.4)
fop 95180 13509 504.6 37.2 (10.3)
pmd 86980 19568 504.5 1568.5 (33.7)
jython 188583 37005 509.0 2879.9 (38.6)
xalan 85751 88001 507.7 3067.6 (47.3)
hsqldb 94846 15201 504.6 346.7 (25.7)
luindex 78232 22912 504.3 581.1 (48.0)
lusearch 64280 26629 503.8 651.6 (33.9)
eclipse 259168 154004 517.4 4545.3 (36.4)
SPECjbb 131413 27660 507.2 1800*
IBM DMS 381072 242049 571.2 1800*

Table 3.4: Copy graph size and time/space overhead, part 3. The columns report the
same measurements for 1-object sensitive copy graph with 8 context slots.
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Program 1-object-sensitive (c = 16)
#N16 #E16 M16(Mb) T16(s) (×)

antlr 192713 210522 515.2 309.5 (34.8)
bloat 218558 60483 510.5 10068.2(63.9)
chart 274903 45071 511.9 1056.5 (32.5)
fop 189757 14388 507.7 36.8 (10.2)
pmd 173484 21339 507.3 1555.5 (33.4)
jython 374791 41027 515.0 2861.4 (38.3)
xalan 208119 117760 512.2 3067.6 (47.3)
hsqldb 189183 17190 507.7 345.9 (25.6)
luindex 156033 28333 507.0 564.8(46.7)
lusearch 128152 32544 506.1 658.4(34.3)
eclipse 516030 174846 526.4 4746.4 (38.1)
SPECjbb 261915 29017 511.0 1800*
IBM DMS 755829 304759 652.3 1800*

Table 3.5: Copy graph size and time/space overhead, part 4. The columns report the
same measurements for 1-object sensitive copy graph with 16 context slots.

Program #Chains Length #NATH Sites #NATH Objects

antlr 250680 2.60 811 411536
bloat 6955316 4.00 1160 31217025
chart 29490 1.16 1652 15080848
fop 275835 3.36 1282 167808
pmd 436397 2.96 1062 54103059
jython 6827057 4.00 493 35926287
xalan 93263 2.60 1218 6186112
hsqldb 8595 1.80 828 3059666
luindex 30183 2.24 749 5543579
lusearch 10640 3.8 302 4200325
eclipse 10070910 1.24 3030 3494187
SPECjbb 21468 2.00 575 722800
IBM DMS 1937646 3.75 4695 1413528

Table 3.6: Copy chains and NATH objects. All copy graph paths with length ≤ 5 are
traversed to compute hot chains. The columns show the total number of generated
chains, the average length of these chains, and the number of NATH allocation sites
and NATH run-time objects.
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Program Average fan-out Context conflict ratio
CIFO CSFO CSFO CSFO CCR CCR CCR

4 8 16 4 8 16

antlr 4.66 2.33 1.64 1.09 0.237 0.131 0.081
bloat 1.03 0.64 0.44 0.27 0.199 0.090 0.068
chart 0.70 0.36 0.28 0.16 0.118 0.059 0.028
fop 0.62 0.25 0.15 0.08 0.134 0.060 0.043
pmd 0.75 0.35 0.22 0.12 0.131 0.059 0.051
jython 0.80 0.31 0.18 0.10 0.079 0.071 0.024
xalan 2.13 1.79 0.81 0.56 0.128 0.067 0.040
hsqldb 0.74 0.28 0.16 0.09 0.169 0.080 0.051
luindex 1.02 0.45 0.29 0.18 0.148 0.073 0.051
lusearch 1.68 0.68 0.41 0.25 0.127 0.082 0.052
eclipse 1.53 0.91 0.57 0.33 0.193 0.114 0.071
SPECjbb 0.75 0.36 0.21 0.11 0.144 0.065 0.026
IBM DMS 0.76 0.32 0.17 0.09 0.112 0.047 0.027

Table 3.7: Average node fan-out for context-insensitive (CIFO) and context-sensitive
(CSFO-i) copy graphs, as well as average context conflict ratios (CCR-i) for the
context-sensitive copy graphs.

Table 3.6 shows measurements for the copy chains obtained from a context-

insensitive copy graph, including the total number of generated chains (#Chains)

and the average length of these chains (Length). The table also shows the number

of NATH allocation sites and NATH run-time objects. The significant numbers of

NATH objects indicate that eliminating such objects may be a worthwhile goal for

future work on manual and automatic optimizations.

The first part of Table 3.7 lists the average node fan-out for the context-insensitive

copy graph (CIFO) and the three versions of context-sensitive copy graphs (CSFO-i,

where i is the number of context slots for each object). A node’s fan-out is the number

of its outgoing edges. The average fan-out indicates the degree of node sharing among

paths in the graph. Note that CIFO and CSFO-i are small, because there exist a
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large number of producer nodes (allocation site) that do not have outgoing edges.

In addition, the more slots are used to represent contexts, the smaller the average

fan-out, because more nodes are created to avoid path sharing.

In addition, for each context-sensitive copy graph, the table reports the average

context conflict ratio (CCR-i). The CCR for an object o is defined as follows:

CCR-i(o) =

{

0 max0≤k≤i (nc[k]) = 1

max (nc[k])/
∑

nc[k] otherwise

Here nc[k] represents the number of distinct contexts that fall into context slot k. The

CCR value captures the degree to which our encoding function (i.e., id % k) causes

distinct contexts to be merged in the copy graph. For example, the CCR is 0 if each

context slot represents at most one distinct context; the CCR is 1 if all contexts for

the object fall into the same slot. The table reports the average CCR for all allocation

sites in the copy graph. As expected, the average CCR decreases with an increase in

the number of context slots. Note that very few context conflicts occur even when c

= 4, because a large number of objects have only one distinct context during theirs

lifetimes.

3.7 Summary and Interpretation

In large-scale systems, data-based activities such as large volumes of copies are

sometimes stronger signs of excess than control-based activities such as method ex-

ecution time, used primarily in compilers and tools. Based on this observation, this

chapter introduces a technique to help developers find performance improvements

that are beyond the scope of what is typically achieved by current JIT technology.

Using real-world examples, we show that this analysis can quickly guide the program-

mer to the problematic areas of the program, allowing them to inspect the code to
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find optimization opportunities. This analysis could also expose additional oppor-

tunities for interprocedural JIT optimizations, such as specializing across multiple

components, or hoisting complex, many-layered computations.

The success of this technique has clearly demonstrated that there exist large op-

timization opportunities that remain untapped by the JIT compiler. As long as we

provide developers with tools that can help them make better sense of heaps and

executions, their insights and experience will soon empower them to find opportuni-

ties that the JIT cannot find, and quickly fix problems that would require dozens of

sophisticated analyses to combine together to fix automatically.

The study presented in this chapter confirms that data-based activities (e.g., copy-

ing of data) can sometimes be more interesting than control-based activities (e.g.,

method invocations) in bloat detection. When method invocation counts and execu-

tion times fail to expose performance bottlenecks (e.g., in the document management

server discussed in Chapter 1), these data-oriented observations become valuable and

more informative. Excessive copying is just one example of such an activity. In the

next three chapters we present another three profiling techniques, focused on different

kinds of data-based activities. All these techniques are effective in uncovering bloat

and helping developers diagnose performance problems.

56



CHAPTER 4: Making Sense of Cost and Benefit

Bloat can be also be caused by inappropriate choices of data structures and im-

plementation algorithms, leading to computations with high cost (i.e., expensive to

execute) and low benefit (i.e., produce unnecessary data). As an example, in a large

Java program we found that the programmer creates many lists and adds thousands

of elements to each one of them, only for the purpose of obtaining list sizes. The

values contained in most fields of the list objects are never used; these values have

non-zero costs but zero benefits for the rest of the execution. Correct choices are

hard to make, as they require deep understanding of implementation logic and a

great deal of programming experience. These decisions often involve tradeoffs be-

tween space and time, between reusability and performance, and between short-term

development goals and long-term maintenance.

Querying the costs and benefits of certain data structures is a natural and effec-

tive way for a programmer to understand the performance of her program in order

to make appropriate choices. For example, questions such as “What is the cost of

using this data structure?” and “Why does this expensive call produce a rarely-used

value?” are often asked during software development and performance tuning/debug-

ging. Currently, these questions are answered mostly manually, typically through a

few labor-intensive rounds of code inspection, or with coarse-grained cost measure-

ments (e.g., method running times and numbers of created instances) with the help of

existing profiling tools. The answers are usually approximations that are far from the
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actual causes of problems, making it extremely hard to track down the performance

bottlenecks. The goal of our work is to provide automated support for the perfor-

mance expert to measure costs and benefits at a fine-grained (instruction) level, thus

improving the precision of the answers and making the tuning tasks easier.

In addition to finding individual values that are likely to be results of wasteful op-

erations, computing cost and benefit automatically provides many other advantages

for resolving performance issues. For example, a number of high-level performance-

related program properties can be quickly exposed by aggregating the costs and ben-

efits of values contained in individual storage locations. These properties include,

for example, whether a container is overpopulated (i.e., contains many objects but

retrieves only a few of them), whether an object contains dead fields, and whether

an object field is rewritten before it is read, etc. Such questions can be answered

efficiently by our cost-benefit analyses presented in this chapter. To the best of our

knowledge, these dynamic analyses are the first attempt to attack performance prob-

lems with a cost-benefit computation.

4.1 Technical Challenges and The Basic Idea

Cost and benefit The cost cv of a value v can be defined as the total number of

bytecode instructions (transitively) required to produce v. Each instruction is treated

as having unit cost; the actual cost difference (e.g., add vs mul) is irrelevant for cost-

benefit analyses of large-scale applications that execute extremely large numbers of

instruction. Control dependences are not considered in the computation of cv, because

otherwise many instructions that contribute only to decision making would be taken

into account, making it hard to quantify the effort made only to produce v. Instead,
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they are treated in a special manner, as discussed later. It is not obvious how to define

the benefit of v, as there does not exist any explicit metric related to the “goodness”

of consuming a value during the execution. We propose different benefit definitions

for different analyses (i.e., for different targeted properties). For example, the benefit

of v is zero when v is never used, or contributes only to the generation of never-used

values.

Technical challenges The computation of cost for each value during the ex-

ecution appears to be a problem which can be solved by associating a small amount

of tracking data with each storage location and by updating this data as the corre-

sponding location is written. A similar technique has been adopted, for example, in

taint analysis [103], where the tracking data is a simple taint mark. In the setting

of cost computation, the tracking data associated with each location records the cu-

mulative cost of producing the value that is written into the location. Figure 4.1(a)

shows a simple program and the update of the tracking data at each execution step;

tx denotes the tracking data for location x. For an instruction s, a simple approach

of updating the tracking data for the left-hand-side variable is to store in it the sum

of the tracking data for all right-hand-side variables, plus the cost of s itself.

It is easy to calculate in Figure 4.1(a) that the value of tb is 8. However, the number

of instructions that the instruction at line 4 transitively depends on is 5, shown in

Figure 4.1(b). These two numbers differ because c contributes to the generation

of both d and b, and including the costs of both d and c in the cost of b actually

counts the cost of c twice. While this difference is small for the example, it can

quickly accumulate and become significant when the size of the program increases.

For example, we have observed, using our tool, that this cost can quickly grow and
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1 a = 0;

2 c = f(a);

3 d = c * 3;

4 b =  c + d;

5 int f(int e){

6   return e >> 2;  

7 }

ta = 1;

tc = tf + 1;

td = tc + 1;

tb = tc + td + 1;

tf = te + 1; 

2

4

1

(a) (b)

6

3

Figure 4.1: (a) A simple program and the updates of the tracking data; (b) Corre-
sponding data dependence graph; an edge b → a shows that instruction a uses the
value defined by instruction b.

cause a 64-bit integer to overflow for even moderate-size applications. In addition,

such dynamic tracking cannot provide any additional information about the data

flow, and thus, its usefulness for helping diagnose performance problems is limited.

Backward dynamic flow problems To avoid double-counting in the com-

putation of cost cb, one could record all instruction instances before b is written and

their dependences, i.e., the dependence graph in Figure 4.1(b). Cost cb can then be

computed by traversing backward the dependence graph and counting the number

of instructions. There are many other dynamic analysis problems that have sim-

ilar characteristics. These problems, for example, include null value propagation

analysis [24], dynamic object type-state checking [9], event-based execution fast for-

warding [169], copy chain profiling [156], etc. One common feature of this class of

dynamic analyses is that they require additional trace information recorded for the

purpose of diagnosis or debugging, as opposed to simpler approaches such as taint

analysis. Because the solutions these analyses need to compute are history-related
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and can be obtained by traversing backward the recorded traces, we will refer to them

as backward dynamic flow (BDF) problems.

In general, BDF problems can be solved by dynamic slicing [150,165,166,168]. In

our example of cost computation, cb is essentially the size of the data-dependence-

based backward dynamic slice starting from the instruction that directly produces b

(i.e., b = c + d). While there exists a range of static optimization [108,166,169] and

online data compression [79, 150, 167] techniques, it is still extremely expensive to

perform whole-program dynamic slicing, and no existing algorithms have been shown

to scale to large and long-running Java applications. This is because the amount of

memory needed for whole-program dynamic slicing is unbounded, and is determined

completely by the run-time behavior of the program.

We introduce abstract dynamic thin slicing, a technique that applies dynamic

thin slicing [134] over bounded abstract domains. The resulting dependence graph

contains abstractions of instructions, rather than their actual run-time instances.

In the context of cost computation, instead of calculating the actual costs for the

values produced by concrete instruction instances, they are approximated using the

abstract costs for the abstractions of instructions, which are essentially the aggrega-

tions of costs for concrete instructions. This technique has two advantages. First,

the amount of memory required for the dependence graph is bounded by the number

of abstractions, which significantly reduces the space overhead. Second, while slicing

over concrete domains can be more precise, the costs computed for concrete instruc-

tions eventually have to be aggregated in order to present a meaningful report to the

user. When applying slicing over abstract domains, it is not necessary to perform

aggregation, because dependence graph nodes are already abstractions of concrete
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instructions. Section 4.2 shows that, in addition to cost-benefit analysis, such slicing

can solve a range of other BDF problems.

Thin slicing [134] is a technique that considers only direct locations that are part

of the data flow in the generated slice, while filtering out locations that are indirectly

used to obtain the direct locations. For instance, for a seed statement a.f = b, its

thin slice consists of the statements that contribute to the generation of the value

in location a.f , but excludes the statements that contribute to the generation of the

object reference a. This technique is particularly suitable for our cost and benefit

computation, because the cost of producing the value in a.f should accurately reflect

the effort made only to produce this value, but not the cost of forming the reference

value in a. This property makes thin slicing especially attractive for computing

costs for programs that make extensive use of object-oriented data structures—with

traditional slicing, the cost of each data element retrieved from a data structure would

include the cost of producing the object references that form the layout of the data

structure, resulting in significant imprecision.

To help the programmer diagnose performance problems, we propose several cost-

benefit analyses that take as input the abstract dynamic dependence graph and report

information related to the underlying causes. Section 4.3 defines in detail one of

these analyses, which computes costs and benefits at the level of data structures by

aggregating costs and benefits for individual heap locations.

The proposed analyses were implemented in a J9 and were successfully applied

to large-scale and long-running applications such as derby, tomcat and trade. Sec-

tion 4.4 presents an evaluation of analysis cost. Similarly to previous work [102], a

shadow heap is used to record information about fields of live objects; this shadow
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heap has the same size as the original Java heap. The use of a shadow heap is not

essential; for example, it could be replaced with a hash table. Due to the abstractions

being used, the additional memory needed to maintain the dependence graph is small.

The current prototype implementation imposes an average slowdown of 71 times when

whole-program tracking is enabled. While this overhead is too high for production

runs, it is acceptable for performance tuning and debugging, as it can reduce sig-

nificantly the amount of human effort required to track down complex performance

problems. Even without any overhead reduction efforts, the current implementation

is able to analyze large production applications. We also show that it is possible to

significantly reduce the overhead (i.e., by up to 10 times) by enabling tracking only

for relevant components instead of the entire program.

Section 4.4 describes six case studies with real-world applications. Using the tool,

we found hundreds of performance problems, and eliminating these problems resulted

in 2% – 37% performance improvement. These problems include inefficiencies caused

by common programming idioms, repeated work whose results need to be cached,

computation of redundant data, and choices of unnecessary expensive operations.

Some of these finding also provide useful insights for automatic code optimization in

compilers.

The contributions of this work are:

• Cost and benefit profiling, a methodology that identifies run-time inefficiencies

by understanding the cost of producing values and the benefit of consuming

them.

• Abstract dynamic thin slicing, a general technique that performs dynamic thin

slicing over bounded abstract domains. It produces much smaller and more
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relevant slices than traditional dynamic slicing and can be used for cost-benefit

analysis and for other dynamic analyses.

• Relative cost-benefit analysis which reports data structures that have unbal-

anced cost-benefit rates.

• A J9-based implementation and six case studies using real-world programs,

demonstrating that the tool can help a programmer to find opportunities for

performance improvements.

4.2 Cost Computation Using Abstract Slicing

In this section, we first formalize our abstract dynamic thin slicing technique and

show example clients that can take advantage of this technique. We then give the

definition of cost and present a runtime profiling technique that constructs the depen-

dence graph. While our tool works on the low-level JVM intermediate representation,

the presentation of the algorithms requires the three-address-code representation of

the program. In this representation, each statement corresponds to a bytecode in-

struction (i.e., it is either an assignment or a computation store that contains only

one operator). This makes it explicit to traverse the dependence graph to compute

cost, as each statement has unit cost. We will use the term statement and instruction

interchangeably in this chapter, both meaning a statement in the three-address-code

representation.

4.2.1 Abstract Dynamic Thin Slicing

In dynamic slicing [76], the instrumented program is first executed to obtain an

execution trace with control flow and memory reference information. At a pointer
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1  File f = new File();

2  f.create();

3  i = 0;

4  if(i < 100){

5      f.put(...);

6      …

7      f.put(...);

8   i++; goto 4; }

9   f.close();

10 char b = f.get();
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1  a1 = new A();

2  b = a1.f;

3  a2 = new A();

4  c = b;

5  a2.f = c;

6  d = new D();

7  e = a2.f;

8  h = e + 1;

9  d.g = h;

(c)
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Figure 4.2: Data dependence graphs for three BDF problems. Line numbers are used
to represent the corresponding instructions. Arrows with solid lines are def-use edges.
(a) Null origin tracking. (b) Typestate history recording; arrows with dashed lines
represent “next-event” relationships. (c) Extended copy profiling; Oi denotes the
allocation site at line i.

dereference, both the data that is referenced and the pointer value (i.e., the address

of the data) are captured. Our technique considers only data dependences and the

control predicates are treated in a special way as described later. Based on a dynamic

data dependence graph inferred from the trace, a slicing algorithm is executed. Let

I be the domain of static instructions and N be the domain of natural numbers.

Definition 4.2.1 (Dynamic Data Dependence Graph). A dynamic data dependence

graph (V, E) has node set V ⊆ I×N , where each node is a static instruction annotated

with an integer j, representing the j-th occurrence of this instruction in the trace. An

edge from aj to bk (a, b ∈ I and j, k ∈ N ) shows that the j-th occurrence of a writes

a location that is then used by the k-th occurrence of b, without an intervening write

to that location. If an instruction accesses a heap location through v.f , the reference

value in stack location v is also considered to be used.
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Thin slicing [134] is a static technique that focuses on statements that flow values

to the seed, ignoring the uses of base pointers. In this chapter, the technique is re-

stated for dynamic analysis. A thin data dependence graph, formed from the execution

trace, has exactly the same set of nodes as its corresponding dynamic data dependence

graph. However, for an access v.f , the base pointer value in v is not considered to

be used. A thin data dependence graph contains fewer edges and leads to smaller

slices. Both for standard and thin dynamic slicing, the amount of memory required

for representing the dynamic dependence graph cannot be bounded before or during

the execution.

For some BDF problems, there exists a certain pattern of backward traversal that

can be exploited for increased efficiency. Among the instruction instances that are

traversed, equivalence classes can usually be seen. Each equivalence class is related

to a certain property of an instruction from the program code, and distinguishing

instruction instances in the same equivalence class (i.e., with the same property)

does not affect the analysis precision. Moreover, it is only necessary to record one

instruction instance online as the representative for that equivalence class, leading to

significant space reduction of the generated execution trace. Several examples of such

problems will be discussed shortly.

To solve such BDF problems, we propose to introduce the semantics of a target

analysis into profiling, by defining a problem-specific bounded abstract domain D

containing identifiers that define equivalence classes in N . An unbounded subset of

elements in N can be mapped to an element in D. For a particular instruction a ∈ I,

an abstraction function fa : N → D is used to map aj , where j ∈ N , to an abstracted

instance ad. This yields an abstraction of the dynamic data dependence graph. For
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our purposes we are interested in thin slicing. The corresponding dependence graph

will be referred as an abstract thin data dependence graph.

Definition 4.2.2 (Abstract Thin Data Dependence Graph). An abstract thin data

dependence graph (V ′, E ′, F , D) has node set V ′ ⊆ I × D, where each node is a

static instruction annotated with an element d ∈ D, denoting the equivalence class

of instances of the instruction mapped to d. An edge from aj to bk (a, b ∈ I and

j, k ∈ D) shows that an instance of a mapped to aj writes a location that is used

by an instance of b mapped to bk, without an intervening write to that location. If

an instruction accesses the heap v.f , the base pointer value v is not considered to be

used. F is a family of abstraction functions fa, one per instruction a ∈ I.

For simplicity, we will use “dependence graph” to refer to the abstract thin data

dependence graph defined above. The number of static instructions (i.e., the size of I)

is relatively small even for large-scale programs, and by carefully selecting domain D

and abstraction functions fa, it is possible to require only a small amount of memory

for the graph and yet preserve necessary information needed for a target analysis.

Many BDF problems exhibit bounded-domain properties. Their analysis-specific

dependence graphs can be obtained by defining the appropriate abstraction functions.

The following examples show a few analyses and their formulations in our framework.

Note that although some of these analyses can be implemented in simpler ways (e.g.,

they do not need tracking all instructions and their dependences), we formulate them

as abstract slicing problems to show the general applicability of our framework. In

reality, their implementations can be easily derived from our framework by, for ex-

ample, profiling other kinds of edges between instruction abstractions (rather than

def-use edges).
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Propagation of null Values When a NullPointerException is observed

in the program, this analysis locates the program point where the null value starts

propagating and the propagation flow. Compared to exiting null value tracking

approaches (e.g., [24]) that track only the origin of a null value, this analysis also

provides information about how this value flows to the point where it is derefer-

enced, allowing the programmer to quickly track down the bug. Here, D contains

two elements null and not null. Abstraction function fa(j) = null if aj produces

null and not null otherwise. Based on the dependence graph, the analysis traverses

backward from node anull where a ∈ I is the instruction whose execution causes the

NullPointerException. The node that is annotated with null and that does not

have incoming edges represents the instruction that created the null value originally.

Figure 4.2(a) shows an example of this analysis. Annotation nn denotes not null. A

NullPointerException is thrown when line 4 is reached.

Recording Typestate History Proposed in QVM [9], this analysis tracks the

typestates of the specified objects and records the history of the state changes. When

the typestate protocol of an object is violated, it provides the programmer with the

recorded history. Instead of recording every single event in the trace, a summarization

approach is employed to merge these events into DFAs. We show how this analysis

can be formulated as an abstract slicing problem, and the DFAs can be easily derived

from the dependence graph.

Domain D is O × S, where O is a specified set of allocation sites (whose objects

need to be tracked) and S is a set of predefined states s0, s1, . . . , sn of the objects cre-

ated by the allocation sites inO. Abstraction function fa(j) = (alloc(aj), state(aj))

if instruction instance aj invokes a method on an object ∈ O, and the method can
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cause the object to change its state. The function is undefined otherwise (i.e., all

other instructions are not tracked). Here alloc is a function that returns the allo-

cation site of the receiver object at aj , and function state returns the state of this

object immediately before aj . The state can be stored as a tag of the object, and

updated when a method is invoked on this object.

An example is shown in Figure 4.2(b). Consider the object O1 created at line 1,

with states ’u’ (uninitialized), ’oe’ (opened and empty), ’on’ (opened but not empty),

and ’c’ (closed). Arrows with dashed lines denote the “next-event” relationships.

These relationships are added to the graph for constructing the DFA described in [9],

and they can be easily obtained by memorizing the last event on each tracked object.

When line 10 is executed, the typestate protocol is violated because the file is read

after it is closed. The programmer can easily identify the problem when she inspects

the graph and finds that line 10 is executed on a closed file. While the example shown

in Figure 4.2(b) is not strictly a dependence graph, the “next-event” edges can be

conceptually thought of as def-use edges among nodes that write and read the object

state tag.

Extended Copy Profiling Work described in Chapter 3 [156] describes how

to profile copy chains that represent the transfer of the same data without any compu-

tation. Nodes in a copy chain are fields of objects represented by their allocation sites

(e.g., Oi.f). An edge connects two field nodes, abstracting away intermediate stack

copies. Each stack variable has a shadow stack location, which records the field from

which its value originated. An extended version of this analysis is to include interme-

diate stack nodes along copy chains, because they are important for understanding

the methods through which the values are transferred.
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Figure 4.3: (a) Code example. (b) Corresponding dependence graph Gcost; nodes in
boxes/circles write/read heap locations; underlined nodes create objects. (c) Nodes
in method A.foo (Node), their frequencies (Freq), and their abstract costs (AC ); (d)
Relative abstract costs i-RAC and benefits i-RAB for the three allocation sites; i is
the level of reference edges considered.

Now we show that this complex dynamic analysis can also be instantiated in our

framework using abstract slicing. The key to the analysis is the ability of distinguish-

ing instructions that access data originating from fields of different allocation sites.

Hence, the abstraction domain D is a Cartesian set O×F , where O is the domain of

allocation sites, and F is the domain of field identifiers. We allow D to have a special

element ⊥, representing that the current data does not come from any field (e.g., it

is a constant, a newly-created object, or a result of a computation instruction).

Abstraction function fcp (ins, i) = map(shadow(insi)), if ins is an assignment

instruction; or ⊥, otherwise. Here function shadow maps an instruction instance to

the tracking data (i.e., an object field) contained in the shadow location of its lhs

variable, and function map maps a field o.g to its static abstraction new O.g. An

example of this analysis is shown in Figure 4.2(c). For example, in order to identify
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the intermediate stack locations in the copy chain between locations O1.f and O3.f ,

one can backward traverse the generated dependence graph from node 6O3.f (that

writes field f of the object created by allocation site O3). The traversal follows nodes

that have the same annotation O1.f until it reaches the node that reads the field O1.f

(i.e., node 2O1.f).

Similarly to the way that a data flow analysis [116, 120] or an abstract inter-

preter [39] deals with static data flow, abstract slicing employs abstract domains to

handle dynamic data flow problems, recognizing that it is only necessary to distinguish

instruction instances that are critical to the program property that the target analysis

intends to discover. Note that there are many dynamic analyses that cannot be for-

mulated as abstract slicing problems, because they do not exhibit bounded-domain

properties. For example, an analysis that automatically finds bugs by comparing

traces of a successful run and a failed run has to inspect the two entire execution

paths. Abstractions in the dependence graph may cause the differencing algorithm

to report imprecisely the cause of the bug.

4.2.2 Cost Computation

Definition 4.2.3 (Absolute Cost). Given a non-abstract thin data dependence graph

G and an instruction instance aj (a ∈ I, j ∈ N ) that produces a value v, the absolute

cost of v is the number of nodes that can reach aj in G.

Absolute costs are expensive to compute and it does not make much sense to

present them to the programmer, unless they are aggregated in some meaningful way

across instruction instances so that they can help understand the overall execution. In

our approach the instructions are abstracted based on dynamic calling contexts. The
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contexts are represented with object sensitivity [91], which is well suited for modeling

of object-oriented data structures.

A calling context is represented by a chain of static abstractions (i.e., allocation

sites Oi ∈ O) of the receiver objects for the invocations on the call stack. Domain

Dcost contains all possible chains of allocation sites. Abstraction function fa(j) =

objCon(cs(aj)), where function cs takes a snapshot of the call stack when aj is

executed, and function objCon maps this snapshot to the corresponding chain of

allocation sites Oi for the run-time receiver objects. Dcost is not finite in the presence

of recursion, and even for a recursion-free program its size is exponential. We limit

the size of Dcost further to be a fixed number s (short for “slots”), specified by the

user as a parameter of the profiling tool. Now the domain is simply the set of integers

0 to s−1. An encoding function h is used to map an allocation site chain to such

an integer; the description of h will be presented shortly. With this approach, the

amount of memory required for the analysis is linear in program size.

Each node in the dependence graph is annotated with an integer, representing the

execution frequency of the node. Based on these frequencies, an abstract cost for each

node can be computed as an approximation of the total costs of values produced by

the instruction instances represented by the node.

Definition 4.2.4 (Abstract Cost). Given a dependence graph Gcost , the abstract cost

of a node nk is Σaj |aj;nk freq(aj), where aj ; nk if there is a path from aj to nk in

Gcost , or aj = nk.

Example Figure 4.3 shows a code example and its dependence graph for cost

computation. While some statements (line 29) may correspond to multiple bytecode

72



instructions, they are still considered to have unit costs. These statements are shown

for illustration purposes and will be broken into multiple ones by our tool.

All nodes are annotated with their object contexts (i.e., elements of Dcost). For

ease of understanding, the contexts are shown in their original forms, and the tool

actually uses the encoded forms (through function h). Nodes in boxes represent

instructions that write heap locations. Dashed arrows represent reference edges; these

edges can be ignored for now. The table shown in part (c) lists nodes for the execution

of method A.foo (invoked by the call site at line 34), their frequencies, and their

abstract costs.

The abstract cost of a node computed by this approach may be larger than the

exact sum of absolute costs of the values produced by the instruction instances rep-

resented by the node. This is because for a node a such that a ; n, there may not

exist any dependences between some instruction instances of a and some instruction

instances of n. This difference can be large when the abstract cost is computed after

traversing long dependence graph paths, and the imprecision gets magnified. More

importantly, this cost represents the cumulative effort that has been made from the

very beginning of the execution to produce the values. It may still not make much

sense for the programmer to diagnose problems using abstract costs, as it is almost

certain that nodes representing instructions executed later will have larger costs than

those representing instructions executed earlier. In Section 4.3, we address this prob-

lem by computing a relative abstract cost, which measures execution bloat at the

object level by traversing dependence graph paths connecting nodes that read and

write object fields.
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Special nodes and edges in Gcost To measure execution bloat, we augment

the graph with two special kinds of nodes: predicate nodes and native nodes, both

representing the consumption of data. A predicate node is created for each if state-

ment, and a native node is created for each call site that invokes a native method.

These nodes do not have associated contexts. In addition, we mark nodes that allo-

cate objects (underlined in Figure 4.3 (b)), that read heap locations (nodes in circles),

and that write heap locations (nodes in boxes). These nodes are later used to identify

object structures.

Reference edges are used to represent reference relationships. For each heap store

a.f = b, a reference edge is created to connect the node representing this store (i.e.,

a boxed node) and the node allocating the object that flows to a (i.e., an underlined

node). For example, there exists a reference edge from 28O32 to 24O32 , because 24O32

allocates the array object and 28O32 stores an integer to the array (which is similar

to writing an object field). These edges will be used to aggregate costs for individual

heap locations to form costs for objects and data structures.

4.2.3 Construction of Gcost

Selecting encoding function h There are two steps in mapping an allocation

site chain to an integer d ∈ Dcost (i.e., [0, . . . , s−1]). The first step is to encode the

chain into a probabilistically unique value that will accurately represent the original

object context chain. An encoding function proposed in [21] is adapted to perform

this mapping: gi = 3 * gi−1 + oi, where oi is the i-th allocation site ID in the chain and

gi−1 is the probabilistic context value computed for the chain prefix with length i−1.

While simple, this function exhibits very small context conflict rate, as demonstrated
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in [21]. In the second step, this encoded value is mapped to an integer in the range

[0, . . . , s−1] using a simple mod operation.

Profiling for constructing Gcost Instead of recording the full execution trace

and building a dependence graph offline, we use an online approach that combines

dynamic flow tracking and slicing. The key issue is to identify the data dependences

online, which can be done using shadow locations [99, 102]. For each location l, a

shadow location l′ contains the address of the dependence graph node representing the

instruction instance that wrote the last value of l. When an instruction is executed,

the node n to which this instruction instance is mapped is retrieved, and all nodes mi

that last wrote the locations read by the instruction are identified. Edges are then

added between n and each mi.

For a local variable, its shadow location is a new local variable on the stack. For

heap locations we use a shadow heap [102] that has the same size as the Java heap. To

enable quick access, there is a predefined distance dist between the starting addresses

of these two heaps. For a heap location l, the address of l′ can be quickly obtained

as l + dist .

A tracking stack is maintained in parallel with the call stack to pass data depen-

dence relationships across calls. For each invocation, the tracking stack also passes

the receiver object chain for the caller. The next context is obtained by concatenating

the caller’s chain and the allocation site of this.

Instrumentation semantics Figure 4.4 shows a list of inference rules defin-

ing the instrumentation semantics. Each rule is of the form V, E, H, S, P, T ⇒a:i=...

V′, E′, H′, S′, P′, T′ with unprimed and primed symbols representing the state before

and after the execution of statement a. In cases where a set does not change (e.g.,

75



Assign

V′ = V ∪ {ah(c)} S′ = S[i 7→ ah(c)]

E′ = E ∪ {ah(c) � S(k)}

V, E,S⇒a:i=k V′,E′,S′

Computation

V′ = V ∪ {ah(c)} S′ = S[i 7→ ah(c)]

E′ = E ∪ {ah(c) � S(k)} ∪ {ah(c) � S(l)}

V, E,S⇒a:i=k⊕l V′,E′,S′

Predicate

V′ = V ∪ {aǫ} S′ = S

E′ = E ∪ {aǫ � S(i)} ∪ {aǫ � S(k)}

V, E,S⇒a:if (i>k){...} V′, E′,S′

Load Static

V′ = V ∪ {ah(c)} S′ = S[i 7→ ah(c)]

E′ = E ∪ {ah(c) � S(A.f)}

V, E,S⇒a:i=A.f V′, E′, S′

Store Static

V′ = V ∪ {ah(c)} S′ = S[A.f 7→ ah(c)]

E′ = E ∪ {ah(c) � S(i)}

V, E,S⇒a:A.f=i V′, E′, S′

Alloc

V′ = V ∪ {ah(c)} S′ = S[i 7→ ah(c)]

H′ = H[ah(c) 7→ (′U ′, (new X)h(c),′ ′)]

P′ = P[o 7→ (new X)h(c)]

V, H,S,P⇒a:i=new X V′, H′,S′,P′

Load Field

V′ = V ∪ {ah(c)} S′ = S[i 7→ ah(c)]

E′ = E ∪ {ah(c) � S(ov .f)}

H′ = H[ah(c) 7→ (′C ′, P(ov), f)]

V, E,H, S⇒a:i=v.f V′, E′,H′,S′

Store Field

V′ = V ∪ {ah(c)} S′ = S[ov.f 7→ ah(c)]

E′ = E ∪ {ah(c) � S(i)}

H′ = H[ah(c) 7→ (′B ′,P(ov), f)]

V, E,H, S⇒a:v.f=i V′, E′,H′,S′

Method Entry

S′ = S[ti 7→ T(i)] for 1 ≤ i ≤ n
T′ = (T(n + 1) ◦AllocId(P(othis )), T(n + 1), T(n + 2), . . .)

S, T⇒a:m(t1,t2,...,tn) S′, T′

Return

T′ = (S(i), T(2), T(3), . . .)

T⇒a:return i T′

Figure 4.4: Inference rules defining the run-time effects of instrumentation.

when S = S′), it is omitted. Node domain V contains nodes of the form ah(c), where

a denotes the instruction and h(c) denotes the encoded integer of the object context

c. Edge domain E : V × V is a relation containing dependence relationships of the

form al � kn, which represents that an instance of a abstracted as al is data depen-

dent on an instance of k abstracted as kn. Shadow environment S : M → V maps a

run-time storage location to the content in its corresponding shadow location (i.e.,

to its tracking data). Here M is the domain of memory locations. For each location,

its shadow location contains the (address of the) node that performs the most recent

write to this location. Rules Assign, Computation, Predicate, Load Static,
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and Store Static update the environments in expected ways. In rule Predicate,

instruction instances are not distinguished and the node is represented by aǫ.

Rules Alloc, Load Field and Store Field additionally update heap effect

environment H, which is used to construct reference edges in Gcost . H : V → Z maps

a node al ∈ V to a heap effect triple (type, alloc, field) ∈ domain Z of heap effects.

Here, type can be ′U ′ (i.e., underlined) representing the allocation of an object, ′B ′

(i.e., boxed) representing a field store, or ′C ′ (i.e., circled) representing a field load.

Elements alloc and field denote the object and the field on which the effect occurs.

For instance, triple (′U ′, O, ′ ′) means that a node contains an allocation site O,

while triple (′B ′, O, f) means that a node writes to field f of an object created by

allocation site O. A reference edge can be added between a (store) node with effect

(′B ′, O, ∗) and another (allocation) node with effect (′U ′, O, ′ ′), where ∗ represents

any field name. In order to perform this matching, we need to provide access to the

allocation site ID for each run-time object. This is done using tag environment P

that maps a run-time object to its allocation site ID.

However, the reference edge could be spurious if the store node and the allocation

node are connected using only allocation site ID O, because the two effects (i.e., ′B ′

and ′U ′) could occur on different instances created by O. To improve the precision

of the client analyses, object context is used again to annotate allocation sites. For

example, in rule Alloc, H is updated with effect triple (′U ′, (new X)h(c), ′ ′), where

the allocation site new X is annotated with the encoded context integer h(c). This

triple matches only (store) node with effect (′B ′, (new X)h(c), ∗), and many spurious

reference edges can thus be eliminated. In rule Alloc, (new X)h(c) is used to tag
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the newly-created run-time object o (by updating tag environment P), and this in-

formation will be retrieved later when o is dereferenced. In rules Load Field and

Store Field, ov denotes the run-time object that variable v points to. P(ov) is used

to retrieve the allocation site (annotated with the context) of ov, which is previously

set as ov’s tag upon its allocation.

The last two rules show the instrumentation semantics at the entry and the return

site of a method, respectively. At the entry of a method with n parameters, tracking

stack T contains the tracking data for the actual parameters of the call, as the n

top elements T(1), . . . , T(n), followed by the receiver object chain for the caller of

the method (as element T(n + 1)). In rule Method Entry, the tracking data

for a formal parameter ti is updated with the tracking data for the corresponding

actual parameter (stored in T(i)). The new object context is computed by applying

concatenation operator ◦ to the old chain T(n + 1) and the allocation site of the

run-time receiver object othis pointed to by this (or an empty string if the current

method is static). Function AllocId removes the context annotation from the tag

of othis, leaving only the allocation site ID. The stack is updated by removing the

tracking data for the actuals, and storing the new context on the top of the stack.

This new context is available for use by all rules applied in the body of the method

(denoted by c in those rules). At the return site, T is updated to remove the current

context and to store the tracking data for the return variable i.

The rule for call sites is not shown in Figure 4.4, as it requires splitting a call site

into a call part and a return part, and reasoning about both of them. Immediately

before the call, the tracking data for the actual parameters is pushed on tracking stack

T. Immediately after the call, the tracking data for the returned value is popped from
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T and used to update the dependence graph and the shadow location for the left-hand-

side variable at the call site. If the method invoked at the call site is a native method,

we create a node (without context) for it, and add edges between each node contained

in the shadow locations of the actual parameters and this node, representing that the

values of parameters are consumed by this native method.

Implementation of P A natural idea of implementing object tagging is to

save the tag in the header of each object (i.e., the header usually has unused space).

However, in the J9 VM that we use, this 64-bit header cannot be modified. To

solve this problem, the corresponding 64 bits on the shadow heap are used to store

the object tag. Hence, although environments P and S have different mathematical

meanings, both are implemented using shadow locations.

4.3 Relative Object Cost-Benefit Analysis

This section describes a novel diagnosis technique that identifies data structures

with high cost-benefit rates. As discussed in Section 4.4, this analysis effectively

uncovers significant optimization opportunities in six large real-world applications.

We propose to compute a relative abstract cost for an object, which measures the

effort of constructing the object from data already available in fields of other objects

(rather than the cumulative effort from the beginning of the execution). Similarly,

we compute a relative abstract benefit for an object, which explains how the data

contained in the object is used to construct other objects. These metrics can help

a programmer pinpoint specific objects that are expensive to construct (e.g., there

are large costs of computing the data being written into this object) but are not very
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useful (e.g, the only use of this object is to make a clone of it and then invoke methods

on the clone).

We first develop an object cost-benefit analysis that aggregates relative costs and

benefits for individual fields of an object in order to compute the cost and benefit for

the object itself. Next, the cost and benefit for a higher-level data structure is ob-

tained in a similar manner, by gathering costs and benefits of lower-level objects/data

structures accessible through reference edges.

4.3.1 Analysis Algorithm

Definition 4.3.1 (Relative Abstract Cost). Given Gcost, the heap-relative abstract

cost (HRAC) of a node nk is Σaj |aj⇀nk freq(aj), where aj ⇀ nk if aj ; nk and there

exists a path from aj to nk such that no node on the path reads from a static or object

field. The relative abstract cost (RAC) for an object field represented by Od .f is the

average HRAC of store nodes nk that write to Od .f .

Consider the entire flow of a piece of data (from the input of the program to its out-

put) during the execution. This flow consists of multiple hops of data transformations

among heap locations. Each hop performs the following three steps: reading values

from heap locations, performing stack copies and computations on them, and writing

the results to other heap locations. Consider one single hop with multiple sources

and one target along the flow, which reads values from heap locations l1, l2, . . . , ln,

transforms them to produce a new value, and writes it back to heap location l′. The

RAC of l′ measures the amount of work needed (on the stack) to complete this hop

of transformations.
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The computation of HRAC for a node nk requires a backward traversal from nk,

which finds all nodes on the paths between each heap-reading node and nk, and

calculates the sum of their frequencies. For example, the HRAC for node 35ǫ is only

1 (instead of 4007), because the node depends directly on a node (i.e., 4O33) that

reads heap location this.t. The RAC for a heap location is the average HRAC of

the nodes that can write this location. For example, the RAC for Oǫ
33.t is the HRAC

for 19O33 , which is 4005. The RAC for OO32
24 .ELM (i.e., the elements of the array

object) is 2, which equals the HRAC of node 28O32 that writes this field.

Definition 4.3.2 (Relative Abstract Benefit). Given Gcost, the heap-relative abstract

benefit (HRAB) of a node nk is Σaj |nk⇁aj freq(aj), where nk ⇁ aj if nk ; aj and

there exists a path from nk to aj such that no node on the path writes to a static

or object field. The relative abstract benefit (RAB) for an object field represented by

Od .f is the average HRAB of load nodes nk that read from Od .f .

Symmetric to the definition of RAC that focuses on how a heap value is produced,

the RAB for l explains how a heap value is consumed. Consider again one single hop

(but with one source and multiple targets) along the flow, which reads a value from

location l, transforms this value (together with values read from other locations), and

writes the results to a set of other heap locations l′1, l
′
2, . . . , l

′
n. The RAB of l measures

the amount of work performed (on the stack) to complete this hop of transformations.

For example, the RAB for Oǫ
33.t is the HRAB of node 4O33 that reads this field, which

is 2 (because the relevant nodes aj are only 4O33 and 35ǫ). Figure 4.5 (a) illustrates

the computation of RAC and RAB.
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...

...

z.g = q

...

e.s = t u.x = w

m = i * 6 n = l - 5

i = a.f l = c.h

o = z.g

(a)

o.f = a 

O o = new O

A a = new A

B b = new B

o.g = b 

o.e = q 

...

a.h = c 

C c = new C

...

b.k = d 

D d = new D

...

...

t.m = v 

V v = new V

Level 1 Level 2 Level n

(b)

No heap read inside

No heap write inside

RACO.g
t = r + 3 w = s >> 2

RABO.g

...

...

Figure 4.5: (a) Relative abstract cost and benefit. Nodes considered in computing
RAC and RAB for O.g (where O is the allocation site for the object referenced by
z) are included in the two circles, respectively; (b) Illustration of n-RAC and n-RAB
for the object created by o = new O ; dashed arrows are reference edges.

This definition of benefit captures both the frequency and the complexity of data

use. First, the more target heap values that the value read from l is used to (tran-

sitively) produce, the larger benefit location l can have for the construction of these

other objects. Second, the more effort is made to transform the value from l to other

heap values, the larger benefit l can have. This is because the purpose of writing a

value into a heap location is, intuitively, to keep the value so that it can be reused

later and the (heavy) cost of re-computing it can be avoided. Whether to store a

value in a heap location is essentially a decision involving space-time tradeoffs. If l’s

value v can be easily converted to some other value v′ and v′ is immediately stored in

another heap location (i.e., little computation performed), the benefit of keeping v in

l becomes less obvious, since v and v′ may differ slightly and it may not be necessary
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to use two different heap locations to cache them. In the extreme case where v′ is

simply a copy of v, the RAB for l is 1 and storing v is not desirable at all if the RAC

for l is large. Special treatment is applied to consumer nodes: we assign a large RAB

to a heap location if the value it contains can flow to a predicate or a native node.

This means the value contributes to control decision making or is used by the JVM,

and thus benefits the overall execution.

Definition 4.3.3 (n-RAC and n-RAB). Consider an object reference tree RT n of

height n rooted at Od. The n-RAC for Od is the sum of the RACs for all fields Ok
i .f ,

such that both Ok
i and the object Ok

i .f points to are in RTn. Similarly, the n-RAB

for Od is the sum of the RABs for all such fields Ok
i .f .

The object reference (points-to) tree can be constructed by using reference edges in

the dependence graph, and by removing cycles and nodes more than n reference edges

away from Od. We aggregate the RACs and RABs for individual fields through the

tree edges to form the RACs and RABs for objects (when n = 1) and high-level data

structures (when n > 1). Figure 4.5 (b) illustrates n-RAC and n-RAB for an object

created by o = new O. The n-RAC(RAB) for this object includes the RAC(RAB) of

each field written by a boxed node (i.e., heap store) shown in the figure. For all case

studies and experiments, n = 4 was used as this is the reference chain length for the

most complex container classes in the Java collection framework (i.e., HashSet).

Table (d) in Figure 4.3 shows examples of 1- and 2- RACs and RABs. Both the

1-RAB and the 2-RAB for OO32
24 are 0, because the array element is never used in the

code. Objects Oǫ
32 and Oǫ

33 have large cost-benefit rates, which indicates the existence

of wasteful operations. This is indeed the case in this example: for Oǫ
32, there is an

element added but never retrieved; for Oǫ
33, there is a large cost of computing the value
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class ClasspathDirectory{

boolean isPackage(String packageName){

return directoryList(packageName) != null;

}

List directoryList(String packageName){

List ret = new ArrayList();  /*problematic*/  

//try to find all the files in the dir packageName

//if nothing is found, set ret to null

…

return ret; 

}    

}

Figure 4.6: Real-world example that our analysis found in eclipse.

stored in its field t, and the value is copied to another heap location (in IntList)

immediately after it is calculated. The creation of object Oǫ
33 is not beneficial at all

because this value could have been stored directly to the array.

Finding bloat Several usage scenarios are intended for this cost-benefit anal-

ysis. First, it can find long-lived objects that are written much more frequently than

being read. Second, it can find containers that contain many more objects than they

should. These containers are often the sources of memory leaks. The analysis can

find that they have large RAC/RAB rates because few elements are retrieved and

assigned to other heap locations. Third, it can find allocation sites that create large

volumes of temporary (short-lived) objects. These objects are often created simply

to carry data across method invocations. Data that is computed and written into

them is read somewhere else and assigned to other object fields. This simple use of

the data causes these objects to have large cost-benefit rates. The next section shows

that our tool finds all three categories of problems in real-world Java applications.
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Real-world example Figure 4.6 shows a real-world example that illustrates

how our analysis works. An object with high costs and low benefits is highlighted in

the figure. The code in the example is extracted from eclipse 3.1.2, a popular Java

development tool. Method isPackage returns true/false based on whether the given

package name corresponds to an actual Java package. This method is implemented by

calling (reusing) directoryList which invokes many other methods to compute a list

of files and directories under the package specified by the parameter. isPackage then

returns whether the list computed by directoryList is null. While the reference

to list ret is used in a predicate, its fields are not read and do not participate in

computations. Hence, when the RACs and RABs for its fields are aggregated based

on the object hierarchy, the imbalance between the cost and benefit for the entire List

data structure can be seen. To optimize this case, we created a specialized version of

directoryList, which returns immediately when the package corresponding to the

given name is found.

4.3.2 Comparison with Other Design Choices

Cost/benefit for computation vs cost/benefit for cache Note that

the relative cost and benefit for an object are essentially measured in terms of the

computations that produce values written into the object. The goal of this analysis is

to find objects such that they contain (relatively) useless values and these values are

produced by (relatively) expensive operations. Upon identifying these operations, the

user may find more efficient ways to achieve the same functionality. This is orthogonal

to measuring the usefulness of a data structure as a cache, where the cost of the cache

should include only the instructions executed to create the data structure itself (i.e.,
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without the cost of computing the values being cached) and the benefit should be

(re-)defined as a function of the amount of work cached and the number of times the

cached values are used. It would be interesting to investigate, in future work, how

these new definitions of cost and benefit can be used to find inappropriately-used

caches.

Single-hop cost/benefit vs multi-hop cost/benefit The analysis limits

the scope of tracked data flow to one single hop—that is, reading data from the

heap, transforming it through stack locations, and writing the results back to the

heap. While this design choice can produce easy-to-understand reports, it could miss

problematic data structures because of its “short-sightedness”. For example, our

tool may consider a piece of data that is ultimately-dead to be appropriately used,

because it is indeed involved in complex computations within the one hop seen by

the analysis. To alleviate this problem, we have developed an additional analysis,

based on Gcost, which identifies computations that can reach ultimately-dead values.

Section 6.5 presents measurements of redundant computations based on this analysis.

A different way of handling this issue is to consider multiple hops when computing

costs and benefits based on graph Gcost , so that more detailed information about

data production and consumption can be obtained. For example, costs and benefits

for an instruction can be recomputed by traversing multiple heap-to-heap hops on

Gcost backward and forward, respectively, starting from the instruction. Of course,

extending the inspected region of the data flow would make the report hard to verify

as the programmer has to inspect larger program scopes to understand the detected

problems. In future work, it would be interesting to compare empirically problems
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found using different scope lengths, and to design particular tradeoffs between the

scope length considered and the difficulty of explaining the report.

Considering vs ignoring control decision making Our analysis does not

consider the effort of making control decisions as part of the costs of computing values

under these decisions. The major reason is that by doing so we could potentially

include the costs of computing many values that are irrelevant to the value of interest

into the cost of that value, leading to imprecise and hard-to-understand reports.

However, ignoring this effort of control decision making could lead to information loss.

For example, the tool may miss problematic objects due to the underestimation of

the cost of constructing them. In future work, we will also be interested in accounting

for this effort, and investigating the relationship between the scope of control flow

decisions considered (e.g., the closest n predicates on which an instruction is control-

dependent) and the usefulness of the analysis output.

Other analyses Graph Gcost (annotated with other information) can be used

as basis for discovering a variety of performance-related program properties. For

example, we have implemented a few clients that can answer specific performance-

related queries. These clients include an analysis that computes method-level costs

(i.e., the cost of producing the return value of a method relative to its inputs), an

analysis that detects locations that are re-written before being read, an analysis that

identifies nodes producing always-true or always-false predicate conditions, and an

analysis that searches for problematic collections by ranking collection objects based

on their RAC/RAB rates. While these analyses are currently implemented inside a

JVM, they could be easily migrated to an offline heap analysis tool that provides
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user-friendly interfaces and improved usability (i.e., the JVM only needs to write

Gcost to external storage).

4.4 Evaluation

We have performed a variety of studies with our technique using the DaCapo

benchmark set [15], which contains 11 programs in its original version (from antlr to

eclipse in Table 4.1 and Table 4.2) and an additional set of 7 programs in its new

release (from avrora to tradesoap). We were able to run our tool on all these 18

large programs, including both client and server applications. 16 programs (except

tradesoap and tradebeans) were executed with their large workloads. tradesoap

and tradebeans were run with their default workloads, because these two benchmarks

were not stable enough and running them with large workloads can fail even without

our tool. All experiments were conducted on a 1.99GHz Dual Core machine. The

evaluation has several components: cost graph characteristics, evaluation of the time

and space overhead of the tool, the measurements of bloat based on nodes producing

dead values, and six case studies that describe problems found by the tool in real

applications.

4.4.1 Gcost Characteristics and Bloat Measurement

Parts (a) and (b) in Table 4.1 report, for two different values of s (the number of

slots for each object used to represent context), the numbers of nodes and edges in

Gcost, as well as the space overheads and the time overheads of the tool. Note that all

programs can successfully execute when we increase s to 32, while the offline traversal

of the graph (to generate statistics) can make the tool run out of memory for some

large programs. The space overhead does not include the size of shadow heap, which
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Program (a) s = 8 (b) s = 16
#N (K) #E(K) M (Mb) O(×) CR(%) #N #E M O CR

antlr 183 689 10.2 82 0.066 355 949 16.1 77 0.041
bloat 201 434 9.8 78 0.089 396 914 17.4 76 0.051
chart 288 306 13.2 76 0.068 567 453 22.6 76 0.047
fop 195 120 8.4 45 0.067 381 162 14.0 46 0.045
pmd 184 187 8.0 55 0.075 365 313 13.6 96 0.052
jython 288 275 12.6 28 0.065 666 539 26.1 27 0.042
xalan 168 594 8.5 75 0.066 407 1095 18.1 74 0.044
hsqldb 192 110 8.0 88 0.072 379 132 13.7 86 0.050
luindex 160 177 6.7 92 0.073 315 331 11.5 86 0.040
lusearch 139 110 5.5 48 0.079 275 223 11.0 52 0.053
eclipse 525 2435 28.8 47 0.072 1016 5724 53.1 53 0.047
avrora 189 108 7.9 67 0.086 330 125 11.2 56 0.034
batik 361 355 15.8 85 0.086 662 614 24.9 89 0.049
derby 308 314 13.9 63 0.080 425 530 22.1 57 0.049
sunflow 206 152 8.2 92 0.076 330 212 10.3 91 0.040
tomcat 533 1100 25.4 94 0.098 730 2209 48.6 92 0.063
tradebeans 825 1010 38.2 89/8* 0.053 1568 1925 58.9 82/8* 0.036
tradesoap 860 1370 41 82/17* 0.062 1628 2536 63.6 81/16* 0.040

Table 4.1: Characteristics of Gcost (I). Reported are the numbers (in thousand) of
nodes (N ) and edges (E ), the memory overhead (in megabytes) excluding the size of
the shadow heap (M ), the running time overhead (O), and the context conflict ratio
(CR).

is 500Mb for all programs. Note that the shadow heap is not compulsory for using

our technique. For example, it can be replaced by a global hash table that maps

each object to its tracking data (and an object entry is removed when the object

is garbage collected). The choice of shadow heap in our work is just to allow quick

access to the tracking information. When the number of context slots s grows from

8 to 16, the space overhead increases while the running time is almost not affected.

The instrumentation significantly increases the running times (i.e., 71× slowdown on

average for s = 8 and 72× for s = 16 when the whole-program tracking is enabled).

This is because (1) Gcost is updated at each instruction instance and (2) the creation of

Gcost nodes and edges needs to be synchronized to guarantee that the tool is race-free.

It was an intentional decision not to focus on the performance of the profiling, but

instead to focus on the collected information and on demonstrating that the results
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Program (c) Bloat measurement for s = 16
#I (B) IPD(%) IPP(%) NLD(%)

antlr 4.9 3.7 96.2 17.5
bloat 91.2 26.9 69.9 19.3
chart 9.4 8.0 91.7 30.0
fop 0.2 28.8 60.9 30.5
pmd 5.6 7.5 92.1 27.0
jython 14.6 13.1 81.9 26.8
xalan 25.5 17.8 82.0 19.4
hsqldb 1.3 6.4 92.4 31.0
luindex 3.5 4.6 93.0 24.6
lusearch 9.1 9.3 65.2 29.1
eclipse 28.6 21.0 78.3 22.0
avrora 3.3 3.2 94.8 34.5
batik 2.4 27.1 71.1 26.7
derby 65.2 5.0 94.0 23.7
sunflow 82.5 32.7 43.7 31.7
tomcat 29.1 24.2 72.2 23.1
tradebeans 15.1 14.9 80.0 22.3
tradesoap 41.0 24.5 59.4 20.1

Table 4.2: Characteristics of Gcost (II). This table reports the total number (in billion)
of instruction instances (I ), the percentages of instruction instances (directly and
transitively) producing values that are ultimately dead (IPD), the percentages of
instruction instances (directly or transitively) producing values that end up only in
predicates (IPP), and the percentages of Gcost nodes such that all the instruction
instances represented by these nodes produce ultimately-dead values (NLD).

are useful for finding bloat in real-world programs. One effective way of reducing

overhead is to choose only relevant components to track. For example, for the two

transaction-based applications tradebeans and tradesoap, there is 5-10× overhead

reduction when we enable tracking only for the load runs (i.e., the application is

not tracked for the server startup and shutdown phases). Hence, it is possible for

a programmer to identify suspicious program components using lightweight profiling

tools such as a method execution time profiler or an object allocation profiler, and

run our tool on the selected components for detailed diagnosis. It is also possible to
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employ various sampling-based or static pre-processing techniques (e.g., from [166])

to reduce the dynamic effort in data collection.

A small amount of memory is required to store the graph, and this is achieved

primarily by employing abstract domains. The space reduction resulting from ab-

stract slicing can also be seen from the comparison between the number of nodes in

the graph (N ) and the total number of instruction instances (I ), as N represents

the size of the abstract domain employed in the analysis while I represents the size

of the actual concrete domain that fully depends on the run-time behavior of the

application. CR measures the degree to which distinct contexts are mapped to the

same slots by our encoding function h. Following [156], CR-s for an instruction i is

defined as:

CR-s(i) =

{

0 max0≤j≤s (dc[j]) = 1

max (dc[j])/
∑

dc[j] otherwise

where dc[j] represents the number of distinct contexts that fall into context slot

j. CR is 0 if each context slot represents at most one distinct context; CR is 1 if all

contexts fall into the same slot. The table reports the average CR for all instructions

in Gcost. Note that both CR-8 and CR-16 show very small numbers. This is because

many methods in a program only have a small number of distinct object chains

throughout the execution.

Columns IPD and IPP in part (c) of Table 4.2 report the measurements of in-

efficiency for s = 16. IPD represents the percentage of instruction instances that

produce only dead values. Suppose D is a set of non-consumer nodes in Gcost that do

not have any outgoing edges (i.e., no other instructions are data-dependent on them),

and D∗ is a set of nodes that can lead only to nodes in D . Hence, D∗ contains nodes

that ultimately produce only dead values. IPD is calculated as the ratio between the
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sum of execution frequencies of the nodes in D∗ and the total number of instruction

instances during the execution (shown in column I ). Similarly, suppose P∗ is the set

of nodes that can lead only to predicate consumer nodes, and IPP is calculated as

the ratio between the sum of execution frequencies of the nodes in P∗ and I. Pro-

grams such as bloat, eclipse and sunflow have large IPDs, which indicates that

there may exist large optimization opportunities. In fact, these three programs are

the ones for which we have achieved the largest performance improvement after re-

moving bloat (as discussed shortly in case studies). Clearly, a significant portion of

the set of instruction instances is executed to produce only control flow conditions.

While this does not help performance diagnosis directly, a high IPP indicates the

program performs a large amount of comparisons-related work, which may be a sign

of over-protective or over-general implementations.

Column NLD in part (c) reports the percentage of nodes in D∗, relative to the

total number of graph nodes. The higher NLD a program has, the easier it is for

a programmer to find problems from Gcost. Despite the merging of a large number

of instruction instances in a single graph node, there are on average 25.5% nodes in

the graph that have this property. Large performance opportunities may be found by

inspecting the report to identify these wasteful operations.

4.4.2 Case Studies

We have carefully inspected the tool reports for the following six large applica-

tions: bloat, eclipse, sunflow, derby, tomcat, and trade. These applications

have large code bases, and are representatives of various kinds of real-world applica-

tions, including program analysis tools (bloat), Java development tools (eclipse),
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image renders (sunflow), database servers (derby), servlet containers (tomcat), and

transaction-based enterprise applications (trade). We have found significant opti-

mization opportunities for unoptimized programs, such as bloat (37% speedup). For

the other five applications that have been well maintained and tuned, the removal of

the bloat detected by our tool can still result in considerable performance improve-

ment (2%-15% speedup). More insightful changes could have been made if we were

familiar with the overall design of functionality and data models. We use the Da-

Capo versions of these programs, because the server applications are converted to

run fixed loads, and the performance can be measured simply by using running time

rather than other metrics such as throughput and the number of concurrent users. It

took us about 2.5 weeks to find the problems and implement the fixes for these six

applications that we had never studied before.

sunflow Because it is an image rendering tool, much of its functionality is based

on matrix and vector computations, such as transpose and scale. However, each such

method in class Matrix and Vector starts with cloning a new Matrix or Vector object

and assigns the result of the computation to the new object. Our tool reported

that these newly created (short-lived) objects have extremely large unbalanced costs

and benefits, as they serve primarily the purpose of carrying data across method

invocations. Another few lines of the report directed us to an int array where some

slots of the array are used to contain float values. These float values are converted to

integers using method Float.floatToIntBits and assigned to the array elements.

Later, the encoded integers are read from the array and converted back to float values.

These operations occur in the most-frequently executed methods in the program

and are therefore are expensive to perform. By eliminating unnecessary clones and
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bookkeeping the float values that need to be passed across method boundaries (to

avoid the back-and-forth conversions), we observed 9%-15% running time reduction.

eclipse Some of the allocation sites that have the largest cost-benefit rates

create objects of inner classes and Iterators, which implement visitor patterns to

traverse the workspace. These visitor objects do not contain any data and are passed

into iterators, where their visit method is invoked to process individual children

elements of the workspace. However, the Iterator used here is a stack-based class

that provides general functionality for traversing different types of data structures

(e.g., graph, tree, etc.), while the workspace has a very simple tree structure. We

replaced the visitor implementation with a worklist implementation, and this simple

specialization eliminated millions of run-time objects. The second major problem

found by the tool is with the hash computation implemented in a set of Hashtable

classes in the JDT plugin. One of the most frequently used classes in this set is called

HashtableOfArrayToObject, which uses arrays of objects as keys. Every time the

Hashtable is expanded, its rehash method needs to be invoked and the hash codes of

all existing entries have to be recomputed. Because the key can be a big object array,

computing its hash code can trigger invocations of the hashcode method in many

other objects, and can thus take considerably large amount of time. We created an

int array field in the Hashtable class to cache the hash codes of the entries, and the

recorded hash codes are used when rehash is executed. To conclude, by removing

these high-cost-low-benefit operations, we have managed to reduce the running time

by 14.5% (from 151s to 129s), and the number of objects by 2% (5.5 million).

bloat Previous work [156] has found that bloat suffers from excessive string

creations. This finding is confirmed by our tool report. 46 allocation sites out of the
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top 50 that have the largest cost-benefit rates are String and StringBuffer objects

created in the set of toString methods. Most of these objects eventually flow into

methods Assert.isTrue and db, which print the strings when certain debugging-

related conditions hold. However, in production runs where most bugs have been

fixed, such conditions can rarely evaluate to true, and there is no benefit in con-

structing these objects. Another problem exposed by our tool (but not reported

in [156]) is the excessive use of objects of an inner class NodeComparator, which con-

tains no data but methods to compare a pair of AST nodes. The comparison starts

with the given root nodes, and recursively creates NodeComparator objects to com-

pare children nodes. Comparing two large trees usually requires the allocation (and

garbage collection) of hundreds of objects, and such comparisons occur in almost all

methods related to ASTs, even including hashcode and equals. Eliminating the un-

necessary String and StringBuffer objects and replacing the visitor pattern with

a breadth-first search algorithm result in 37% reduction in running time, and 68%

reduction in the number of objects created.

derby The tool report shows that an int array in class FileContainer has large

cost-benefit rates. After inspecting the code, we found it is an array containing the

information of a file-based container. Every time the (same) container is written into

a page, the array needs to be updated. Hence, it is written much more frequently

(with the same data) than being read. To solve the problem, we modify the code to

update this array only before it is read. Another set of objects that were found to

have unbalanced cost-benefit rates are the strings representing IDs for different Con-

textManagers. These strings are used to retrieve the ContextManagers in a variety
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of ways, but mostly serve as HashMap keys. Because the database contexts are fre-

quently switched, clear performance improvement can be seen when we replaced these

strings with integer IDs. Eventually, the running time of the program was reduced

by 6%, and the number of objects created was reduced by 8.6%.

tomcat tomcat is a well-tuned JSP and servlet container. There are only a

few objects that have large cost-benefits according to the tool report. One set of such

objects is arrays used in util.Mapper, representing the (sorted) list of existing con-

texts. Once a context is added or removed from the manager, an update algorithm

is executed. The algorithm creates a new array, inserts the new context at the right

position in this new array, copies the old context array to the new one, and discards

the old array. To remove this bloat, we maintain only two arrays, using them back

and forth as the main context list and the backing array used for the update algo-

rithm. Another problem reported by our tool pointed to string comparisons in various

getContents and getProperty methods. These methods take a property name and

a Class object (representing the type of the property) as input, and return the value

corresponding to the property using reflection. To decide the type of the property, the

implementations of these methods first obtain the names of the argument classes and

compare them with the embedded names such as ”Integer” and ”Boolean”. Because

a property can have only a few types, we remove such string comparisons and insert

code to directly compare the Class objects. After the modifications, the program

could run 3 seconds faster (about 2% reduction).

tradebeans tradebeans is an EJB application that performs database queries

to simulate a stock trading process. One problem that our tool reported was with the

use of KeyBlock and its iterators. This class represents a range of integers that will be
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given as IDs for the accounts and holdings when they are requested. We found that

for each ID request, the class needs to perform a few redundant database queries and

updates. In addition, a simple int array can suffice to represent IDs since the KeyBlock

and the iterators are just wrappers over integers. By removing the additional database

queries and using directly the int array, we have manged to make the application run

9 seconds faster (from 350s to 341s, 2.5% reduction). The number of objects created

was reduced by 2.3%. DaCapo has another implementation (tradesoap) of trade,

which uses the SOAP protocol to perform client-server communication and runs much

slower than tradebeans. An interesting comparison between these two benchmarks

is that the major high-cost-low-benefit objects reported for tradesoap are the bean

objects created in the set of convertXBean methods. As part of the SOAP protocol,

these methods perform large volumes of copies between different representations of

the same bean data, resulting in significant performance slowdown.

Summary With the help of the cost-benefit analyses, we have found various

performance problems in these large applications with which we do not have any

experience. These problems include inefficiencies caused by common programming

idioms such as visitor patterns, repeated work whose result needs to be cached (e.g.,

the hash code example in eclipse), computation of data not necessarily used (e.g.,

strings in bloat), and choices of expensive operations (e.g., string comparison in

tomcat and the use of SOAP in tradesoap). For specific bloat patterns such as the

use of inner classes, it is also possible for the compiler/optimizer designers to take

them into account and develop optimization techniques that can remove the bloat,

while not having to restrict programmers from using these patterns.
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4.5 Summary and Interpretation

What is the cost of constructing this object? Is that really worth performing such

a heavyweight operation? Such questions often arise during software development.

They represent the most natural and explicit form in which a programmer can ex-

press her concern on performance. Tuning could be much easier if there exists tool

support that allows these questions to be (even partially) automatically answered. As

a step towards achieving this goal, this chapter introduces a dynamic analysis of data

flow, motivated by the observation that much functionality in a large application

is about propagating and transforming data. Optimizations based on control flow

information (e.g., execution frequency) are insufficient to capture redundancies that

accumulate during data manipulation. Our approach defines measurements of the

cost of generating a piece of data, and computes an assessment of the way this data

is used. This assessment is made at the level of data structures, as object-oriented

data structures are extensively used and programmers often are not aware of their

internal implementations.

It is interesting in future work to consider the space of other design choices dis-

cussed in Section 4.3. We are also interested in investigating future extensions and

applications of abstract slicing as a general technique, so that it could potentially

benefit a wider range of dynamic analyses. For example, we mentioned the use of ab-

stract slicing to implement extended copy profiling. Future work may consider ways

to realize this idea to give developers more information of the reported copy chains.

It is also interesting to extend the notions of cost and benefit (defined in terms of

computations in this chapter) in many other ways to help performance evaluation and

problem diagnosis. One example is to measure the effectiveness of data structures
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used as caches. The way of redefining costs and benefits for caches was discussed in

Section 4.3. As another example, one can adapt the proposed cost and benefit for

data to measure performance of control-flow entities, such as methods, components,

and plugins. Faced with a large and complex application, a developer would need

to first identify such coarser-grained program constructs that can potentially cause

performance issues, in order to track down a performance problem through subsequent

more detailed profiling.
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CHAPTER 5: Making Sense of Container Usage: Memory
Leak Detection Using Container Profiling

A major category of run-time memory bloat is the leak of memory during the ex-

ecution. While garbage-collected languages can reduce memory-related bugs such as

dangling pointers, programs written in these languages can still suffer from memory

leaks caused by keeping references to useless objects. Leaks degrade run-time perfor-

mance and significant leaks even cause the program to run out of memory and crash.

In addition, memory leak bugs are notoriously difficult to find. Static analyses can be

used to attempt the detection of such leaks. However, this detection is limited by the

lack of scalable and precise reference/heap modeling (a well-known deficiency of static

analyses), reflection, multiple threads, scalability for large programs, etc. Thus, in

practice, identification of memory leaks is more often attempted with dynamic anal-

yses. Existing dynamic approaches for heap diagnosis have serious limitations. Com-

mercial tools such as JProfiler [51], JProbe [109] and LeakHunter [80] were developed

to help understand types, instances and memory usage. However, this information

is insufficient for programmers to locate a bug. As an example already mentioned

in Chapter 1, in most cases, the fact that type java.util.HashMap$Entry has the

highest number of instances tells the programmer nothing about the hash maps that

hold these entries. Research tools for memory leak detection typically focus on heap

differencing [43, 44, 71] and fine-grained object tracking [20, 61, 62, 107].
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Of existing dynamic techniques, LeakBot [95], Cork [71], and Sleigh [20] represent

the state of the art. There are two major research challenges in Java memory leak

detection. Imprecision can result if these problems are not appropriately handled.

Challenge 1: definition of memory leak symptom All the dynamic

approaches start with observing memory leak symptoms during the execution. What

is a good indicator of a memory leak? Both LeakBot and Cork use heap growth as a

heuristic, treating the increase of instances of certain types across garbage collection

runs as a memory leak symptom. This could result in false positives, because growing

instances are not necessarily true leaks and they may be collected later during the

execution. Sleigh, on the other hand, uses staleness (time since last use) to find leaks.

This approach could lead to imprecision as well. As an example, a frame in a Java

Swing program cannot be treated as a leak, although it may never be used after it is

created. In addition, larger objects that are less stale may have greater contribution

towards the leak. For example, more attention should be paid to a big container that

is not used for a while than to a never-used string.

Challenge 2: from-symptom-to-cause diagnosis All existing tools follow

a traditional from-symptom-to-cause approach that starts from tracking all objects

and finds those that could potentially be useless (symptom). It then tries to find the

leaking data structure (cause) by analyzing direct and transitive references to these

useless objects. However, the complex run-time reference relationships among objects

in modern Java software significantly increases the difficulty of locating the source of

the leak, which could lead to imprecise leak reports. It becomes even harder to find

the cause of a leak if there are multiple data structures that are contributing to the
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problem. For example, as reported in [71], it took the authors a significant amount

of time to find the sources of leaks after they read the reports generated by Cork.

Our proposal The inefficient use of containers is an important source of sys-

temic bloat. Programming languages such as Java include a collection framework

which provides abstract data types for representing groups of related data objects

(e.g., lists, sets, and maps). Based on this collection framework, one can easily con-

struct application-specific container types such as trees and graphs. Real-world pro-

grams make extensive use of containers, both through collection classes and through

user-defined container types. Programmers allocate containers in thousands of code

locations, using them in a variety of ways including storing data, implementing un-

supported language features such as returning multiple values, and wrapping data in

APIs to provide general service for multiple clients.

Arguably, misuse of (user-defined or Java built-in) containers is a major source of

memory leak bugs in real-world Java applications. For example, most of the memory

leak bugs reported in the Sun bug repository [141] were caused (directly or indirectly)

by inappropriate use of containers. We propose a novel technique for Java that detects

memory leaks using container profiling. The key idea behind the proposed technique

is to track operations on containers rather than on generic objects, and to report

containers that are most likely to leak. The major difference between our technique

and the from-symptom-to-cause diagnosis approach is that we start by suspecting

that all containers are leaking, and then use the “symptoms” to rule out most of

them. Hence, we avoid the process of symptom-to-cause searching that can lead to

imprecision and reduced programmer productivity.
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Figure 5.1: Container hierarchy in Java.

Figure 5.1 shows the container hierarchy typically used in a Java program: user-

defined containers in the top layer use containers provided by the Java collection

framework (illustrated in the second layer), which eventually store data in arrays (the

bottom layer). The focus of our technique are containers in the first and second layers,

because in most cases these containers are directly manipulated by programmers and

hence are usually sources of leaks. Our technique does not track arrays, since in

real-world Java programs they rarely cause leaks directly. Approaches such as [123]

can be used to complement our technique in order to detect leaks directly caused by

arrays.

Our technique requires ahead-of-time lightweight modeling of container behavior:

users of the tool need to build a simple “glue layer” that maps methods of each con-

tainer type to primitive operations (e.g., ADD, GET, and REMOVE). An automated

tool instruments the application code and uses the user-supplied annotations to con-

nect invocations of container methods with our run-time profiling libraries. In order
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to write this glue code, users have to be familiar with the container types used in

the program. This does not increase the burden on the programmers: when using

existing leak detection tools [20,71,95], they have to inspect the code to gain similar

knowledge about containers so that they can interpret the tool-generated reports. Us-

ing our approach simply requires learning such knowledge in advance. Of course, the

tool embeds pre-defined models for containers from the Java collection framework,

and therefore programmers need to model only user-defined containers. As shown

in our studies, running the tool even without modeling user-defined containers can

still provide useful insights for finding leaks: in our reports, top-level Java library

containers (the second layer in Figure 5.1) can direct one’s attention to their direct

or transitive owners, which are likely to be user-defined containers (the first layer in

Figure 5.1) that are the actual causes of bugs.

Unlike previous approaches, our technique computes a heuristic leaking confidence

value for each container based on a combination of its memory consumption and the

staleness of its data elements, which could yield more accurate results compared to

existing approaches [20,71,95]. For each container, the technique also ranks call sites

in the source code, based on the average staleness of the elements retrieved at these

sites. This container ranking and the related call site ranking provides information

that can assist a programmer to quickly identify the source of the memory leak.

The conceptual model used to compute these values and our implementation of the

technique for Java are presented in Section 5.1 and Section 5.2, respectively. Our tool

achieved high precision in reporting causes for two memory leak bugs from the Sun

bug database [141] and a known memory leak bug in SPECjbb [138]—in fact, the

top containers in the reports included the ones that leaked memory. In addition, an
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evaluation of the run-time performance of our technique showed that it has acceptable

overhead for practical use.

Contributions The main contributions of this work are:

• A dynamic analysis that computes a confidence value for each container, which

provides the basis for ranking and reporting of likely-leaking containers.

• A memory leak detection technique for Java based on the confidence analysis.

• A tool that implements the proposed technique.

• An experimental study of leak identification and run-time performance. The

results indicate that our technique can precisely detect memory leak bugs with

practical run-time overhead.

5.1 Leak Confidence Analysis

This section presents a confidence analysis that computes leaking confidence values

for tracked containers. The goal of the analysis is to quantify the contribution of a

container to memory leaks. Before describing the details of the analysis, we first

provide some basic definitions.

Definition 5.1.1 (Container). A container type Γ is an abstract data type with a

set Σ of element objects, and two basic operations ADD and GET that manipulate

Σ. A container object γn is an instantiation of Γ with n elements in its element set

Σγ. An element can be of any subtype of O, which denotes the root of the type tree.

ADD is a mappings of the form (Γ, O) → Γ that map a pair of container object and

element object to a container object. GET is a mapping Γ → O from a container

object to one of its elements. The effects of the operations are as follows:
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• ADD(γn
pre, o) : γm

post ≡ o /∈ Σγpre ∧ o ∈ Σγpost ∧ m=n+1 ∧ ∀p : p ∈ Σγpre

∧ p 6= o : p ∈ Σγpost

• GET(γn) : o ≡ o ∈ Σγ

• REMOVE(γn
pre, o) : γm

post ≡ o ∈ Σγpre ∧ o /∈ Σγpost ∧ m=n-1 ∧ ∀p :

p ∈ Σγpre ∧ p 6= o : p ∈ Σγpost

We treat all (Java library and user-defined) containers as implementations of the

container ADT. Here and later in this dissertation, we use the term “container” to

denote a container object. Tracking operations on a container requires user-supplied

annotations to bridge the gap between methods defined in the Java implementations

and the three basic ADT operations. We have already defined such annotations for

the container types from the standard Java libraries.

During the execution of a program, let the program’s memory consumption at

a timestamp τi be mi. In cases when τi is a moment immediately after garbage

collection (we will refer to such moments as gc-events), it will be denoted by τ gc
i and

its memory consumption will be denoted by mgc
i . A program written in a garbage-

collected language has a memory leak symptom within a time region [τs, τe] if (1) for

every gc-event τ gc
i in the region, ms ≤ mgc

i ≤ me, and (2) in this region, there exists a

subsequence ss = (τ gc
1 , τ gc

2 , . . . , τ gc
n ) of gc-events such that τ gc

i < τ gc
i+1 and mgc

i < mgc
i+1

for i = 1, . . . , n− 1. The period [τs, τe] will be referred to as a leaking region.

This definition helps to identify the appropriate time region to analyze, because

most programs do not leak from the beginning. Moment τe can be specified by tool

users as an analysis parameter, and can be different for different kinds of analyses. For

post-mortem off-line diagnosis, τe is either the ending time of the program, or the time
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when an OutOfMemory error occurs. For on-line diagnosis done while the program

is running, τe could be any time at which the user desires to stop data collection and

to start analysis of this collected data. We use gc-events as “checkpoints” because at

these times the program’s memory heap consumption does not include objects that

are unreachable.

The definition of a memory leak symptom does not require the amount of con-

sumed memory at each gc-event to be larger than it was at the previous one, because

in many cases some gc-events reclaim large amounts of memory, while in general the

memory footprint still keeps increasing. The ratio between the number of elements

n in the subsequence ss and the size of the entire sequence of gc-events within the

leaking region can be defined by tool users as another analysis parameter, in order

to control the length of the leaking region. There could be multiple definitions of

starting moment τs corresponding to this user-defined ratio. Our approach chooses

the smallest such value as τs, which defines the longest leaking region and allows more

precise analysis. (Additional details are described in Section 5.2.)

A container σ is memory-leak-free if either (1) at time τe, it is in the state σ0

(i.e., empty), or (2) it is garbage collected within the leaking region. That is, σn

does not leak memory if at time τe, its accumulated number of ADD operations is

equal to its accumulated number of REMOVE operations, assuming we treat the

deallocation of σn as being equivalent to n REMOVE operations. Containers that

are not memory-leak-free contribute to the memory leak symptom and are subject

to further evaluations. However, this does not necessarily mean that all of them

leak memory. For example, if OutOfMemory error occurs before some REMOVE

107



operations of a container, this container is not memory-leak-free according to the

above definition, although in reality it may very well be leak-free.

For each container that is not memory-leak-free by this definition, we compute a

confidence value that indicates how much contribution it makes to the memory leak

symptom. As mentioned earlier, our technique considers both the memory consump-

tion and the staleness when computing the confidence for a container.

5.1.1 Memory Contribution

One factor that characterizes a container’s contribution to the leak is the amount

of memory the container consumes during its lifetime. We quantify this factor by

defining a memory time graph which captures a container’s memory footprint.

The relative memory consumption of a container σ at time τ is the ratio between

the sum of the memory consumption of all objects that are reachable from σ in its

object graph, and the total amount of memory consumed by the program at τ . The

memory time graph for σ is a curve where the X-axis represents the relative time of

program execution (i.e., τi/τe for timestamp τi) and the Y-axis represents the relative

memory consumption of σ (i.e., mem(σ)i/total i corresponding to X-point τi/τe). The

starting point of the X-axis is τ0/τe where τ0 is max(τs,allocation time of σ), and the

ending point of the X-axis is τ1/τe where τ1 is min(τe,deallocation time of σ).

A sample graph is illustrated in Figure 5.2. The X-axis starts at 0.4 relative time

(i.e., 0.4 × τe absolute time), which represents either the starting time of the leak

region τs, or σ’s allocation time, whichever occurs second. The graph indicates that

σ does not get freed within the leak region, because the X-axis ends at 1, which

represents the ending time τe of the leak region.
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Figure 5.2: A sample memory time graph.

Using the memory time graph, a container’s memory contribution (MC) is defined

to be the area covered by the memory consumption curve in the graph. In the example

in Figure 5.2, this area is shown in dark. Because the memory time graph starts

from τs (or later), the MC considers only a container’s memory consumption within

the leaking region. For a particular container, both its memory consumption and

its lifetime contribute to its MC. Since MC should reflect the influence of both the

container itself and all objects (directly or transitively) referenced by it, the memory

consumption of the container is defined as the amount of memory consumed by its

entire object graph.

Because relative values (i.e., between 0 and 1) are used to measure the memory

consumption and the execution time, the MC of a container is also a value between 0

and 1. Containers that have larger MC contribute more to the memory leak symptom.

Note that in practice it is likely to be too expensive to compute the exact MC value

for a container, because the container’s memory consumption changes frequently as

the program executes. Section 5.2 presents a sampling approach that can be used to

approximate this value.
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5.1.2 Staleness Contribution

The second factor that characterizes a container’s contribution to the leak is the

staleness of the container’s elements. The staleness of an object is defined in [20] as

the time since the object’s last use. Our work provides a new definition of staleness

in terms of a container and its elements.

The staleness of an element object o in a container σ is τ2−τ1 where REMOVE(σ,

o) occurs at τ2, GET(σ):o occurs at τ1, and there does not exist another GET opera-

tion that returns o in the region [τ1, τ2]. If τ1 < τs, τ1 is redefined to be τs. If τ2 < τs,

the staleness is undefined. In other words, the staleness of o is the distance between

the time when o is removed from σ and the most recent time when o is retrieved

from σ. If o is never retrieved from σ, τ1 should correspond to the ADD operation

that adds o to σ. If o is never removed from σ, τ2 is either the deallocation time

of σ, or the ending time of the leaking region τe. The intuition behind the defini-

tion is that if the program no longer needs to retrieve an element from a container,

the element becomes useless to that container. Hence, the staleness of the element

measures the period of time when the element becomes useless but is still being kept

by the container. In addition, tracking occurs only within the leaking region: if an

element’s removal time τ2 is earlier than the starting time of the leaking region, we

do not compute the staleness for the element. Note that the last GET operation of a

container element may not correspond to the last use site of this object—a reference

obtained from the GET operation may be stored somewhere else and used later from

there. However, it is important to keep in mind that the staleness of the element, as

defined above, is a measurement of a container’s misbehavior—the object no longer

needs to be obtained from the container, but the container still references it. Hence,
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ID Type LC MC SC

11324773 util.HashMap 0.449 0.824 0.495
18429817 util.LinkedList 0.165 0.820 0.194
8984226 util.LinkedList 0.050 0.809 0.062
2263554 util.WeakHashMap 0.028 0.820 0.034
15378471 util.LinkedList 0.018 0.029 0.256
5192610 swing.JLayeredPane 0.011 0.824 0.013
30675736 swing.JPanel 0.011 0.824 0.013
19526581 swing.JRootPane 0.011 0.824 0.013
17933228 util.Hashtable 0.000023 0.0007 0.026
33263898 util.ArrayList 0.00000026 0.0000032 0.046

Table 5.1: Partial report of LC, MC, and SC values.

regardless of whether an object is stored elsewhere via other references, a container

behaves properly as long as it removes the object once the container does not need

to keep it.

The staleness contribution (SC) of a container σ is the ratio of (
∑n

i=1 staleness(oi)

/n) and (τe − τs), where the sum is over all elements o1, . . . , on that have been added

to σ and whose staleness is well-defined. Thus, SC is the average staleness of ele-

ments that have ever been added to σ, relative to the length of the leaking region.

In addition, the removal time of these elements must be within the leaking region.

Because the staleness of each individual element is ≤ the length of leaking region, SC

is a value between 0 and 1. Containers that have larger SC values contribute more

to the memory leak symptom.

5.1.3 Putting it All Together: Leaking Confidence

Based on the memory contribution and the staleness contribution, we define a

container’s leaking confidence (LC) to be computed as SC ×MC1−SC . Clearly, LC
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is a value between 0 and 1; also, increasing either SC or MC while keeping the other

factor unchanged increases LC. We define LC as an exponential function of SC to

show that staleness is more important than memory consumption in determining a

memory leak. This definition of LC has several desirable properties:

• MC=0 and SC∈[0, 1] ⇒ LC=0. If the memory contribution of a container is

small enough (i.e., close to 0), the confidence of this container is close to 0, no

matter how stale its elements are. This property helps filter out containers that

hold small objects, such as strings.

• SC=0 and MC∈[0, 1] ⇒ LC=0. If every element in a container gets removed

immediately after it is no longer used (i.e., the time between the GET and

REMOVE operations is close to 0), the confidence of this container is 0, no

matter how large the container is.

• SC=1 and MC∈[0, 1]⇒ LC=1. If all elements of a container never get removed

after they are added (i.e., every element crosses the entire leaking region), the

confidence of the container is 1, no matter how large the container is.

• MC=1 and SC∈[0, 1] ⇒ LC=SC. If the memory contribution of a container is

extremely high (close to 1), the confidence of this container is decided by its

staleness contribution.

Our study shows that this definition of confidence effectively separates containers

that are the sources of leaks from those that do not leak. A sample report that

includes LC, MC, and SC for several containers is illustrated in Table 5.1. This table

is a part of the report generated by our tool when analyzing Sun’s bug #6209673.

112



The first container in the table is the one that actually leaks memory. Note that

the LC value of this container is much larger than the LC values for the remaining

containers. Based on this report, it is straightforward for a programmer to find and

fix this bug.

5.2 Memory Leak Detection for Java

Based on the leak confidence analysis, this section presents our memory leak

detection technique for Java.

5.2.1 Container Modeling

For each container type, there is a corresponding “glue” class. For each method

in the container type that is related to ADD, GET, and REMOVE operations, there

is a static method in the glue class whose name is the name of the container method

plus the suffix “ before” or “ after”. The suffix indicates whether calls to the glue

method should be inserted before or after call sites invoking the original method. The

parameter list of the glue method includes a call site ID, the receiver object, and the

formal parameters of the container method. For the suffix “ after”, the return value

of the container method is also added. Figure 5.3 shows the modeling of container

class java.util.HashMap. It is important to note that most of this glue code can be

generated automatically using predefined code templates.

The glue methods call our profiling library to pass the following data: the call site

ID (csID), the container object, the element object, the number of elements in the

container before the operation is performed, and the operation type. The call site ID

is generated by our tool during instrumentation.
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class HashMap{

Object put(Object key, Object value){...}

Object get(Object key){...}

Object remove(Object key){...}

...

}

(a) Container class HashMap

class Java_util_HashMap{

static void put_after(int csID, Map receiver, Object key,

Object value, Object result) {

/* if key does not exist in the map */

if(result == null){

/* use user-defined hash code as ID */

Recorder.v().useUserDefHashCode();

/* record operation ADD(receiver, key) */

Recorder.v().record(csID, receiver, key,

receiver.size()-1, Recorder.EFFECT_ADD);

}

}

static void get_after(int csID, Map receiver, Object key,

Object result){

/* if an entry is found */

if(result != null){

Recorder.v().useUserDefHashCode();

/* record operation GET(receiver):key */

Recorder.v().record(csID, receiver, key, receiver.size(),

Recorder.EFFECT_GET);

}

}

static void remove_after(int csID, Map receiver, Object key,

Object result){

if(result != null){

Recorder.v().useUserDefHashCode();

/* record operation REMOVE(receiver, key) */

Recorder.v().record(csID, receiver, key,

receiver.size()+1, Recorder.EFFECT_REMOVE);

}

}

}

(b) Glue class for HashMap

Figure 5.3: Modeling of container java.util.HashMap.

The container object, the element object, and the operation type are used to

compute the SC for the container. Recording the number of elements in a container

is needed because once the leaking region is decided, we want to analyze only the

data collected within the region. Knowing the number of elements of a container at

the starting time of the region can help to avoid scanning the data before the region.

114



Container Method Call Interpretation

A.add(o) ADD(A, o)
o=A.get(..) o=GET(A)
o=A.remove(..) REMOVE(A, o)
A.addAll(B) ∀ o ∈ B, o=GET(B)

∀ o ∈ B, ADD(A, o)
A.removeAll(B) ∀ o ∈ B, o=GET(B)

∀ o ∈ A ∩B, REMOVE(A, o)
(a) A.retainAll(B) ∀ o ∈ B, o=GET(B)

∀ o ∈ A \B, REMOVE(A, o)
A.containsAll(B) ∀ o ∈ B, o=GET(B)
A.toArray() ∀ o ∈ A, o=GET(A)
A.iterator() ∀ o ∈ A, o=GET(A)

v = A.get(k) k=GET(A) if v 6= null
r = A.put(k, v) ADD(A, k) if r 6= null

k=GET(A) otherwise
r = A.remove(k) REMOVE(A, k) if r 6= null

(b) A.putAll(B) ∀ k ∈ B.keySet(), k=GET(B)
∀ k ∈ B.keySet() : if k ∈ A.keySet(), k=GET(A)
otherwise, ADD(A, k)

A.keySet() ∀ k ∈ A.keySet(), k=GET(A)
A.values() ∀ k ∈ A.keySet(), k=GET(A)
A.entrySet() ∀ k ∈ A.keySet(), k=GET(A)
A.clear() ∀ k ∈ A.keySet(), REMOVE(A, k)

Table 5.2: Mapping between actual container methods and abstract container op-
erations: (a) methods defined in java.util.Collection; (b) methods defined in
java.util.Map.

In order to reduce the run-time overhead, we use an integer ID to track each object

(i.e., container and element). The first time a container performs its operation, we

tag the container object with the ID (using JVMTI). The ID for a container object

(e.g., receiver in Figure 5.3) is its identity hash code determined by its internal

address in the JVM. For an element object, the identity hash code is used as element

ID if the container does not have hash-based functions; otherwise, the element ID is

the user-defined hash code. For example, in Figure 5.3, calls to useUserDefHashCode
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inform our library that the ID for key should be its user-defined hashcode. For

HashMap, we only track key as a container element, because key is representative of

a map entry. Methods that retrieve the entire set of elements, such as toArray and

iterator are treated as a set of GET operations performed on all container elements.

Note that it may not be precise to model iterator in this way, since a particular

object is retrieved only when method iterator.next() is invoked. However, it is

common in Java programs that all elements of a container are retrieved after an

iterator over the container is obtained by invoking method iterator(). In addition,

this treatment avoids the use of heavyweight static analysis that has to be employed

to relate Iterator objects with their corresponding container objects. The mapping

of a typical set of container methods defined in interfaces java.util.Collection and

java.util.Map is illustrated in Table 5.2. Upper-case letters and lower-case letters

are used to represent containers and elements, respectively.

5.2.2 Instrumentation

Our tool uses the Soot program analysis framework [132, 147] to perform code

instrumentation. For each call site in an application class at which the receiver is a

container, calls to the corresponding glue method are inserted before and/or after the

site. For a container object, code is also inserted after its allocation site in order to

track its allocation time.

Naively instrumenting a Java program can cause tracking of a large number of

containers, which may introduce significant run-time overhead. Because thread-local

and method-local containers3 are not likely to be the source of a leak, we employ an

3Containers that are not reachable from multiple threads, and whose lifetime is limited
within their allocating methods.
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Name Description

GCT GC timestamps

GCM Total live memory after GCs

CONM Memory taken up by containers

CONT Timestamps when measuring CONM

CONA Allocation times of containers

COND Deallocation times of containers

OPR Operations (csID, container, element, #elements, type)

Purpose

GCT To identify the leaking region

GCM To identify the leaking region

CONM To compute MC for containers

CONT To compute MC for containers

CONA To compute MC and SC for containers

COND To compute MC and SC for containers

OPR To compute SC for containers

Table 5.3: Data collected by our profiler.

escape analysis to identify a set S of thread-local and method-local objects. We do

not instrument call sites if the points-to sets of their receiver variables are subsets of

S.

5.2.3 Profiling

Table 5.3 lists the types of data that need to be obtained by our profiler. In order

to identify the leaking region, we need to collect GC finishing times (GCT ), and live

memory at these times (GCM). This can be done by using JVMTI agents.

In order to compute MC for containers, we need to collect amounts of memory

taken up by the entire object graphs of containers (CONM ), and the corresponding

collection times (CONT ). We measure the memory usage of a container by traversing

the object graph starting from the container (using reflection). As mentioned in
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Section 5.1, it is impractical to compute the exact value of MC. Sampling is used

during the execution, and the obtained values are used to approximate the memory

time graph. Frequent sampling results in precise approximation, but increases run-

time overhead.

We launch periodic object graph traversals (for a set of tracked containers) every

time after a certain number of gc-events is seen. The number of gc-events between two

traversals can be given as a parameter to our tool to control precision and overhead.

Our experimental study indicates that choosing 50 as the number of gc-events between

traversals can keep the overhead low while achieving high precision.

Because an object graph traversal can be expensive, this task is assigned to a

newly-created thread executing in parallel with the main program. Note that such a

solution is particularly well-suited for modern architectures with multi-core proces-

sors. Once a container operation is performed (i.e., record in Figure 5.3 is invoked),

record adds the ID of the container to a global queue. When the given number of

gc-events complete, our JVMTI agent activates this thread, which reads IDs from

the queue, retrieves the corresponding objects, and performs graph traversals. The

allocation time of a container (CONA) can be collected by the instrumentation at the

allocation site, and our JVMTI agent can provide the deallocation time of a tagged

container (COND).

In order to compute SC for containers, we have to record every operation that a

tracked container performs (OPR). Because OPR events can result in large amounts

of data, we use a data compression strategy to reduce space overhead. The OPR data

is stored in a tree structure. Data at a higher level of the tree is likely to be more

frequently repeated. For example, type java.util.HashMap, which is at the highest
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java.util.HashMap

2345765

2042

...

root

122365, 125, 1145

...

...

container type

containerID

CSID*10+OPR_TYPE

elementID, 

#elements, timestamp

Figure 5.4: Compressed recording of OPR events.

level of the tree, appears in the event sequence for many container IDs. Similarly,

for a single container ID, many call sites and operations need to be recorded. The

tree representation is illustrated in Figure 5.4. The type of container is a parent of

the container ID. A child of the container ID is a combination of the call site ID

and the operation type (encoded as a single integer csID*10+opr type). The leaf

nodes contain tuples of element ID, number of elements in the container before this

operation, and a timestamp.

Keeping too much profiling data in memory degrades program performance. We

periodically record the data to disk to reduce its influence on the run-time execution.

The frequency of recording is the same as that of object graph traversal: our JVMTI

agent creates a recording thread that is activated at the same time as the graph

traversal thread is activated. All the threads synchronize when recording to disk is
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about to start. As discussed earlier, selecting an appropriate recording (and sampling)

rate is key to reducing the run-time overhead.

5.2.4 Data Analysis

Our current implementation performs an offline analysis of the collected data after

the program finishes or runs out of memory. Thus, the end of the leaking region τe

is the ending time of the program. The implementation can easily be adapted to run

the analysis online (in another process) and generate the report while the original

program is still running.

The first step of the analysis is to scan GCT and GCM information to determine

the leaking region. The current implementation employs 0.5 as the ratio used to define

this region, which means that at least half of the gc-events form a subsequence with

increasing memory consumption (recall the leak region definition from Section 5.1).

After the smallest τs that satisfies this constraint is found, each container’s OPR data

is uncompressed into individual operations and they are sorted by timestamp. The

container ID and its operation list are stored in map oper map. For each container,

the analysis also determines the first operation that is performed after τs; the container

ID and the number of container elements at this first operation are stored in map

size map. Operations that occurred before τs are discarded.

For each container, CONM and CONT data is used to approximate the memory

time graph and the MC value. The approximation assumes that the memory used by

the container does not change between two samples. Thus, MC is
∑n−1

i=0 (CONT,i+1−

CONT,i)× CONM,i where i represents the i-th sample.
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Algorithm 1: Computing SC for containers.
1: FIND SC (Double τe, Double τs, Map size map, Map oper map)
2: /* operation list for each container */
3: List oper list
4: /* The result map contains each container ID and its SC */
5: Map result = ∅
6: for each container ID c in oper map do

7: Map temp = ∅ /* a temporary helper map */
8: oper list = oper map.get(c)
9: Integer total = 0 /* total number of elements */
10: Double sum = 0 /*

P

staleness */
11: /* Number of elements in c at time τs */
12: Integer ne = size map.get(c)
13: for each operation opr in oper list do

14: if opr .type == “ADD” then

15: temp.add(opr .elementID, opr .timestamp)
16: end if

17: if opr .type == “GET” then

18: update temp with (opr .elementID, opr .timestamp)
19: end if

20: if opr .type == “REMOVE” then

21: if temp.contains(opr .elementID) then

22: Integer lastget = temp.get(opr .elementID)
23: sum += opr .timestamp − lastget
24: total += 1
25: temp.remove(opr .elementID)
26: else

27: /* The element is added before τs */
28: sum += opr .timestamp − τs

29: total += 1
30: ne −= 1
31: end if

32: end if

33: end for

34: if temp.size > 0 then

35: /* These elements are never removed */
36: for each elementID in temp do

37: Integer lastget = temp.get(elementID)
38: sum += τe − lastget
39: total +=1
40: end for

41: end if

42: if ne > 0 then

43: /* Elements are added before τs and never removed */
44: sum += (τe − τs)× ne;
45: total += ne
46: end if

47: c.SC = (sum/total)/(τe − τs)
48: result .add(c, c.SC)
49: end for

50: return result

Algorithm 1 shows the computation of SC for containers. The algorithm scans a

container’s operation list, and for each element ID, finds its last GET operation, its

REMOVE operation, and the distance between them. (Recall that the deallocation
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of the container is treated as a set of REMOVE operations on all elements.) For

an element that is added before τs (lines 27–30), staleness is the distance between

the REMOVE operation and τs. For an element that is never removed (lines 34–39),

staleness is the distance between τe and the last GET operation. For elements that

are added before τs and never removed (lines 42–45), staleness is τe − τs.

Leaking call sites For each element in a container, the analysis finds the

call site ID corresponding to its last GET operation. Then, it computes the average

staleness of elements whose last GET operations correspond to that same call site

ID. These call site IDs are then sorted in decreasing order of this average value.

Thus, the tool reports not only the potentially leaking containers (sorted by the LC

value), but also, for each container, the potentially leaking call sites (with their source

code location) sorted in descending order by their average staleness. Our experience

indicates that this information can be very helpful to a programmer trying to identify

the source of the memory leak bug.

5.3 Empirical Evaluation

To evaluate the proposed technique for container-based memory leak detection for

Java, we performed a variety of experimental studies focusing on leak identification

and execution overhead. Section 5.3.1 illustrates the ability of our technique to help

a programmer find and fix real-world bugs. Section 5.3.2 presents a study of the

incurred overhead.

5.3.1 Detection of Real-World Memory Leaks

The experiments were performed on a 2.4GHz dual-CPU PC with 2GB RAM,

running Windows XP. Three different sampling/recording rates were used: 1/15gc,
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1/50gc, and 1/85gc (i.e., once every 15, 50, or 85 gc-events). The experimental

subjects were two memory leak bugs reported in the Sun bug database [141], a known

leak in SPECjbb [138], as well as a bug contained in a leak example from an IBM

developerWorks column [57].

Java AWT/Swing Bugs

About half of the memory leak bugs in the JDK come from AWT and Swing. This

is the reason we chose two AWT/Swing related leak bugs #6209673 and #6559589

for evaluation. The first bug has already been fixed in Java 6, while the second one

is still open and unresolved.

Bug report #6209673 describes a bug that manifests itself when switching be-

tween a running Swing application that shows a JFrame and another process that

uses a different display mode (e.g., a screen saver)—the Swing application eventually

runs out of memory. According to a developer’s experience [104], the bug was very

difficult to track down before it was fixed. We instrumented the entire awt and swing

packages, and the test case provided in the bug report. We then ran the instrumented

program and reproduced the bug. Figure 5.5 shows the tool reports with three sam-

pling rates. Each report contains the top three containers, for each container the top

three potentially leaking call sites (---cs), and the time used to analyze the data.

Sampling rates 1/15gc and 1/50gc produce the same containers, in the same order.

The first container in the reports is a HashMap in class javax.swing.RepaintManager.

We inspected the code of RepaintManager and found that the container was an in-

stance field called volatileMap. The call site in the report (with average staleness

0.507) directed us to line 591 in the source code of the class, which corresponds to a

GET operation
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Container:11324773 type: java.util.HashMap

(LC: 0.449, SC: 0.495, MC: 0.825)

---cs: javax.swing.RepaintManager:591 (Average staleness: 0.507)

Container:18429817 type: java.util.LinkedList

(LC: 0.165, SC: 0.194, MC: 0.820)

---cs: java.awt.DefaultKeyboardFocusManager:738 (0.246)

Container:8984226 type: java.util.LinkedList

(LC: 0.051, SC: 0.062, MC: 0.809)

---cs: java.awt.DefaultKeyboardFocusManager:851 (0.063)

---cs: java.awt.DefaultKeyboardFocusManager:740 (0.025)

Data analyzed in 149203ms

(a) 1/15gc sampling rate

Container:29781703 type: java.util.HashMap

(LC: 0.443, SC: 0.480, MC: 0.855)

---cs: javax.swing.RepaintManager:591 (Average staleness: 0.480)

Container:2263554 type: class java.util.LinkedList

(LC: 0.145, SC:0.172, MC: 0.814)

---cs: java.awt.DefaultKeyboardFocusManager:738 (0.017)

Container:399262 type: class javax.swing.JPanel

(LC: 0.038, SC:0.044, MC: 0.860)

---cs: javax.swing.JComponent:796 (0.044)

Data analyzed in 21593ms

(b) 1/50gc sampling rate

Container:15255515 type: java.util.HashMap

(LC: 0.384, SC:0.426, MC: 0.835)

---cs: javax.swing.RepaintManager:591 (0.426)

Container:19275647 type: java.util.LinkedList

(LC: 0.064, SC:0.199, MC: 0.244)

---cs: java.awt.SequencedEvent:176 (0.204)

---cs: java.awt.SequencedEvent:179 (0.010)

---cs: java.awt.SequencedEvent:128 (1.660E-4)

Container:28774302 type: javax.swing.JPanel

(LC: 0.036, SC:0.042, MC: 0.839)

---cs: javax.swing.JComponent:796 (0.042)

Data analyzed in 10547ms

(c) 1/85gc sampling rate

Figure 5.5: Reports for JDK bug #6209673.

image = (VolatileImage)volatileMap.get(config)

The tool report indicates that the image obtained at this call site may not be properly

removed from the container. For a programmer that is familiar with the code, this

information may be enough to identify the bug quickly. Since the code was new for
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us, we had to learn more about this class and the overall display-handling strategy

of Swing to understand the bug. Because the bug was already resolved, we examined

the bug evaluation, which confirmed that volatileMap is the root of the leak. The

cause of the bug is caching by RepaintManager of all VolatileImage objects, regard-

less of whether or not they are currently valid. Upon a display mode switch, the old

GraphicsConfiguration objects under the previous display mode get invalidated and

will not be used again. However, the VolatileImage for an obsolete GraphicsConfigu-

ration is never removed from volatileMap, and hence all resources allocated by the

image continue taking up memory until an OutOfMemory error occurs.

Note that the report with sampling rate 1/85gc “loses” the LinkedList in

DefaultKeyboardFocusManager, which appears as the second container in the other

two reports. Although this container is not the source of the bug, it demonstrates

that sampling at 1/85gc may not be frequent enough to maintain high precision. Note

that analysis time decreases with the decrease in sampling rate, because the tool loads

and processes less data during the analysis.

Compared to our reports, existing approaches that keep track of generic objects

(i.e., do not have our container-centric view) would report allocation sites of some

types of objects that either (1) continuously grow in numbers or (2) are not used

for a while. For bug #6209673, for example, there are growing numbers of objects

of numerous types that are reachable by VolatileImage and GraphicsConfiguration

objects. Tools such as Cork [71] have to backward-traverse the object graph from the

growing objects to find the type of objects that do not grow in numbers. However, the

useless objects are inter-referenced, and moreover, traversing back from these growing

objects can potentially find multiple types whose instances remain unchanged. In
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this case, the container that holds GraphicsConfigurations, the JFrame window, the

GraphicsDevice object, the map that holds VolatileImages, etc. can all be data

structures that are backward-reachable from the growing objects and whose numbers

of instances do not grow. Tools such as Sleigh [20] report errors based solely on the

staleness of objects. In this case, the JFrame object would be the most stale object

because it is never used after it is created. In addition, there are numerous types of

objects that are more stale than VolatileImages, such as all the components in the

frame. Hence, Sleigh could report all these objects as the sources of the leak, including

many false positives. Finally, both of these existing approaches require non-standard

JVM modifications and support, while our technique uses only code instrumentation

and the standard JVMTI interface.

Currently, the report generated by our tool does not contain calling context infor-

mation, which has been considered to be useful in locating the cause of a bug. This, in

fact, does not undermine the practical effectiveness of our tool. Unlike tools that track

arbitrary objects and therefore need this information to locate the bug-inducing op-

erations, our tool pinpoints the cause containers and the last GET operations, which

are strong indications of the location of the bug. For instance, many call chains re-

ported by Sleigh from [20] go from the last use sites of stale objects backward to call

sites that invoke container methods, which are important to investigate. These call

chains could not be as useful if the call sites corresponding container operations are

directly reported (as in our tool).

Report #6559589 describes a bug in Java 6 build 1.6.0 01: calling method

JScrollPane.updateUI() in a Swing program that uses JScrollPane causes the
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Container:5678233 type: java.util.Vector

(LC: 0.890, SC: 0.938, MC: 0.427)

---cs: java.awt.Window:1825 (0.938)

Container:3841106 type: java.beans.PropertyChangeSupport

(LC: 0.645, SC:0.779, MC: 0.427)

---cs: java.awt.Component:7007 (0.779)

Container:24333128 type: javax.swing.UIDefaults

(LC: 0.644, SC:0.875, MC: 0.087)

---cs: javax.swing.UIDefaults:334 (0.868)

---cs: javax.swing.UIDefaults:308 (0.660)

Data analyzed in 454ms

(a) 1/15gc sampling rate

Container:5678233 type: java.util.Vector

(LC: 0.890, SC:0.938, MC: 0.427)

---cs: java.awt.Window:1825 (0.938)

Container:30318493 type: java.beans.PropertyChangeSupport

(LC: 0.668, SC:0.828, MC: 0.288)

---cs: java.awt.Component:7007 (0.828)

Container:9814147 type: javax.swing.UIDefaults

(LC: 0.101, SC: 0.327, MC: 0.175)

---cs: javax.swing.UIDefaults:334 (0.984)

---cs: javax.swing.UIDefaults:308 (0.903)

Data analyzed in 282ms

(b) 1/50gc sampling rate

Container:5678233 type: java.util.Vector

(LC: 0.293, SC:0.425, MC: 0.525)

---cs: java.awt.Window:1825 (0.425)

Container:30502607 type: javax.swing.JLayeredPane

(LC: 0.117, SC:0.221, MC: 0.441)

---cs: javax.swing.JComponent:796 (0.162)

Container:2665317 type: javax.swing.UIDefaults

(LC: 0.096, SC:0.363, MC: 0.124)

---cs: javax.swing.UIDefaults:334 (0.359)

---cs: javax.swing.UIDefaults:308 (0.340)

Data analyzed in 297ms

(c) 1/85gc sampling rate

Figure 5.6: Reports for JDK bug #6559589.

number of listeners to grow. Because it is common knowledge that PropertyChange-

Listeners are managed by java.bean.PropertyChangeSupport, we modeled this

class as a container and wrote a glue class for it. The generated reports are shown in

Figure 5.6. The first container in all three reports is a vector in java.awt.Window,
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Figure 5.7: Memory footprint before and after fixing JDK bug #6559589.

which corresponds to an instance field ownedWindowList. Line 1825 of Window con-

tains an ADD operation

ownedWindowList.addElement(weakWindow)

Field ownedWindowList is used to hold all children windows of the current window.

The reporting of this call site by the tool indicates that when a Window object is added

to the vector, it may not be properly removed later. We quickly concluded that this

cannot be the source of the bug, because windows in a Swing program usually hold

references to each other until the program finishes. This forced us to look at the

second container in reports (a) and (b), which is a PropertyChangeSupport object

in java.awt.Component. The reported call site at line 7007 of Component is

changeSupport.addPropertyChangeListener(listener)

The container is an instance field changeSupport, which stores all PropertyChange-

Listeners registered in this component. The call site indicates that the bug may be

caused by some problem in JScrollPane that does not appropriately remove listen-

ers. Registering and unregistering of listeners for JScrollPane is done in a set of

ScrollPaneUI classes. The test case uses a metal look and feel, which is represented

128



by class MetalScrollPaneUI, a subclass of BasicScrollPaneUI. We checked method

uninstallListeners in MetalScrollPaneUI, which is supposed to release listeners

from the component, and found that this method calls the method with the same

name in its super class, but does not remove the scrollBarSwapListener object

held by a private field in the subclass. Further investigation revealed an even more

serious problem: method uninstallListeners in the subclass was not executed at

all, because its signature was different from the signature of the method with the

same name in superclass BasicScrollPaneUI:

/* BasicScrollPaneUI */

void uninstallListeners(JComponent c)

/* MetalScrollPaneUI */

void uninstallListeners(JScrollPane scrollPane)

Hence, the causes of the bug are (1) uninstallListeners in MetalScrollPaneUI

fails to override the appropriate method in superclass BasicScrollPaneUI, and (2)

the listener defined in subclass MetalScrollPaneUI is not removed by its own

uninstallListeners. We modified the code accordingly, and the memory leak dis-

appeared. The memory footprint before and after fixing the bug is illustrated in

Figure 5.7. We have submitted our modification as a comment in the bug database.

Again, the report that used 1/85gc sampling rate failed to include the PropertyChange

Support object, which is the source of the leak.

SPECjbb Bug

Benchmark SPECjbb2000 simulates an order processing system and is intended

for evaluating server-side Java performance [138]. The program contains a known

memory leak bug that manifests itself when running for a long time without changing
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Container:4451472 type: java.util.Hashtable

(LC: 0.135, SC: 0.190, MC: 0.659)

---cs: spec.jbb.StockLevelTransaction:225 (0.214)

---cs: spec.jbb.StockLevelTransaction:211 (0.190)

Container:7776424 type: java.util.Hashtable

(LC: 0.110, SC:0.157, MC: 0.659)

---cs: spec.jbb.StockLevelTransaction:211 (0.157)

---cs: spec.jbb.StockLevelTransaction:225 (0.114)

Container:28739781 type: java.util.Hashtable

(LC: 0.102, SC:0.146, MC: 0.654)

---cs: spec.jbb.StockLevelTransaction:211 (0.146)

---cs: spec.jbb.StockLevelTransaction:225 (0.122)

Data analyzed in 4078ms

(a) before modeling of longBTree, using 1/50gc

Container:27419736 type: spec.jbb.infra.Collections.longBTree

(LC: 0.687, SC: 0.758, MC: 0.666)

---cs: spec.jbb.District:264 (0.826)

---cs: spec.jbb.StockLevelTransaction:225 (0.624)

---cs: spec.jbb.StockLevelTransaction:211 (0.519)

Container:21689791 type: spec.jbb.infra.Collections.longBTree

(LC: 0.685, SC: 0.757, MC: 0.662)

---cs: spec.jbb.District:264 (0.783)

---cs: spec.jbb.StockLevelTransaction:211 (0.370)

---cs: spec.jbb.District:406 (2.944E-4)

Container:27521273 type: spec.jbb.infra.Collections.longBTree

(LC: 0.667, SC: 0.727, MC: 0.727)

---cs: spec.jbb.Warehouse:456 (0.798)

---cs: spec.jbb.District:264 (0.784)

---cs: spec.jbb.StockLevelTransaction:211 (0.484)

(b) after modeling of longBTree, using 1/50gc

Figure 5.8: Report for the SPECjbb2000 bug.

warehouses. The report generated by our tool for rate 1/50gc is shown in Figure 5.8.

Due to the imprecision of using sampling rate 1/85gc, the report for it is not shown.

We also do not show the report of using sampling rate 1/15gc, because the containers

and their order in this report are the same as in the report for 1/50gc.

The program was first instrumented without modeling any user-defined containers.

The result is shown in Figure 5.8(a). It is straightforward to see that none of the

containers in the list are likely to leak memory, because their confidences are very
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small. The first container in the report refers to a hashtable that holds stocks of an

order line. We did not find any problem with the use of this container. However, we

observed that the order lines are actually obtained from an order table, which has a

type of longBTree. We found that longBTree is a container class that implements a

BTree data structure and is used to hold orders. It took us several minutes to write

a glue class for longBTree. We then re-instrumented and re-ran the program. The

resulting tool report is shown in Figure.5.8(b). The top three containers in the report

are now instances of longBTree.

Line 264 of spec.jbb.District is an ADD operation

orderTable.put(anOrder.getId(), anOrder)

which indicates that orderTable may leak memory. Methods removeOldestOrder,

removeOldOrders, and destroy contain REMOVE operations for orderTable. We

focused on the first two methods, because destroy could not be called when a

district is still useful. Using a standard IDE, we found the callers of these meth-

ods: removeOldestOrder is called only once within DeliveryTransaction, and

removeOldOrders is never called. Therefore, when a transaction completes, it re-

moves only the oldest order from the table, which causes the heap growth. Inserting

code to remove orders from the table fixed the bug. We used less time (a few hours)

than the authors of [71] did (a day) to locate the bug in this program, which we had

never studied before.

Memory Leak from Java DeveloperWorks

An IBM developerWorks column [57] contains a sample leak bug that uses behav-

iors of three containers to illustrate different levels of leaking severity. Specifically, the

first container never removes elements. The second container removes elements after
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they become useless, but its usage has an error that leads to several Integer objects

not being removed in each iteration. The third container removes all elements before

the end of each iteration. The program executes in iterations and exercises operations

of all the three containers in each iteration. We modify the program by adding small

objects (arrays of 1000 integers) to the first container (that causes the quick leak),

adding large objects (arrays of 10000 integers) to the second container (that causes

the slow leak), and adding even larger objects (arrays of 50000 integers) to the third

container. Although this is not a real-world leak bug, the presence of leaks of multiple

levels of severity is useful for us to evaluate the sensitivity of the proposed leak con-

fidence model in separating containers that have different contributions to the leak.

We instrumented the program and ran it until OutofMemoryError was caught. The

generated report for this program is shown in Figure 5.9.

Note that the leak confidence computed for the first container is much larger than

those computed for the remaining two containers. The primary reason is that this

container does not remove any elements during the execution. In other words, its large

staleness contribution dominates the fact that the other two containers contain large

objects. It is interesting to see that the third (leak-free) container is ranked higher

than the second (slowly-leaking) one: they have similar staleness contributions, but

the third one consumes much more memory. According to this report, the third

container is actually the one to which we need to pay more attention, since it has

more significant influence on run-time performance than the second one. Removing

elements earlier, after they become useless (instead of waiting until the end of an

iteration) can fix the problem. From this experiment, it can be seen that the leak

confidence model presented in this chapter is not only able to find leaking containers,
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Container:18296328 type: class java.util.ArrayList

(LC: 0.921, SC: 0.985, MC: 0.011)

---cs: LeakExample:25 (0.327) // first container

Container:24764524 type: class java.util.ArrayList

(LC: 0.008, SC:0.035, MC: 0.241)

---cs: LeakExample:57 (0.031) // third container

Container:16224256 type: class java.util.ArrayList

(LC: 0.007, SC: 0.037, MC: 0.180)

---cs: LeakExample:39 (0.033) // second container

Data analyzed in 47275ms

(a) Report for the bug from IBM developerWorks, using 1/15gc

Container:18296328 type: class java.util.ArrayList

(LC: 0.845, SC: 0.971, MC: 0.01)

---cs: LeakExample:25 (0.327) // first container

Container:12077888 type: class java.util.ArrayList

(LC: 0.008, SC:0.031, MC: 0.245)

---cs: LeakExample:57 (0.031) //third container

Container:16224256 type: class java.util.ArrayList

(LC: 0.005, SC: 0.033, MC: 0.141)

---cs: LeakExample:39 (0.032) //second container

Data analyzed in 26198ms

(b) Report for the bug from IBM developerWorks, using 1/50gc

Figure 5.9: Report for the leak bug from IBM developerWorks.

but can also help to understand run-time performance issues and to find execution

bottlenecks.

Leak-Free Programs

The tool was also used to analyze several programs that have been used widely

and tested extensively for years, and do not have any known memory leaks. Table 5.4

shows the confidence values computed for these programs. The goal of this experiment

was to determine whether the tool produced any false positives on these (almost

certainly) leak-free programs. The low confidence values reported by the tool are the

expected and desirable outcome for this experiment.
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antlr 4.1E-5 chart 2.7E-6 fop 1.3E-5

hsqldb 4.4E-7 jython 5.0E-8 luindex 9.1E-5

lusearch 2.3E-2 pmd 4.3E-6 xalan 5.2E-5

jflex 1.8E-7

Table 5.4: Confidences for leak-free programs.

5.3.2 Static and Dynamic Overhead

This section describes our study of the overhead introduced by our technique.

This study utilizes the three real-world bugs described earlier, as well as a set of

Java programs shown in Table 5.4. The benchmark set includes 9 programs from the

DaCapo suite [40], and jflex, a lexer generator. For each DaCapo program, we ran it

with default workload size, and the input for jflex is a grammar file corresponding to a

finite state machine with 21769 states. We ran the instrumented programs with rates

1/15gc and 1/50gc. The maximum JVM heap size for each run was set to 512MB

(JVM option Xmx512m). For each sampling rate, we ran the programs once with the

default initial heap size and once with a large initial heap size (JVM option Xms512m),

in order to observe different numbers of gc-events. We checked the generated reports

under the four configurations (i.e., 1/15gc with 512M heap, 1/50gc with 512M heap,

1/15gc with default heap, and 1/50gc with default heap) and found that for all

programs, the top five containers reported by our tool under these configurations are

the same. The remaining containers (other than the top five) in each report had fairly

small confidence values, and therefore, we can assume that the precision loss under

configurations with 512M initial heap or 1/50gc sampling rate is small enough so that

it is not hurtful in the practical use of the tool.
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Program #IS #IS e IT (s)

antlr 176 123 87
chart 894 867 202
fop 1378 1375 125
hsqldb 684 674 116
jython 443 416 135
luindex 442 409 65
lusearch 442 388 81
pmd 814 690 111
xalan 755 752 114
jflex 522 438 92
bug 1 3109 2768 487
bug 2 3105 2770 502
specjbb 74 73 142

Table 5.5: Static analysis running time.

Table 5.5, Table 5.6, and Table 5.7 describe the static analysis running time, the

dynamic overhead of the tool when using 1/15gc, and when using 1/50gc sampling

rate, respectively. In Table 5.5 columns IS and IS e represent the numbers of call sites

instrumented without and with employing escape analysis, respectively. Column IT

(“instrumentation time”) represents the static overhead of the tool—that is, the time

(in seconds) it takes to produce the escape-analysis-based instrumented version of

the original code. Column RT o (“running time”) in both Table 5.6 and Table 5.7

contains the original running times of the programs.

The dynamic overhead of the approach is described in the remainder of Table 5.6

and Table 5.7. Columns GC d and GC l show the numbers of gc-events with the default

and with the large initial heap size, respectively. Similarly, RT d and RT l show the

program running times with these two choices of initial heap size. OH d and OH l,

respectively, represent run-time overhead introduced by our tool when executed with

135



Program (a) (b) 1/15gc (c)
RT o(s) #GC d RT d(s) #GC l RT l(s) %OH d %OH l

antlr 17.9 387 18.4 10 18.1 2.8% 1.1%
chart 8.5 5368 38.0 185 35.4 347.0% 316.4%
fop 4.5 693 8.6 24 7.8 91.1% 73.3%
hsqldb 4.3 54 4.7 8 4.4 9.3% 2.3%
jython 7.3 1653 31.8 126 28.2 335.6% 286.3%
luindex 19.5 1446 24.4 40 23.7 25.1% 21.5%
lusearch 2.9 418 9.1 21 3.9 213.8% 34.5%
pmd 5.9 2938 26.9 716 18.4 355.9% 211.9%
xalan 1.4 655 7.7 30 4.0 450% 185.7%
jflex 45.1 4171 170.7 1493 130.3 278.5% 188.9%
bug 1 – 18630 600 7420 600 – –
bug 2 38.1 512 53.0 243 42.3 39.1% 11.0%
specjbb – 18605 3600 15080 3600 – –
average – – – – – 195.3% 121.2%

Table 5.6: Dynamic overhead I: (a) original running time; (b) running with 1/15gc
rate; (c) run-time overhead.

the default heap size and the 512M heap size, which correspond to RT d and RT l in

columns (c). More specifically, these two values are computed as

OH d = (RT d - RT o)/RT d

OH l = (RT l - RT o)/RT l

The average overhead for each configuration is added at the bottom of the tables.

For bug 1 and specjbb, we ran the test case for 10 minutes and an hour, respectively,

because the execution of these two programs does not terminate.

Applying escape analysis reduces the number of call sites that need to be tracked

(the reduction varies from 3 to 124 call sites), while still maintaining reasonable

instrumentation time. For the purpose of illustration and comparison, the dynamic

overhead under different configurations is shown in Figure 5.10.
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Program (a) (b) 1/50gc (c)
RT o(s) #GC d RT d(s) #GC l RT l(s) %OH d %OH l

antlr 17.9 387 18.4 10 18.1 2.8% 1.1%
chart 8.5 4109 36.5 185 35.1 329.4% 312.9%
fop 4.5 545 8.9 24 6.4 97.8% 42.2%
hsqldb 4.3 54 4.7 8 4.4 9.3% 2.3%
jython 7.3 1440 31.4 126 28.5 330.1% 290.4%
luindex 19.5 1390 23.9 40 23.7 22.6% 21.5%
lusearch 2.9 326 8.2 23 3.2 182.8% 10.3%
pmd 5.9 2766 25.2 37 6.6 327.1% 11.9%
xalan 1.4 605 6.2 18 3.7 342.9% 164.3%
jflex 45.1 2126 165.8 665 88.05 267.6% 95.2%
bug 1 – 11457 600 1983 600 – –
bug 2 38.1 413 52.2 37 42 37.0% 10.2%
specjbb – 16789 3600 10810 3600 – –
average – – – – – 177.2% 87.5%

Table 5.7: Dynamic overhead II: (a) original running time; (b) running with 1/50gc
rate; (c) run-time overhead.

Using the same sampling rate, running a program with a large initial heap size

takes less time, because this configuration reduces the number of gc-events, which in

turn reduces the numbers of thread synchronizations, disk accesses, and object graph

traversals performed by the dynamic analysis. For the same reason, decreasing the

sampling rate reduces the run-time overhead.

By employing both larger initial heap and smaller sampling rate, the average

run-time overhead for the programs can be reduced to 87.5%. Such overhead is

acceptable for bug detection, but it may be too high for production runs. One possible

approach to reducing overhead is to selectively instrument a program. Based on the

manifestation of the bug, developers may have preferences and hints as to where

to focus the effort of the tool. For example, certain parts of the program that are

decided not to be the cause of the bug do not need to instrumented and tracked at
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Figure 5.10: Dynamic overhead under different configurations.

run time. The continuous optimization of the tool is part of our future work. For

example, the optimization may focus on reducing threads synchronizations within the

dynamic analysis. Our current implementation uses JVMTI, which runs agents and

invokes event callbacks in threads. The running of these threads adds synchronization

overhead. In addition, the retrieval of a container object from its tag through JVMTI

also contributes to the execution overhead. Hence, another part of our future work

is to re-implement the tool within an existing open-source JVM, such as the Jikes

RMV [70], in order to avoid the overhead caused by JVMTI.

5.4 Summary and Interpretation

This chapter presents a novel technique for detecting memory leaks for Java.

Unlike existing “from-symptom-to-cause” dynamic analyses for leak detection, the

proposed approach employs a higher-level abstraction, focusing on container objects

and their operations. The kind of data-based activity considered in this chapter
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is, thus, data flow between containers and the rest of the program. The approach

uses both memory contribution and staleness contribution to decide how significant

a container’s leaking behavior is. This chapter presents an implementation of this

technique and a set of experimental studies, demonstrating that the proposed tool

can produce precise bug reports at a practical cost. These promising results indicate

that the technique and any future generalizations are worth further investigation.

In this work, method semantics is provided by programmers as annotations. It

would be interesting and useful to develop an analysis that could automatically infer

such semantic information from the program source code. In Chapter 7, we propose

such a static analysis that can automatically infer these annotations. This analysis

may also be used by the approach described in this chapter, in order to understand

method semantics so that programmers’ annotation efforts can be avoided.

This is the first memory leak detection technique that explicitly uses semantic

information about the target program to help problem diagnosis. Given the size and

complexity of today’s large-scale applications, there is little hope that a completely

automatic analysis can precisely identify performance bottlenecks. We believe that

developers’ insight is key to improving the precision and real-world usefulness of sim-

ilar performance analysis tools. Research presented in this chapter has demonstrated

that a program-semantics-aware bloat detector can produce much more relevant in-

formation than an analysis that does not rely on any semantic information. The next

chapter presents another semantics-aware memory leak detection technique, called

LeakChaser. In that work, the approach relies on user-provided specifications of

object lifetime relationships to help diagnose memory leaks.
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CHAPTER 6: Making Sense of Transaction Behaviors:
Memory Leak Detection Using LeakChaser

A Java memory leak is an important source of memory bloat which can have

significant impact on program performance and scalability. Existing leak detectors

attempt to find root causes of memory leaks by starting from the objects that look

suspicious (i.e., the leak symptom) and traversing the object graph on the heap.

Due to the complexity of this graph, such an attempts is often a heuristics-based

process that ends up reporting a sea of likely problems with the true causes being

buried among them. A detailed discussion of existing memory leak detectors can

be found in the previous chapter. Because a memory leak often occurs due to the

inappropriate handling of certain events, and existing tools profile the whole program

execution without any focus, there is little hope that a completely automated tool

can precisely pinpoint the problematic area(s) for large-scale Java applications. While

the container profiling work (described in the previous chapter) avoids heuristics by

focusing on containers [158], the root causes of many memory leaks are not containers,

but instead cached references that the programmer forgot to invalidate, as represented

by the leak cases in SPECjbb2000 and Eclipse bug #115789 (Section 6.4).

For a more focused leak detector, it is necessary to take advantage of human

insights and use programmer specifications to guide leak detection. While prior work

proposes heap assertions that can be checked during GC [1, 9, 112, 149], these low-

level assertions may only be employed by programmers who have deep understanding
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of an application and its algorithms, data structures, etc. This requirement limits

significantly their usefulness in leak detection for existing Java applications (where no

assertions were written during development), as very few performance experts have

sufficient program knowledge to use these assertions during postmortem tuning and

debugging.

Insight Almost all memory leaks we have studied are in regularly occurring

program events: unnecessary references can quickly accumulate and cause the memory

footprint to grow if each such event forgets to clean up a small number of references.

The techniques proposed in this chapter are based on the following two obser-

vations about these frequently executed code regions. First, in these regions there

usually exist implicit invariants among lifetimes of objects (e.g., “objects a and b must

die together,” or “the old configuration object must die before the new configuration

object is created”). When such invariants are violated, memory leaks result. It is

often not easy to use heap assertions from prior work (which are typically based on

reachability properties in the object graph) to express these lifetime relationships.

Second, for each such region, there often exist objects that are strongly correlated

with the liveness of the entire region. For example, consider a (web or database)

transaction in an enterprise Java application. A typical lifecycle consists of a se-

quence of events such as the creation of the transaction object, the creation of all

other objects used in this transaction, the deallocation of these (other) objects, and

the deallocation of the transaction object. For this lifecycle, the transaction object

is the first one that is created and the last one that is reclaimed, and it is thus the

object that controls the liveness of this entire transaction region.
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Our proposal We propose a three-tier approach that exploits these insights

to help a programmer quickly identify unnecessary references leading to a memory

leak. This approach can be used by both novices and experts to diagnose memory

problems. The key idea is to introduce high-level semantics by explicitly considering

coarse-grained events where leaks are observed. We refer to these events as transac-

tions. As extensions of—and inspired by—enterprise transaction models (e.g., EJB

transactions), our transactions describe frequently executed code regions with user-

defined boundaries. Objects associated with a transaction fall into three categories:

(1) transaction identifier object, (2) transaction-local objects, and (3) objects shared

among transactions.

The identifier object of a transaction controls the lifetime of the transaction: all

transaction-local objects should be created after this object is created and should die

before it dies. Only shared objects are allowed to live after the identifier object dies.

Next, we introduce the three tiers of our approach in descending order of their levels

of abstraction, which is often the order in which a programmer uses our tool to solve

a real-world problem.

Tier H (the high-level approach): At this highest level of the approach, our

framework attempts to automatically infer transaction-local and shared objects from

the execution, while the programmer only needs to specify transaction boundaries

and identifier objects. The tool starts to work in inference mode, and once objects

shared among transactions are identified, it switches to check whether the (inferred)

shared objects can actually be used in other transactions. Violations are reported if

these shared objects are not used for a certain period of time. The programmer’s task

at this level is the easiest to perform: we found that even when we had not studied
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a program before, we could quickly identify these (coarse-grained) events in order to

perform the diagnosis.

Tier M (the medium-level approach): In this tier, the user needs to specify not

only the boundary of a transaction and the transaction identifier object, but also the

objects shared across transactions, which the user does not specify in tier H.

LeakChaser checks the given specifications, and reports violations if the specified

transaction-local objects in one instance of the transaction escape to another instance.

While employing this tier of the tool requires the user to have a deeper understanding

of the program and the likely cause of the problem, it can generate a more precise

report.

Tier L (the low-level approach): This lowest level is essentially an assertion

framework that allows the user to specify lifetime invariants for focused memory

leak detection. The framework contains binary assertions that directly express object

lifetime relationships. For instance, one important assertion is to specify that object a

must die before object b. This assertion fails only when LeakChaser observes definitive

evidence, e.g., b is dead while a is still live.

Compared to reachability-based assertions [1,9,112,149], our framework has three

advantages. First, passing/failing of our assertions does not depend on where GC runs

are triggered and thus, assertion checking does not produce false positives. Second,

program locations where our assertions are placed have no influence on the evaluation

of these assertions. For example, we can assert that object a dies before object

b immediately after they are created, while a reachability-based assertion such as

assertDead in prior work has to be placed in a location where the asserted object

is about to become unreachable [1]. Third, our framework can be used to assert
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arbitrary objects whose lifetimes are correlated due to some high-level semantics

(e.g., events), while a reachability-based assertion can work only on objects that have

low-level structural relationships (e.g., reachability in the object graph).

Of course, using this assertion framework requires one to understand considerable

design and implementation details of the program such as how a data structure is

constructed. However, performing this level of diagnosis can give the user a very

precise report. Hence, these assertions can be added by developers during coding,

which may ease significantly the diagnosis of memory problems when performance

degradation is observed. In fact, the transaction-based properties described in the

other two tiers are translated by our framework into these low-level assertions at run

time. Section 6.2 presents details about this translation.

As the level of abstraction decreases (from tier H to tier L), the diagnosis becomes

more focused. Figure 6.1 illustrates the process of memory leak detection using

this framework. In our experience, LeakChaser is especially useful to a performance

expert who is unfamiliar with the program code, since he or she can follow an iterative

process that involves all these levels of diagnosis (i.e., from tier H down to tier L). The

programmer starts with the tier H analysis with little program knowledge and insight.

By repeating a higher-level analysis a few times (with refined specifications) and

inspecting its reports, the programmer gains a deeper understanding of the program

as well as more insight into the problem. As a result, she will be able to move on to

a lower-level analysis for a more focused diagnosis. Very often, this process ends up

narrowing down the information to the exact cause of the leak.

For large-scale applications, LeakChaser allows programmers to specify transac-

tions at clients of these applications, without digging into application implementation
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Figure 6.1: Illustration of the diagnosis process. Spirals at each level indicate that a
user may need to run each tier multiple times with refined specifications (e.g., smaller
transaction regions, more precise shared object specifications, etc.) to gain sufficient
knowledge to proceed to a lower tier.

details. For example, to diagnose problems in a large database system, the pro-

grammer only needs to create transactions at client programs that perform database

queries. We found that this feature of the tool is quite useful in simplifying the

diagnostic task: all previous techniques require a programmer to understand a fair

amount of low-level details of the system before he can start the diagnosis. This

burden is reduced significantly by LeakChaser.

Implementation and experiments We implemented our approach in Jikes

RVM 3.1.0 (http://jikesrvm.org), a high-performance Java-in-Java virtual ma-

chine, and successfully applied it to real leaks in large-scale applications such as

Eclipse and MySQL. The implementation techniques are discussed in detail in Sec-

tion 6.3. Section 6.5 evaluates analysis expenses. We add one extra word in the header

of each run-time object and this space is used to store the assertion information for

the object. The overall space overhead of the tool is less than 10%, including both

extra header space and memory used to store the metadata of our analysis. Using the
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optimizing compiler and the Immix garbage collector [16], the current implementation

imposes an average slowdown of 2.3× for GC only and 1.1× for overall executions for

the framework infrastructure (i.e., no assertions added). Additional overhead is in-

curred for checking and inferring specifications. For example, after adding assertions

to SPECjbb2000, 256236 assertions were executed, and overall slowdown was 5.5×.

While the overhead is probably high for production runs, we found it acceptable for

performance tuning and memory leak diagnosis.

Section 6.4 presents six case studies on real-world memory leak problems. Among

these problems, four are true leaks and for the remaining two, programmers expe-

rienced high memory footprints but were not sure whether or not there were leaks.

Using our tool, we have quickly identified root causes for the true leaks, and found

reasons that could explain the high memory consumption for the other two cases.

In SPECjbb2000, in addition to the already-known leak, we found memory issues

that have not been reported previously and actually cause more severe performance

degradation than the already-known leak.

We observed significant performance improvements after fixing these problems.

The experimental results strongly indicate that the proposed three-tier diagnosis

methodology can be adopted in real-world development and tuning to find and pre-

vent memory leaks, and LeakChaser is useful in helping a programmer quickly identify

unnecessary references that lead to leaks and other memory issues.

The contributions of this work are:

• A three-layer methodology that introduces different levels of abstraction to help

both experts and novices understand and diagnose memory leak problems.
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• A new heap assertion framework that allows programmers to assert object live-

ness properties instead of using reachability to approximate liveness.

• An implementation of LeakChaser in Jikes RVM that piggybacks on garbage

collection to check assertions.

• Six case studies demonstrating that LeakChaser can help a programmer un-

familiar with the program source code to quickly find root causes of memory

leaks.

6.1 Overview

We illustrate our technique using a simplified version of a real-world memory leak

(Eclipse bug #115789). Figure 6.2(a) shows the code that contains the leak. This

bug can be easily reproduced on Eclipse 3.1.2 when comparing the structures of two

large JAR files multiple times using an Eclipse built-in comparison option. Method

runCompare implements a comparison operation (in plugin org.eclipse.compare).

It is invoked every time the comparison option is chosen, and this information can be

easily obtained from the Eclipse plugin APIs. The method takes a parameter of type

ISelection that contains information about the two selected files to be compared.

A ResourceCompareInput object is first created using this parameter (line 3). This

object is fairly heavyweight as it caches the complete structures of the two files. The

names of these files are then recorded in a list visitedFiles (lines 4 and 5), and this

list may be used by the workspace GUI upon receiving a user request to view the

history.

Next, openCompareEditorOnPage is invoked to open a compare editor in the

workspace GUI that shows the differences between the two files. The (simplified)
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Figure 6.2: Overview of the technique, illustrated using a simplified version of Eclipse
bug #115789.

method body is shown at lines 11–17. In this method, the new ResourceCompareInput

object is cached in a NavigationHistoryInfo object retrieved from the current work-

bench page for future save or restore operations (lines 14–16). Caching this heavy-

weight input object is actually the cause of the leak: the structures of the two files

keep being created and referenced. As a result, the memory footprint grows quickly,

and Eclipse runs out of memory. Note that in the real Eclipse code, this cache op-

eration (at line 16) and the runCompare method are in two different plugins, which

makes it particularly hard to diagnose the problem as these plugins are written by

different groups of programmers. The two plugins communicate only through public

interfaces and it is unclear to programmers of one plugin what side effects the other
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plugin can have. It is interesting to see that despite the fact that the developers

of plugin org.eclipse.compare are aware that the input must be cleared after the

comparison (e.g., in fact, the comment at line 8 is from the real code), these references

are still unnecessarily kept somewhere out of their scope.

While these plugins have been studied in previous work [20, 71], we start with

the tier H approach to simulate what a programmer would do at the beginning of a

diagnostic task. Hence, our experience with this case, to a large degree, reflects how

a programmer unfamiliar with a program can use the tool to diagnose memory leaks.

We first need to identify a transaction and let the tool infer unnecessary references

for the transaction. This is easy: as the comparison is the regularly occurring event

leading to the leak, it is a natural idea to let the transaction cross the entire body

of method runCompare, as shown in Figure 6.2(a). A transaction creation (at line

2) takes two parameters: a transaction identifier object and a mode in which the

transaction works. The identifier object must be unique per transaction and must be

created before the transaction starts. Here we choose s to be the identifier object,

because s refers to an ISelection object that is created per comparison operation

before runCompare runs. Constant INFER informs the tool to run in inference mode.

We found that the identifier object is usually easy to find for a transaction: a trans-

action body often crosses a method that is invoked on an existing object. In many

cases, either the receiver object or a parameter object of the method can be selected

as the transaction identifier object (as long as it is created per transaction and does

not cross multiple transaction invocations).
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For each transaction, its spatial boundary is specified by a pair of curly brackets

(i.e., {...}) and its temporal boundary is defined by the lifetime of its identifier ob-

ject. To find unnecessary references, we focus on objects created within its spatial

boundary, and check their lifetimes against its temporal boundary. Informally, the

semantics of a transaction is such that each transaction-local object must die4 be-

fore the identifier object, and only shared objects can live after the identifier object

dies. In inference mode, where a programmer does not explicitly specify local and

shared objects, our tool infers shared objects automatically: objects created within

the spatial boundary are treated as shared objects if they are still live at the time the

identifier object dies. Once an object is marked as shared, the tool starts tracking its

staleness and records a violation if it is not used for a given period of time, based on

the intuition that an object that one transaction intends to share with other transac-

tions should be used outside its creating transaction. Violations are aggregated and

eventually reported in the order of their frequencies.

The following example shows a typical violation report that includes information

about the transaction where the violating object is created, its creation site, violation

type, the number of times this violation occurs, and the (heap) reference paths that

lead to this object at the time of the violation. Each line in a reference path shows

the information of an object on the path. While only one reference path is shown

here (for illustration) for this violation, multiple paths were actually reported by the

tool.

Transaction specified at:

CompareAction:runCompare(ISelection), ln 2

Violating objects created at:

CompareEditorInput:createOutlineContents

4In this chapter, an object is considered to die immediately after it becomes unreachable in the
object graph.
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(widgets.Composite), ln 439

Violation type:

Objects shared among transactions are not used

Frequency: 4

Reference paths:

Type: ArrayList, created at: NavigationHistory:

<init>(WorkbenchPage), ln 44

--> Type: Object[], created at: ArrayList: <init>(I), ln 119

--> Type: NavigationHistoryEditorInfo, created at:

NavigationHistory: createEntry(...), ln 553

--> Type: ResourceCompareInput, created at: CompareAction:

runCompare(ISelection), ln 3

This reference path makes it easy to explain why this Resource CompareInput

object is shared: the reference path exists because the object is cached (transitively)

by a NavigationHistory object. However, this is not the only violation in the tier H

report. The two strings created at lines 4 and 5 (together with many other objects)

are also in the report as they are not used at all if there is no user request to perform

history-related operations. It takes some time to inspect this report, as it contains a

total of 36 violations. By ranking violations (based on frequencies and other factors),

it is not hard for us to eliminate many of them that are lower on the list and that are

obviously not leaks. For example, after inspecting the warnings, we determine that

these small strings (and other similar objects) are not the major cause of the leak,

because the growth of used memory is so significant that it is unlikely to be due to

small objects (especially because their frequencies are not significantly higher).

As we obtain this knowledge (regarding these strings and other irrelevant violating

objects), we move down to tier M for a more focused analysis. In Figure 6.2(b), we

explicitly mark these strings (and others created by the two add calls) as shared

(with a share region) and let our tool run in checking mode. Objects created in the

transaction but not in the share region are marked (implicitly) as transaction-local

objects. Our tool then ignores objects marked as shared and reports violations only

when transaction-local objects are found live after the transaction identifier object
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dies. This gives us a much cleaner report (with 4 violations), and of course, the

violation shown earlier appears in the report, indicating the ResourceCompareInput

object is referenced from somewhere else.

After these two rounds of diagnosis, we have gained implementation knowledge

(e.g., the general procedure of performing a comparison operation) and some insights

into the problem (e.g., this leak might be caused by an unnecessary reference some-

where in NavigationHistory). During code inspection, we become interested in the

comments in line 8 of the code: this statement has a clear purpose of releasing the

input object, but why did we see it is still reachable in both tier M and tier H reports?

Having this question in mind, we decide to perform a detailed (tier L) diagnosis using

a lifetime assertion (e.g., assertDB asserts a “dies-before” relationship), as shown in

Figure 6.2(c). This single assertion fails, which confirms our suspicions.

After some code inspection (with the help of the reference path associated with the

violation), we found that NavigationHistory allows a user to step backward and for-

ward through browsed editor windows. It keeps a list of NavigationHistoryEntry

objects, each of which points to an EditorInfo object that, in turn, points to a

CompareEditorInput object, the root of a data structure that holds the diff re-

sults. NavigationHistory uses a count to control the number of EditorInfo ob-

jects it caches, and removes an EditorInfo if the count drops to zero. However,

NavigationHistory does not correctly decrement this count in some cases, leading

to unnecessary references.

This example clearly shows the difficulty of diagnosing real-world memory prob-

lems. The root cause of this bug is that the NavigationHistory entries are cached

and not getting removed due to reference-counting problems. This occurs entirely
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on the UI side. The developers of the compare plugin may have never thought that

calling a general interface to open an UI editor can cause a big chunk of memory to

be cached. The complexity of the large-scale code base and the limited knowledge of

each individual developer strongly call for LeakChaser’s step-by-step approach. Such

tool support can help a programmer who starts without insights into the program or

its leak, to systematically explore the leaky behavior in order to pinpoint its cause.

6.2 Assertions and Transactions

This section presents a formalism to describe our analysis of unnecessary refer-

ences. The presentation proceeds in three steps. First, we define a simple garbage-

collected language assert and its abstract syntax. We next give a semantics of this

language by focusing on its traces. Each trace is a sequence of basic events (e.g., alloc,

dealloc, and use) on objects, transaction events (e.g., start and end), and assertions.

Finally, we formulate assertion checking and inference of unnecessary references as

judgments on traces (i.e., trace validation). Note that in our implementation (dis-

cussed in Section 6.3), checking and inference are performed during GC runs. Here

the trace collection phase and the trace validation phase are separated for ease of

presentation and formal development.

Language assert The abstract syntax and the semantic domains for language

assert are defined in Figure 6.3. The program has a fixed set of global reference-

typed variables. An allocation site has the form a = new refo, where o stands for an

allocation site ID defined at compile time.

There are two types of assertions: assertDB and assertDBA. assertDB(a, b) as-

serts that object (pointed to by) a must die before (or together with) object (pointed
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Variables a, b ∈ V

Allocation sites o ∈ O

Instance fields f ∈ F

Labels l ∈ N

Assertions e ::= assertDB(a, b) | assertDBA(a, b)
Transactions t ::= transaction(a, m){ tb }
Trans bodies tb ::= s ; tb | share { s } tb | ǫ
Trans modes m ::= CHECK | INFER
Statements s ::= a = b | a = new refo | a = null | while . . .

| a = b.f | a.f = b | e | gc | if . . . | s ; s
Program p ::= s ; p | t ; p | ǫ

(a)

Labeled object ô ::= ol ∈ Φ

Environment ρ ∈ V→ Φ ∪ {⊥}
Heap σ ∈ Φ× F→ Φ ∪ {⊥}
Operation τ ::= 〈ô, A | D | U〉o | 〈ô, m, S | E〉t

| 〈S | E〉s | 〈ôa, ôb, DBA | DB〉a

Traces α ::= τ , α | ǫ
(b)

Figure 6.3: A simple assert language: (a) abstract syntax (b) semantic domains.

to by) b. Another assertion assertDBA(a, b) specifies that object a must die be-

fore a new object is created by object b’s allocation site (DBA is short for “Dies

Before Allocation”). This assertion is useful to enforce a “replaces” relationship be-

tween two objects. For example, it can be used to enforce that an old (invalid)

screen configuration is appropriately released before a new screen configuration is

created upon repainting of an interface in a GUI program. As another example,

in Figure 6.2(c), instead of using assertDB, we can also write assertDBA(fInput,

fInput) to assert that the current ResourceCompareInput object must die before
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the next ResourceCompareInput object (created by the same allocation site) is allo-

cated. While our framework includes a few other assertions, they are not discussed

because they can be implemented using these two basic assertions.

To ease the formal development, a GC run can only be triggered by a gc statement,

which traverses the object graph to reclaim unreachable objects.

Note that we do not allow the nesting of transactions. While this is easy to

implement in our framework, we have not found it helpful for pinpointing memory

leak causes.

Each run-time object is labeled with its allocation site o and an integer l denoting

the index of this object among all created by the allocation site. Environment and

heap are defined in standard ways. A trace is a sequence of operations. There are

four types of operations, each of which is a tuple annotated with a type symbol: o for

object operation, t for transaction operation, s for share region operation, and a for

assert operation. Each object operation is an object and event pair, where an event can

be either A (i.e., Alloc), D (i.e., Dealloc), or U (i.e., Use). Each transaction operation

is a triple containing its identifier object, the mode (i.e., CHECK or INFER), and

whether this operation corresponds to the start of the transaction (S) or its end

(E). A share region operation has only a type that indicates whether it is the start

or the end of the region. Each assert operation contains two input objects and an

assertion type (DBA for assertDBA and DB for assertDB). While the language does

not explicitly consider threads, our analysis is thread-safe as each transaction creation

is a thread-local event. Different transaction instances created by different threads

can exist simultaneously for the same transaction declaration. Trace collection and
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α′ = α ◦ 〈ô,A〉o

ô.allocsite = o ô.l = newObjIndex(o)

a = new refo , ρ, σ, α ⇓ ρ[a 7→ ô], σ, α′
(New)

a = b.f, ρ, σ, α ⇓ ρ[a 7→ σ(ρ(b).f)], σ, α ◦ 〈ρ(b),U〉o (Load)

a.f = b, ρ, σ, α ⇓ ρ, σ[ρ(a).f 7→ ρ(b)], α ◦ 〈ρ(a),U〉o (Store)

s, ρ, σ, α ◦ 〈ρ(a),m,S〉t ⇓ ρ′, σ′, α′ α′′ = α′ ◦ 〈ρ(a),m,E〉t

transaction(a,m){s}, ρ, σ, α ⇓ ρ′, σ′, α′′
(Tran)

s, ρ, σ, α ◦ 〈S〉s ⇓ ρ′, σ′, α′ α′′ = α′ ◦ 〈E〉s

share{s}, ρ, σ, α ⇓ ρ′, σ′, α′′
(ShareReg)

assertDB(a, b), ρ, σ, α ⇓ ρ, σ, α ◦ 〈ρ(a), ρ(b),DB〉a (AssertDB)

assertDBA(a, b), ρ, σ, α ⇓ ρ, σ, α ◦ 〈ρ(a), ρ(b),DBA〉a (AssertDBA)

tr = ◦{〈ô,D〉o|ô ∈ σ ∧ ô /∈ reachable(ρ, σ)} ∀〈ô,D〉o ∈ tr : ô /∈ σ′ α′ = α ◦ tr

gc, ρ, σ, α ⇓ ρ, σ′, α′
(GC)

s1, ρ, σ, α ⇓ ρ′, σ′, α′ s2, ρ
′, σ′, α′ ⇓ ρ′′, σ′′, α′′

s1; s2, ρ, σ, α ⇓ ρ′′, σ′′, α′′
(Comp)

Figure 6.4: Operational semantics.

validation are also performed on a per-thread basis. A special symbol ⊥ is added to

the heap and the environment to represent a null value.

Language semantics An operational semantics is given in Figure 6.4. A

judgment of the form s, ρ, σ, α ⇓ ρ′, σ′, α′ starts with a statement s, which is

followed by environment ρ, heap σ, and trace α. The execution of s terminates with

a final environment ρ′, heap σ′, and trace α′. Trace concatenation is denoted by

◦. Rules New, AssertDB, AssertDBA, and Comp are defined as expected. In

rules Load and Store, trace α is augmented with an object use event. In rule

Tran, for each transaction, the two transaction events (i.e., S and E) are added
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in the beginning and at the end of the trace for the execution of the sequence of

statements in the transaction. The share region events are handled in a similar way

(in rule ShareReg). Rule GC removes unreachable objects from the heap, and

records deallocation events for them in the trace α.

Trace validation Checking and inference of unnecessary references are formu-

lated as judgments ω, γ, π, ι ⊢ α ; ω′, γ′, π′, ι′ on traces. Here α is an execution trace,

ω is a stack of transactions and share regions, γ is a “diesBefore” map in which each

pair (ôa, ôb) has been asserted to have a “diesBefore” relationship (i.e., ôa must die

before ôb), π is a “diesBeforeAlloc” map which contains pairs (ôa, o) where object ôa

has been asserted to die before allocation site o creates a new object, and ι maps each

object that has been marked shared (i.e., in inference mode) to its staleness value

(measured in terms of the number of transactions). As we currently do not support

nested transactions, ω can contain at most one transaction identifier object (and one

⊥ symbol indicating the execution is in a share region). Transaction nesting can be

implemented easily by allowing ω to contain multiple identifier objects.

The validation rules are given in Figure 6.5. Validity checks are underlined, and

the remaining clauses (without underlines) are for environment updates. Rule VAl-

loc first ensures that if an object ô1 has been asserted to die before this allocation

site creates a new object (i.e., due to an assertDBA assertion), ô1 is not live anymore.

A violation is recorded if there is such an object. If ω is not empty (meaning the

execution is currently in a transaction) and top(ω) is not ⊥ (meaning we are not in a

share region), a pair (ô, top(ω)) is added to map γ because, as mentioned earlier, all

transaction-local objects are asserted to die before the transaction identifier object,

and top(ω) returns the identifier object of the current transaction.
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∄ô1 : (ô1, ô.allocsite) ∈ π

γ′ = γ ∪ (ô, top(ω)), if ω 6= ∅ ∧ top(ω) 6= ⊥ γ′ = γ, otherwise

ω, γ, π, ι ⊢ 〈ô,A〉o ; ω, γ′, π, ι
(VAlloc)

γ′ = γ\{(ô, ∗)} π′ = π\{(ô, ∗)}
∄ô1 : (ô1, ô) ∈ γ ∧ ι′ = ι\{(ô, ∗)}, if ω = ∅ ∨MODE = CHECK

ι′ = (ι\{(ô, ∗)}) ∪ {(ô1, 0) | (ô1, ô) ∈ γ}, otherwise

ω, γ, π, ι ⊢ 〈ô,D〉o ; ω, γ′, π′, ι′
(VDealloc)

ω′ = ω ◦ ô MODE = m π′ = π ∪ (ô, ô.allocsite)
ι′ = ι[∀p̂ : p̂ 7→ ι(p̂) + 1]

ω, γ, π, ι ⊢ 〈ô, m, S〉t ; ω′, γ, π, ι′
(VTranS)

ω = ω′ ◦ ô ∀p̂ ∈ dom(ι) : ι(p̂) < T

ω, γ, π, ι ⊢ 〈ô, m, E〉t ; ω′, γ, π, ι
(VTranE)

ι′ = ι\{(ô, ∗)}

ω, γ, π, ι ⊢ 〈ô, U〉o ; ω, γ, π, ι′
(VUse)

ω, γ, π, ι ⊢ 〈S〉s ; ω ◦ ⊥, γ, π, ι (VShareS)

ω = ω′ ◦ ⊥

ω, γ, π, ι ⊢ 〈E〉s ; ω′, γ, π, ι
(VShareE)

ω, γ, π, ι ⊢ 〈ô1, ô2,DB〉a ; ω, γ ∪ {(ô1, ô2)}, π, ι (VDB)

ω, γ, π, ι ⊢ 〈ô1, ô2,DBA〉a ; ω, γ, π ∪ {(ô1, ô2.allocsite)}, ι (VDBA)

ω, γ, π, ι ⊢ τ ; ω′, γ′, π′, ι′ ω′, γ′, π′, ι′ ⊢ α ; ω′′, γ′′, π′′, ι′′

ω, γ, π, ι ⊢ τ, α ; ω′′, γ′′, π′′, ι′′
(VTrace)

where
ω ∈ Transaction stack : N→ Φ ∪ {⊥}
γ ∈ “diesBefore” map: Φ→ Φ

π ∈ “diesBeforeAlloc” map: Φ→ O

ι ∈ Staleness map for shared objects: Φ→ N

MODE: Mode of transaction (CHECK or INFER)
T: Threshold staleness value

Figure 6.5: Checking and inferring of unnecessary references.

VDealloc removes all entries 〈ô, ∗〉 in the three maps upon the deallocation of

ô. If there is no running transaction, or the running transaction is in CHECK mode,

this rule checks if there exists 〈ô1, ô〉 ∈ γ. If this is the case, a violation is reported,

because ô1 is still live at the time ô dies. If the running transaction is in INFER
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mode, such ô1 is marked as a shared object and the tool starts to track its staleness:

a pair (ô1, 0) is added to map ι.

Rule VTranS first pushes the transaction identifier object onto stack ω. It

then adds a “diesBeforeAlloc” assertion on the identifier object itself: adding a pair

(ô, ô.allocsite) indicates that this current instance ô is asserted to die before alloca-

tion site ô.allocsite creates a new object. As the lifetimes of transaction identifier

objects are used to specify temporal boundaries of transactions, they are not allowed

to overlap. Lifetime overlapping can lead to ambiguity of transaction behaviors. For

each object inferred to be a shared object (i.e., p̂ ∈ dom(ι)), its staleness value is

incremented. An object’s staleness is defined as the number of transactions since it

has been marked as shared. At the end of each transaction (rule VTranE), this

staleness value is checked against a user-defined threshold T. A violation is reported

if a shared object’s staleness exceeds this threshold. This rule also pops stack ω.

This stack becomes empty after this rule, indicating that no transaction is currently

running.

VUse removes from ι an object marked as shared: its staleness is no longer tracked

because the object is used. Rules VShareS/VShareE push/pop ⊥ onto/from stack

ω. Having ⊥ on top of ω means the execution is in a share region of a transaction.

Rule VTrace specifies the composition of two different traces.

Our system allows one to specify transactions and assertions simultaneously in

a program. Transaction properties are translated into basic assertions, which are

checked together with assertions specified by programmers. For example, upon the

allocation of each object ô in a transaction (shown in Valloc), ô and the transaction
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identifier object (i.e., top(ω)) are added into map γ, and this relationship is checked

in exactly the same way as a normal assertDB assertion (shown in VDB).

6.3 Implementation

We have implemented LeakChaser in Jikes RVM 3.1.0, a high-performance Java

virtual machine [70]. LeakChaser is publicly available on the Jikes RVM Research

Archive.5

Metadata and instrumentation LeakChaser adds one word to the header of

each object that tracks the allocation site information of the object. There are two

dynamic compilers in Jikes that transform Java bytecode into native code. The base-

line compiler compiles each method when it first executes. When a method becomes

hot (i.e., executed frequently), the optimizing compiler recompiles it at increasing

levels of optimizations. Our approach changes both compilers to add the necessary

instrumentation. LeakChaser adds instrumentation at each allocation site in order to

store an identifier for the source code location (class, method, and line number) into

the allocated object’s extra header word.

Garbage collection LeakChaser performs assertion checks during garbage

collection runs. It uses a table structure (discussed shortly) to represent the assertions,

and scans this table to perform checks at the end of each GC run.

To implement quick assertion checks, we create an assertion table, shown in Fig-

ure 6.6, to record asserted “diesBefore” and “diesBeforeAlloc” relationships during

the execution. Once a pair of objects is asserted, we create an assertion table entry for

each of them, and then update the LeakChaser-reserved header word in each object

5http://www.jikesrvm.org/Research+Archive
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Figure 6.6: Assertion table implementation that allows quick assertion checks.

with the address of the object’s corresponding assertion table entry. The pointer to

the source code information of the object initially stored in this space is moved to a

field of this table entry.

For each table entry, we let its “assertion element pointer” field point to a linked

list of assertion elements, each of which represents an object that has been asserted

together with this object. For example, for an assertion assertDB(a, b), we create

an assertion element (DB, idb, null) and store its address in a’s assertion table entry.

Once a new assertion assertDBA(a, c) is executed, a new assertion element (DBA, idc,

null) is created and appended to the list (i.e., now the previous element’s next field

points to this new element). In this way, all objects that have been asserted through

assert...(a,. . .) are in an assertion chain that is going to be checked when a’s entry is

traversed. We do not need to create an assertion element representing a and associate

it with b and c’s table entries, as this unnecessarily duplicates information.

The current implementation of LeakChaser supports all non-generational garbage

collectors (e.g., MarkSweep, MarkCompact, and Immix). At the end of each GC

run, the assertion table is scanned twice: the first scan marks entries that correspond
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to objects that are unreachable in this GC (i.e., dead objects), and the second scan

performs violation detection. Hence, in the second scan, all table entries represent

live objects. In order to slow down the growth of the assertion table, table entries

corresponding to unreachable objects are reclaimed and reassigned later to newly as-

serted objects. Our current implementation does not work correctly in a generational

garbage collector, as a nursery GC scans only part of the heap and thus may cause

LeakChaser to report either false positives or false negatives.

For each entry, its assertion element chain is traversed. For an element whose

type is DB, if the object represented by this element has been reclaimed, we report

a violation. It is much more difficult to check a DBA assertion. We create a global

array (per thread) and each entry in this array records the status of an allocation

site. Once an assertDBA(a, b) assertion is executed, the array entry corresponding

to b’s allocation site is marked as “ASSERTED”. When this allocation site creates

a new object, the status of its array entry is changed to “ALLOCATED”. During

the scanning of the assertion table, for an assertion element (DBA, i, *), a violation is

reported if the entry of this global array corresponding to the allocation site of the

object whose assertion table entry id is i is “ALLOCATED”, because it creates a new

object before the asserted object dies. No false information can result from assertion

failures reported by the tool because the assertions directly specify the liveness of

objects (instead of reachability on the object graph) and report violations only when

definitive evidence is observed.

In this chapter, we focus on the real-world utility of LeakChaser, rather than

its performance. Hence, this assertion table is scanned during every GC. Future

work could incorporate sampling to reduce overhead (i.e., scan the assertion table
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less frequently). To report the reference paths that lead to a violating object, we

modify the worklist-based algorithm used by the tracing collector in a way so that

when a reachable object is added into the worklist, its reference path (from which

it is reached) is also added (to another worklist). The length of this path can be

determined by the user. We develop a technique that aggregates violations of objects

that are created by the same allocation sites and whose reference paths match, so

that a violation is reported only after its (aggregated) frequency exceeds a user-

defined threshold value. LeakChaser filters out violations that are associated with

VM objects. Future work could consider more powerful aggregation and ranking

functions, such as a combination of frequency, staleness, and the amount of memory

leaked. In order to make LeakChaser work for a generational GC, future work could

perform the two assertion table scans separately: the first scan (that marks dead

objects) would be performed at the end of every GC, while the second scan (that

checks assertions and detects violations) would be performed only at the end of each

full-heap GC.

6.4 Case Studies

We have evaluated LeakChaser on six real, reported memory leaks. While our

ultimate goal is to evaluate with enterprise-level applications such as application

servers and programs running on top of them, Jikes RVM fails to run some larger

server applications (such as trade in the latest DaCapo benchmark set [15]).

For these six cases, we also applied Sleigh [20], a publicly available research mem-

ory leak detector for Java. Sleigh finds leaks by tracking the staleness of arbitrary

objects and reporting allocation and last-use sites for stale objects.

163



For each case, we compared our report with the report generated by Sleigh, and

found that first, for the same amount of running time, information reported by our

(even tier H) approach is much more relevant than that reported by Sleigh. Sleigh

requires much more time to collect information and generate relatively precise reports

because it is designed for production runs and uses only one bit per object to encode

information statistically, whereas LeakChaser tracks much more information for de-

bugging and tuning (at a higher cost). We did not run Sleigh for as much time as in

the prior work [20], and thus Sleigh results are different from those reported earlier.

Second, our iterative technique produces more precise information at each tier, which

eventually guides us to the root causes of leaks.

Experience summary We found that it is quite easy to specify transactions

in large programs even for users who have never studied the programs before. From

our experience using LeakChaser, we generalize an approach that can be employed

by performance experts to select transactions. All large-scale applications we have

studied can be classified into two major categories: event-based systems (e.g., web

servers and GUI applications) and transaction-based systems (e.g., enterprise Java

applications and databases). An event-based system often uses a loop to deal with

different events received, dispatching them to their corresponding handlers. For such

a system, our transaction can cross the body of the loop; that is, the handling of each

event is treated as a transaction. Each event object can be used as the identifier object

for the transaction. It is much easier to determine a transaction for a transaction-

based system, as each “system transaction” in the original program can be naturally

treated as a transaction in LeakChaser.
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Case #Tran #TO #LO #SO #V #F

Diff 8 2048148 1707244 340904 36 14
Jbb 4346 256236 186752 69484 14 4
Editor 12 512471 506620 5851 2 13
WTP 20 2774556 2767237 7319 27 39
MySQL 10000 319529 170902 148627 11 0
Mckoi 100 2689366 2243888 445478 10 193

Table 6.1: Tier H statistics for transactions for the case studies. Shown are the
number of transaction runs (#Tran), the total number of objects tracked (#TO), the
number of transaction-local objects (#LO), the number of shared objects inferred
(#SO), the number of violations reported after filtering (#V), and the number of
violations filtered by our filtering system (#F).

A particularly useful feature of LeakChaser is that it allows programmers to

quickly specify transactions at a client that interacts with a complex system, without

digging into the system to understand its implementation details. For example, we

diagnose Eclipse framework bugs by specifying transactions in plugins (i.e., clients)

that trigger these bugs. Likewise, for databases such as MySQL and Mckoi, we only

need to create transactions at client programs that perform database queries. This

feature allows performance experts like us (who are unfamiliar with these databases)

to quickly get started with LeakChaser. If we could not put transactions around

clients, it would be hard to even find a starting point in these systems that have

thousands of classes and millions of lines of code.

Table 6.1 shows transaction and assertion statistics for all six cases. Despite the

large number of assertions checked for each benchmark, LeakChaser reports a small

number of warnings. We show statistics for tier H only, as it is the coarsest-grained

approach and thus runs the most assertions and reports the most violations.
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Diff (Eclipse bug #115789) We quickly found this bug using our three-tier

approach and the detailed diagnosis process discussed in Section 6.1.

We have tried Sleigh on this program and the top four last-use sites (i.e., where

objects are last used) reported by Sleigh are in class java.util.HashMap, in methods

put and addEntry.

In this case, the sites leading to these HashMap operations point back to method

createContainer in class org.eclipse.compare.ZipFileStructureCreator, which

indicates that the structures of input files are cached but not used. At this point, it

is completely up to the programmer to find out why these structures become stale

and which objects reference them. Recall that even a violation reported by our tier

H approach shows the violating object is referenced by a NavigationHistory object,

which is actually the root cause of the leak (shown in in Section 6.1). According

to [20], Sleigh could have reported much more precise information if the program was

run for significantly more time. For example, LeakChaser reported the root cause

after only 8 structure diffs were performed, while Sleigh may need more than 1000

diffs to report relatively precise information regarding where the stale objects are

created. In addition, as we observed in our experiments, reporting reference paths

can be more helpful for finding leak root causes than reporting program locations,

which are usually far from where the true problem occurs.

Jbb SPECjbb2000 simulates an online trading system. It contains a known

memory leak that has been studied many times [1,20,71,158]. This bug is caused by

unnecessary caching of Order objects. To investigate the usefulness of LeakChaser

in helping programmers unfamiliar with the code, we attempted to simulate what

these programmers would do. First, we needed to understand the basic modules and
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functions of the program so that we can identify regularly occurring events. This is not

hard at all, as SPECjbb is a transaction-based system where a TransactionManager

class runs different transactions types, and the transaction-creating method is only

a few calls away from method main. This method contains a loop that retrieves a

command from an input map per iteration, and creates and runs a transaction whose

type corresponds to the command received. This was the knowledge we obtained

quickly before trying the tier H approach.

Problem 1: unused objects We added a transaction that encloses the main Jbb

transaction-creating method. Each Jbb transaction object is used as the transac-

tion identifier object of its corresponding transaction. We ran the program on our

modified VM and let LeakChaser infer unnecessary references. The tool reports 14

violations (detailed statistics are shown in Table 6.1). Most of the violating objects

are String and History objects cached in orders, and the rest are Order objects

transitively referenced by District objects. We inspected the source code and found

that these String objects are created to represent district information or names of

order lines, and the History objects are used to represent histories of orders made

by each company. These objects are indeed never used in the program. We modified

the program to eliminate these unused strings and History objects. The throughput

improvements are shown in Figure 6.7(a). We did not expect to find this problem,

which had not been reported before.

Problem 2: mutual references It was unclear to us what to do about the Order

objects reported above: while many are not used again, some are retrieved by sub-

sequent transactions. We further inspected the code in order to run a more focused

diagnosis. The reference paths in our tier H report showed that the unused Order
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objects are referenced by Customer objects and then by Company objects. Follow-

ing this clue, we inspected all classes related to Company and Customer. One clear

piece of information that we could take advantage of were the ownership relationships

among Company and Customer objects and objects referenced by them. For example,

each customer has an order array that stores orders made by that customer. It is

clearly problematic if a customer object dies while an order made from this customer

is still alive. Using this information, we wrote 72 diesBefore assertions to assert

such relationships.

We easily added these assertions in constructors, wherever an owned object is

assigned to an owner object. Running this version of the program resulted in 4

violations, all of which were related to orders. By inspecting reference paths associated

with these violations, we found the following three important problems. (1) Order and

Customer are mutually referenced, which explains the persistent increase in Order

objects, even though customers frequently drop orders. (2) Customer objects are

not released even after their container arrays in Company die. They are not released

because Company holds unnecessary references to these objects. (3) Order and Heap

are mutually referenced, which prevents Heap objects from being garbage collected.

Fixing all of these problems (including the unused String and History objects) led

to both the elimination of the quick growth of memory consumption and an overall

12.7% throughput improvement (from 13,644 to 15,372 ops/sec). Previous work has

not reported all of these problems that we found using LeakChaser.

An important last-use site reported by Sleigh is in method getObject of a BTree

data structure that is used to retrieve Order objects from customers. The associated

calling contexts tell us that this call is made transitively by processLine. While
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Figure 6.7: (a) Throughput improvements after fixing the memory problems detected
in SPECjbb; (b) Comparison between the memory footprints of Mckoi before and
after fixing the leak.

this is indeed a method that needs to be fixed, the key to understanding the problem

is learning about the mutual references among Order and other classes. Without

such reference information, it remains a daunting task to identify the root cause and

develop a fix.

Editor (Eclipse bug #139465) This reported memory leak in Eclipse 3.2 occurs

when opening a .outline file using a customized editor and making selections on

the “outline” page. Objects created while displaying the file keep accumulating, and

Eclipse eventually crashes. This bug is still open because users can rarely reproduce
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the leak. While we could not observe the reported symptoms, we still ran the test

case with LeakChaser. We wrote a plugin that repeats multiple times the process of

opening the editor, making selections, and closing the editor. We added a transaction

in this plugin that crosses each such process (which manipulates the editor), and used

the editor object as the transaction identifier.

The tier H approach reported only two violations even when we set a very small

number (2) as the staleness threshold (see T in Figure 6.5). For each violation, we

could not find any object on its associated reference paths that is related to the editor

of interest. Hence, we quickly concluded that there were no unnecessary references

for this case in Eclipse 3.2 on the Linux platform where we ran the experiment: had

there existed a problem with respect to a transaction, it should have been reported

by the tier H approach, as the approach captures references to all objects that are

shared but not used. For this case, Sleigh reported four last-use sites, and we found

it difficult to verify whether or not these sites are relevant. The key is to understand

how these objects are reachable in the heap, instead of where they are used in the

program.

WTP (Eclipse bug #155898) According to the bug report for this memory leak

in the Eclipse Web Tool Platform (WTP), the memory footprint grows quickly when

copying and pasting large text blocks in the JSP editor associated with the WTP

framework. This bug is still open because it cannot always be reproduced. One

developer suspected that “the bug might have already been fixed by the addition

of other features in a later version of WTP” one year after it was reported. We

reproduced the problem and saw the memory footprint growth by writing a plugin

that automatically copies and pastes text several times. Similarly to the previous
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case, we added a transaction in the plugin and let it cross each iteration that involves

a pair of copy-and-paste operations. Our tier H approach reported a total of 26

violations, among which 11 seemed clearly irrelevant to the problem (e.g., regarding

Eclipse’s Java Development Tools and other plugins).

To confirm this observation, we used this plugin to perform the same copy-and-

paste operations in a regular text editor in Eclipse, which does not have memory

problems. These 11 violations also appeared in the generated report. Thus, they

were safely discarded. As this bug is caused by copying and pasting text, we focused

on string-related violations. Only one violation among the remaining 15 was about

String objects, shown as follows:

Transaction specified at:

Quick_copy_pastePlugin:mouseUp(MouseEvent), ln 258

Violating objects created at:

StructuredTextUndoManager:createNewTextCommand(String, String), ln 302

Violation type:

objects shared among transactions are not used

Frequency: 28

Reference paths:

Type: StructuredTextViewerUndoManager, created at:

StructuredTextViewerConfiguration

: getUndoManager(ISourceViewer), ln 469

--> Type: StructuredTextUndoManager, created at:

BasicStructuredDocument: getUndoManager(), ln 1823

--> Type: BasicCommandStack, created at:

StructuredTextUndoManager : <init>(), ln 160

--> Type: ArrayList, created at: BasicCommandStack: <init>(), ln 67

--> Type: Object[], created at: ArrayList: ensureCapacity(I), ln 176

This violation clearly shows that the strings are (transitively) referenced by a text

undo manager. This information quickly directed us to classes responsible for undo

operations. The cause of the problem was clear to us almost immediately after in-

specting how an undo operation is performed. In this JSP editor, all commands (and

their related data) are cached in a command stack, in case an undo is requested in

the future. There is a tradeoff between “undoability” (i.e., how many commands

are cached) and performance, especially when there is a large amount of data being
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cached with each command. In this version of WTP (WTP 1.5 with Eclipse 3.2.0),

this command stack can grow to be very deep (it is not cleared even when a save

operation is performed), and thus, many strings can be cached, leading to significant

performance degradation. A later version has limited the depth of this stack (for

other purposes), implicitly fixing this bug. For this case, we understood the problem

even without moving to tier M. We did not manage to run Sleigh for this case, as

Sleigh was developed on top of an older version of Jikes RVM (2.4.2), which cannot

run Eclipse 3.2.

MySQL This case is a simplified version of a JDBC application that exhausts

memory if the application keeps using the same connection but different SQL state-

ments to access the database. Prior work reproduced this leak to evaluate tolerating

leaks [23], but no prior work reports the leak cause. The leak occurs because the JDBC

library caches already-executed SQL statements in a container unless the statements

are explicitly closed. We created a transaction that crosses the creation and execution

of each PreparedStatement (in a loop). We executed 100 iterations, and the tier H

approach reported 10 violations, all of which were related to PreparedStatement,

regarding either the statement object itself, or objects reachable from the statement.

From the associated reference paths, it took only a few minutes for us to identify

the container that caches the statements: a HashMap created at line 1486 (in the

constructor) of class com.mysql.jdbc.Connection. For this case, Sleigh reported

warnings after the program ran for 303 iterations, significantly longer than for Leak-

Chaser. Sleigh reported a few last-use sites where PrepareStatement objects are last

touched. We did not find the HashMap information in Sleigh’s report, which is the

key to tracking down this leak bug.
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Mckoi Mckoi (http://www.mckoi.com) is an open-source SQL database system

written in Java. It contains a leak that previous work reproduced to evaluate leak

survival techniques [22, 23]. However, none of the existing work has investigated the

root cause of the leak. We reproduced the leak by writing a client that repeatedly (100

times) establishes a connection, executes a few SQL queries, and closes the connection.

We started with our tier H approach and created a transaction that crosses each

iteration of this process in the client. Our tool reported 10 warnings, all regarding

objects that are reachable from a thread object of type DatabaseDispatcher. In

all the warnings reported, this thread object references a DatabaseSystem object,

which transitively caches many other never-used objects. By inspecting only the

constructors of DatabaseSystem and DatabaseDispatcher, we found that they are

mutually referenced. The creation of each DatabaseSystem object explicitly creates

a DatabaseDispatcher object and runs this thread in the background. There are

two major problems:

(1) DatabaseDispatcher runs in a while(true) loop, which means that no

DatabaseSystem object can ever be garbage collected even though its dispose method

is invoked. To address this problem, we broke this reference cycle when dispose

is invoked on DatabaseSystem. Next, in DatabaseDispatcher, we modified the

while(true) loop to terminate if its referenced DatabaseSystem object becomes

null. This modification resulted in a very slight improvement in performance, leading

us to believe there must be a bigger problem.

(2) A DatabaseSystem object can be created in two situations. (a) A new database

needs to be started (e.g., a connection is established); (b) a method dbExists (that
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checks whether a database instance has already been there) is called. In every iter-

ation, two DatabaseSystem objects are created but only one of them gets disposed.

The one created by dbExists is never reclaimed, because dispose is not explicitly

invoked on this object, which we quickly discovered by using a call graph generated

by an IDE tool. The developer took it for granted that this object would be garbage

collected, but it is referenced by a live thread. We added a call that invokes dispose

at the end of method dbExists.

For this case, all warnings generated by Sleigh are about objects cached (transi-

tively) by DatabaseSystem, and they are far away from the leaking thread. It would

be difficult to understand why these objects are not garbage collected without ap-

propriate reference paths, as reported by LeakChaser. The memory footprint of the

database before and after the leak is fixed is shown in Figure 6.7(b). The original

version of the program ran out of memory at the 106th iteration, while the modified

version ran indefinitely (as far as we could tell).

These six case studies demonstrate that developers do not need to have much

implementation knowledge in order to diagnose leaks with LeakChaser. LeakChaser

generates more relevant reports than Sleigh: it is easier to find the root cause from

reference chains that cache a violating object, than from the allocation or last-use

site of the object.

6.5 Overhead

We evaluated the performance of our technique using 19 programs from the

SPECjvm98 [139] and DaCapo [15] benchmarks, on a dual-core machine with an
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Bench (a) Overall time (b) GC time (c) Space
T1 T2 OT G1 G2 OG S1 S2 OS

check 0.033 0.068 2.1 0.016 0.033 2.0 11.4 10.3 0.9
compr 9.4 9.5 1.0 0.016 0.033 2.0 17.9 18.0 1.0
jess 2.2 2.4 1.1 0.022 0.049 2.2 48.9 58.4 1.2
db 4.9 5.0 1.0 0.024 0.062 2.6 22.2 24.9 1.1
javac 2.1 2.4 1.1 0.030 0.064 2.1 98.1 99.0 1.0
mpeg 6.2 6.2 1.0 0.020 0.039 2.0 19.4 19.8 1.0
mtrt 1.6 1.6 1.0 0.031 0.081 2.6 46.5 43.6 0.9
jack 1.7 1.8 1.0 0.025 0.050 2.0 79.6 76.8 1.0
antlr 38.7 43.2 1.1 0.032 0.074 2.3 53.5 57.3 1.1
bloat 98.3 105.9 1.1 0.073 0.169 2.3 515.1 520.0 1.0
chart 19.7 21.4 1.1 0.084 0.232 2.8 367.4 479.4 1.3
eclipse 150.8 157.5 1.0 0.207 0.465 2.2 512.4 532.7 1.0
fop 1.4 1.8 1.3 0.064 0.15 2.3 107.6 102.2 0.9
hsqldb 9.3 16.4 1.8 0.331 1.21 3.7 420.5 432.6 1.0
jython 45.6 48.6 1.1 0.077 0.172 2.2 119.7 137.8 1.2
luindex 35.3 37.7 1.1 0.031 0.070 2.3 45.5 49.8 1.1
lusearch 7.8 8.1 1.0 0.038 0.088 2.3 105.0 129.5 1.2
pmd 22.9 23.6 1.0 0.055 0.127 2.3 115.3 157.5 1.4
xalan 32.3 39.5 1.2 0.066 0.145 2.2 214.2 209.0 1.0

GeoMean - - 1.1 - - 2.3 - - 1.1

Table 6.2: Time and space overheads incurred by our infrastructure for the FastAdap-
tiveImmix configuration. Shown in column (a) are the original overall execution times
(T1) in seconds, the execution times for our modified JVM (T2), and the overheads
(OT ) in times (×). Column (b) reports the GC times and overheads: G1 and G2

show the average times for each GC run in the original RVM and our modified RVM,
respectively. OG reports the GC overheads as G2/G1. Memory consumption and
overheads are shown in column (c): S1 and S2 are the maximum amounts of mem-
ory used during the executions in the original RVM and our RVM, respectively. OS
reports the space overheads as S1/S2.

Intel Xeon 2.83GHz processor, running Linux 2.6.18. We ran each program using the

large workload.

Table 6.2 reports the time and space overheads that our tracking infrastructure in-

curs on normal executions (without assertions or transactions written). The overhead

measurements that we show in this section are obtained based on a (high-performance)
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FastAdaptiveImmix configuration that uses the optimizing compiler and the state-of-

the-art Immix garbage collection algorithm [16].

The LeakChaser infrastructure slows programs by less than 10% on average using

the optimizing compiler and an advanced garbage collector. Much of the overhead

comes from extra operations during GC and the barrier inserted at each object refer-

ence read to check the use of the object. Column (b) of Table 6.2 reports the detailed

GC slowdown caused by our tool, which is 2.3×, averaged across the 19 programs.

The space overheads, reported in column (c) of Table 6.2, are less than 10%, primar-

ily due to the extra word added to the header of each object. In some cases, the

peak memory consumption for LeakChaser is even lower than that for the original

run (i.e., OS is smaller than 1), presumably because GC is triggered at a different set

of program points that happens to have a lower maximum reachable memory size.

The overhead of assertion checking and inference is reported in Table 6.3. The

overall running time measurements are available only for Jbb, MySQL, and Mckoi,

as the other three cases are all based on Eclipse IDE operations. Note that in a run

with 4,346 transactions and 442,988 objects (shown in Table 6.1), our tool slows the

program 6.6× and 5.5× overall for the two configurations. Similarly to Table 6.2, the

overhead can be larger if we consider only GC time. For example, for Diff, a 2.8×

slowdown can be seen for GC time for FastAdaptiveImmix. Note that these overheads

have not prevented us from collecting data from any real-world application. In a

production setting, run-time overhead can be effectively reduced by sampling (i.e., the

current sampling rate is 100%). Future work could also define a tradeoff framework

between the quality of the reported information and the frequency of assertion table
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Bench (a) Overall time (b) GC time (c) Space
T1 T2 OT G1 G2 OG S1 S2 OS

Diff - - - 0.27 0.75 2.8 534.2 534.4 1.0
Jbb 50.7* 9.2* 5.5 0.008 0.056 7.0 313.7 315.3 1.0
Editor - - - 0.15 0.41 2.7 300.5 367.2 1.2
WTP - - - 0.22 0.58 2.6 52.7 52.9 1.0
MySQL 6.8 14.0 2.1 0.045 0.108 2.4 17.1 17.7 1.0
Mckoi 165.6 172.2 1.0 0.046 0.154 3.3 129.2 144.2 1.1

GeoMean - - 2.3 - - 3.2 - - 1.0

Table 6.3: Overheads for the cases that we have studied under FastAdaptiveImmix.
* indicates that we measure throughput (#operations per second) instead of running
time. For both MySQL and Mckoi, a fixed number of iterations (100) was run for
this measurement.

scanning (similar to QVM [9]), and find an appropriate sampling rate that can enable

the reporting of sufficient information at acceptably low cost.

6.6 Summary and Interpretation

This chapter presents another program-semantics-aware memory leak detector

that allows programmers with little program knowledge to quickly find the root cause

of a memory leak. The most significant advantages of this work over existing Java

leak detection tools are that (1) the approach uses lightweight user annotations to

improve the relevance of the generated reports, and can provide semantics-related

diagnostic information (e.g., which object escapes which transaction), and (2) it is

designed in a multi-tier way so that programmers at different levels of skill and code

familiarity can use it to identify performance problems. Our experience shows that

the three-tier technique is quite effective: the tool can help a programmer identify the

root cause of a leak after an iterative process of specifying, inferring, and checking

object lifetime properties. For the case studies we conducted, the tool provided more
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relevant information than an existing memory leak detector Sleigh. For example,

using the tool, we quickly found the root causes of memory issues in the analyzed

programs, including both known memory leaks and problems that have not been

reported before. While LeakChaser incurs relatively large overhead (2.3× on average),

we found it acceptable for debugging and performance tuning.

We envision that the assertions and transaction constructs proposed in this chapter

may be incorporated into the Java language so that they can be used in a production

JVM to help detect memory problems. Similarly to functional specifications that are

used widely in program testing and debugging, writing performance specifications

can have significant advantages. For example, it could enable unit performance test-

ing that can identify performance violations even before degradation is observed. In

addition, performance specifications (similar to the ones described in this chapter)

may help bridge the gap between performance analysis and the large body of work on

model checking and verification, so that one may be able to prove (statically) that a

program is “bloat-free” or “bloat-bounded” with respect to the performance specifi-

cations provided. One may even be able to use a compiler to automatically synthesize

a bloat-free implementation that satisfies the given performance specifications. For

future work, it is interesting to investigate what other performance specifications can

be useful in exposing run-time performance problems.
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CHAPTER 7: Statically Detecting Inefficiently-Used
Containers to Avoid Bloat

Dynamic analysis has typically been the technique of choice in detecting per-

formance problems, as finding these problems requires a fair amount of run-time

information, such as method execution frequency and object allocation counts, which

cannot be obtained at compile time. However, during the studies of our dynamic anal-

ysis reports, we found a number of patterns of inefficiencies (i.e., bloat patterns) that

occur frequently in the execution of large-scale applications. These patterns often

point to problems inherent in the source code of a program, and thus, can be easily

recognized at compile time. While the execution of these patterns may or may not

exhibit noticeable performance degradation, it is certain that they are harmful and

may trigger significant performance issues when the application workload increases

or the layers of the application grow to be deep.

In the next two chapters, we present static analysis techniques targeting two

specific bloat patterns, (1) inefficient use of containers and (2) loop-invariant data

structures. These patterns are among the most-frequently occurring ones that we

observed in our studies. Our static analyses are able to pinpoint instances of such

patterns in the source code, even when the program is incomplete. Using these

static analyses, developers can find and avoid performance problems early during their

development. These analyses can also be incorporated into an optimizing compiler so
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that the compiler may be able to either transform a program automatically to avoid

such patterns, or generate performance warnings during compilation.

Inefficient use of containers The inefficient use of containers is an im-

portant source of systemic bloat. Programming languages such as Java include a

collection framework which provides abstract data types for representing groups of

related data objects (e.g., lists, sets, and maps). Based on this collection framework,

one can easily construct application-specific container types such as trees and graphs.

Java programs make extensive use of containers, both through collection classes and

through user-defined container types. Programmers allocate containers in thousands

of code locations, using them in a variety of ways, such as storing data, implementing

unsupported language features such as returning multiple values, wrapping data in

APIs to provide general service for multiple clients, etc.

Containers are easy to misuse. In Chapter 5, we have seen memory leak prob-

lems caused by careless use of containers. Another problematic situation is when a

container, while not strictly necessary for what it is supposed to accomplish, is used

nevertheless. Although most such containers are eventually garbage-collected and al-

locating them may not lead to OutOfMemory errors, they can have conspicuous impact

on performance. For example, as illustrated in Chapter 3, finding and specializing

an inefficiently-used HashMap dramatically reduced the number of allocated objects

in a commercial server application. Identifying containers that consume excessive

resources (for what they accomplish) is an important step toward finding potential

container-related optimization opportunities.

Motivation and problems The extensive use of containers in Java software

makes it impossible to manually inspect the choice and the use of each container in
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class CUP$LexParse$actions {

RegExp makeNL(){

Vector list = new Vector();

list.addElement(new Interval(’\n’,’\r’));

list.addElement(new Interval(’\u0085’,’\u0085’));

list.addElement(new Interval(’\u2028’,’\u2029’));

RegExp1 c = new RegExp1(sym.CCLASS, list);

...

}

}

(a)

class Httpd extends HttpConnection{

Reply recvReply(Request request){

if (request.getPath().equals("/admin/enable")){

Hashtable attrs = cgi(request);

String config = (String) attrs.get("config");

String filter = (String) attrs.get("filter");

...

}else if(request.getPath().equals("/admin/createConfig")){

Hashtable attrs = cgi(request);

String config = (String) attrs.get("config");

...

} ...

}

Hashtable cgi(Request request){

Hashtable attrs = new Hashtable(13);

String query = request.getQueryString();

String data = request.getData();

if (query != null){

StringTokenizer st = new StringTokenizer(decode(query), "&");

while (st.hasMoreTokens()){

String token = st.nextToken();

String key = token.substring(0, token.indexOf(’=’));

String value = token.substring(token.indexOf(’=’) + 1);

attrs.put(key, value);

}

} ...

return attrs;

}

}

(b)

Figure 7.1: (a) An example of an underutilized container, extracted from program
JFlex, a scanner generator for Java. Vector list is used only to pass the three
Interval objects to the constructor of RegExpr1; (b) An example of an overpop-
ulated container, extracted from program Muffin, a WWW filtering system written
in Java. Given a request, method cgi always decodes the entire request string into
Hashtable attrs. However, this HashMap is later subjected to at most two lookup
operations.
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the program. A dynamic bloat detector finds performance problems using a “from-

symptom-to-cause” approach: it starts by observing suspicious behaviors and then

attempts to locate the cause from the observed symptom. One fundamental problem

for such approaches is the selection of appropriate symptoms. It can be extremely dif-

ficult to define symptoms that can precisely capture the target bloat—in many cases,

the suspicious behaviors that the tool intends to capture are not unique characteris-

tics of the problematic program entities. Very often, they can also be observed from

entities that function appropriately, leading to false positives and imprecise reports.

The first research problem investigated in this chapter is whether it is possible to

alleviate this limitation of purely dynamic bloat analyses by using a static or a hybrid

technique. A static (or a hybrid static/dynamic) technique may be able to reduce

false positives by exploiting certain program properties inherent in the source code.

The second major problem addressed in the chapter is related to understanding

the semantics of containers. Of existing dynamic bloat detection techniques, tools

from [158] and [122] were designed specifically for finding container-related problems.

Both tools require the user to provide annotations for each container type, which

are subsequently used to understand the container semantics and relate container

behavior to the profiling frameworks. However, it may be a heavy burden for the pro-

grammer to complete these annotations. In addition, when the interface of a container

changes, its annotations have to be revised as well. Creating such annotations is also

impractical when the container types come from large libraries and frameworks de-

veloped by others (e.g., containers of transaction data in enterprise applications). To

reduce such an annotation burden and make the container analysis more general, this
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chapter explores the possibility of extracting the container semantics automatically

from the container implementation, with minimal need for user interaction.

Targeted container inefficiencies We aim to detect containers that are

inefficiently used in two different ways.6

Underutilized container. A container is underutilized if it holds a very small num-

ber of elements during its lifetime. It is wasteful to use an underutilized container

to hold data. First, a container is usually created with a default number of slots

(e.g., 16), and a big portion of the memory space is wasted if only a few slots are

occupied. If the size of the container is fixed (e.g., 1), a specialized container type

such as Collections.singletonSet can be employed to replace the original general

type (e.g., HashSet). Second, the functionality associated with the container type

may be much more general than what is actually needed. For example, the process

of retrieving an element from a HashSet involves dozens of calls. If there is a small

number of objects in the HashSet, it may be possible for a performance expert to

replace this HashSet by introducing extra local variables, parameters, or an array.

Figure 7.1(a) illustrates an example of this type of problem, which was reported

by our tool. The example is extracted from JFlex, a scanner generator from our

benchmark set. Method makeNL creates a Vector object that by default allocates a

10-element array. The only purpose of this object is to pass the three Interval objects

into the constructor of RegExpr1. This Vector object is allocated more than 10,000

times during the execution of a large test case. In fact, there are many locations in the

code where Vector objects are created solely for this purpose. Creating specialized

6We thank Gary Sevitsky for suggesting the terms “underutilized” and “overpopulated” to de-
scribe these patterns of inefficient use.
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constructors of RegExpr1 that allow the direct passing of Interval objects can avoid

the allocation/deallocation of thousands of objects.

Overpopulated container. This problem occurs if there is a container that, while

holding many objects, is looked up only a few times. Due to unnecessary data ele-

ments, memory is wasted and it takes longer to perform a container operation. In

this case, a programmer may be able to inspect the code to find which objects will

definitely not be retrieved from the container, and then find a way to avoid adding

these objects or even creating them (if they are never used). Figure 7.1(b) shows

an example of this problem, which was found by our analysis in Muffin, a WWW

filtering system from our benchmark set. Many strings are generated and added into

a Hashtable, but only the entries with keys "config" and "filter" are eventually

requested. Instead of decoding and bookkeeping the entire request string, a special-

ized version of method cgi could declare an additional string parameter representing

the requested key, and return the corresponding value immediately when the given

key is found.

Base static analysis: extracting container semantics There are three

major technical challenges in automatically extracting semantics for different con-

tainer types and implementations. The first challenge is to establish a unified model

for different container types. For example, consider two concrete container classes in

Java, Hashtable and LinkedList. The unified model has to capture the common

behaviors that characterize their “container” property while ignoring the differences

in their specific implementations and usage domains. To address this challenge, we

propose to treat all container classes as an abstract data type with two basic oper-

ations: ADD and GET. Consider Hashtable and LinkedList again: despite their
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many differences, we are interested only in the process by which objects are added

to (ADD) and retrieved from (GET ) these containers. Details of their implementa-

tions and usage (e.g., whether they store key-value pairs or individual objects) are

abstracted away.

The second challenge is to select program entities that correspond to these abstract

operations. Research from [122,158] focuses on methods. For example, methods put

and get implement the semantics of ADD and GET, respectively, for class Hashtable.

While identifying abstract operations at the method level is a straightforward idea, it

is impossible to perform without user annotations because different container types

use different methods for these operations. To automate this process, we propose

to operate at the statement level. The key insight is that the core behavior of each

operation can be implemented by a single statement. The statements that imple-

ment the ADD and GET operations are usually heap stores and loads, respectively.

Such statements will be referred to semantics-achieving statements. For example, for

class ArrayList, the statement achieving the functionality of ADD is a heap store

array[i] = o in method ArrayList.add, where array refers to the backing array of

the list and o is a formal parameter referring to the object7 to be added. Identifying

semantics-achieving statements bridges the gap between the low-level code analysis

and the high-level container semantics.

The third challenge is to develop precise and efficient algorithms to discover con-

tainer structures. The identification of semantics-achieving statements for a particular

container object requires reasoning about the container data structure, in order to

detect the objects that are added to the container from the client code (i.e., element

7For the rest of this chapter, we will use “object” to denote the static abstraction (i.e., allocation
site) of a set of run-time objects created by the allocation site.
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objects) as well as the helper objects that are created by the container (i.e., inside ob-

jects). There are usually multiple layers in the data structure of a container type, and

a naive approach based on points-to analysis may not be able to distinguish among

elements added to different container objects that have the same type. To obtain pre-

cise information about the use of a container, it is crucial to prune, context-sensitively,

nodes and edges irrelevant to the container in the points-to graph. While there exists

a body of precise reasoning techniques such as shape analysis (e.g., [29, 33, 121]) and

decision procedures for verification of pointer-based data structures (e.g., [81, 89]),

these analyses tend to be expensive and do not scale well to large applications.

Our analysis attempts to refine the object sub-graph rooted at each container

object by taking advantage of the CFL-reachability formulation of pointer aliasing.

The key observation is that if an object o can be reached from a container object c

through (direct or transitive) field dereferences, there must exist a chain of stores of

the form a0.f0 = o; a1.f1 = b0; a2.f2 = b1; . . . ; an.fn = bn−1; bn = c, such that the two

reference variables in each pair (ai, bi) for 0 ≤ i ≤ n are aliases. Because aliasing

relationships can be computed by solving CFL-reachability on a flow graph [133],

the goal of our analysis is to find valid paths (in terms of both heap accesses and

method calls) on the flow graph that contain such chains of stores. We consider all

objects o that have such paths reaching the container object and that are not inside

objects created by the container. Among those, element objects are the ones that

have a chain of stores a0.f0 = o; a1.f1 = b0; . . . such that all ai and bi along the chain

point to inside objects of the container. We have successfully applied this demand-

driven analysis to large Java applications, including the eclipse framework (and its

plugins). The description of the analysis can be found in Section 7.1.
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Static inference and dynamic profiling of execution frequencies If

the ADD operations of a container are executed a very small number of times, the

container may suffer from an underutilization problem. If the frequency of its GET

operations is much smaller than the frequency of its ADD operations, the container

may be overpopulated. The next step of the analysis is to compare the frequencies

of these operations, using the semantics-achieving statements (annotated with the

relevant calling contexts) identified by the base analysis.

A natural choice for comparing the frequencies of the semantics-achieving state-

ments is to instrument these statements and to develop a dynamic analysis by profiling

the observed frequencies. However, the usefulness of this approach may be limited

because it does not directly point to the underlying cause of the problem. Further-

more, the generated results depend completely on the specific inputs and runs being

observed: containers whose behaviors are suspicious in one particular run may behave

appropriately in other runs, making it hard to identify problematic containers.

An alternative is to design a static analysis that detects performance problems

by looking for certain source code properties that can approximate the relationship

between execution frequencies, regardless of inputs and runs. There exist a number of

analyses that can be employed to infer such a relationship. For example, semantics-

achieving statements are often nested in loops. Various techniques such as interval

analysis [140] and symbolic bound analysis [55, 56] may be used to discover the loop

bounds. However, such techniques are often ineffective in handling dynamic heap

data structures, and it is difficult to scale them to large programs.
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We take a much simpler approach where data flow does not need to be considered:

relative frequencies are inferred based on the nesting of the loops where the semantics-

achieving statements are located. Despite this simplicity, the inferred relationships

are execution independent and, in our experience, lead to low false positive rates

when used to find optimizable containers.

We have implemented both the dynamic frequency profiler (Section 7.2.1) and

the static inference analysis (Section 7.2.2). Detailed comparison between them is

provided in Section 7.2.2 and demonstrated experimentally in Section 7.3.

Features of the base analysis The base analysis needs to be sufficiently

precise, as both the static inference algorithm and the dynamic frequency profiler

rely on it to find problematic containers. Our algorithmic design is focused on three

important features of the analysis. First, since we are interested only in containers,

the algorithm is demand-driven, so that it can perform only the work necessary to

answer queries about the usage of containers. Second, because a container type can

be instantiated many times in the program, failure to distinguish elements added into

different container objects of the same type could result in a large number of false

positives. To avoid this, if the analysis cannot find a highly-precise solution under

a client-defined time budget, it does not report any ADD and GET operations (in-

stead of reporting them based on over-conservative approximations). In a practical

tool that identifies potential bloat, the precise identification of inefficiently-used con-

tainers (i.e., reducing the false positive rate) is much more important than reporting

all potentially problematic ones with many false warnings (i.e., reducing the false

negative rate). This choice aims at higher programmer productivity and real-world
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usefulness. Finally, the analysis is client-driven, as the amount of information it

produces can be controlled by the client-defined time budget.

Evaluation Section 7.3 presents experimental results showing that the static

tool successfully finds inefficient uses of containers. It generates a total of 295 warnings

for the 21 Java programs in our benchmark set. For each benchmark, we randomly

picked 20 warnings for manual inspection. Among those, we found a very small num-

ber of false positives (e.g., 4 for the largest benchmark eclipse). Further experiments

showed that (1) most of the statically reported containers indeed exhibit problematic

behaviors at run time, and (2) the inefficient uses of these containers are much easier

to understand than the uses of containers reported by the dynamic analysis.

The static inference approach is useful for detecting container problems during

coding, before performance tuning has started. It is a good programming practice to

fix (static) performance warnings early, in order to avoid potential performance prob-

lems before they grow and become observable. It has already been recognized [94] that

bloat can easily accumulate when insufficient attention is paid to performance during

development. Once coding is complete and performance tuning starts, information

about run-time frequency of container allocation can focus the programmer’s atten-

tion on statically-identified containers that are most likely to provide optimization

payoffs.8

Using this approach, we studied the warnings for the DaCapo bloat and chart

benchmarks, and easily identified fixes that reduced object creation rates by 30% for

bloat and 5% for chart, leading to execution time reduction of 24.5% for bloat

8Allocation frequencies can even be collected before the static analysis, allowing the demand-
driven static algorithm to focus on hot containers.
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1 class ContainerClient{

2 static void main(String[] args){

3 ContainerClient client = new ContainerClient();

4 Container c = new Container();

5 for(int i = 0; i < 1000; i++){

6 client.addElement(c, new Integer(i));

7 }

8 client.foo(c);

9 client.bar();

10 }

11 void foo(Container n){

12 Integer i = (Integer)n.get(10);

13 Container d = new Container();

14 addElement(d, new String("first"));

15 addElement(d, new String("second"));

16 String s = (String)d.get(0);

17 }

18 void bar(){

19 for(int j = 0; j < 5; j++){

20 Container a = new Container();

21 for(int i = 0; i < 10; i++)

22 addElement(a, new Double(i));

23 for(int i = 0; i < a.size(); i++){

24 Double b = (Double)a.get(i);

25 ...

26 }

27 }

28 }

29 void addElement(Container c, Object e){

30 c.add(e);

31 }

32 }

33

34 class Container{

35 Object[] arr;

36 int pos = 0;

37 Container(){

38 t = new Object[1000]; this.arr = t;

39 }

40 void add(Object e){

41 t = this.arr; t[pos++] = e;

42 }

43 Object get(int index){

44 t = this.arr; ret = t[index]; return ret;

45 }

46 }

Figure 7.2: Running example.

and 3.5% for chart. These promising initial findings suggest that our tools could be

useful in practice to find and exploit opportunities for performance gains.

7.1 Formulation of Container Operations

This section starts with an outline of the CFL-reachability formulation of context-

sensitive points-to/alias analysis for Java [133]. We formulate the base analysis for

identification of semantics-achieving statements as a new CFL-reachability problem,

and then present algorithms to solve this problem.
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7.1.1 CFL-Reachability Formulation of Points-to Analysis

A variety of program analyses can be stated as CFL-reachability problems [115].

CFL-reachability is an extension of standard graph reachability that allows for fil-

tering of uninteresting paths. Given a directed graph with labeled edges, a relation

R over graph nodes can be formulated as a CFL-reachability problem by defining a

context-free grammar such that a pair of nodes (n, n′) ∈ R if and only if there exists

a path from n to n′ for which the sequence of edge labels along the path is a word

in the language L defined by the grammar. Such a path will be referred to as an L

path. If there exists an L path from n to n′, then n′ is L-reachable from n (denoted

by n L n′). For any non-terminal S in L’s grammar, S paths and n S n′ are defined

similarly.

Existing work on points-to analysis for Java [133, 135] employs this formulation

to model (1) context sensitivity via method entries and exits, and (2) heap accesses

via object field reads and writes. A demand-driven analysis is formulated as a single-

source L-reachability problem which determines all nodes n′ such that n L n′ for a

given source node n. The analysis can be expressed by CFL-reachability for language

LF∩RC. Language LF, where F stands for “flows-to”, ensures precise handling of field

accesses. Regular language RC ensures a degree of calling context sensitivity. Both

languages encode balanced-parentheses properties.

LF-reachability is performed on a graph representation G of a Java program (some-

times referred to as a flow graph), such that if a heap object represented by the ab-

stract location o can flow to variable v during the execution of the program, there

exists an LF path in G from o to v. The flow graph is constructed by creating edges

for the following canonical statements: an edge o
new
−−→ x is created for an allocation x
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= new O; an edge y
assign
−−−→ x is created for an assignment x = y; edges y

store(f)
−−−−→ x and

y
load(f)
−−−→ x are created for a field write x.f = y and a field read x = y.f , respectively.

Parameter passing is represented as assignments from actuals to formals; method re-

turn values are treated similarly. Writes and reads of array elements are handled by

collapsing all elements into an artificial field arr elm.

Language LF Consider a simplified flow graph G with only new and assign edges.

In this case the language is regular and its grammar can be written simply as

flowsTo → new ( assign )∗, which shows the transitive flow due to assign edges.

Clearly, o flowsTo v in G means that o belongs to the points-to set of v.

For field accesses, inverse edges are introduced to allow a CFL-reachability for-

mulation. For each graph edge x → y labeled with t, an edge y → x labeled with

t̄ is introduced. For any path p, an inverse path p̄ can be constructed by reversing

the order of edges in p and replacing each edge with its inverse. In the grammar this

is captured by a new non-terminal flowsTo used to represent the inverse paths for

flowsTo paths. For example, if there exists a flowsTo path from object o to variable

v, there also exists a flowsTo path from v to o.

May-alias relationships can be modeled by defining a non-terminal alias such that

alias → flowsTo flowsTo. Two variables a and b may alias if there exists an object

o such that o can flow to both a and b. The field-sensitive points-to relationships

can be modeled by flowsTo → new ( assign | store(f) alias load(f) )∗. This production

checks for balanced pairs of store(f) and load(f) operations, taking into account the

potential aliasing between the variables through which the store and the load occur.
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Figure 7.3: Flow graph for the running example.

Language RC The context sensitivity of the analysis ensures that method

entries and exits are balanced parentheses: C → entry(i) C exit(i) |C C | ǫ. Here

entry(i) and exit(i) correspond to the i-th call site in the program. This production

describes only a subset of the language, where all parentheses are fully balanced.

Since a realizable path does not need to start and end in the same method, the full

definition of RC also allows a prefix with unbalanced closed parentheses and a suffix

with unbalanced open parentheses [133]. In the absence of recursion, the balanced-

parentheses language is a finite regular language (thus the notation RC instead of

LC); approximations are introduced as necessary to handle recursive calls. Context

sensitivity is achieved by considering entries and exits along a LF path and ensuring

that the resulting string is in RC. For the purposes of this context-sensitivity check,

an entry edge is treated as an exit edge and vice versa.
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7.1.2 Example

The code in Figure 7.2 shows an example used for illustration of the static analysis

throughout the chapter. The example is based on a common usage scenario of Java

containers. A simple implementation of a data structure Container is instantiated

three times (at lines 4, 13 and 20) by a client ContainerClient. In the example

code, statement t[pos++] = e (at line 41) is the one that achieves the functionality of

ADD, and statement ret = t[index ] (at line 44) is the one achieving the functionality

of GET. Of course, these statements do not make much sense by themselves. For

each semantics-achieving statement, we also need to identify the calling contexts that

are relevant to the container of interest. The (statement,contexts) pair is used later

to find underutilized and overpopulated containers.

Through this example, we show how the CFL-reachability formulation of points-to

analysis works. We will use ti to denote the variable t whose first occurrence is at line

i, and oi to denote the abstract object for the allocation site at line i. For example,

e40 and o4 represent variable e declared at line 40 and the Container object created

at line 4. As another example, o14 represents the String object created at line 14.

Node tmpi denotes a temporary variable created artificially to connect an object and

an actual parameter. For example, tmp6 is used to link the Integer object created

at line 6 and the actual parameter of the call to addElement.

The program representation for the example is shown in Figure 7.3; for simplicity,

the inverse edges are not shown. Each entry and exit edge is also treated as an

assign edge for language LF to represent parameter passing and method returns. The

analysis can conclude that the points-to set of i12 has a single object o6, because there

exists a flowsTo path between them. To see this, first note that this41 alias this38
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because object o4 can flow to both this41 and this38. Similarly, this44 alias this38 and

this41 alias this44 can be derived. Second, t41 and t44 are aliases because object o38

can flow to both t41 and t44. For example, o38 flowsTo t41 can be derived as follows:

o38 new t38 store(arr) this38 alias this41 load(arr) t41 ⇒ o38 flowsTo t41

Finally, o6 flowsTo i12 can be derived as follows:

o6 new tmp6 store(arr elm) t41 alias t44 load(arr elm) i12 ⇒ o6 flowsTo i12

In addition, this flowsTo path is a realizable interprocedural path because it contains

matched pairs of entry and exit edges. The chain of entry and exit edges along the

path is entry6 → entry30 → entry30 → entry6 → entry4 → entry4 → entry8 → entry12 →

exit12, which does not have any unmatched pair of method entry and return. (Recall

that an entry edge is treated as an exit edge.)

7.1.3 Formulation of Container Operations

This section presents our formulation of container operations based on the CFL-

reachability formulation of points-to analysis. We first discuss a formalization of

container and container operations that we are interested in. This is very similar to

the container definition in Chapter 5.

Definition 7.1.1 (Container). A container type Γ is an abstract data type with

a set Σ of element objects, and two basic operations ADD and GET that operate

on Σ. A container object γn is an instantiation of Γ with n elements forming an

element set Σγ. ADD maps a pair of a container object and an element object to a

container object. GET maps a container object to one of its elements. The effects of

the operations are as follows:
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• ADD(γn
pre , o) : γm

post ≡ o /∈ Σγpre
∧ o ∈ Σγpost

∧ m=n+1 ∧ ∀p : p ∈ Σγpre
→

p ∈ Σγpost

• GET(γn) : o ≡ o ∈ Σγ

Following the common Java practice, the definition does not allow a container to

have primitive-typed elements.9 Furthermore, for the purposes of our tool, opera-

tions that reduce the size of a container are ignored. Despite their simplicity, these

two abstract container operations capture many common usage scenarios for Java

containers.

To identify semantics-achieving statements for a container, we first introduce

relation reachFrom (short for “reachable from”). For each abstract object o, set

{o′ | o′ reachFrom o} consists of the object itself and other abstract objects whose

run-time instances could potentially be reached from an instance of o through one

or more level(s) of field deference(s). The semantic domains that will be used are

defined in a standard way as follows:

Obj♮: Domain of abstract objects, as represented by object

allocation sites

C♮ ⊂ Obj♮: Domain of container objects

V♮: Domain of variable identifiers

F♮: Domain of instance field identifiers

Call♮: Domain of method entry and exit edges

9For brevity, we may use “container” instead of “container object”.
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Definition 7.1.2 (Relation reachFrom). reachFrom ⊆ Obj♮ × Obj♮ is defined by

the following production

reachFrom → flowsTo store(f) flowsTo reachFrom | ǫ

In addition, the string consisting of entry and exit edge labels on a reachFrom path

has to be accepted by language RC.

For example, there exists a reachFrom path from o6 to o4. To see this, first

note that o38 reachFrom o4 holds, because of o38 flowsTo t38 store(arr) this38 flowsTo

o4. Second, there exists a reachFrom path from o6 to o38, because of o6 flowsTo

e40 store(arr elm) t41 flowsTo o38. Finally, o6 reachFrom o4 due to the transitive

property of the relation. In addition, this entire reachFrom path does not contain

any unmatched pair of method entry and exit.

Note that an object subgraph reachable from a container (i.e., containing only

nodes relevant to the container) can be computed by searching for the reachFrom

paths ending at the container object. Nodes irrelevant to the container can be filtered

out by the context-sensitivity check of language RC . Finding reachFrom paths is

a single-target CFL-reachability problem with O(n3k3) complexity, where n is the

number of nodes in the flow graph and k is the size of language LF. However, checking

context sensitivity is exponential, as the size of language RC is exponential in the size

of the program (due to the exponential number of call chains). To ensure both high

precision and scalability, a time constraint (discussed later) is imposed on the analysis

to inspect each container in the program. If no valid reachFrom paths are found within

the given time budget, the analysis gives up on the container and moves on to check

the next one.
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Based on reachFrom, we can distinguish element objects and inside objects from

the set of all objects reachable from the container object.

Definition 7.1.3 (Element object and inside object). An object i ∈ Obj♮ is

an inside object with respect to a container object c (where i is different from c)

if (1) (i, c) ∈ reachFrom, and (2) i is created in the container class, its (direct or

transitive) superclass, or any other class specified by the user.

An object e ∈ Obj♮ is an element object with respect to c if (1) (e, c) ∈ reachFrom,

(2) e is neither c, nor an inside object of c, and (3) for some reachFrom path from

e to c, all object nodes along the path (except for e and c) are inside objects with

respect to c.

In our example, o4, o13 and o20 are container objects. Object o6 is an element

object for o4; o14 and o15 are element objects for o13; and o22 is an element object for

o20. Object o38 is an inside object for all three containers. In the rest of the discussion

we will use Ic and Ec to denote the domains of inside objects and element objects with

respect to a container c ∈ C♮.

The definition of inside objects provides the flexibility to use a programmer-defined

list that separates the client classes from the classes that are involved in the imple-

mentation of the container functionality. At present, the tool does not require such

a list, as it targets only containers from the Java collections framework. In this case,

it is sufficient to distinguish a client object from a Java collection internal object by

checking if the object is created within the java.util package. (Note that the tool

does not check the efficient use of containers within the JDK library code.) However,

the class list will be useful if the tool is extended to inspect user-defined contain-

ers, because such containers may use an object created in a non-container class as
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an internal object. Such a (non-container) utility class should be explicitly listed as

such.

The semantics-achieving statements are the loads/stores that read/write element

objects from/to inside objects of a container.

Definition 7.1.4 (Semantics-achieving statements). A statement that achieves

the functionality of ADD with respect to a container object c is a store of the form a.f

= b (where a, b ∈ V♮, f ∈ F♮), such that there exists an addTo path from an object ob

that b points to, to the container object c. This addTo path has the following compo-

nents: (1) a flowsTo path between ob and b, (2) an edge b
store(f)
−−−−→ a representing the

store, (3) a flowsTo path between a and an object oa, and (4) a reachFrom path from

oa to c. Using ⊕ to denote path concatenation, the path is

addTo(ob, c) , flowsTo(ob, b)⊕ b
store(f)
−−−−→ a⊕ flowsTo(a, oa)

⊕ reachFrom(oa, c)

where oa, ob ∈ Obj♮, oa ∈ Ic, and ob ∈ Ec.

A statement that achieves the functionality of GET with respect to a container

object c is a load of the form b = a.f (where a, b ∈ V♮, f ∈ F♮), such that there exists

a getFrom path from an object ob that b points to, to the container object c where

getFrom(ob, c) , flowsTo(ob, b)⊕ b
load(f)
−−−→ a⊕ flowsTo(a, oa)

⊕ reachFrom(oa, c)

where oa, ob ∈ Obj♮, oa ∈ Ic, and ob ∈ Ec.

In addition, the string consisting of entry and exit labels on an addTo or a getFrom

path has to be accepted by language RC.

The goal of the analysis is to identify semantics-achieving statements by finding

all addTo and getFrom paths for each container. An addTo path is a reachFrom
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path from ob to c, which models the process of element object ob being added to

the container. Hence, the computation of addTo paths can be performed along with

the computation of reachFrom paths. However, the computation of a getFrom path

requires a priori knowledge of reachFrom paths and cannot be performed until all

reachFrom paths, element objects, and inside objects are identified. In the running

example, there exists an addTo path from o6 to o4, and the semantics-achieving

statement on this path is the store t[pos++] = e. There also exists a getFrom path

from o6 to o4, because of o6 flowsTo ret and t44 flowsTo o38 reachFrom o4. The

semantics-achieving statement on this path is the load ret = t[index ] at line 44.

The identification of semantics-achieving statements is not sufficient to understand

the usage of a particular container object, as different container objects can have the

same semantics-achieving statements. For example, all of the addTo (or getFrom)

paths between o6 and o4, o14 and o13, and o22 and o20 have t[pos++] = e at line 41 (or

ret = t[index ] at line 44) as their semantics-achieving statement. These statements

are executed from multiple calling contexts and it is crucial to identify the contexts

that correspond to the container object to be inspected.

Definition 7.1.5 (Relevant context). For each addTo or getFrom path p that

ends at container object c, let r be the prefix of p that appears before the semantics-

achieving statement on p. In other words, r is the flowsTo path before the correspond-

ing store/load statement that achieves the ADD/GET functionality. Let l ∈ Call♮
⋆

be the chain of entry and exit edges (some of which may be inverted) along r. The

relevant context for the semantics-achieving statement on p is a sub-chain of l that

contains only the unbalanced entry and exit edges.
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The chain of entry and exit edges before the semantics-achieving statement on p

represents the method invocations that cause the element object ob to flow to variable

b. This chain models the process of the element object being added to/retrieved

from the container. The remaining entry and exit edges on p are irrelevant for this

adding/retrieving process, because they represent calls that cause the inside objects

(rather than the element objects) to flow into the container. We do not need to

consider balanced entry/exit edges, as they represent completed invocations along the

data flow. An example will be given shortly to illustrate this modeling. Note that

there could be multiple relevant contexts for a semantics-achieving statement, because

a container can have multiple element objects and each element objects can be added

to (and retrieved from) the container through multiple calls.

The chain of unbalanced entry and exit edges, together with the semantics-achieving

statement, can be used to represent a specific (ADD or GET ) operation executed on

a specific container object.

For example, the chain of entry and exit edges on the addTo path from o6 to o4

before semantics-achieving statement t[pos++] = e is entry6 → entry30, which is the

relevant context for the store operation with respect to container o4. As another

example, the chain on the getFrom path from o6 to o4 before the load operation ret

= t[index ] is entry6 → entry30 → entry30 → entry6 → entry4 → entry4 → entry8 →

entry12. Hence, the relevant context for this getFrom path is entry8 → entry12, which

captures the fact that element object o6 is retrieved from container o4. Later we will

consider the relationship between the execution frequencies of statements t[pos++]

= e and ret = t[index ] only under their respective relevant contexts entry6 → entry30

and entry8 → entry12.
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Algorithm 2: Solving single source addTo-reachability.
Input: Flow graph, container c, context-insensitive points-to solution pts
Output: Map solution : pairs (heap store achieving ADD, relevant contexts)

1 Map〈Statement, Set〈Stack〉〉 solution ← ∅
2 Set〈AllocNode〉 reachFrom ← {c} // reachable objects

3 Set〈AllocNode〉 elemObj ← ∅ // element objects

4 List〈AllocNode〉 objectList ← {c} // worklist

5 List〈Set〈Stack〉〉 contextSetList ← {{EMPTY STACK}}
6 while objectList 6= ∅ do

7 remove an allocation node o from the head of objectList
8 remove a set contexts of context stacks from the head of contextSetList
9 Set〈Stack〉 baseContexts ← ∅

10 foreach store a.f = b such that o ∈ pts(a) do

11 foreach context stack s ∈ contexts do

12 baseContexts ← baseContexts ∪ ComputeFlowsTo(o, a, s)

13 Set〈Stack〉 rhsContexts ← ∅
14 foreach allocation node ob ∈ pts(b) do

15 foreach context stack s ∈ baseContexts do

16 rhsContexts ← rhsContexts ∪ ComputeFlowsTo(b, ob, s)

17 if rhsContexts 6= ∅ then

18 reachFrom ← reachFrom ∪ {ob}
19 if (o = c OR o is an inside object) AND (ob is NOT an inside object) then

20 elemObj ← elemObj ∪ {ob} // An element object is found

21 solution ← solution ∪ (a.f = b, rhsContexts)

22 else

23 objectList ← append(objectList , ob)
24 contextSetList ← append (contextSetList, rhsContexts)

25 return solution

7.1.4 Analysis Algorithms

The algorithms for solving addTo- and getFrom-reachability are shown in Algo-

rithm 2 and Algorithm 3, respectively.

Both algorithms rely on an initial context-insensitive points-to set to find can-

didates for semantics-achieving statements. Algorithm 2 iteratively computes a set

of reachable objects. The i-th element of list contextSetList keeps a set of relevant

contexts for the i-th object in worklist objectList . Each context is represented by

a stack, which contains exactly the chain of unbalanced entry and exit edges of a

flowsTo path. Initially, objectList contains the container object c and contextSetList
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Algorithm 3: Solving single source getFrom-reachability.
Input: Flow graph, container c, context-insensitive points-to solution pts, relation reachFrom , set elemObj
Output: Map solution : pairs (heap load achieving GET, relevant contexts)

1 Map〈Statement, Set〈Stack〉〉 solution ← ∅
2 foreach allocation node o ∈ elemObj do

3 foreach load b = a.f , such that o ∈ pts(b) do

4 Set〈Stack〉 lhsContexts ← ∅
5 lhsContexts ← ComputeFlowsTo(o, b, EMPTY STACK)
6 Set〈AllocNode〉 ins ← pts(a) ∩ reachFrom
7 Set〈Stack〉 baseContexts ← ∅
8 foreach AllocNode oa ∈ ins do // A candidate load

9 foreach context stack s ∈ lhsContexts do

10 baseContexts ← baseContexts ∪ ComputeFlowsTo(a, oa, s)

11 if baseContexts 6= ∅ then

12 solution ← solution ∪ (b = a.f , lhsContexts)

13 return solution

contains an empty stack. Map solution contains pairs of semantics-achieving state-

ment and relevant contexts, which will be returned after the function finishes. Func-

tion ComputeFlowsTo (o, a, s) at line 12 attempts to find flowsTo paths from an

object o to a variable a, under calling context s that leads to the method creating o.

Due to space limitations this function is not shown; conceptually, it is similar to the

FindPointsTo algorithm described in [133]. The function returns a set of contexts

(i.e., stacks) that are chains of unbalanced edges on the identified flowsTo paths from

o to a. An empty set returned means that there does not exist any valid flowsTo

path between them.

Similarly, function ComputeFlowsTo (b, ob, s) at line 16 attempts to find a

flowsTo path from variable b to object ob, under calling context s that leads to

the method declaring b. The purpose of this function is to connect the chain of entry

and exit edges on the flowsTo path from o to a with the chain of entry and exit edges

on the flowsTo path from b to ob, and to check if the combined chain corresponds to a

realizable call path. If the combined chain is a realizable path (i.e., rhsContexts 6= ∅
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at line 17), ob is added to set reachFrom of reachable objects. Furthermore, if ob is

found to be an element object (line 20 and line 21), it is included in set elemObj ,

which will be used later by Algorithm 3. At this time, it is clear that store a.f =

b is a semantics-achieving statement, and its relevant contexts are contained in set

rhsContexts. If ob is not an element object, we append ob to the worklist (and also

append rhsContexts to contextSetList) for further processing. Some subsequent iter-

ation of the while loop will use this context set to compute flowsTo path from object

od to variable d for a new store c.f = d (line 12), etc. In this case, remembering

and eventually using rhsContexts ensures that no unrealizable paths can be produced

during the discovery of the container’s data structure.

Note that we omit a check for recursive data structures in the algorithm. In fact,

an object is not added into the worklist, if it has been visited earlier during the

processing of reachable objects. In other words, the back reference edges between

inside objects in the object graph are ignored, because they have nothing to do with

the element objects. It is also possible for an element object to have a back reference

edge going to an inside object or the container object (although this is not likely to

happen in practice). This back edge is also ignored, because we are interested in the

process where the element object is added to the container, rather than in the shape

of the data structure of the container object.

Algorithm 3 inspects each element object o computed in Algorithm 2 (line 2) and

attempts to find load statements of the form b = a.f such that b could point to o.

As before, the algorithm starts from a context-insensitive solution, and then checks

if there exists a flowsTo path from o to b (line 5). If such flowsTo paths are found,

it uses the set of contexts returned (i.e., chains of unbalanced edges extracted from
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these paths) to compute flowsTo paths from a to object oa that a may potentially

point to. Note that we use an intersection between pts(a) and reachFrom (line 6) to

filter out irrelevant objects that are not reachable from container c. If a flowsTo path

can be found (line 11-line 12), this load is a semantics-achieving statement and the

relevant contexts for it are contained in the set lhsContexts.

Precision improvement Not all load statements identified in getFrom paths

correspond to GET operations. For example, methods equals and remove in many

container classes need to load element objects for comparison (rather than returning

them to the client). To avoid the imprecise results generated in these situations, we

employ a heuristic when selecting statements that implement GET operations. A

load b = a.f is selected if (1) it is on a valid getFrom path, and (2) the points-to

set of b and the points-to set of the return variable of the method where the load is

located have a non-empty intersection. This heuristic is based on the common usage

of Java containers: only methods that can return element objects can be used to

retrieve objects by a client.

It would be interesting to investigate other heuristics in future refinements of the

analysis. In situations where individual statements are not precise enough to capture

the semantics of ADD and GET, it may be possible to use such heuristics to find

coarser-grained program entities (e.g., methods) that correspond to these abstract

operations. For example, a splay tree may perform both stores and loads for a single

GET operation. At present, it is unclear how to generalize the analysis to model such

cases.
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7.2 Execution Frequency Comparison

This section describes the dynamic profiling algorithm and the static inference

algorithm to compare the execution frequencies of semantics-achieving statements.

7.2.1 Dynamic Frequency Profiling

During the execution, the profiling framework needs to record, for each container

object, its ADD and GET frequencies. A key challenge is how to instrument the

program in a way so that the frequencies of semantics-achieving statements can be

associated with their corresponding container objects. In many cases, the container

object is not visible in the method containing its semantics-achieving statements. For

example, the store that implements ADD for HashMap is located in the constructor

of class HashMap.Entry where the root HashMap object cannot be referenced. In this

and similar cases, it is unclear where the instrumentation code should be placed to

access the container object.

We use relevant contexts to determine the instrumentation points. Given a pair

(s, e0, e1, . . . , en) of a semantics-achieving statement s and its context, we check

whether the receiver of each call site ei can be the container object c. This check

is performed in a bottom-up manner (i.e., from n down to 0). The instrumentation

code is inserted before the first call site ei : a.f() found during the check such that

the points-to set of a includes c. For example, one instrumentation site for HashMap

is placed before the call to addEntry in method put, because the receiver variable of

the call site can point to the HashMap object:

class HashMap{ ...

void put(K key, V value){ ...

// increment the ADD frequency for "this" container

recordADD(this);

this.addEntry(..., key, value, ...);
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}

void addEntry(..., K key, V value, ...){ ...

table[...] = new Map.Entry(..., key, value, ...);

}

}

class Entry{

Entry(..., K key, V value, ...){

// these are stores achieving ADD

this.key = key;

this.value = value;

}

}

7.2.2 Static Inference of Potentially-Smaller Relationships

This subsection describes the static inference algorithm that detects inefficiencies

by inferring potentially-smaller/larger relationships for the execution frequencies of

two (semantics-achieving statement, contexts) pairs. These relationships are com-

puted by traversing an interprocedural inequality graph, which models the interpro-

cedural nesting among the loops containing the semantics-achieving statements.

Definition 7.2.1 (Inequality graph). An inequality graph IG = (N , E) has node

set N ⊆ L ∪ M, where L is the domain of loop head nodes, and M is the domain

of method entry nodes. The edge set is E ⊆ C ∪ I, where C represents call edges and

I represents inequality edges.

Inequality Graph Construction

For two statements s1 and s2 that are located in loops l1 and l2 respectively,

we say that the execution frequency of s1 is potentially-smaller than the execution

frequency of s2 if l2 is nested within l1. Such a relationship does not necessarily

reflect the real run-time execution frequencies (thus the use of “potentially”). For

example, if s2 is guarded by a non-loop predicate inside l2, it is possible that it is

executed less frequently than s1 because the path containing s2 can be skipped many

times inside the body of l2. One example of this situation comes from a common
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container implementation scenario. When the client attempts to add an object into

the container, the implementation first checks if the object is already in the container,

and stores it only if the container does not have it already. In this situation, the

semantics-achieving statement is under the non-loop predicate that checks whether

the element object is already in the container.

Despite this potential imprecision, this modeling of execution frequency, to a large

degree, captures the high-level programmer’s intent. For example, in many cases the

programmer just wants to add objects using the nested loops without even caring

about whether they have been added before. Even though the statically-inferred

potentially-smaller relationship may not hold for some particular runs of a program,

the problems found using this relationship may reflect inefficient uses of containers in

general. In addition, the loop nesting relationship itself may clearly suggest a fix if

a problem really exists. For example, the problem may be solved simply by moving

some operations out of a loop. We have found this approach based on loop nesting

to work well in practice.

The algorithm for constructing the inequality graph is shown in Algorithm 4. For

each method m in the call graph, intraprocedural inequality edges are first added

(line 4-line 11). For each loop head, we find the loop in which it is nested (line 6). If

it is not nested in any loop (line 7-line 8), we create an inequality edge between the

entry node of the method and the loop head node. Otherwise, the edge is created

between the head of the surrounding loop and the node (line 9-line 11).

For each caller of m, a call edge is added to connect the two methods (line 14-25).

Specifically, the loop where the call site for m is located (or the entry node of the

caller) is found (line 17), and a call edge is created to link the head of the loop (or
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Algorithm 4: Algorithm for constructing the inequality graph.
Input: Call graph CG
Output: Inequality graph IG

1 foreach method m in the call graph do

2 EntryNode entry ← GetEntryNode(m)
3 CFG cfg ← BuildCFG(m)
4 foreach loop l ∈ cfg do // add inequality edges

5 LoopHeadNode head ← GetLoopHeadNode(l)
6 Loop l′ ← FindSurroundingLoop(head , cfg)
7 if l′ = null then

8 CreateInequalityEdge(entry
≤
−→ head)

9 else

10 LoopHeadNode head ′ ← GetLoopHeadNode(l′)

11 CreateInequalityEdge(head ′ ≤
−→ head )

12 foreach incoming call graph edge e do // add call edges

13 Method caller ← Source(e)
14 CFG cfg ← GetCFG(caller )
15 Loop l = FindSurroundingLoop(e.callsite, cfg)
16 if l = null then

17 EntryNode entry ′ ← GetEntryNode(caller)

18 CreateCallEdge(entry ′ call(e)
−−−−−→ entry)

19 else

20 LoopHeadNode head ← GetLoopHeadNode(l)

21 CreateCallEdge(head
call(e)
−−−−−→ entry)

the entry node of the caller) and m’s entry node. Call edges are useful in filtering

out irrelevant calling contexts during the traversal of the inequality graph. Figure 7.4

shows an inequality graph for the running example. Here we use ei to denote the

entry node for the method declared at line i, and li to denote the loop head node

located at line i. Each call edge is annotated with calli, which represents the call

site at line i. Each inequality edge is annotated with ≤i, where i is a globally-named

index. Inverse edges are allowed for call edges: if there is a call edge calle between

nodes m and n, an edge calle exists between n and m. Unlike in the flow graph, there

are no exit edges in the inequality graph because it is not necessary to model any data

flow.
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An inequality edge is used to represent only potentially-smaller relationships. The

potentially-larger relationships could potentially be represented by inverse edges; how-

ever, we do not allow the use of such inverse edges because a path in the graph must

represent only one of these two relationships (i.e., either smaller or larger, but not

both).

Definition 7.2.2 (Valid potentially-smaller path). Given two inequality graph

nodes m and n, a path p from m to n is a valid potentially-smaller path if the chain of

call edges (including inverse edges) on p forms a realizable interprocedural path (i.e.,

the sequence of edge labels on the chain forms a string in language RC). Path p is a

strictly-smaller path if (1) p is a valid potentially-smaller path and (2) p contains at

least one inequality edge.

One can easily define a grammar with starting non-terminal potentially-smaller to

capture the above definition of validity. Similarly to the flowsTo computation, finding

a valid potentially-smaller path in the inequality graph requires a context-sensitivity

check of call and call edges.

Inefficiency Detection as Source-Sink Problems

Detecting underutilized containers To find an underutilized container,

we need to compare the execution frequencies of the container allocation site c and

each store s that implements the functionality of ADD under relevant context r with

respect to c. In the following definition, lh(s) denotes the loop head (if s is within a

loop) or the entry node of the method (if s is not in a loop) for statement s.
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Figure 7.4: Inequality graph for the running example.

Definition 7.2.3 (Underutilized container). Given a container allocation site c

and a set of statement-contexts pairs that implement ADD operations for c, an under-

utilized container problem occurs for c if there does not exist a pair (store, contexts)

for which (1) a strictly-smaller path p exists from lh(c) to lh(store), and (2) there

exists a context t ∈ contexts such that p ends with the chain of call edges represented

by t.

Informally, an underutilized container problem is reported if there does not exist

an ADD operation such that the loop where it is located is nested within the loop

where the container allocation site is located.

Consider again the running example. Recall that the statement-contexts pair that

achieves ADD operation for container o4 is (t[pos++] = e, {entry6 → entry30}). There

exists a strictly-smaller path ≤1→ call6 → call30 from node e2 to e40, which are the

method entry nodes for the allocation site of o4 (line 4) and for t[pos++] = e (line

41), respectively. In addition, this path contains the call chain call6 → call30, which

is exactly the context contained in set {entry6 → entry30} in the pair (comparing
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only labels on the call edges and the entry edges). Hence, no underutilized container

problem will be reported for container o4.

As another example, the statement-contexts pair for ADD on o13 is (t[pos++]

= e, {entry14 → entry30, entry15 → entry30}). The tool reports that o13 exhibits an

underutilized container problem, because no strictly-smaller paths from the entry

node e11 of its allocation site (line 13) to the entry node e40 of t[pos++] = e can

be found, under relevant calling context entry14 → entry30 or entry15 → entry30. The

problem does not occur for container o20, since there is a strictly-smaller path ≤4→

call22 → call30 from the allocation site at line 20 to the store operation t[pos++] = e

that implements ADD, under the relevant calling context entry22 → entry30.

Note that although the number of elements added to container o13 (i.e., 2) is in

fact larger than the number of times its allocation site can be executed (i.e.,1), it is

not a false positive to report it as an underutilized container. This is because the

creation of the container (which could cost hundreds of run-time instructions) can be

easily avoided by introducing extra variables for storing the data. It could be the case

that, while the ADD operations for a container are in the same loop as the allocation

site of the container, it may not be easy to perform an optimization because there

could be a large number of distinct ADD operations (e.g., the programmer intends to

add many elements without using loops). However, we have found that this situation

rarely occurs in real-world programs. Once an underutilized container problem is

reported, there is usually an obvious container that holds a very small number of

elements, and a specialization can be easily created.
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Detecting overpopulated containers To find an overpopulated container, it

is necessary to compare the number of GET operations against the number of ADD

operations for the container.

Definition 7.2.4 (Overpopulated container). Given a container allocation site

c, a set S1 of statement-contexts pairs that implement ADD for c, and a set S2 of

statement-contexts pairs that implement GET for c, c is an overpopulated container

if for any pair (store, contexts1) ∈ S1 and any pair (load, contexts2) ∈ S2, (1)

there exists a valid potentially-smaller path p from lh(load) to lh(store), and (2) there

exist a context t1 ∈ contexts1 and a context t2 ∈ contexts2 such that p starts with

the chain of (inverse) call edges represented by t2 and ends with the chain of call

edges represented by t1.

Informally, an overpopulated container is reported if for every pair of GET and

ADD operations, a potentially-smaller relationship can be inferred between them.

In the running example, an overpopulated container problem is detected for con-

tainer o4. Recall that the statement-contexts pair that implements ADD is (t[pos++]

= e, {entry6 → entry30}), and the statement-contexts pair that implements GET is

(ret = t[index ], {entry8 → entry12}). There exists an potentially-smaller path between

these two statements: call12 → call8 →≤1→ call6 → call30. This path contains the

call edges call6 → call30 (i.e. t1) and call8 → call12 (i.e., t2). Container o13 is also

overpopulated, because there exists a valid potentially-smaller path from the GET

to any of the two ADD operations.

Container o20 is not overpopulated, since no potentially-smaller path can be found

from its GET operation (i.e., the statement-contexts pair (ret = t[index ], {entry24}))

to its ADD operation (i.e., pair (t[pos++] = e, {entry22 → entry30})).
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Analysis Algorithm

In general, both the proof and the disproof of a certain path under certain call-

ing contexts requires a traversal of the inequality graph. The traversal has to follow

the call edges represented by a start context and an end context, which are the rel-

evant contexts associated with semantics-achieving statements. The start context

is an empty stack if the statement is the allocation site of the container. A stan-

dard worklist-based algorithm is used in the expected way to perform a breadth-first

traversal of the graph. The traversal terminates immediately if call edges in the path

are detected to form a cycle, because there is no way to reason about the number

of ADD and GET operations for a container if calls connecting these operations are

involved in recursion.

Trade-off between the analysis scalability and the amount of infor-

mation produced Because the inequality graph does not contain any data flow

information, the graph traversal algorithm can follow arbitrary call and call edges

when selecting the path. The start and end contexts are useful when the algorithm

attempts to decide which call/call edge to follow. Suppose the algorithm is inspecting

method m. The algorithm decides to leave m through a call edge if (1) this edge is on

the end context, or (2) it can lead to the end context. On the other hand, it follows a

call edge if (1) the edge is on the start context, or (2) there does not exist any call edge

going out of m that is on the end context or can lead to the end context. A call edge

is “leading to” a context when the method that the call edge goes to can (directly

or transitively) invoke the source method of the first call edge on the context. In

addition, we keep track of the set of methods that the related addTo and getFrom
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paths have passed. The traversal of the inequality graph never enters a method if

this method is not in this set.

While the start and end contexts are useful, the worst-case time complexity of a

naive graph traversal algorithm is still exponential, as the number of distinct calling

contexts is exponential in the size of the program. This motivates the need to define a

trade-off framework to handle the analysis scalability and the amount of information

produced.

One factor considered by this framework is the number of unbalanced call/call

edges in a valid potentially-smaller path. These numbers represent the length of

the method sequences on the call stack that the path crosses, and they implicitly

determine the running time of the algorithm. A path crossing too many calls is

usually an indicator of an unrealizable interprocedural path (e.g., due to spurious call

graph edges). Furthermore, even though an inefficiently-used container can be found

by traversing a long interprocedural path on the inequality graph, it may be hard to

optimize it as the data it carries might be needed by many places in the program.

In this framework, the number of unbalanced call/call edges allowed in a path can be

pre-set as a threshold. While this introduces unsoundness, it improves the scalability

and presents to the user a set of containers that are potentially easy to specialize.

Another factor (orthogonal to the number of unbalanced call/ call edges) that is

taken into account is the time used to inspect each container. If a TimeOutException

is caught during the inspection of a container, the analysis moves on to the next

container, without generating any warnings about this current one. We experimented

with different time thresholds, and some of these results are described in Section 7.3.
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7.2.3 Comparison between Static Inference and Dynamic Pro-
filing

Compared with all existing bloat detection techniques based on dynamic analy-

sis [94,96,105,122,156], a major weakness of a static analysis approach is its inability

to estimate precisely the execution frequencies of various statements. However, it has

the following three advantages over the dynamic approaches. First, the static analy-

sis can be used as a coding assistance tool to find container-related problems during

development, before testing and tuning have begun. It is desirable to avoid inefficient

operations early, even before meaningful run-time executions are possible. Second,

a problem detected by the static analysis usually indicates a programmer intent (or

mistake) that is inherent in the program, while the results from a dynamic analysis

depend heavily on the specific run-time execution being observed. Finally, the process

of locating the underlying cause from the dynamically-observed symptoms is either

completely manual, or involves ad hoc techniques that do not quickly lead a tool

user to the problematic code. For example, a profiler can find a container exhibiting

few lookup operations, but it is hard for it to effectively explain this behavior to the

programmer. The static tool explicitly reports the loops that cause the generation of

the warnings, thus reducing the effort to “connect the dots” from the manifestation

of the problem to the core cause.

7.3 Empirical Evaluation

We have implemented the static and dynamic analyses based on the Soot pro-

gram analysis framework [132, 147], and evaluated their effectiveness on the set of

21 Java programs shown in Table 7.1. All experiments used a dual-core machine
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with an Intel Xeon 2.80GHz processor, running Linux 2.6.9 and Sun JDK 1.5.0 with

4GB of max heap space. The Sridharan-Bodik analysis framework from [133] was

adapted to compute CFL-reachability. A parallel version of the analysis was used: 4

threads were ran to simultaneously inspect containers. Note that the total numbers

of reachable methods for some programs are significantly larger than the numbers

shown in previous work [133] for the same programs. This is because of the use of

the JDK 1.5.0 library which is much larger than the JDK 1.3 library used in that

previous work. Many of the programs were chosen from the DaCapo [15] benchmark

set. The analysis was able to run on all of the DaCapo programs, but we excluded

from the table the programs that do not use any Java containers. For eclipse, we

analyzed the main framework and the following plugins that are necessary for the

DaCapo run: org.eclipse.jdt, org.eclipse.core, org.eclipse.text, org.eclipse.osgi, and

org.eclipse.debug.

Static analysis Table 7.1 and the first part of Table 7.2 (T1 and T2) show the

warnings generated by the static tool, the false positives, and the running times for

two different configurations: 20 and 40 minutes allowed to inspect each container. If

all containers can be completely inspected under the first configuration, the second

configuration is not applied, and “-” marks the corresponding column. The table

shows the number of underutilized container warnings (#UC ), the number of over-

populated container warnings (#OC ), the number of containers whose inspection is

not completed due to time out (#NC ), the number of false positives (#FP), and

the total running time in seconds (RT ). For programs with many warnings, we ran-

domly picked 20 warnings (including both types of problems) for manual checking;

the numbers of false positives found in these samples are reported and marked with ♯.
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Benchmark #M(K) #Con T1 = 20 min
#UC #OC #NC #FP RT(s)

jack 12.5 34 8 4 2 * 1725
javac 13.4 45 12 10 5 * 5040
soot-c 10.4 15 0 1 3 0 1235
sablecc-j 21.4 29 3 5 0 1 1140
jess 12.8 4 2 2 0 0 790
muffin 21.4 108 4 7 78 0 28213
jb 8.2 9 1 7 0 0 64
polyglot 8.6 18 1 6 1 1 1259
jflex 20.2 44 2 5 17 0 6785
jlex 8.2 16 1 0 0 0 474
java-cup 8.4 10 1 3 0 0 519
antlr 12.9 15 2 2 0 0 584
bloat 10.8 260 18 46 118 1♯ 34542
chart 17.4 286 15 29 52 1♯ 26406
xalan 12.8 1 0 1 0 0 222
hsqldb 12.5 1 0 0 0 0 99
luindex 10.7 1 0 1 0 0 69
ps 13.5 42 0 8 0 0 1077
pmd 15.3 39 8 7 0 0 1322
jython 27.5 75 5 26 5 0♯ 7055
eclipse1 41.0 1623 18 25 1097 0♯ 447465
eclipse2 41.0 1623 47 121 351 3♯ 32151

Table 7.1: Analysis statistics, part I. #M is the number of methods (in thousands)
in Soot’s Spark context-insensitive call graph [82, 147]. #Con is the total number of
containers inspected in the application code. There are two rows for eclipse: (1)
analyzing all plugins together and (2) analyzing them one at a time. Results are
shown with T1 = 20 minutes and T2 = 40 minutes (in Table 7.2) limit for the static
tool to inspect each container.

The analysis running time shown in the table includes the identification of semantics-

achieving statements and the inference of potentially-smaller relationships. They are

not listed separately because the running time is dominated by the former.

We have tuned the analysis by adjusting the maximum number of unbalanced

call/call edges traversed. All numbers from 3 to 10 were evaluated. We observed that

problems caused by certain container usage patterns are missing in the reports when
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Benchmark T2 = 40 min Dynamic vs Static
#UC #OC #NC #FP RT(s) #DU #DO #SN #DN #MS

jack 8 4 0 * 2561 8 4 * * *
javac 12 10 5 * 5040 12 10 * * *
soot-c 0 1 0 0 1440 0 1 0 0 0
sablecc-j - - - - - 3 5 0 4 0
jess - - - - - 2 2 0 0 0
muffin 5 16 56 0 66472 5 16 0 18 2
jb - - - - - 1 7 0 0 0
polyglot 0 6 1 0 2447 0 6 2 1 1
jflex 2 5 14 0 16092 2 5 1 8 0
jlex - - - - - 1 0 0 0 0
java-cup - - - - - 1 3 0 0 0
antlr - - - - - 2 2 0 2 0
bloat 24 76 17 2♯ 49844 24 72 2 18 1
chart 21 38 12 1♯ 35406 21 36 3 16 1
xalan - - - - - 0 1 0 0 0
hsqldb - - - - - 0 0 0 0 0
luindex - - - - - 0 1 0 0 0
ps - - - - - 0 8 0 5 0
pmd - - - - - 5 7 0 19 0
jython 5 26 1 0♯ 9745 5 21 1 17 2
eclipse1 18 32 956 0♯ 825897 18 27 0 20 0
eclipse2 47 137 104 4♯ 57897 45 110 5 20 0

Table 7.2: Analysis statistics, part II. The last part of the table compares the static
and dynamic analyses.

this parameter is set to a number less than 7. Hence, 7 was chosen as the parameter

value for the experiments. This value appears to be an appropriate choice for the set

of benchmarks we used, and it may need to be re-adjusted for programs with different

container usage patterns.

False positives are determined by manually inspecting each program. Given a

warning, we examine the code and check whether the container is appropriately used,

and whether there is a better way of using it. This is a subjective choice in which we

are trying to simulate what an “intelligent programmer” would do. Although there

is no objective perfect answer, such an evaluation provides valuable indication of the

real-world usefulness of the tool. For programs such as jack and javac whose source

code is not publicly available, we mark the #FP columns with “*”, meaning that
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the warnings are not checked. Overall, the results of study are promising, since the

number of false positives is low across the benchmark set.

In general, false negatives can be introduced by the unsoundness of the analysis.

For example, a container problem can be missed if the container structure cannot be

completely discovered within the allowed time limit, or if the call chain required to

expose the problem is too long. The numbers of false negatives were not investigated

because they can be reduced by increasing the resource budget (i.e., time limit and

maximum call chain length). For example, for most programs in our study, a budget of

T = 40 min allows the analysis to successfully inspect all containers in the application

code (i.e., to achieve #NC = 0).

The tool could not finish the inspection of many container objects in eclipse1.

This performance is caused in part by the extremely large code base of eclipse, and

in part by the lack of precise contexts in many flowsTo or flowsTo paths computed

by the underlying Sridharan-Bodik framework (because of the use of “match edges”

[133]). In our current work we decided to use the framework as-is and to focus

on demonstrating that the approach successfully identifies problematic containers.

Future work can improve the Sridharan-Bodik machinery to provide more precise

context information for our analysis.

Splitting a large code base for scalability Note that both analysis time

and the number of timed-out containers decrease substantially when eclipse plugins

are analyzed individually (row eclipse2). This is because the number of calling

contexts for each container method is reduced significantly. In general, it is not always

valid to analyze separately the components of a large program. However, separate

analysis can be made more general by first employing a relatively inexpensive escape
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analysis, which identifies container objects that may be passed across the boundaries

of components (or plugins). A container that can never escape the component where

it is created can be safely analyzed in the absence of other components. This is

similar to the observation that context sensitivity is not necessary for an object that

never escapes its creating method. While element objects could still flow in and out

of components, there exist techniques to handle incomplete programs, for example,

by creating placeholders for missing objects [118]. For a non-escaping container, all

semantics-achieving statements under the relevant calling contexts triggered by the

creating component would be confined to that component.

Comparison with a dynamic approach The dynamic analysis instruments

each semantics-achieving statement, runs the program, and reports containers whose

(1) ADD frequencies are smaller than 10, and (2) ADD frequency/GET frequency

ratios are greater than 2. The intersections between the sets of statically and dy-

namically generated warnings are shown in the last part of Table 7.2: #DU and

#DO are the numbers of containers reported by the static analysis (from #UC and

#OC, respectively) that also appear in the dynamic analysis reports. Note that most

inefficiently-used containers found by the static analysis are also reported by the dy-

namic analysis, which shows that the static warnings indeed produce containers that

exhibit problematic run-time behavior.

It is not as easy to use the dynamic analysis to find containers that are optimizable

across all inputs and runs, compared to using the static analysis. Columns #SN and

#DN show the numbers of containers reported by the static analysis and the dynamic

analysis, respectively, for which we did not manage to come up with optimization

solutions. To determine #SN, we examined each container that was already subjected
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to a manual check for false positives (with T = 40 min, and with 20 randomly

chosen containers for programs with more than 20 warnings). To determine #DN,

we examined all dynamically-reported containers, if there were at most 20 of them;

otherwise, we examined the 20 containers with the highest potential for performance

improvement: the ten containers with the largest number of ADD operations, and

the ten containers with the largest ratio of ADD to GET operations. Among all these

examined containers, #DN is the number of those for which we could not determine

an appropriate optimization.

In the course of this experiment, it became clear that the problems reported by

the static analysis are easier to fix than those reported by the dynamic analysis. For

instance, among the top 20 dynamically-reported containers for bloat, a program

analysis framework in DaCapo, we eventually came up with optimization solutions

for only two, and one of them was also in the static analysis report. The remaining

containers are used to hold various kinds of program structures such as CFGs and

ASTs. While they are not retrieved frequently in one particular run (with the inputs

provided by DaCapo), it is hard to optimize them as their elements may be heavily

used when the program is run with other inputs. In contrast, most of the container

problems reported by the static analysis are straightforward and the programmer can

quickly come up with optimization solutions after she understands the loop nesting

relationships that cause the tool to report the warnings.

While static analysis reports can precisely pinpoint the causes of inefficiency prob-

lems, they cannot say anything about the severity of the warnings. When the analysis

is used during development (i.e., without any test runs) to find container-related prob-

lems, this information may not be required because a programmer should, ideally, fix
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all reported warnings to avoid potential bloat. However, ranking of warnings be-

comes highly necessary when the tool is used for performance tuning and problem

diagnosis, as the reported warnings have different performance impact and impor-

tance. For example, when we attempt to find optimization opportunities for bloat,

it is unclear, among the total of 100 warnings generated by the static analysis, which

ones to inspect first. It is impractical to examine and fix all of them, a task that

can be very labor-intensive and time-consuming. A natural solution is to rank the

statically-reported containers based on their run-time allocation frequencies; this was

the approach used in the two case studies described below.

As discussed earlier, the time budget limitations and the constraints on call chain

length may cause the static analysis to miss problematic containers that are misused

in complex ways. Consider the “top” inefficiently-used containers from the dynamic

reports (the same 20 or less containers examined when determining #DN ). Column

#MS shows the number of such containers that are missed by the static analysis.

While there are only few missed containers, a more comprehensive study of their

properties could be performed in future work, in order to identify new usage patterns

that may be used to refine our current static analysis.

Performance improvement from specializing containers For bloat we

found that among the containers that have warnings, the most frequently-allocated

container is an ArrayList created by method children for each expression tree node

to provide access to its children nodes. The number of objects added in this container

is always less than three, and in many cases, it does not contain any objects. We

studied the code and found an even worse problem: even when the children do not

change, this container is never cached in the node. Every time method children is
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invoked, a new list is created and the node’s children are added. By creating a special-

ized version that takes advantage of container types such as Collections.emptyList

and Collections.singletonList and that caches the children list in each node, we

were able to reduce the number of objects created from 129253586 to 89913518 (30%

reduction), and the running time from 147 seconds to 110 seconds (24.5% reduction).

We have also inspected the report generated for chart. Many problems reported

are centered around method getChunks declared in an interface, which returns an

ArrayList. This interface is implemented by more than 10 classes, each of which has

its own implementation of getChunks. While many of these concrete classes do not

have any chunks associated, they have to create and return an empty ArrayList, in

order to be consistent with the interface declaration. By further studying the clients

that invoke these getChunks methods, we found that many of them need only to know

the number of chunks (i.e., by invoking getChunks().size()). We quickly modified the

code to replace the empty ArrayList with the specialized Collections.emptyList,

add a method getSize in each of the corresponding classes that calculates the num-

ber of chunks without creating a new list, and replace the calls getChunks().size()

with calls to the new getSize method. This process took us less than an hour. The

modified version achieved 3.5% running time reduction and 5% reduction of the num-

ber of generated objects. Note that these case studies only addressed two obvious

problems and did not go into any depth; in general, significant optimizations may

be possible if a developer familiar with the code thoroughly analyzes the reported

inefficiently-used containers and creates appropriate specialized versions.
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7.4 Summary and Interpretation

This chapter presents a practical static analysis technique that can automatically

find inefficiently-used containers. The goal of this analysis is to check, for each con-

tainer, whether it has enough data added and whether it is looked up sufficient number

of times. At the heart of these tools is a base static analysis that abstracts container

functionality into basic operations ADD and GET, and detects them by formulating

CFL-reachability problems. The identified operations can be used by a static infer-

ence engine that infers the relationship between their execution frequencies, and by a

dynamic analysis that instruments these statements and finds bloat by profiling their

frequencies. Experimental results show that the static analysis can scale to large

Java applications and can generate precise warnings about the suspicious usage of

containers. Promising initial case studies suggest that the proposed techniques could

be useful for identifying container-related optimization opportunities.

This analysis is the first work that attempts to identify performance problem using

static approaches, and may thus open up a new research direction where compiler

optimizations should target not just low-level redundancies in the program, but also

much higher level patterns of inefficiencies. In fact, the success of this technique

has demonstrated that it is possible for a static analysis to identify performance

problems in large object-oriented programs as long as the analysis is focused on a

clear performance-impacting pattern. The static analysis can be made even more

useful by combining it with some lightweight run-time information. We believe that

various similar analyses can be developed when additional bloat patterns are observed

in future. In fact, the next chapter presents a static analysis that targets another

frequently-occurring bloat pattern we observed—loop-invariant data structures.
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CHAPTER 8: Statically Detecting Loop-Invariant Data
Structures to Avoid Bloat

As a culture of object-orientation, Java programmers are taught to freely create

objects for whatever tasks they want to achieve, without concern for cost. They often

take for granted that the runtime system can optimize away all execution inefficiencies:

the Just-In-Time (JIT) compiler can remove whatever redundancy exists in the code,

and the Garbage Collector (GC) can quickly reclaim redundant objects created for

simple tasks. However, creating an object in Java with a new operator, in most cases,

is far beyond allocating memory space, and can be much more expensive than a

programmer realizes.

For example, object creation may need to execute large volumes of code to con-

struct and initialize a data structure, and this process may even involve many slow

I/O operations. One especially important case is when these expensive objects have

data that is invariant. Frequently constructing data structures with unchanged data

may have significant effect on application running time and scalability. Large perfor-

mance improvements can often be seen when these data structures are reused rather

than recreated.

Loops are places where such data structures can cause significant harm and thus

special attention needs to be paid to find and optimize them. We propose static

analyses that can find data structures that are created in a loop but are independent

of specific iterations. This work is motivated by bloat patterns that are regularly
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for(int i = 0; i < N; i++){

SimpleDateFormat sdf = new SimpleDateFormat();

try{

Date d = sdf.parse(date[i]);

...

}catch(...) {...}

}

(a)

Templates _template = factory.newTemplates(stylesheet);

while(...){

XMLFile file = getNewInputFile();

XMLTransformer transformer = _template.newTransformer();

transformer.transform(file);

...

}

(b)

Figure 8.1: Real-world examples of heavy-weight creation of loop-independent data
structures. (a) A SimpleDateFormat object is created inside the loop to parse the
given Date objects; (b) An XMLTransformer object is created within the loop to
transform the input XML files.

seen in large-scale applications. Figure 8.1 shows two examples extracted from the

real-world programs that we have studied. The code pattern in part (a) has appeared

a great number of times in applications that were written by IBM’s customers and

tuned by a group from IBM Research. The programmer may have never realized that

creating one SimpleDateFormat object requires to load many resource bundles to get

the current date, compile the default date pattern string, and load the time zone to

create a calendar. The process involves many expensive operations such as object

clones, hash table lookups, etc. Part (b) illustrates a problem detected by our tool

in DaCapo/xalan. An XMLTransformer object is created in a loop to transform the

input XML file. While the input file is updated per loop iteration, the transformer

object is loop-invariant. A great amount of effort is needed to create a transformer

and significant performance improvement can be achieved after hoisting the creation

of this transformer. Details of this example can be found in Section 8.5.
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Technical challenges While loop optimizations have been extensively stud-

ied and used in modern optimizing compilers [4], they are mostly intraprocedural and

deal only with instructions that operate on scalar variables and simple data structures

(e.g., arrays and linked lists). They are far from reaching our goal of finding large

optimization opportunities in programs that make extensive use of object-oriented

data structures. Techniques such as loop-invariant code motion target instructions

whose input variables are not defined in the loop. Such techniques are usually ineffec-

tive at handling instructions involving objects: for an object created in the loop, even

though one of its fields used in an instruction is not defined, it is not safe to move this

instruction out of the loop, as other fields of the object may be modified elsewhere in

the loop. In an object-oriented program, data abstractions are much more complex

and data in different locations are tightly coupled based on logical object models.

Focusing on logical data structures In this work, we focus on the data

side of the hoisting problem, that is, to find logical data structures that are loop-

invariant, regardless of whether or not it is possible to hoist the actual code statements

that access these data structures. If a logical data structure is loop-invariant, the

programmer should modify its creating and accessing code statements in order to

move it out of the loop. There are two important aspects in determining whether

a logical data structure is hoistable. First, it is critical to understand how this data

structure is built up. For example, all objects in a hoistable data structure have

to be allocated together in one iteration of the loop. In addition, any object in a

hoistable data structure must be owned only by this data structure, and it cannot

escape to other data structures. These properties can be verified by checking points-to

relationships among objects. Second, it is important to understand where this data
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structure gets its values from. For example, all values contained in (heap locations

of) a hoistable data structure must not be computed from any loop-iteration-specific

value. This aspect of the problem is naturally related to the data dependence problem,

and thus, such (value origin) properties can be verified by checking data-dependence

relationships.

These two kinds of relationships are formalized as two (points-to and dependence)

effects by a type and effect system presented in Section 8.2. As the identification of

loop-invariant data structures requires to reason about whether objects connected

by these relationships are always created in the same iteration of a loop, our analy-

sis computes, for each loop object, a loop iteration count abstraction that indicates

whether or not an instance of the object created in one iteration of the loop can be

carried over to the next iteration. A more detailed description of this abstraction

can be found in Section 8.1. Section 8.2 presents a formalism that computes such

abstractions.

Manual tuning with the help of hoistability measurement Given logical

loop-invariant data structures identified by our analysis, the second challenge lies in

how to perform the actual hoisting. While it is attractive to design a transforma-

tion technique that automatically moves invariant data structures out of loops, we

found that there is little hope that a completely automated approach can effectively

hoist these data structures in practice. This is first because of the over-conservative

nature of any transformation technique, which may prevent the hoisting of many

loop-invariant data structures due to their complex usage in large-scale applications.

The chance of developing an effective transformation technique becomes even smaller

in the presence of the many Java dynamic features such as dynamic class loading
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and reflection. Second, effectively optimizing real-world data structures requires de-

veloper insight. For example, a data structure with 100 fields cannot be transformed

if it has even a single non-loop-invariant field. In fact, by manually inspecting and

perhaps modifying the data model, it is highly likely that the data structure can be

made hoistable (i.e., by introducing a separate object to store that loop-dependent

field).

Our work advocates a semi-automated approach that is intended to identify larger

optimization opportunities by bringing developer insight into the optimization pro-

cess. Instead of eagerly looking only for completely-hoistable logical data structures,

we also identify partially-hoistable logical data structures, by computing a hoistabil-

ity measurement for each logical data structure, and rank all such data structures

based on these measurements to help manual tuning. The higher measurement a

data structure has, the more likely it is that it can be manually hoisted.

One additional advantage of manual tuning using hoistability measurements is

that these metrics can be easily modified to incorporate dynamic information ob-

tained from a profile. Section 8.3 presents one such modification that includes loop

frequencies in the metrics so that the “loop hotness” factor is taken into account when

the rank of a data structure is computed. To optimize a non-hoistable data structure,

the programmer can either split the data model (e.g., to separate the loop-invariant

fields and non-invariant fields) and/or restructure the statements that access it (e.g.,

to eliminate dependences between hoistable and non-hoistable statements). In ad-

dition, highly-ranked data structures can often be indicators of other loop-related

inefficiencies, such as inappropriate implementation choices. These problems may

also be revealed during the inspection of the reported data structures.
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Evaluation We evaluated our technique using a set of 19 Java programs. With

the help of hoistability measurements, we found optimization opportunities in most

of these programs. We discuss the performance gains we have achieved for five rep-

resentative programs: ps, xalan, bloat, soot-c, and sablecc-j. For example, we

found a performance problem in DaCapo/xalan; removing it can improve the bench-

mark performance by 10.1%. As another example, we found a bottleneck in the core

components of ps. After the optimization, the running time was reduced by 82.1%.

Detailed description of the empirical evaluation can be found in Section 8.5. These

results indicate that the proposed technique can be useful both in the coding phase

(for finding small performance issues before they accumulate) and in the tuning phase

(for identifying performance bottlenecks).

8.1 Overview

Figure 8.2 shows a simple running example. This example contains 10 allocation

sites (including string literals), and all of them are located in loops (i.e., either directly

in a loop or in a method invoked in a loop). Our analysis inspects each object10 located

in a loop and discovers its structure (including objects that are context-sensitively

reachable from it) using a context-free language (CFL)-reachability formulation pro-

posed in Chapter 7 [159]. Using this formulation, the analysis inspects individual

objects in a loop, identifies their structures, and computes their hoistability, all with-

out requiring a pre-computed whole-program points-to solution.

Points-to relationships Figure 8.3(a) illustrates three data structures (a.1),

(a.2), and (a.3) that are rooted at objects in the two loops shown in Figure 8.2. Each

10“Object” will be used in the rest of this chapter to denote a static abstraction (i.e., an allocation
site), while “instance” denotes a run-time object.
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object is given a name oi, where i is the number of the line in the code where the

object is created. Each edge in a data structure represents a points-to relationship,

and is annotated with a field name and a pair of integers (i, j). Field elm is a special

field used to represent array elements. Integers in this pair are the loop iteration

count abstractions (ICAs) for the two objects connected by this edge, and they can

be used to determine whether these objects are created in the same iteration of the

loop. Following the iteration abstraction [100] and the recency abstraction [13], an

ICA can be one of three (abstract) values: 0, 1, or ⊤. Note that the use of ICA is not

a contribution of this dissertation: the major contribution lies in the formulation of

loop-invariant data structure detection into computing ICA-annotated points-to and

dependence relationships, and in the development of quantitative measurements that

use these relationships to help programmers identify hoistable data structures.

For a particular loop l, an object whose ICA is 0 with respect to l must be created

outside l. The ICA for an object being either 1 or ⊤ (with respect to l) means the

object must be created inside l. In particular, let us consider a run-time iteration p of

l and a run-time instance r created by allocation site or such that r is live during the

execution of p. If the ICA for or is 1, r is guaranteed to be created during iteration

p. In other words, the ICA for an object being 1 indicates that its instances must

be ”fresh“ across iterations, that is, in any iteration where an instance of it is live,

this instance must be created in that iteration (i.e., it must not be carried over from

a previous iteration). An object that has a ⊤ in its ICA is created in a (previous)

unknown iteration. For example, the ICA for o23 is 1, as it creates a fresh object in

each iteration of the loop at line 20. The ICA for o22 is ⊤, as the instance it creates

in one iteration can be carried over to the next iteration.
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1 class List{

2 Object[] arr; int index = 0;

3 List() { arr = new Object[1000];}

4 void add(Object o){ if(index < 1000) arr[index++] = o;}

5 Object get(i){ return arr[i]; }

6 }

7 class Pair{

8 Object f; Object g;

9 Pair(Object o1, Object o2){ this.f = o1; this.g = o2;}

10}

11

12 class Client{

13 static void main(String[] args){

14 for(int i = 0; i < 500; i++){

15 List l = new List();

16 Pair p = new Pair("hello", "world");

17 l.add(p);

18 }

19 Integer b = null;

20 for(int j = 0; j < 400; j++){

21 Integer a = new Integer(j);

22 if(j == 20) b = new Integer(10);

23 Pair q = new Pair(a, b);

24 Pair r = new Pair("good", a);

25 ... //use q and r

26 }

27 }

Figure 8.2: Running example.

Hence, for a points-to edge annotated with (i, j), i = j = 1 guarantees that the

two objects connected by the edge must be created in the same iteration of the loop,

while either i or j being ⊤ indicates that the two objects may be created in different

iterations. A data structure is obviously not hoistable if it contains objects that are

created in different iterations.

Dependence relationships Figure 8.3(b) illustrates the dependence (def-use)

chains that start at memory locations in each data structure shown in Figure 8.3(a).

An edge o1.f ← o2.g indicates that a run-time value contained in a heap location

abstracted by o2.g is required in computing a value written into (a heap location

abstracted by) o1.f . Note that o21.value is a field of class Integer that stores the

int value embedded in an Integer object. A stack location is also considered in a
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Figure 8.3: Data structures identified for the running example and their effect anno-
tations. (a) Points-to effects among objects; (b) Dependence effects among memory
locations.

dependence chain, if this location (variable) has a primitive type and is in the method

that contains the loop of interest (e.g., variable j in method main). Such a variable

needs to be taken into account as it may contain iteration-specific values. Variables

that are not in the loop-containing method are abstracted away from dependence

chains, as they can get iteration-specific values only from heap locations or variables

in the loop-containing method (e.g., variable o at line 4). Reference-typed variables

(e.g., a and b) do not need to be considered as well (even though they are in the

loop-containing method), because they can get loop-specific values only from heap

locations, and thus, it is necessary to track only heap locations.

Note that each dependence edge o1.f ← o2.g is also annotated with a pair of ICAs

(for o1 and o2), which is used to determine whether o1 and o2 are always created in

the same loop iteration. If a node in a dependence edge is a stack variable, such as

j, its ICA is determined by whether or not it is declared in the loop. For example,

j’s ICA is 0, because it is declared before the loop starts. Its ICA would have been 1
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if it were declared in the loop. The ICA for a stack variable can never be ⊤, as each

variable declared in a loop must be initialized (i.e., get a new value) per iteration.

Hoistable logical data structures As discussed earlier, the analysis identifies

(completely or partially) hoistable logical data structures from a purely data perspec-

tive, regardless of the actual code and control flow. This can be done by reasoning

about these two kinds of annotated relationships. A hoistable data structure has the

following important properties.

(1) (Disjoint). Its run-time instances have to be disjoint. No object is allowed to

appear in multiple instances of one single logical data structure. This property can

be verified by checking whether all points-to edges in a data structure are annotated

with (1, 1). A data structure is not hoistable if any of its nodes has a non-1 ICA.

This guarantees that any instance of a hoistable data structure does not have objects

created outside the loop or in different iterations. For example, (a.2) is not hoistable,

as edge o23
g
−→ o22 may connect objects created in different iterations.

(2) (Loop-invariant). Fields of objects in a hoistable data structure have to be

loop-invariant. No data in any run-time instance of the data structure can be de-

pendent on specific loop iterations. We check this property by formulating it as a

data-dependence problem. A sufficient condition for the statement “object o is loop-

invariant” is that, for each field of o, (2.1) no edge on a dependence chain (e.g., shown

in Figure 8.2(b)) that starts from the field can have ⊤ in its annotated ICA pair, and

(2.2) for each memory location node o.f (i.e., heap location) or j (i.e., stack location)

on the chain, if the ICA for o or j is 0, this node must not be involved in a dependence

cycle.
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(2.1) enforces that all (stack and heap) locations from which a hoistable data

structure instance (allocated in one iteration) gets its data are either created in this

same iteration, or exist before the loop starts. No data in this instance can be

obtained from an object created in a different iteration. In addition, as stated in

(2.2), if one such location already exists before the loop starts (e.g., variable j), this

node must not be in a dependence cycle. Otherwise, its value may be updated by each

iteration and any data structure that is dependent on this value is not hoistable. For

example, in Figure 8.3(b), o21.value depends on variable j, whose ICA is 0. Because

j is in a dependence cycle, o21.value may have iteration-specific values, and thus,

any data structure that contains o21 is not hoistable (e.g., structures (a.2) and (a.3)

in Figure 8.3(a)). Note that field o3.elm is loop-invariant: while it depends on field

o15.index, which is involved in a cycle, o15’s ICA is 1 and thus, it is impossible for an

iteration-specific value to propagate to this field.

Note that these two properties are sufficient (but not necessary) conditions for

hoistable logical data structures. For example, the first condition (i.e., disjointness)

is an over-conservative approximation of the shape of a hoistable data structure—it

is perfectly possible for a hoistable data structure to contain objects that are created

outside the loop (i.e., their ICAs are 0) and but not mutated in the loop. We choose

not to consider such objects in our hoistable data structure definition primarily for

scalability purposes—these objects (created outside the loop) often have extremely

long dependence chains (as objects that they reference can come from arbitrary places)

and thus tracking these chains (for checking the second condition) can reduce the

scalability of our analysis by orders of magnitude. On the other hand, dependence

chains for objects that are created in the loop and do not escape the loop (i.e., all
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their ICAs are 1) are generally much shorter and the dependence analysis is much

more scalable when considering only these chains.

Computing hoistability measurements After inspecting these two condi-

tions, it is clear that only data structure (a.1) is a completely hoistable logical data

structure. However, there might still exist optimization opportunities with the other

two (partially hoistable) data structures. For example, if we can move object o22

out of data structure (a.2), it may still be possible to hoist (a.2). In order to help

programmers discover such hidden optimization opportunities, hoistability measure-

ments are proposed to quantify the likelihood of manually hoisting data structures

out of loops.

For example, for each data structures shown in Figure 8.3, we compute two sep-

arate hoistability measurements based on the two orthogonal (points-to and depen-

dence) effects mentioned above: structure-based hoistability (SH) that considers how

many objects in the data structure must be allocated in the same loop iteration (i.e.,

that comply with condition 1), and dependence-based hoistability (DH) that consid-

ers how many fields in the data structure must contain loop-invariant data (i.e., that

comply with condition 2). Eventually, these three data structures are ranked based

on the two measurements and are then presented to the user for further inspection.

Detailed description of hoistability measurements can be found in Section 8.3.

8.2 Loop-Invariant Logical Data Structures

This section formalizes the notion of loop-invariant logical data structure, and in

this context, formally defines our analysis that identifies hoistable data structures.
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Variables a, b ∈ V

Allocation sites o ∈ O

Instance fields f ∈ F

Labels l ∈ L

Statements e ∈ E

e ::= a = b | a = new ref o | a = b.f | a.f = b | a = null |
e ; e | if (*) then e else e | whilel (*) do e

(a)

Iteration count i ::= 0 | 1 | 2 | . . . ∈ N

Iteration map ν ∈ L→ N

Loop status π ::= 〈l , i〉 l ∈ L ∪ {0}
Labeled object ô ::= oπ ∈ Φ

Heap σ ∈ Φ× F→ Φ ∪ {⊥}
Environment ρ ∈ V→ Φ ∪ {⊥}
Data origin µ ∈ V→ 2Φ×F

Heap points-to effect H ::= ∅ | H ∪ {ô1 �f ô2}
Heap data dep. effect Ω ::= ∅ | Ω ∪ {ô1.f ≺ ô2.g}

(b)

Figure 8.4: A simple while language: (a) abstract syntax; (b) semantic domains.

The presentation proceeds in three steps. First, we define a simple imperative lan-

guage and present its abstract syntax and operational semantics, which we will use to

formalize our analysis algorithms. Second, we present a type and effect system that

abstracts concrete objects and effects. Finally, the analysis that detects hoistable

data structures is described based on the abstract heap effects generated by the type

and effect system.

8.2.1 Language, Semantics, and Effect System

Language The abstract syntax and the semantic domains for the simple while

language that we use are defined in Figure 8.4. A program in this language has a
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fixed set of global variables with reference types. While primitive-typed variables are

considered in our analyses, they are excluded from this language for the simplicity of

presentation. Each allocation site is labeled with an ID o. Each loop is annotated

with an natural number label l (l > 0), which will be used as the ID of the loop.

We develop a concrete operational semantics for the language in order to detect

hoistable data structures. A loop iteration count i records the number of iterations

that a loop has executed. A global loop iteration map ν maps each loop (label) to

its current iteration count. Each object instance is represented as its allocation site

o annotated with a pair 〈l, i〉, where l is the label of the loop in which o is located

(always > 0), and i is the count of the iteration of l that creates this instance. If

an object is not located in any loop, the loop status π for its instances is always

〈0, 0〉. For simplicity, we assume our loops are not nested. While nested loops can be

handled easily in our framework (e.g., by creating and associating with each object

an iteration count map that records an iteration count for each loop in which the

object is located), we found that it is not useful in hoisting data structures for real-

world Java programs: it is extremely rare that a data structure can be hoisted out of

multiple loops.

A heap σ records object reference relationships, and an environment ρ maps vari-

ables to objects in the heap. They are defined in standard ways. A data origin map µ

records, for each stack variable v, a set of heap locations such that values in these loca-

tions are required (i.e., either as a pointer for dereferencing, or being copied through

a sequence of intermediate stack locations) to obtain a value written to v. This map

tracks dependences between variables and their relevant heap locations, and will be
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used to compute dependence effects as described shortly. For example, after the exe-

cution of a sequence of statements c = d.f ; b = c; a = b, we have µ(a) = µ(b) = µ(c)

= {od.f} ∪µ(d), where od represents the object that d points to. µ(d) is included here

because d is required as a reference to an object from which the value is obtained.

Dependences via the intermediate stack locations (e.g., b and c) are abstracted away

as we are interested only in fields of objects that form data structures.

Note that µ records only one-hop heap location dependence—if the value in d.f is

obtained from another heap location, µ(a), µ(b) and µ(c) remain the same. Multi-hop

heap location dependences can be obtained by computing the transitive closure of µ.

As discussed earlier in Section 8.1, we use points-to and dependence relationships

to reason about (1) how data structures are built up and (2) where they get values

from, respectively. These relationships are modeled by the following two kinds of

effects in our system. A heap points-to effect ô1 �f ô2 ∈ H is generated if, at a certain

point, object ô2 becomes reachable from ô1 through field f . A data dependence effect

tracks the flow of data. One such effect ô1.f ≺ ô2.g ∈ Ω indicates that ô2.g is

required to compute a value written into ô1.f . This effect captures a transitive data

dependence relationship between two heap locations, abstracting away a possible

sequence of dependences via intermediate stack variables. Data dependence effects

can be computed efficiently by using the data origin map µ.

Note that in this language, it is safe for a dependence chain to not include any

stack variable (like j in Figure 8.3 (b)). This is because the language supports only

reference-typed variables, which can never form a dependence cycle themselves (with-

out a heap location involved). While we choose not to include primitive types in this
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a = null, ν, σ, ρ, µ ⇓ ν, σ, ρ[a 7→ ⊥], µ[a 7→ ∅], ∅, ∅ (Assign-Null)

ρ′ = ρ[a 7→ ô] σ′ = σ[∀f.(ô.f 7→ ⊥)] ô.o = alloc ô.π = 〈l , ν(l)〉

a = new refalloc , ν, σ, ρ, µ ⇓ ν, σ′, ρ′, µ[a 7→ ∅], ∅, ∅
(New)

a = b, ν, σ, ρ, µ ⇓ ν, σ, ρ[a 7→ ρ(b)], µ[a 7→ µ(b)], ∅, ∅ (Assign)

ρ(b) = ô µ′ = µ[a 7→ µ(b) ∪ {ô.f}]

a = b.f, ν, σ, ρ, µ ⇓ ν, σ, ρ[a 7→ σ(ô.f)], µ′, ∅, ∅
(Load)

ρ(a) = ô1 ρ(b) = ô2

H = (ô2 = null ? ∅ : {ô1 �
f ô2}) Ω =

[

{ô1.f ≺ ôi.gi | ôi.gi ∈ µ(a) ∪ µ(b)}

a.f = b, ν, σ, ρ, µ ⇓ ν, σ[ô1.f 7→ ô2], ρ, µ, H,Ω
(Store)

e1, ν, σ, ρ, µ ⇓ ν′, σ′, ρ′, µ′, H1,Ω1 e2, ν′, σ′, ρ′, µ′ ⇓ ν′′, σ′′, ρ′′, µ′′, H2,Ω2

e1; e2, ν, σ, ρ, µ ⇓ ν′′, σ′′, ρ′′, µ′′, H1 ∪H2, Ω1 ∪ Ω2
(Comp)

e1, ν, σ, ρ, µ ⇓ ν′, σ′, ρ′, µ′, H, Ω

if (∗) then e1 else e2, ν, σ, ρ, µ ⇓ ν′, σ′, ρ′, µ′, H, Ω
(If-Else-1)

e2, ν, σ, ρ, µ ⇓ ν′, σ′, ρ′, µ′, H, Ω

if (∗) then e1 else e2, ν, σ, ρ, µ ⇓ ν′, σ′, ρ′, µ′, H, Ω
(If-Else-2)

e, ν[j 7→ ν(j) + 1], σ, ρ, µ ⇓ ν′, σ′, ρ′, µ′, H1, Ω1 whilej (∗) do e, ν′, σ′, ρ′, µ′ ⇓ ν′′, σ′′, ρ′′, µ′′, H2,Ω2

whilej (∗) do e, ν, σ, ρ, µ ⇓ ν′′, σ′′, ρ′′, µ′′, H1 ∪H2,Ω1 ∪ Ω2

(W)

Figure 8.5: Concrete instrumented semantics.

language (for the simplicity of presentation), our implementation handles both prim-

itive and reference types. It is also important to note that the effects shown in

Figure 8.4 are concrete effects. We will present an approach to project them into

abstract effects, which are essentially the annotated edges shown in Figure 8.2.

Concrete instrumented semantics Figure 8.5 presents a big-step operational

semantics for our language. A judgment of the form

e, ν, σ, ρ, µ ⇓ ν ′, σ′, ρ′, µ′, H , Ω

starts with a statement e, which is followed by loop iteration map ν, heap σ, environ-

ment ρ, and value origin map µ. The execution of e terminates with a final iteration

vector ν ′, heap σ′, environment ρ′, origin map µ′, heap points-to effect set H , and

heap data dependence effect set Ω .
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Rules Comp, If-Else1, If-Else2, and W are defined in expected ways. In rule

Assign-Null and New, the data origin for a (in µ) is assigned ∅, as the value

is freshly generated and does not depend on any heap value. In rule New, for a

labeled object ô, ô.o and ô.π denote the allocation site and the loop status pair for

ô, respectively. In ô.π, the loop l where the allocation site o is located is determined

statically, and is associated with each instance created by o. The iteration count for

l is retrieved from the global iteration count map ν. Rule Assign propagates both

the object reference and the data origin of this reference value from b to a. In rule

Load, the data origin map µ for variable a is updated in a way so that both ô.f and

the origin of the value in b are recorded as a’s origin. Hence, dependences via both

the value copy (from b.f to a) and the pointer dereference (i.e., dereferencing b) are

captured.

To handle a store a.f = b where b’s value is written to the heap, a points-to

effect ô1 �f ô2 is first generated. The rule next generates a set of heap dependence

effects {ô1.f ≺ ôi.gi | ôi.gi ∈ µ(b) ∪ µ(a)}, by consulting the data origin map µ. Each

dependence effect states that a value read from field gi of object ôi has been used to

produce a value written to ô1.f during the execution.

◮ Example For illustration, consider the following example:

a = new refo1 ; e = new refo2 ; a.f = e; j = a.f ;

while1 (j) do{ b = a.f ; d = b; c = new refo3 ; c.g = d;}

At the end of the first iteration of the loop, the semantic domains contain the
following values:

ν = [1 7→ 1],
σ = [ô1.f 7→ ô2, ô3.g 7→ ô2],
ρ = [a 7→ ô1, b 7→ ô2, c 7→ ô3, d 7→ ô2, e 7→ ô2, j 7→ ô2],
µ = [a 7→ ∅, b 7→ {ô1.f}, c 7→ ∅, d 7→ {ô1.f}, e 7→ ∅, j 7→ {ô1.f}],
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H = {ô1 �f ô2, ô3 �g ô2},
Ω = {ô3.g ≺ ô1.f}. ◭

Before proceeding to the type and effect system, we need to show that our oper-

ational semantics adequately captures the heap points-to and dependence effects.

Lemma 8.2.1 (Operational semantics adequacy) In the operational semantics shown

in Figure 8.5, H captures all possible run-time points-to relationships; Ω records, for

each heap location o.f ∈ Dom(σ), all possible (one-hop) heap locations that have been

used to (directly or transitively) produce values written into o.f .

Proof sketch. It is trivial to show that after the program terminates, H contains

all possible heap points-to effects: a points-to relationship can be established only

when a store is executed, and it is recorded by rule Store. To demonstrate Ω cap-

tures all (one-hop) dependences among heap locations, we first have to show that

data origin map µ captures all the heap locations that each variable a depends on at

run time. This can be seen by induction on the derivation. The key is to show that

(1) if the value of variable a is computed directly from a heap value, this dependence

must be captured in µ at a load that reads that heap value, and (2) the dependence

is appropriately propagated via a copy assignment (by rule Assign) and via another

load that dereferences a (by rule Load). Next, since Ω is updated only at stores,

it is necessary to focus on the execution of a store a.f = b to show the adequacy of

Ω : all values necessary to execute this store are in (stack) locations a and b, and the

set of all heap locations that are used to produce these values is already included in

µ(a) ∪ µ(b) at this point (from the above reasoning about µ). Hence, all of the heap

locations on which oa.f is data dependent are recorded in Ω . �
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Iteration count abstr. ĩ ::= 0 | 1 | ⊤ ∈ N

Loop status abstr. π̃ ::= 〈l, ĩ〉 l ∈ L ∪ {0}
Type τ̃ ::= oπ̃ | ⊤ ∈ T

Type environment Γ ∈ V→ T ∪ {⊥}
Data origin abstr. µ̃ ∈ V→ 2T×F

P.T. effect abstr. H̃ ::= ∅ | H̃ ∪ {τ̃1 � τ̃2}
Dep. effect abstr. Ω̃ ::= ∅ | Ω̃ ∪ {τ̃1.f � τ̃2.g }

Figure 8.6: Syntax of types and abstract effects.

Abstract semantics The concrete semantics uses an unbounded number of ob-

jects and unbounded loop iteration counts. We next develop a type and effect system

that describes an abstract semantics, which conservatively approximates the concrete

semantics with a bounded set of objects and bounded loop iteration counts. The

syntax of types and abstract effects are illustrated in Figure 8.6. The abstraction of

each concrete domain (e.g., π) shown in Figure 8.4 is represented by its correspond-

ing tilded symbol (e.g, π̃). Environment ρ is abstracted by the type environment,

denoted by Γ. A type τ̃ abstracts a labeled object instance ô by projecting its con-

crete iteration count ô.π.i to an iteration count abstraction (ICA) τ̃ .π̃.̃i, which can

have three abstract values: 0, 1, and ⊤. The meaning of these values was explained

in Section 8.1. Using this type and effect system, we can identify data structures

whose objects are guaranteed to be created in the same iteration by reasoning about

object ICAs. Note that each abstract effect in H̃ and in Ω̃ corresponds to an edge in

Figure 8.3 (a) and in Figure 8.3 (b), respectively.

Figure 8.7 shows the type rules, which are parallel with the operational semantics

in Figure 8.5. Auxiliary operations used in the type rules are shown in Figure 8.8.
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Γ, µ̃ ⊢ a = null : Γ′[a 7→ ⊥], µ̃[a 7→ ∅], ∅, ∅ (TAssign-Null)

Γ′ = Γ[a 7→ τ̃ ] τ̃ .o = alloc τ̃ .π̃ = 〈l , 1〉

Γ, µ̃ ⊢ a = new refalloc : Γ′, µ̃[a 7→ ∅], ∅, ∅
(TNew)

Γ, µ̃ ⊢ a = b : Γ[a 7→ Γ(b)], µ̃[a 7→ µ̃(b)], ∅, ∅ (TAssign)

τ̃ = Γ(b) µ̃′ = µ̃[a 7→ µ̃(b) ∪ {τ̃ .f}]

Γ, µ̃ ⊢ a = b.f : Γ[a 7→ ⊤], µ̃′, ∅, ∅
(TLoad)

τ̃1 = Γ(a)

Ω̃ =
[

{τ̃1.f � τ̃i.gi | τ̃i.gi ∈ µ̃(b) ∪ µ̃(a)} τ̃2 = Γ(b) H̃ = {τ̃1 �
f τ̃2} if τ̃1 6= ⊥ and τ̃2 6= ⊥, ∅ otherwise

Γ, µ̃ ⊢ a.f = b : Γ, µ̃, H̃, Ω̃
(TStore)

Γ, µ̃ ⊢ e1 : Γ′, µ̃′, H̃1, Ω̃1 Γ′, µ̃′ ⊢ e2 : Γ′′, µ̃′′, H̃2, Ω̃2

Γ, µ̃ ⊢ e1; e2 : Γ′′, µ̃′′, H̃1 ∪ H̃2, Ω̃1 ∪ Ω̃2

(TComp)

Γ, µ̃ ⊢ e1 : Γ′, µ̃′, H̃1, Ω̃1 Γ, µ̃ ⊢ e2 : Γ′′, µ̃′′, H̃2, Ω̃2

Γ, µ̃ ⊢ if (∗) then e1 else e2 : Γ′ ⊎ Γ′′, µ̃[∀v.(v 7→ µ̃′(v) ∪ µ̃′′(v))], H̃1 ∪ H̃2, Ω̃1 ∪ Ω̃2

(TIf-Else)

Γ[∀v.(v 7→ (Γ(v).o)(Γ(v).π̃j⊕1))], µ̃ ⊢ e : Γ, µ̃, H̃ , Ω̃

Γ, µ̃ ⊢ whilej (∗) do e : Γ, µ̃, H̃ , Ω̃
(TW)

Figure 8.7: Typing.

Some abstract semantic domains in Figure 8.6 are extended with ⊤ and/or ⊥ ele-

ments, as necessary.

Since the type and effect system abstracts the concrete semantics in Figure 8.5,

most of the rules in Figure 8.7 are similar to their corresponding operational semantics

rules. Here we explain only a few of them that differ significantly from their concrete

counterparts. In rule TNew, the ICA for a newly created object is always 1, and

this value will be changed later (by rule TW) if this object is carried over to the

next iteration. (For objects created outside of loops, the ICA is 0; for brevity, this

variation of TNew is not shown in Figure 8.7.) Rule TLoad types variable a with

an unknown type ⊤. This handling is over-conservative for the purpose of soundness.

Our implementation improves this by consulting a points-to graph that is computed

on demand.
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[Join of Γ]

(1) Γ1 ⊎ Γ2 = Γ3, where ∀a ∈ Dom(Γ3), Γ3(a) =

8

<

:

Γ1(a) if a ∈ Dom(Γ1) and a /∈ Dom(Γ2)
Γ2(a) if a ∈ Dom(Γ2) and a /∈ Dom(Γ1)
Γ1(a) ⊎ Γ2(a) if a ∈ Dom(Γ1) ∩ Dom(Γ2)

(2) τ̃1 ⊎ τ̃2 =

8

>

>

<

>

>

:

τ̃1 if τ̃2 = ⊥
τ̃2 if τ̃1 = ⊥
(τ̃1.o)τ̃1.π̃⊎τ̃2.π̃ if τ̃1.o = τ̃2.o
⊤ otherwise

(3) π̃1 ⊎ π̃2 = 〈π̃1.l , π̃1 .̃i ⊎ π̃2 .̃i〉

(4) ĩ1 ⊎ ĩ2 =



ĩ1 if ĩ1 = ĩ2
⊤ otherwise

[Operator ⊕]

(5.1) π̃j ⊕ 1 =



〈π̃.l , π̃.̃i⊕ 1〉 if π̃.l = j
π̃ otherwise

(5.2) ĩ⊕ 1 =



1 if ĩ = 0
⊤ otherwise

Figure 8.8: Auxiliary operations.

Type environment join (⊎) needs to be performed in order to handle different

control flow paths of an if-else statement (in Rule TIf-Else). Joining two envi-

ronments (rules 1-4 in Figure 8.8) needs to consider both allocation sites and abstract

loop iteration counts contained in types. If two types τ̃1 and τ̃2 do not have the same

allocation sites o (rule 2), performing join on them yields ⊤. Otherwise, their loop

status abstractions τ̃1.π̃ and τ̃2.π̃ are forced to join (rule 3). Loop labels (π̃.l) in

the two status pairs have to be the same because they are associated with the same

allocation site. Joining ICAs ĩ1 and ĩ2 is shown in rule 4: if ĩ1 6= ĩ2, the result is ⊤,

meaning that nothing is known about the iteration where the object is created. A

finite-height type lattice can be defined based on the operations in Figure 8.8, with

⊤ and ⊥ as the maximum and minimum types in the lattice. Types with different

allocation sites are not comparable.
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In the beginning of each loop iteration (shown in rule TW), the ICA of each

type (whose allocation site is under loop j) in the type environment is incremented

by using operator ⊕, which is defined in Figure 8.8 (rule 5). The goal of this is to

“clear the loop status” of the objects that are carried over from the last iteration,

so that these (old) objects and the fresh objects created in the current iteration can

be distinguished. Note that a fixed point is computed for the handling of loops (as

discussed further in Section 8.4): while each iteration of the loop may yield a different

solution, the fixed-point solution must not be smaller than this solution.

Next, we explain how to detect data structures whose objects are guaranteed to

be allocated in the same loop iteration, using the type and effect system.

Lemma 8.2.2 (Connected objects created in the same iteration). For each heap

points-to effect τ̃1 �f τ̃2 ∈ H̃, if τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 for a particular loop j (i.e., τ̃1.π̃.l

= τ̃2.π̃.l = j), in each iteration of j where an instance of τ̃1.o and an instance of

τ̃2.o are connected by a store operation, these instances must be allocated in this same

iteration.

Proof sketch. Consider a specific iteration k of j. If both objects are allocated in this

iteration, their corresponding abstract iteration counts π̃1 .̃i and π̃2 .̃i are both updated

to 1 upon their creation (rule TNew). In the very beginning of the next iteration

k + 1, τ̃1.π̃.̃i and τ̃2.π̃.̃i will be incremented to ⊤ (rule TW) because these objects

are carried over from the last iteration. If in this iteration, both of their allocation

sites are executed again, the two ICAs (for the two new instances) are set back to 1

(rule TNew). This process (of setting the ICAs to ⊤ and then 1) is repeated if these

allocations are executed during every iteration of j until j terminates. However, if

one of the allocation sites (say o1) is not executed in iteration k+1, its corresponding
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(1) τ̃ ⊏ ô ⇔ ô = ⊥∨ (ô.o = τ̃ .o ∧ τ̃ .π̃ ⊏ ô.π)

(2) π̃ ⊏ π ⇔ π̃.l = π.l ∧ π̃.̃i ⊏ π.i

(3) ĩ ⊏ i ⇔ i = ĩ = 0 ∨ (i > 0 ∧ ĩ = 1) ∨ ĩ = ⊤

(4) H̃ ⊏ H ⇔ ∀(ô1 �f ô2) ∈ H : ∃(τ̃1 �f τ̃2) ∈ H̃ : (τ̃1 ⊏ ô1) ∧ (τ̃2 ⊏ ô2)

∧((τ̃1.π̃.l = τ̃2.π̃.l ∧ τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1)⇒ ô1.π.i = ô2.π.i)

(5) Ω̃ ⊏ Ω ⇔ ∀(ô1.f ≺ ô2.g) ∈ Ω : ∃(τ̃1.f � τ̃2.g) ∈ Ω̃ : (τ̃1 ⊏ ô1) ∧ (τ̃2 ⊏ ô2)

∧((τ̃1.π̃.l = τ̃2.π̃.l ∧ τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1)⇒ ô1.π.i = ô2.π.i)

(6) (Γ, µ̃) ⊏ (ρ, µ) ⇔ (∀a ∈ Dom(ρ) : Γ(a) ⊏ ρ(a)) ∧ (∀a ∈ Dom(µ) : ∀ô.f ∈ µ(a) : ∃τ̃ .f ∈ µ̃(a) : τ̃ ⊏ ô)

Figure 8.9: Abstraction relation ⊏.

ICA τ̃1.π̃.̃i will keep the value ⊤. Hence, at the end of iteration k +1, τ̃1.π̃.̃i = ⊤ and

τ̃2.π̃.̃i = 1. Because the final solution Γ is a fixed point and ⊤ is greater than any

other abstract value, ⊤ will be recorded in Γ for τ̃1.π̃.̃i even though o1 may allocate

instances again later in the loop.

Note that τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 does not necessarily indicate that τ̃1.o and τ̃2.o are

executed in every iteration of loop j. Their ICAs are 1 as long as their instances

cannot escape from the iteration where they are created to the next iteration of the

loop. This feature allows the analysis to report potentially-hoistable data structures

even though their construction code (i.e., stores that connect objects in them) is

guarded by conditionals.

Similarly, given a dependence effect τ̃1.f � τ̃2.g, if τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 for a loop

j, we can safely conclude that this whole dependence (i.e., computation) chain from

τ̃1.f to τ̃2.g occurs in the same iteration of j, because there are only stack variables

between the two end heap locations of the chain. A detailed description of how the
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type and effect system abstracts the concrete operational semantics can be found in

Figure 8.9. The abstraction relation is denoted by ⊏.

Given the operational semantics and the type rules, we can prove that the heap

points-to and dependence effect abstractions are sound. We show that for each type

derivation, the points-to and dependence effect abstractions conservatively approx-

imate the actual points-to and dependence effects generated by the corresponding

operational semantics derivation.

Theorem 8.2.3 (Effect abstraction soundness). The effect abstractions are sound

if

(e, ν, σ, ρ, µ ⇓ ν ′, σ′, ρ′, µ′,H ,Ω)∧

(Γ, µ̃ ⊢ e : Γ′, µ̃′, H̃, Ω̃) ∧ ((Γ, µ̃) ⊏ (ρ, µ))

⇒ H̃ ⊏ H ∧ Ω̃ ⊏ Ω ∧ (Γ′, µ̃′) ⊏ (ρ′, µ′)

The proof can be done by induction on the derivation, starting at the root and

working toward the leaves.

8.2.2 Hoistable Logical Data Structures

In this subsection, we introduce the notion of hoistable logical data structures

based on the points-to and dependence effect abstractions computed by the type

and effect system. As discussed earlier, here we address the question “what data is

hoistable in the best scenario”—that is, to find hoistable logical data structures that

meet the two criteria discussed in Section 8.1. Whether and how they can actually

be hoisted will be decided by the user upon inspection. This subsection presents

mathematical properties of hoistable data structures.
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Definition 8.2.4 (Constrained closures of H̃ and Ω̃) Constrained closures of H̃ and

Ω̃ are represented by relations �∗
j,ĩ1,ĩ2

and �∗
j,ĩ1,ĩ2

, where parameters j, ĩ1, and ĩ2

denote a loop label, a lower bound, and an upper bound of ICAs, used to compute

transitive relationships. We define order ≤ on the ICA domain ĩ as 0 ≤ 1 ≤ ⊤.

(1) Closure �∗
j,ĩ1,ĩ2

(on H̃) selects a set of data structures (whose nodes are types),

in which each edge has the form oπ̃1
1 � oπ̃2

2 ∈ H̃, s.t. π̃1.l = π̃2.l = j, ĩ1 ≤ π̃1 .̃i ≤ ĩ2,

ĩ1 ≤ π̃2.̃i ≤ ĩ2.

(2) Similarly, closure �∗
j,ĩ1,ĩ2

(on Ω̃) selects a set of computation chains, in which

each edge has the form oπ̃1
1 � oπ̃2

2 ∈ Ω̃ , s.t. π̃1.l = π̃2.l = j, ĩ1 ≤ π̃1 .̃i ≤ ĩ2, ĩ1 ≤ π̃2.̃i ≤

ĩ2.

Note that constraint ĩ1 ≤ π̃.̃i ≤ ĩ2 is used to compute these closures: τ̃1 �f τ̃2 (or

τ̃1.f � τ̃2.g) is added into the closure �∗
j,ĩ1,ĩ2

(or �∗
j,ĩ1,ĩ2

) only when the ICAs τ̃1.π̃.̃i

and τ̃2.π̃.̃i are “between” the specified parameters ĩ1 and ĩ2. For example, the general

closures �∗ and �∗ are special cases of their constrained closures when ĩ1 = 0, ĩ2 = ⊤,

and j is an arbitrary loop label. It is also easy to see that �∗j,0,0 selects data structures

whose objects are all created outside loops. Similarly, a data structure selected by

�∗j,0,1 is such that its objects can be created both inside and outside loop j, and the set

of inside objects in any run-time instance of the data structure are always allocated

in the same iteration. Using constrained closures, we give the following definitions.

Definition 8.2.5 (Disjoint Data Structure (DDS)) For an allocation site p located

in loop j, a data structure (denoted as δj
p) rooted at p with respect to loop j is a graph

whose edge set is a subset of H̃. Its run-time instances are guaranteed to be disjoint

if, for any edge τ̃1 �f τ̃2 of the data structure, there exists a type τ̃ for p, s.t.
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τ̃ .o = p ∧ τ̃ .π̃.̃i = 1 ∧ τ̃ �∗j,1,1 τ̃1 ∧ τ̃ �∗j,1,1 τ̃2

A DDS contains objects that are reachable from root p and that are created in the

loop. Each run-time instance of a DDS is guaranteed not to contain any object

instance created (1) outside the loop and (2) inside the loop but in different iterations.

This is achieved by using constraint (j, 1, 1) for the closure computation.

Lemma 8.2.6 (Disjointness of DDS instances) Given two run-time instances of a

DDS δl
p created by two iterations of a loop, no run-time object exists in both instances.

Proof sketch. The lemma can be proven by contradiction. Suppose there is a

run-time object that exists in both instances of the data structure. At the point it

is added into the second data structure instance (created by a later iteration), the

abstract loop iteration count for j contained in its type must be ⊤, which is recorded

in the abstract points-to effect that represents this addition. This contradicts the fact

that δl
p is constructed using closure �∗j,1,1, which limits the abstract iteration count

for each type to be 1. �

Definition 8.2.7 ( Iteration-Dependent Field) A field of the form τ̃ .f is loop-iteration-

dependent (LID) with respect to loop j if

(a) ∃τ̃ ′.g : τ̃ .f �∗j,0,⊤ τ̃ ′.g ∧ (τ̃ ′ = ⊤ ∨ τ̃ ′.π̃.̃i = ⊤)

∨ (b) ∃τ̃ ′.g : τ̃ ′.π̃.̃i = 0 ∧ τ̃ .f �∗j,0,1 τ̃ ′.g ∧ τ̃ ′.g �∗j,0,1 τ̃ ′.g

Determining whether the value of an object field depends on a specific loop itera-

tion requires to inspect abstract dependence effects. As discussed in (condition 2 of)
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Section 8.1, a field can be iteration-dependent if (1) it depends on a value read from

a field of an unknown object or an object created in an unknown (different) iteration,

or (2) it depends on a field of an object created outside the loop (e.g., τ̃ ′.g), and this

field is involved in a dependence cycle (i.e., it can transitively depend on itself).

Lemma 8.2.8 (Loop-Invariant Data Structure) A data structure is loop-invariant

if for each type τ in the data structure, ∀τ̃ .f ∈ Dom(Ω̃) : τ̃ .f is not an LID field.

Proof sketch. Let us negate the two conditions in Definition 8.2.7, that is, a loop-

invariant field o.f can depend only on (1) fields of objects guaranteed to be created

in the same iteration with o, or (2) fields of objects created outside the loop and

not involved in dependence cycles. For (1), the proof can be done by induction on

the chain of dependence edges leading to o.f . In the base case, fields without any

incoming dependence edge must be assigned newly created objects or null, and thus

must be loop-invariant. For the inductive step, consider the n-th edge along the chain.

If the source field of the edge is loop-invariant, the target field of the edge must also

be loop-invariant.

For (2), let us first consider a simplified situation where there is only one outside

object field p.q (i.e., p is created outside the loop) involved in the dependence chain.

Here are two subcases. First, field o.f (o is an object created inside the loop) depends

on p.q and p.q is never written in the loop. It is straightforward to see that p.q does

not carry any iteration-specific values and thus o.f is loop-independent.

Second, suppose field p.q is written in iteration i with a value v produced in itera-

tion i′. Here i must equal i′, because otherwise o.f could depend on a value computed

in a different iteration, which contradicts the statement in (1). Since value v cannot
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depend on p.q (otherwise p.q would depend on itself), it must come only from objects

freshly created in this iteration. Based on the proof of case (1), we know that v must

be loop-invariant. If p.q is read later in iteration k > i to produce another value v′, v′

must also be the same across iterations because p.q is invariant. This reasoning can

be easily generalized to handle the more complex situation where multiple outside

object fields exist in the dependence chain. �

Theorem 8.2.9 (Hoistable Logical Data Structure (HDS)) If a data structure δj
p is

(1) disjoint and (2) loop-invariant, it can exhibit exactly the same behavior at run

time when it is located inside the loop and outside the loop, under the assumption

that the code statements that access this data structure can be safely hoisted.

Note that the section introduces the notion of hoistable logical data structure

only for formal development. In fact, instead of reporting only completely-hoistable

data structures, our analysis identifies, for each logical data structure, its hoistable

part (that is both disjoint and loop-invariant). The analysis eventually ranks all loop

data structures based on their hoistability measurements, in order to quantify the

likelihood of successful manual hoisting.

8.3 Computing Hoistability Measurements

In practice, we have observed that only a small number of data structures and

statements in a large program can meet both of the hoisting criteria described in

Section 8.2. This is primarily due to their complex usage and the conservative nature

of any static analysis algorithm, which must model this complex usage soundly. While
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fully-automated transformations are desirable and sometimes possible, the usefulness

of the static analyses can be increased even further by generalizing them to provide

valuable support for programmer-driven manual code transformations.

Previous studies such as [156,159] have demonstrated that, in many cases, manual

performance tuning with developers’ insight can be much more effective than fully-

automated compiler optimizations. For instance, a programmer may quickly identify

that it is problematic to create a 100-field data structure in a loop with only 1

field being iteration-dependent, while the sound transformation would give up and

terminate silently. To enlist human’s effort, we must present to them highly-relevant

information that can quickly direct them to a problematic area. In this section, we

present two metrics that we use to measure hoistability of data structures. These

measurements are computed based on the points-to and dependence relationships

described earlier in this chapter.

Dependence-based hoistability (DH) The first metric we consider measures

the amount of data in a data structure that is constant during the execution of a loop

(i.e., the part that complies with rule 2 in Section 8.1). This dependence hoistability

metric is simply defined as an exponential function DH = sn/s, which considers two

factors: the total number of fields s in a data structure and the number of its loop-

invariant (i.e., non-LID, discussed in Def. 8.2.7) fields n. The larger s is, the more

performance improvement could potentially be achieved by hoisting it. The larger

n/s is, the easier it is for a programmer to hoist this data structure. If s is 1, the

data structure contains a single field. Even though this field is invariant (i.e., n/s is

1), hoisting it may not have a large impact on performance. If n/s is a small number

(i.e., most of its fields are not invariant), the result of sn/s can be very small (i.e.,
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close to 1) regardless of how large s is, which also indicates it is not worth spending

time as the data structure may be too difficult to hoist. In addition, we choose

an exponential function instead of a polynomial function as the metric because the

exponential function “penalizes” cases where n is small, while a polynomial function

would be “fair” for all cases of n. For example, if n=s/2 (half the fields are invariant),

our exponential function will give the square root of s, while a polynomial function

may give a much larger number.

Structure-based hoistability (SH) Similarly to the first metric, the second

metric considers, for each data structure, how many objects in it are guaranteed to

be allocated in the same iteration (i.e., the part that complies with condition 1 in

Section 8.1). This structural hoistability metric is defined as SH = tm/t, where t is

the total number of objects in the data structure and m is the number of objects

whose ICA is 1. SH considers both the size of the data structure and the size of its

disjoint part. Note that when m/t is 1 for a data structure, this data structure is a

DDS (as discussed in Def. 8.2.5), as it is guaranteed to have disjoint instances in all

loop iterations.

During our studies, we found that DH is much more useful than SH in distin-

guishing data structures that are easy to hoist manually from those that are not.

First, s is a more accurate measurement of the size of a data structure than t, as the

data structure can still be large if it contains fewer objects but each object has more

fields. Second, we found that for a large number of data structures in our benchmarks,

their m/t is 1, which means they are all DDS. It would be quite labor-intensive to

inspect all of them and check if they are hoistable. To help the programmer quickly

identify truly optimizable data structures, we focus on DDS (whose m/t is 1) and
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compute dependence-based hoistability (DH) only for these data structures. Finally,

only DDS are ranked (based on their DH measurements) and presented to the user

for inspection.

Incorporating dynamic information For performance tuning, dynamic fre-

quency information is usually necessary to help programmers focus on “hot” entities

(e.g., calling contexts, data structures, etc.). For example, it could be more beneficial

to hoist a small, but frequently-allocated data structure than a big, occasionally-

occurring data structure. Frequency information can be easily incorporated into the

two hoistability metrics. For example, for DH , its definition can be simply extended

to DDH = (f ∗ s)n/s, where f represents the allocation frequency of the root object

of the data structure.

8.4 Implementation

The static analysis implementation has five logical components. The first com-

ponent is a data structure analysis. In order to discover the data structure rooted

at an object, this analysis employs a variation of the context-free-language (CFL)-

reachability formulation of points-to analysis [133], which models both context sensi-

tivity via method entries and exits, and heap accesses via object fields read and writes.

This analysis was proposed in Chapter 7 [159] to understand container structures and

semantics. While this part (data structure analysis) is the adaption of an existing

technique, all other components are completely new and are novel contributions.

For each loop in an actual Java program, data structure root objects are first

located. To find such root objects, we first consider objects that are created directly

in the loop body. Objects that are created in a method (e.g., used as a factory)
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invoked by a call site in the loop and that can be returned to the loop-containing

method are also considered.

Next, for each root object o, our analysis identifies the set of reachable objects

and their points-to relationships. In particular, the analysis looks for chains of stores

of the form a0.f0 = new X; a1.f1 = b0; a2.f2 = b1; . . . ; an.fn = bn−1; bn = o, such

that (1) the two variables in each pair (ai, bi) for 0 ≤ i ≤ n are aliases and (2) the

CFL path for this chain contains balanced method entries and exits. If such a chain

can be found, the object represented by new X is in the data structure rooted at

o, because it could potentially be reached from o at run time through a sequence of

field dereferences fn.fn−1 . . . f1.f0. Using this formulation, our hoisting analysis can

be performed on demand: it can work directly on each loop object, and performs only

the work necessary to detect its data structure and to check its hoistability.

The second part of the implementation is a form of data flow analysis that an-

alyzes each loop to perform type inference. An abstract heap (points-to and data

dependence) effect is the join of data flow facts on all valid paths from the loop entry

to the assignment that connects the two entities in the effect.

The third part is a form of data dependence analysis that detects loop-invariant

object fields. This analysis traverses backward the def-use chains from each store

that writes to a field of an object in a loop data structure, and checks whether the

two conditions in Definition 8.2.7 hold for the field. Similarly to other existing static

slicing algorithms, a key challenge to computing precise data dependences lies in

the handling of data flow via heap locations. Our analysis initially works on top

of a context-insensitive points-to analysis: for each load a = b.f , we find the set of

all assignments c.f = d such that c and d can alias context-insensitively. We next
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Benchmark (a) Analysis statistics (b) Dependence-based hoistability
#M(K) #L #Obj Time (s) #DDS #HDS #SF #SIF #DF #DIF

jack 12.5 88 13 1224 5 3 797 62 797 62
javac 13.4 270 89 1745 33 8 45 31 42 28
soot-c 10.4 475 17 3043 7 3 56 36 56 36
sablecc-j 21.4 202 228 7910 82 53 429 194 221 61
jess 12.8 119 32 304 7 1 1135 51 1135 51
muffin 21.4 318 96 10766 47 8 1503 198 - -
jflex 20.2 209 17 2325 9 0 55 17 55 17
jlex 8.2 108 9 5549 4 0 36 6 36 6
java-cup 8.4 99 19 474 4 0 107 57 107 57
antlr 12.9 154 3 77 2 1 3 0 3 0
bloat 10.8 562 141 3476 36 10 1536 136 674 46
chart 17.4 482 102 12746 6 0 84 19 84 19
xalan 12.8 17 8 63 6 0 78 24 78 24
hsqldb 12.5 33 10 178 5 0 75 19 75 19
luindex 10.7 14 5 163 5 0 65 15 65 15
ps 13.5 117 21 1784 21 11 36 20 34 20
pmd 15.3 594 30 168 15 2 127 68 127 68
jython 27.5 614 48 423 24 3 77 25 190 26
eclipse 41.0 3322 93 21557 80 52 1182 180 - -

Table 8.1: Shown in the first seven columns of the table is the general statistics of
the benchmarks and the analysis: the benchmark names, the numbers of methods (in
thousands) in Soot’s Spark context-insensitive call graph (M ), the numbers of loops
inspected (L), the numbers of loop objects considered (Obj ), the running times of
the analysis (Time), the total numbers of disjoint data structures (DDS ), and the
total numbers of hoistable logical data structures (HDS ). Columns SF and SIF in
section “Dependence-based hoistability” show the total numbers of fields (SF ) and
the numbers of loop-invariant fields (SIF ), averaged among the top 10 DDS that we
chose to inspect. These data structures are ranked based on the dependence-based
hoistability measurement (DH). Columns DF and DIF report the same measurements
as SF and SIF, except that the inspected data structures are ranked using DDH that
incorporates dynamic frequency information.

perform refinement on this candidate set using the CFL-reachability formulation of

pointer-aliasing to find whether b and c can indeed alias, and if they can, the calling

context for c.f = d under which the value flow occurs. This calling context is used to

guide the future graph traversal to follow the appropriate entry/exit edges.
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8.5 Evaluation

We implemented the analysis in the Soot analysis framework [132,147] and eval-

uated it on the 19 Java programs shown in Table 8.1. All experiments were con-

ducted on a dual-core machine with an Intel Xeon 2.83GHZ processor, running Linux

2.6.18. The Java library used for the analysis was Sun JDK 1.5.0 06, and 4GB of max

heap space was specified to run the analysis. Programs in the table were from the

SpecJVM98, Ashes, and DaCapo benchmark suites. We were able to run the analysis

on all the programs in these sets, but we included only applications that have objects

created in loops.

8.5.1 Static Analysis and Hoisting

Table 8.1 reports statistics of the benchmarks, the analysis, and the dependence-

based hoistability measurements. For a GUI application muffin, we could not find an

appropriate test case to perform profiling, and thus, “-” is used to fill out columns that

report dynamic-information-based measurements. We could not perform profiling for

eclipse either, as different plugins use their own class loaders, making it difficult

for them to access our profiling library without modifying their customized class

loaders. The cost of the analysis is generally proportional to the number of loop

objects processed because of its demand-driven nature. The analysis running time

can also be influenced by the size of the code base, as the analysis is context-sensitive

and the number of contexts often grows significantly when the size of the program

increases. It is clear that the analysis can scale to large applications, including the

eclipse framework, which has millions lines of code in its implementation.
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Across all applications we observe large numbers of disjoint data structures (DDS)

and hoistable logical data structures (HDS). This is a strong indication of the exis-

tence of optimization opportunities that can be exploited by human experts, which

motivates our proposal of computing hoistability measurements to help manual tun-

ing. To compare the effectiveness of DH (dependence-based hoistability measurement

proposed in Section 8.3) and DDH (the profile-based version of it) in finding opti-

mization opportunities, we inspected the top 10 data structures (or the total number

of data structures if it is smaller than 10) that appear in both reports. The total

numbers of fields divided by the numbers of loop-invariant fields for these inspected

data structures are shown in columns SF/SIF and DF/DIF, for these two kinds of re-

ports. Profiling is implemented by Soot-based bytecode instrumentation that records

the execution frequency for each loop. The goal of this comparison is to understand

how much impact the dynamic information can have on the interpretation of reports.

Specifically, can the use of run-time frequency f in DDH lower the ranks of data

structures that are highly-likely to be optimized (i.e., have larger n/s but smaller f)?

The ratio between SIF (or DIF ) and SF (or DF ) indicates, to a large degree, the

difficulty of hoisting data structures manually by inspecting the analysis reports. The

larger it is, the easier it may be for a performance expert to modify the data models

to hoist them. It is clear that the ratios of DIF/DF are generally close to those of

SIF/SF. In some cases, the former are even greater than the latter. This observation

indicates that DDH can expose not only hot spots (i.e., frequently-allocated objects),

but also optimizable data structures.
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8.5.2 Case Studies

We have carefully inspected the generated analysis reports (with dynamic infor-

mation incorporated) for these 19 benchmarks and found optimizable data structures

in almost every one of them. This subsection presents five representative case studies,

in which either large performance improvement was seen, or interesting bloat patterns

were found. These applications are ps, xalan, bloat, soot-c, and sablecc-j, all

with large code base and a great number of loop objects. The performance problems

we show in this chapter are new and have never been reported by any previous work.

Through these studies, we found that the analysis is quite useful in helping pro-

grammers find mostly-loop-invariant data structures and the execution inefficiencies

due to these data structures. It took us about three days to find and fix problems

in these five applications, among which we had studied only bloat before. Note that

most of this time was spent on developing fixes rather than finding data structures

that can be easily hoisted: for each benchmark, we looked at only the top 10 data

structures in the reports (due to the limited time we had), and found that most of

them were indeed hoistable. Even larger optimization opportunities could have been

possible if we had inspected more warnings generated by the tool.

It is important to note that it would not be possible to find such problems by using

any existing profiling tool: to detect loop-invariant data structures, a purely dynamic

analysis has to perform whole-program value profiling, a task that is prohibitively

expensive for large-scale, long-running Java programs. This is the reason why we

have not compared our results with dynamic analysis reports.

ps ps is a postscript interpreter. The top data structure in the list ranked by

DDH is rooted at a NameObject object created in a loop in method execute of class
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makeDictOperatorDB. The loop is used to traverse a stack: for each stack element

(i.e., a NameObject object containing a key and a value), the goal is to remove the ‘/’

character in the key of the element. The way the loop is implemented is that it creates

another (backup) stack, pops the original stack, creates a new NameObject object with

most values copied directly from the original object, and pushes this new object onto

the backup stack. Eventually all the new objects in the backup stack are pushed back

onto the original stack. The creation of such NameObject objects directs us to think

about this implementation, and especially about the way the stack is operated. In

fact, this process can be done entirely in place so that these objects do not even need to

be created. A further inspection of code found an even more interesting problem. The

programmer seems to ignore the fact that class Stack is a subclass of List in JDK and

uses push and pop to implement everything related to stack. For example, this same

pop-push pattern is used even for element retrieval. For almost each occurrence of

this problematic stack usage pattern, there is a corresponding (mostly loop-invariant)

data structure in our report. We removed only two occurrences of such a pattern (in

makeDictOperatorDB.execute and DictStack.getValueOf), and this resulted in a

reduction of 82.1% in running time (from 28.3s to 5.3s) and 70.8% reduction in the

total number of objects created (from 10170142 to 2969354).

xalan xalan is an XLST processor for XML documents. The problem we found

is in a test harness (XalanHarness) used by DaCapo to run the benchmark. This

harness class creates multiple threads to transform input XML files. In method run,

there is a while(true) loop that assigns jobs to different threads. Our report shows

that a data structure rooted at a Transformer object created in the loop is a HDS

(shown in Figure 8.1(b)). The same Transformer object is created every time the
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loop iterates, and then used by different threads for transforming the input files. It

is highly unlikely that it would be possible to automatically hoist this data structure

because this object is created by using a transformer factory object, which is obtained

from a reflective call. After hoisting this allocation site, we observed a 10% reduction

in running time and 1% reduction in the number of objects created. This problem

has also been confirmed by the DaCapo maintainers [41] and will be handled in the

next release of the DaCapo benchmark set.

bloat bloat is a program analysis tool designed for Java bytecode-level opti-

mizations. Many loop data structures reported by our analysis are objects of inner

classes that are declared exactly at the point where their objects are needed. In

bloat, most of these objects are created to implement visitor patterns. Hence, the

objects are used only for method dispatch and do not contain any data related to

the program context under which they are created. These objects commonly exist in

loops, and in many cases we found them even located in loops with many layers of

nesting. This problem exemplifies a typical object-oriented philosophy: the program-

mer should focus on patterns and abstractions when coding, and leave the mess to

the runtime system. By simply hoisting the reported objects (and the declarations

of their classes) out of the loops, we saw 11.1% running time reduction and 18.2%

reduction in the number of created objects.

soot-c soot-c is a part of the Soot analysis framework [132,147] benchmarked

in the Ashes benchmarks suite [10]. One top data structure reported by our anal-

ysis is rooted at a StmtValueBoxPair object created in a loop (in a constructor of

jimple.SimpleLocalUse) that builds def-use relationships as follows:
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while(defIt.hasNext()){

List useList = (List) stmtToUses.get(defIt.next());

useList.add(new StmtValueBoxPair(s, useBox));

}

For each statement s that uses a variable, the program finds a set of statements

that define the variable, creates a StmtValueBoxPair object, and adds it to the list.

These StmtValueBoxPair objects, while containing the same values, are created for

safety purposes: if one such pair is changed later, other pairs should not be affected.

Our tool cannot hoist this data structure, because it is not confined (i.e., escapes

to fields of objects created outside the loop). However, after inspecting the code, we

found that the use list associated with each statement is never changed after the jimple

statement chain is constructed for a program. Even if a client analysis could change

it by inserting statements, Soot always creates a new object to represent this (newly-

established) def-use relationship rather than change the original object. This problem

shows a typical example of an over-protective implementation, where several different

mechanisms are used simultaneously to enforce the same property while one (or a few)

of them may be sufficient to do so. By sharing one StmtValueBoxPair object among

multiple def statements, we achieved 2.5% running time reduction and 3.5% reduction

in the number of created objects. In this example, we can see once again the advantage

of tool-assisted manual tuning: this data structure can never be eligible for hoisting

from the perspective of any fully-automated analysis. However, the human insight

did make hoisting happen as it is unnecessary to have these instances simultaneously.
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sablecc-j sablecc-j is a version of the Sable Compiler Compiler that produces

the sablecc files (parser, lexer, etc.) for a preliminary version of the jimple grammar.

Similarly to the problems found for bloat, a large number of HDS reported are related

to inner classes: two such classes are declared in sablecc.GenParser to perform

depth-first traversal of syntax trees, and one such class is declared in sablecc.DFA

to represent an interval in a char set. Creating multiple objects for each such class is

completely unnecessary. Hoisting these class declarations and their objects resulted

in 6.7% running time reduction and 2.5% reduction in the number of objects created.

Evaluation summary While all loop-invariant data should be hoisted out

of loops, the tight data coupling in an object-oriented program makes it impossible

for us to do so (either automatically or manually). To help programmers focus on

data structures that are (1) easy to hoist and (2) worth hoisting, we propose to com-

pute hoistability measurements. Through these case studies, we demonstrate that our

measurements are effective in pinpointing such data structures. In fact, by inspect-

ing reported data structures, we found many performance problems and achieved

significant performance improvement. Some invariant data structures that we have

managed to hoist are due to (deeper) design issues such as inefficient implementations

of design patterns (e.g., visitors in bloat) or over-protective implementation strate-

gies (e.g., soot-c). Our measurements were also helpful in revealing these issues by

exposing their symptoms (i.e., mostly-invariant data structures).

8.6 Summary and Interpretation

This chapter presents a static technique that detects loop-invariant data struc-

tures. We focus on data models and look for logical data structures that can be
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hoisted. Instead of transforming the program and hoisting data structures automat-

ically, we propose to measure the hoistability of a data structure: the dependence-

based hoistability metric measures the amount of loop-invariant data in a data struc-

ture, and the structure-based hoistability metric measures the size of its disjoint part.

We have implemented the analyses and presented an evaluation of the technique on

a set of 19 Java benchmarks. Our experimental results demonstrate that the analysis

can scale to large applications and the measurements can be useful in finding large

optimization opportunities.

Motivated by the same insight, the two static analyses presented in this chapter

and the last chapter target two specific bloat patterns that we frequently observed in

the execution of large-scale real-world applications. The success of these techniques

shows that by identifying concrete patterns of inefficiencies, a static approach can

precisely detect potential performance problems before these problems are observed

during run-time execution. With the help of lightweight dynamic information, it

is even possible for the static analysis to detect performance bottlenecks that are

particularly hard for a dynamic analysis to detect (e.g., to find loop-invariant data

structures, a dynamic analysis needs to perform expensive value profiling). It will

be an interesting future topic to investigate more effective combinations of static and

dynamic information to help programmers understand significant performance issues.

266



CHAPTER 9: Related Work

9.1 Dynamic Analysis

This section outlines work related to the dynamic analyses presented in this dis-

sertation. The relevant existing work falls into the following five categories: bloat

detection, dynamic slicing, dynamic data flow tracking, dynamic memory leak detec-

tion, and heap assertions.

9.1.1 Bloat Detection

Dufour et al. propose dynamic metrics for Java [48], which provide insights by

quantifying runtime bloat. Many memory profiling tools have been developed to take

heap snapshots for understanding memory usage (e.g., [69]) and to identify objects of

suspicious types that consume a large amount of memory (e.g., [51, 109]). However,

none of these tools attempt to understand the underlying causes of memory bloat,

and thus cannot help programmers pinpoint the problematic areas of the application.

Mitchell et al. [97] structure behavior according to the flow of information, though

using a manual technique. Their aim is to allow programmers to place judgments on

whether certain classes of computations are excessive. Our copy profiling work is in

this same spirit, and automates an important component of this approach. Their

follow-up work [96] introduces a way to find data structures that consume excessive

amounts of memory. Work by Dufour et al. finds excessive use of temporary data
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structures [49, 50] and summarizes the shape of these structures. In contrast to the

purely dynamic approximation introduced in our work, they employ a blended escape

analysis, which applies static analysis to a region of dynamically collected calling

structure with observed performance problem. By approximating object effective

lifetimes, the analysis has been shown to be useful in classifying the usage of newly

created objects in the problematic program region. JOLT [124] is a VM-based tool

that uses a new metric to quantify object churn and identify regions that make heavy

use of temporary objects, in order to guide aggressive method inlining.

Our dynamic approaches differ from all existing bloat detection work in two di-

mensions. First, our work addresses the challenge of automatically detecting bloated

computations that fall out of the purview of conventional JIT optimization strategies.

In general, existing bloat detection work can be classified into two major categories:

manual tuning methods (i.e., mostly based on measurements of bloat) [49,50,96,97],

and fully automated performance optimization techniques such as the entire field of

JIT technology [8] and the research from [124]. The work described in this disser-

tation sits in between: we provide sophisticated analyses to support manual tuning,

guiding programmers to the program regions where bloat is most likely to exist, and

then allowing human experts to perform the code modification and refactoring. By

doing so, we hope to help the programmers quickly get through the hardest part of

the tuning process—finding the likely bloated regions—and yet use their (human)

insights to perform application-specific optimizations.

Second, we use different (non-conventional) symptom definitions to identify the

bloated regions. For example, the work of copy profiling profiles data flows based

on the observation that bloat often manifests itself in the form of large volumes of
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copies. On the contrary, the JIT performs optimizations based on hot spots, which are

decided completely by profiling control flows. As shown in Chapter 1, performance

bottlenecks do not necessarily exist in frequently-executed regions, and in many cases,

they are more related to data flow, rather than control flow.

A significant difference between the cost-benefit analysis and existing bloat detec-

tion techniques is that an existing approach can usually find only one type of problems

effectively. For instance, blended escape analysis [49, 50] is effective at detection of

temporary objects while a container profiling technique [122,158] works only for con-

tainer bloat. Our cost-benefit analysis detects operations that have high costs and

low benefits. Performing such operations is the essence of bloat and is a common

characteristic of a variety of performance problems, which, however, may show differ-

ent symptoms on the surface. Hence, the cost-benefit analysis is potentially capable

of identifying many different kinds of bloat, and thus can be more useful in practice

to help a programmer perform the tuning task.

9.1.2 Control- and Data-Based Profiling

Lossy compression of profiles has been proposed for space efficiency. These tech-

niques include dynamic dependence profiles [3], control flow profiles [14], and value

profiles [30]. While lossy compression can provide sufficient precision for many appli-

cations, evidence has been shown that they are inadequate for many others. Lossless

compression techniques are thus developed to reduce space requirements and yet pre-

serve the dynamically collected data. Research from [79,170] studies the compressed

representations of control flow traces. Value predictors [28] are proposed to compress
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value profiles, which can be used to perform various kinds of tasks such as code special-

ization [30], data compression [171], value encoding [163] and value speculation [85].

Research from [35] proposes a technique to compress an address profile, which is used

to help prefetch data [67] and to find cache conscious data layouts [119]. Zhang and

Gupta propose whole execution traces [167] that include complete data information

of an execution, to enable the mining of behavior that requires understanding of

relationships among various profiles.

Ammons et al. [7] develops a dynamic analysis tool to explore calling context trees

in order to find performance bottlenecks. Srinivas et al. [136] use a dynamic analysis

technique that identifies important program components, also by inspecting calling

context trees. Chameleon [122] is a dynamic analysis tool that profiles container

behaviors to provide advice as to the choices of appropriate containers. The work

in [110] proposes object ownership profiling to detect memory leaks in Java programs.

When profiling to find performance problems, existing techniques typically con-

centrate on control flow, rather than data flow, from path profiling [14,19,79,148] to

feedback-directed profiling [8], all to identify heavily-executed paths for further opti-

mization. The copy profiling technique described in Chapter 3 profiles data flow, and

uses the copy profiles to determine the problematic program regions. The profiling

technique in the cost-benefit analysis is similar in spirit to the dependence profiling

in [3]. While both fall in the general category of lossy profile compression, our tech-

nique proposes to introduce analysis semantics into profiling. Hence, our approach is

lossless in terms of the target analysis—as long as a target analysis can be formulated

in our framework, the compressed profile provides all the information required by that
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analysis. The summarization techniques described in [3] are analysis-neutral and it

is unclear what kinds of analyses can take advantage of them.

9.1.3 Dynamic Slicing

Since first being proposed by Korel and Laski [76], dynamic slicing has inspired a

large body of work on efficiently computing slices and on applications to a variety of

software engineering tasks. A general description of slicing technology and challenges

can be found in Tip’s survey [146] and Krinke’s thesis [77]. The work by Zhang et

al. [165–169] has considerably improved the state of the art in dynamic slicing. This

work includes, for example, a set of cost-effective dynamic slicing algorithms [166,168],

a slice-pruning analysis that computes confidence values for instructions to select

those that are most related to errors [165], a technique that performs online compres-

sion of the execution trace [167], and an event-based approach that reduces the cost

by focusing on events instead of individual instruction instances [169]. We refer the

reader to Zhang’s thesis [164] for a detailed description of these techniques. Sridharan

et al. proposes thin slicing [134], a technique that improves the relevance of the slice

by focusing on the statements that compute and copy a value to the seed. Although

this technique is originally proposed for static analysis, it fits naturally in the work

on dynamic cost-benefit analyses.

Our work on abstract dynamic slicing is fundamentally different from these exist-

ing techniques in the following ways. Orthogonal to the existing profile summarization

techniques such as [3, 14, 30, 167], abstract slicing achieves efficiency by introducing

analysis semantics to profiling, establishing a foundation for solving a range of dy-

namic data flow problems. If an analysis can be formulated in our framework, the
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profiled information is sufficiently precise for this particular analysis. Hence, although

our approach falls into the general category of lossy compression, it is lossless for the

specific analysis formulated. The work from [169] is more related to our work in that

the proposed event-based slicing approach is a special case of abstract slicing with

the domain D containing a set of pre-defined events. In addition, existing work on

dynamic slicing targets its use for automated program debugging, whereas the goal

of our work is to understand performance and to find bottlenecks.

9.1.4 Dynamic Information Flow Analysis

Dynamic taint analysis [38, 59, 103, 108, 162] tracks input data from untrusted

channels to detect potential security attacks. Debugging, testing, and program un-

derstanding tools track dynamic data flow for other specialized purposes (e.g., [87]).

The work in [24] tracks the origins of undefined values to assist debugging. Re-

search from [88] proposes to measure the strength of information flows and conducts

an empirical study to better understand dynamic information flow analysis. Work

from [31,32, 101] describes approaches to enforcing information flow analysis in Java

virtual machines.

Our dynamic analyses combine information flow tracking and profiling to effi-

ciently form execution representations (e.g., graph Gcost) that are necessary for the

client analyses. Because information flow analysis is expensive in general, approaches

such as [108] have been developed to reduce its run-time cost. These techniques can

also be employed in the future to make our techniques more scalable.
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9.1.5 Dynamic Memory Leak Detection

Dynamic analysis [20, 43, 44, 51, 61, 62, 71, 80, 109] has typically been the “weapon

of choice” for detecting memory leaks in real-world Java software. However, as de-

scribed in Chapter 5, existing techniques have a number of deficiencies. The work

in [43, 44, 51, 109] enables visualization of objects of different types on the heap, but

does not provide the ability to directly identify the cause of the memory leak. Existing

techniques use growing types [71,95] (i.e., types whose number of instances continues

to grow) or object staleness [20] to identify suspicious data structures that may con-

tribute to a memory leak. However, in general, a memory leak caused by redundant

references is due to a complex interplay of memory growth, staleness, and possibly

other factors. By considering a single metric which combines both factors, our tech-

nique could potentially improve the precision of leak identification. In addition, all

existing dynamic-analysis-based leak detection approaches start by considering the

leak symptoms (e.g., growing types or stale objects), and then attempt to trace back

to the root cause of the leak. As discussed in the description of the JDK bugs from

Chapter 5, the complexity of such bottom-up tracking makes it hard to generate

precise analysis reports, and ultimately puts a significant burden on the programmer.

In contrast, the approach described in Chapter 5 is designed from a container-

centric point of view—it automatically tracks the suspicious behavior in a top-down

manner, by monitoring (1) the object graph reachable from a container, and (2) the

container-level operations. Our second approach described in Chapter 6 solves these

problems by allowing programmers to explicitly express their interests (i.e., related to

high-level semantics), based on the insight that developers’ knowledge is essential for

a leak detector to produce highly relevant reports. These higher levels of abstraction
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(e.g., container-centric view, transactions, etc.), compared to traditional low-level

tracking of arbitrary objects, simplifies the difficult task of identifying the sources of

memory leaks.

9.1.6 Heap Assertions

Closest to our LeakChaser work (described in Chapter 6) are heap property as-

sertion frameworks such as GC Assertions [1, 112] and QVM [9, 149]. For example,

one can explicitly specify at a certain program point that an object should be dead

soon (assertDead), or that an object must be owned by another object in the object

graph (assertOwns). While such assertions can be quite useful in helping diagnosis,

they are limited in the following three important aspects related to leak detection.

First, reachability information is used to approximate the liveness of objects, which

may result in false positives. For example, assertOwns (a, b) asserts a reachability

relationship between objects a and b, and it fails when b can be reached along a path

that does not contain a in a certain GC run. However, it is possible that object b

becomes unreachable from object a in one GC, while later b is owned by a again.

Second, because a GC assertion predicts a future heap state (i.e., the state at the

closest GC run) and the global reachability information evolves all the time, whether

or not this assertion will fail depends significantly on when and where the next GC

occurs, which may in turn be affected by many factors, such as the initial and maxi-

mum heap sizes, and specific GC implementation strategies. Third, these approaches

are intended for programmers who have sufficiently deep program knowledge and in-

sights. In real-world software development, only a handful of programmers can have

274



such knowledge, especially when a performance problem occurs in program code that

is not written by themselves.

Our work solves the first and second problems by allowing programmers to specify

object lifetime relationships instead of reachability properties. In order to tackle the

third problem, we use a combination of assertion checking and transaction property

inference to allow programmers with little application-specific knowledge to quickly

identify the cause of the problem.

The GC Assertions [1] framework includes a block-structured assert-alldead asser-

tion, which asserts that all objects allocated in the block must be dead by the end of

the block. While it is related to the transaction abstractions proposed in Chapter 6,

there are two important distinctions between them. First, assert-alldead does not

allow objects in the specified structure to escape the structure, while our approach

allows checking and inferring shared objects, providing more flexibility for diagnosing

problems. Second, our transaction abstraction separates temporal and spatial scopes

of the structure, while these scopes are combined in this earlier work.

Merlin [65] is an efficient algorithm that can provide precise time-of-death statis-

tics for heap objects by computing when objects die using collected timestamps.

LeakChaser could potentially exploit this technique in the future to capture asser-

tion failures between GCs, as we currently report an assertion failure only when it is

actually witnessed during a GC run.
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9.2 Static Analysis

This section outlines static analysis work related to the techniques presented in this

dissertation. The related work falls into four major categories: static memory leak de-

tection, CFL-reachability-based analyses, object-reachability-analysis, and compiler

optimization techniques that transform programs for performance improvement.

9.2.1 Static Memory Leak Detection

Static analysis can find memory errors such as double frees and missing frees for

programs written in non-garbage-collected languages. For example, [34] reduces the

memory leak analysis to a reachability problem on the program’s guarded value flow

graph, and detects leaks by identifying value flows from the source (malloc) to the

sink (free). Saturn [154], taking another perspective, reduces the problem of memory

leak detection to a boolean satisfiability problem, and uses a SAT-solver to identify

potential bugs. Dor et al. [47] propose a shape analysis based on 3-valued logic, to

prove the absence of memory leaks in several list manipulation functions. Hackett

and Rugina [58] use a shape analysis that tracks single heap cells to identify memory

leaks. Orlovich and Rugina [106] propose an approach that starts by assuming the

presence of errors, and performs a backward dataflow analysis to disprove their fea-

sibility. Clouseau [63] is a leak detection tool that uses pointer ownership to describe

variables responsible for freeing heap cells, and formulates the analysis as an owner-

ship constraint system. Its follow-up work [64] proposes a type system to describe the

object ownership for polymorphic containers and uses type inference to detect con-

straint violations. Although both this work and our technique focus on containers,

the target of this previous effort is C and C++ programs whereas we are interested
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in a garbage-collected language. The analysis described in [64] does not help detect

unnecessary references in a Java program.

More generally, all static approaches are limited by the lack of general, scalable,

and precise reference/heap modeling. Despite a large body of work on such modeling,

it remains an open problem for analysis of large real-world systems, with many chal-

lenges due to analysis scalability, modeling of multi-threaded behavior, dynamic class

loading, reflection, etc. By profiling container behavior and finding memory leaks

based on container-related heuristics, our dynamic memory leak detection work com-

plements the existing static leak detection approaches, and can help a programmer

quickly find the cause of a memory leak in large Java applications.

9.2.2 CFL-Reachability-Based Analyses

It is well known that method calls and returns can be treated as pairs of balanced

parentheses using a context-free language [66,113,115–117]. Sridharan et al. propose

a CFL-reachability formulation to precisely model heap accesses and calling contexts

for computing a points-to solution for Java [133]. As an extension of this formulation,

Zheng and Rugina [172] propose a CFL-reachability formulation for C/C++ alias

analysis. Our previous work [160] proposes to use an offline must-not-alias analysis

to reduce the amount of work that needs to be performed by the CFL-reachability

computation to speed up the actual points-to analysis. CFL reachability can also be

used to implement polymorphic flow analysis [111] and shape analysis [114]. The work

in [75,90] studies the connection between CFL-reachability and set constraints, shows

the similarity between the two problems, and provides new implementation strategies

for problems that can be formulated as CFL-reachability and set constraints. While
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based on the Sridharan-Bodik CFL-reachability formulation of points-to analysis, our

static analysis of container operation detection takes into account container-specific

structures, and thus, can potentially have a wide range of applications that need to

reason about container behavior, including summary generation for containers for

more scalable static analyses, static container-based memory leak detection [63], and

other techniques (e.g., thin slicing [134]) that need to track the flow of container

elements and ignore all other objects constituting container structures.

9.2.3 Object Reachability Analysis

The work closest to the static analysis described in Chapter 7 is the disjoint

reachability analysis proposed by Naik and Aiken [100] for eliminating false positives

in their Java data race detector. This analysis is also flow-insensitive and takes into

account loop information to distinguish instances created by the same allocation site.

Unlike this analysis that uses object-sensitivity to compute reachability information,

we employ a CFL-reachability formulation that is capable of filtering out information

irrelevant to container objects, and thus, our analysis may scale to larger programs.

Other reachability analysis algorithms range from flow-sensitive approximations of

heap shape (e.g., [33, 121]) to decision procedures (e.g., [81, 89]). While our analysis

is less precise in discovering the shape of data structures, it is more scalable and has

been shown to be effective in detecting container problems.

There exists a large body of work on ownership types and their inference algo-

rithms [5, 26, 37, 54, 63, 86]. Ownership types provide a way of specifying object en-

capsulation, and enable local reasoning about program correctness in object-oriented

languages. Existing ownership type inference algorithms may not be able to provide
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precise container information, because containers are usually designed to have poly-

morphic object ownership—some objects of a container type may own their elements

while others may not. In addition, containers are complicated by the fact that they

can be nested: the elements in a container may themselves be containers. As a pointer

to a container is passed around, ownership of the container may transfer from one

pointer to another. While the work from [64] proposes an abstract object ownership

model specifically for containers, it requires the tool users to specify correct interfaces

for container implementation routines, which are then used in the ownership infer-

ence algorithm. Our approach is completely automated, and does not require any

user annotations for detecting problems with the built-in Java collections.

9.2.4 Recency Abstraction

The loop iteration count abstraction used in Chapter 8 is inspired by the early

work from [13, 100]. This abstraction is first proposed in [100] for computing their

conditional must-not-alias properties. Our abstraction extends this abstraction to

allow objects guarded by conditionals to be selected for detecting hoistable data

structures in real-world Java programs. Work from [13] presents recency abstraction, a

technique that distinguishes most-recently-allocated-object (MRAO) and non-MRAO

for each allocation site in order to enable strong updates for a points-to analysis.

While this is similar to our iteration abstraction that distinguishes objects created in

the current iteration and previous iterations, our analysis uses such an abstraction

for identifying loop-invariant data structures, instead of improving the precision of a

points-to analysis.
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9.2.5 Compiler Optimizations for Performance Improvement

Pioneered by the commercial Smalltalk implementation, the Just-In-Time com-

piler [8, 11, 45] offers many sophisticated intraprocedural static analyses that can

effectively improve the performance of an application by finding hotspots and per-

forming optimizations at these hotspots. However, JITs can miss many optimization

opportunities due to the lack of hotspots in large applications and the limitations

of method inlining, is necessary for the majority of optimization techniques. This

dissertation advocates new approaches that develop automated program analyses to

“simulate” (the more powerful versions) of the JIT dataflow analyses that could not

be done in a typical JIT compiler due to the natural limitations of run-time compi-

lation. These analyses can help a programmer quickly find missed opportunities that

are easy to understand and fix.

Object inlining [46,84] is a static technique that consists of finding sets of objects

that can be efficiently fused into larger objects, and fusing them. While both object

inlining and our hoisting analysis (Chapter 8) concern performance problems and

need to find objects created in the same control flow region, we target a different

class of performance problems. In addition, our analysis can assist a programmer to

do manual tuning, a task that is difficult for object inlining to perform.

In the literature of compiler optimization [4], loop optimization is an important

technique that improves performance by exploiting parallelism and data locality.

There is a large body of work that has been devoted to making the execution of

loops faster. This set of techniques includes, for example, loop interchange, loop

splitting, loop unrolling, loop fusion, loop-invariant code motion, etc.
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In high-performance computing, loop optimizations play a key role in automated

parallelization for exploiting potential parallelism. We refer the reader to the survey

by Bacon et al. [12], Wolfe’s book [152], and Kennedy and Allen’s book [72] for a

broader overview and more detailed description of these techniques.

As a more general technique, partial redundancy elimination (PRE) (e.g., [18,

27, 36, 74, 98]) performs common subexpression elimination and loop-invariant code

motion at the same time. It is powerful in removing redundancy and has been used

widely in optimizing compilers. As a step beyond these traditional loop optimization

techniques, our work aims to find optimization opportunities by hoisting complex

heap data structures that can be constructed by multiple instructions and across

many method invocations, which traditional techniques cannot handle.
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CHAPTER 10: Conclusions

Software applications are now assembled from many abstractions, and program-

mers trust compilers to avoid low-level tuning of the implementation and composition

of these abstractions, in the hope that automated optimizations will take care of those

details. As a result, questionable decisions are often made—for example, the use of

an overly-general library to a achieve a simple task, or the addition of yet another

layer of delegation in the data model. The cost of one additional method call or one

more allocated object seems insignificant. In reality, the effects of these decisions

can accumulate, and the underlying compilers and runtime systems cannot eliminate

these inefficiencies.

There are two key observations on which our work relies. First, runtime bloat

is primarily a by-product of object-orientation, whose culture encourages a certain

level of excess. Programmers are taught to follow standard principles (e.g., freely

create objects, favor reuse and generality, etc.) and leave performance to compilers

and runtime systems. Many inefficiencies in the execution are due to designs and

development guided by such principles, and thus, these is much high-level seman-

tic information (expressing developers’ intent) associated with these inefficiencies. It

can be extremely difficult to develop a fully automatic optimization technique that

can effectively remove these inefficiencies. We believe that understanding such se-

mantic information and bringing it into tool design are necessary to develop useful

performance analysis tools that can help programmers identify large optimization
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opportunities. Our second key observation is that code that contributes to runtime

bloat can be identified by focusing not on the flow of control, but rather on the ac-

tivities of data. Dynamic and static analyses that track the creation and usage of

object-oriented data structures are at the heart of our work.

Based on these observations, this dissertation first presents a copy profiling tech-

nique that identifies program regions containing large volumes of data copying. How-

ever, different types of bloat may manifest themselves through different observ-

able symptoms, including not only data copies, but also other signs such as tem-

porary objects [50, 124], highly-stale objects [20, 105], and inappropriate collection

choices [122, 158]. A common effect of these different performance problems is an

imbalance between costs and benefits: the cost of forming a data structure, of com-

puting and storing its values, is too high compared to the benefits gained over the

uses of those values. The second analysis proposed by the dissertation is to profile

costs and benefits, and detect performance bottlenecks by locating operations that

have unbalanced cost-benefit rates. The underlying analysis technique of abstract

thin slicing serves as the foundation for the cost-benefit computation as well as for a

number of other dynamic analyses that require backward traversals of the execution

history. These dynamic cost-benefit analyses have been implemented in J9, IBM’s

commercial Java Virtual Machine, and have been shown to be effective in helping

a programmer quickly find problematic code that needs to be further inspected and

optimized.

Misuse of containers is an important source of runtime bloat. This dissertation

presents novel algorithms targeting detection of container bloat. A special type of

bloat that has severe impact on performance is a memory leak, caused by keeping
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references to objects that are no longer used. We propose a dynamic analysis that

identifies container-induced memory leaks by profiling container behaviors. Concrete

container functionality is abstracted into three basic operations ADD, GET, and

REMOVE. Using a novel leak confidence model that considers a combination of con-

tainer staleness and container memory consumption, the tool can precisely pinpoint

the containers that are not appropriately used (i.e., the causes of memory leaks). In

this work, these operations are manually annotated. Once the interface of a container

is modified, these annotations have to be modified accordingly. This may create a

considerable amount of work for a tool user. The profiling would be easier if the

process of container modeling could be (even partially) automated. A static analysis

technique that can automate this process is proposed in Chapter 7. At the core of

this analysis is a CFL-reachability formulation of container behavior. We also propose

two options for employing these automatically-detected operations, one that instru-

ments them and detects bloat by profiling their frequencies, and a second one that

approximates their frequencies using the nesting of the loops where these operations

are located. We show in Chapter 7 that (1) the static tool is useful in finding inef-

ficiencies during coding, and (2) later, for performance tuning that requires precise

identification of hot spots, large optimization opportunities can be found by statically

analyzing hot containers identified through dynamic information.

Many memory leaks are caused not by the misuse of containers, but rather by

cached references that the programmer forgot to invalidate. To help programmers

quickly diagnose such general memory leak problems, we propose a specification-

based technique, called LeakChaser (Chapter 6), that can not only capture precisely
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the unnecessary references leading to leaks, but can also explain, with high-level

application semantics, why these references become unnecessary.

Another bloat pattern that can be frequently seen is the creation and initialization

of loop-invariant data structures. In Chapter 8 we propose a type and effect system

that can help programmers find and hoist such data structures. By hoisting loop-

invariant data structures early during the development, the programmer is likely to

prevent small performance issues from accumulating, and thus simplify significantly

the task of subsequent performance tuning.

We have presented a series of case studies to show the effectiveness of our dynamic

and static bloat detection analyses. With varying space and time overheads, these

techniques are designed to target different types of performance problems, and can

be used in different phases of software development. For example, the cost-benefit

analysis and the copy profiling analysis can assist a programmer to make appropriate

design/implementation choices related to modeling and design. The static container

bloat detection tool can be used during coding to find (unnoticed) inefficiently-used

containers that could potentially lead to bloat. Similarly, the static detection of loop-

invariant data structures can be employed during coding to identify likely performance

problems. All proposed tools can help performance diagnosis when a problem is

observed during tuning.

We hope that with the help of the techniques we have developed, performance

tuning could be made much easier and will no longer be a daunting task that re-

quires special skills and experience. Developers should be able to easily understand

performance and perform optimizations, when they are assisted by good tools and

do not need to focus on every low-level detail of the execution behavior and the
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analysis process. The productivity-performance gap between managed languages and

unmanaged languages could be further reduced by using these techniques and tools

so that performance would no longer be an issue that stands in the way of using

object-oriented languages to implement performance-critical systems. Furthermore,

we hope that the examples and patterns discovered by this dissertation can be used

to raise awareness of bloat in real-world software development. Developers should

understand the performance impact of their implementation choices and should try

to avoid these bloat patterns in order to have high-performance implementations.
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CHAPTER 11: Future Work

Over the course of 17 years from 1986 to 2002, the performance of microproces-

sors improved at the rate of 52% per year. What grows even faster than the clock

speed is the functionality and size of software (a.k.a. Myhrvold’s Law). Myhrvold’s

premise that “software is a gas” describes the phenomenon that no matter how much

improvement has been achieved on hardware, developers always have the tendency to

add functionality to make their software push the performance boundaries. There is

an ever-increasing demand for performance optimization in modern software despite

the deployment of faster CPUs and larger memory systems. Future work will con-

tinually address this demand by inventing new approaches to alleviate bloat across

the entire software lifecycle: new language features, type systems, design models, and

testing and analysis tools. It is also interesting to consider how to adapt this chain

of techniques to the development of performance-critical software, such as real-time

and mobile applications, to improve their functionality while reducing the required

human labor. We believe there are larger opportunities than ever before that we, as

programming language and software engineering researchers, can exploit in order to

make software more efficient, and this can happen entirely at the application level,

without the help of ever-increasing hardware capabilities.

This chapter describes future research opportunities, with a focus on both our

own future directions and what the PL/SE community can do to address the ever-

increasing levels of inefficiency in object-oriented applications.
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Thin patterns While design patterns [53] have been extremely successful

in helping programmers write highly-manageable code, they are the root causes of

many types of runtime bloat. In many large applications, for instance, in order to

implement a visitor pattern, the programmer uses inner classes to represent different

kinds of visitors, which contain nothing but a visit method. Such a visitor class

can be instantiated an extremely large number of times (e.g., the allocation sites are

located in loops with many layers of nesting), and all objects created are identical:

they have no data and are used only for dynamic dispatch. It is not free to create

and deallocate these objects, and significant overhead reduction can be seen when we

use only the method without creating objects.

Future research on patterns may consider the creation of a few specialized ver-

sions for each existing pattern (i.e., thin patterns), which provide different tradeoffs

between inefficiency and modularity. On the compiler side, pattern-aware optimiza-

tion techniques could be expected to remove inefficiencies and generate higher-quality

code.

Performance-conscious modeling languages and tools While perfor-

mance-aware design has been studied in the field of software performance engineering

(e.g., [126, 153]), this research focuses primarily on high-level architectures and pro-

cesses, rather than low-level program inefficiencies. Hence, the problem is worth

re-considering in the future, and additional efforts should be focused on explicit bloat

avoidance in the state-of-art modeling languages (e.g., UML) and tools (e.g., EMF

and Rational Software Modeler).
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Careless design can lead to significant runtime bloat, especially when modeling

tools are used to automatically generate code skeletons from the design. As an ex-

ample, one cause of bloat are carelessly chosen associations. Consider several classes

X1, X2, . . . together with the associations between them (e.g., as defined in object-

oriented design and captured in UML class diagrams). The associations typically

include directionality (uni- vs. bi-directional) and multiplicity (e.g., one-to-many).

There are often many semantically-equivalent ways to implement these associations

in code. The programmer may choose one of these possibilities without truly under-

standing the implications of her/his choice on the memory footprint of the application.

Even worse, in many cases, the programmer does not make this choice at all—the

default data model in the modeling tool is applied automatically behind the scenes.

A performance-conscious design model will take performance requirements as an ex-

plicit parameter, and this will result in extended modeling languages and tools that

incorporate various resource constraints.

Unit testing/checking bloat It is important to avoid inefficiencies early

during development, before they accumulate and become observable. This calls for

novel program analysis and testing techniques that can work for incomplete programs.

While there exists a body of work on unit testing and component-level analysis, it is

unclear how to adapt them to verify non-functional properties. For example, it may

not be easy to write assertions (i.e., test oracles) for unit testing, as redundancy at

the unit level may not be obvious and thus the assertions are likely to be insensitive

to explicit performance checks (e.g., running time and space).

This difficulty actually points to the more general problem of non-functional speci-

fications. What can we assert about performance other than running time and space?
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Can any functional properties of a program be employed to specify performance re-

quirements? Good specifications must be closely related to a certain bloat problem,

and not simply describe the symptom that the problem exhibits. Significant improve-

ments could be achieved in the research of performance analysis if such specifications

were designed and evaluated.

Autonomous system and program synthesis Looking a bit far into the fu-

ture, the feedback-directed compilation techniques in a JVM may be powerful enough

to handle the many layers of abstractions [93] during the execution. For example,

dynamic object inlining may be an effective approach to reduce pointer overhead.

In order to remove container inefficiency, the runtime system could automatically

shrink the space allocated for the container if it observes that much of the space is

not used. These technique of course require sophisticated profiling techniques that

are semantics-aware and incur sufficiently low overhead. Advances in program syn-

thesis [127–131, 137] shed new light on solving the execution bloat problem. Given

a user-defined specification, a program synthesis tool can automatically choose, from

a space of algorithms, the most efficient one. This can apply naturally in the re-

search of bloat detection to find efficient implementations, and may further be used

to generate implementations for performance-critical tasks that are guaranteed to

meet performance requirements.

Data-based profiling Existing profiling work focuses primarily on control-

based profiling (e.g., path profiling, method profiling, trace profiling), under the as-

sumption that substantial performance gains can be obtained by optimizing frequently-

executed control-flow regions. However, we found that in many cases, high frequency

of certain data-manipulating activities (e.g., pure copies) is even a stronger indicator
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of optimization opportunities than that of control-flow regions. Are there any other

bloat-indicating data activities? Can we incorporate such profiling work into a mod-

ern feedback-directed compiler to improve application performance? This is an entire

area that is almost untouched by existing work, and presents exciting opportunities

for future developments.
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