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Abstract

Runtime bloat degrades significantly the performance and scalabil-
ity of software systems. An important source of bloat is the ineffi-
cient use of containers. It is expensive to create inefficiently-used
containers and to invoke their associated methods, as this may ulti-
mately execute large volumes of code, with call stacks dozens deep,
and allocate many temporary objects.

This paper presents practical static and dynamic tools that can
find inappropriate use of containers in Java programs. At the core of
these tools is a base static analysis that identifies, for each container,
the objects that are added to this container and the key statements
(i.e., heap loads and stores) that achieve the semantics of common
container operations such as ADD and GET. The static tool finds
problematic uses of containers by considering the nesting relation-
ships among the loops where these semantics-achieving statements
are located, while the dynamic tool can instrument these statements
and find inefficiencies by profiling their execution frequencies.

The high precision of the base analysis is achieved by taking ad-
vantage of a context-free language (CFL)-reachability formulation
of points-to analysis and by accounting for container-specific prop-
erties. It is demand-driven and client-driven, facilitating refinement
specific to each queried container object and increasing scalability.
The tools built with the help of this analysis can be used both to
avoid the creation of container-related performance problems early
during development, and to help with diagnosis when problems
are observed during tuning. Our experimental results show that the
static tool has a low false positive rate and produces more relevant
information than its dynamic counterpart. Further case studies sug-
gest that significant optimization opportunities can be found by fo-
cusing on statically-identified containers for which high allocation
frequency is observed at run time.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
analysis; D.3.4 [Programming Languages]: Processors—Memory
management, optimization; D.2.5 [Software Engineering]: Test-
ing and Debugging—Debugging aids

General Terms Algorithms, Languages, Performance

Keywords Container bloat, CFL reachability, points-to analysis
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1. Introduction

While Java developers need not worry about memory correctness
issues, it remains challenging for them to efficiently use memory.
As a result, memory bloat [22, 23, 26, 35, 42] commonly exists in
large-scale Java applications. Evidence has been found that bloat
has significant impact on performance, leading to reduced scalabil-
ity and usability [22].

The inefficient use of containers is an important source of sys-
temic bloat. Programming languages such as Java include a collec-
tion framework which provides abstract data types for representing
groups of related data objects (e.g., lists, sets, and maps). Based
on this collection framework, one can easily construct application-
specific container types such as trees and graphs. Real-world pro-
grams make extensive use of containers, both through collection
classes and through user-defined container types. Programmers al-
locate containers in thousands of code locations, using them in a
variety of ways, such as storing data, implementing unsupported
language features such as returning multiple values, wrapping data
in APIs to provide general service for multiple clients, etc.

Containers are easy to misuse. A memory leak could occur if
objects added to a container are not removed after they are no
longer used [3, 4, 15, 44]. Another problematic situation is when
a container, while not strictly necessary for what it is supposed to
accomplish, is used nevertheless. Although most such containers
are eventually garbage-collected and allocating them may not lead
to OutOfMemory errors, they can have conspicuous impact on per-
formance. For example, as reported in [42], finding and specializing
inefficiently-used HashMap can reduce the number of allocated ob-
jects in a server application by more than half. Identifying contain-
ers that consume excessive resources (for what they accomplish) is
an important step toward finding potential container-related opti-
mization opportunities.

Motivation and problems The extensive use of containers in Java
software makes it impossible to manually inspect the choice and
the use of each container in the program. Dynamic analysis has
typically been the weapon of choice for detecting memory leaks
and bloat in real-world Java software. A dynamic bloat detector
finds performance problems using a “from-symptom-to-cause” ap-
proach: it starts by observing suspicious behaviors and then at-
tempts to locate the cause from the observed symptom. One funda-
mental problem for such approaches is the selection of appropriate
symptoms. It can be extremely difficult to define symptoms that can
precisely capture the target bloat—in many cases, the suspicious
behaviors that the tool intends to capture are not unique charac-
teristics for the problematic program entities. Very often, they can
also be observed from entities that function appropriately, leading
to false positives and imprecise reports. The first research problem
investigated in this paper is whether it is possible to alleviate this
limitation of purely dynamic bloat analyses by using a static or a
hybrid technique. A static (or a hybrid static/dynamic) technique



class CUP$LexParse$actions {

RegExp makeNL(){
Vector list = new Vector();

list.addElement(new Interval(’\n’,’\r’));
list.addElement(new Interval(’\u0085’,’\u0085’));
list.addElement(new Interval(’\u2028’,’\u2029’));

RegExp1 c = new RegExp1(sym.CCLASS, list);
...

}
}

(a)

class Httpd extends HttpConnection{

Reply recvReply(Request request){
if (request.getPath().equals("/admin/enable")){

Hashtable attrs = cgi(request);
String config = (String) attrs.get("config");
String filter = (String) attrs.get("filter");

...
}else if(request.getPath().equals("/admin/createConfig")){

Hashtable attrs = cgi(request);
String config = (String) attrs.get("config");

...
} ...

}

Hashtable cgi(Request request){
Hashtable attrs = new Hashtable(13);

String query = request.getQueryString();
String data = request.getData();
if (query != null){

StringTokenizer st = new StringTokenizer(decode(query), "&");
while (st.hasMoreTokens()){

String token = st.nextToken();
String key = token.substring(0, token.indexOf(’=’));

String value = token.substring(token.indexOf(’=’) + 1);
attrs.put(key, value);

}

} ...
return attrs;

}
}

(b)

Figure 1. (a) An example of an underutilized container, extracted
from program JFlex, a scanner generator for Java. Vector list is
used only to pass the three Interval objects to the constructor
of RegExpr1; (b) An example of an overpopulated container, ex-
tracted from program Muffin, a WWW filtering system written in
Java. Given a request, method cgi always decodes the entire re-
quest string into Hashtable attrs. However, this HashMap is later
subjected to at most two lookup operations.

may be able to reduce false positives by exploiting certain program
properties inherent in the source code.

The second major problem addressed in the paper is related
to understanding the semantics of containers. Of existing dynamic
bloat detection techniques, tools from [44] and [35] were designed
specifically for finding container-related problems. Both tools re-
quire the user to provide annotations for each container type, which
are subsequently used to understand the container semantics and
relate container behavior to the profiling frameworks. However, it
may be a heavy burden for the programmer to complete these anno-
tations. In addition, when the interface of a container changes, its
annotations have to be revised as well. Creating such annotations is
also impractical when the container types come from large libraries
and frameworks developed by others (e.g., containers of transac-
tion data in enterprise applications). To reduce such an annotation
burden and make the container analysis more general, the paper
explores the possibility of extracting the container semantics au-
tomatically from the container implementation, with minimal need
for user interaction.

Targeted container inefficiencies We aim to detect containers
that are inefficiently used in the following two ways:

• Underutilized container. A container is underutilized if it
holds a very small number of elements during its lifetime.
It is wasteful to use an underutilized container to hold data.
First, a container is usually created with a default number
of slots (e.g., 16), and a big portion of the memory space is
wasted if only a few slots are occupied. If the size of the con-
tainer is fixed (e.g., 1), a specialized container type such as
Collections.singletonSet can be employed to replace the
original general type (e.g., HashSet). Second, the functionality
associated with the container type may be much more general
than what is actually needed. For example, the process of re-
trieving an element from a HashSet involves dozens of calls.
If there is a small number of objects in the HashSet, it may be
possible for a performance expert to replace this HashSet by
introducing extra local variables, parameters, or an array.

Figure 1(a) illustrates an example of this type of problem,
which was reported by our tool. The example is extracted from
JFlex, a scanner generator from our benchmark set. Method
makeNL creates a Vector object that by default allocates a 10-
element array. The only purpose of this object is to pass the
three Interval objects into the constructor of RegExpr1. This
Vector object is allocated more than 10,000 times during the
execution of a large test case. In fact, there are many locations
in the code where Vector objects are created solely for this
purpose. Creating specialized constructors of RegExpr1 that
allow the direct passing of Interval objects can avoid the
allocation/deallocation of thousands of objects.

• Overpopulated container. This problem occurs if there is a
container that, while holding many objects, is looked up only a
few times. Due to unnecessary data elements, memory is wasted
and it takes longer to perform a container operation. In this case,
a programmer may be able to inspect the code to find which
objects will definitely not be retrieved from the container, and
then find a way to avoid adding these objects or even creating
them (if they are never used). Figure 1(b) shows an example
of this problem, which was found by our analysis in Muffin, a
WWW filtering system from our benchmark set. Many strings
are generated and added into a Hashtable, but only the entries
with keys "config" and "filter" are eventually requested.
Instead of decoding and bookkeeping the entire request string,
a specialized version of method cgi could declare an additional
string parameter representing the requested key, and return the
corresponding value immediately when the given key is found.

Base static analysis: extracting container semantics There are
three major technical challenges in automatically extracting seman-
tics for different container types and implementations. The first
challenge is to establish a unified model for different container
types. For example, consider two concrete container classes in Java,
Hashtable and LinkedList. The unified model has to capture
the common behaviors that characterize their “container” property
while ignoring the differences in their specific implementations and
usage domains. To address this challenge, we propose to treat all
container classes as an abstract data type with two basic operations:
ADD and GET. Consider Hashtable and LinkedList again: de-
spite their many differences, we are interested only in the process
by which objects are added to (ADD) and retrieved from (GET)
these containers. Details of their implementations and usage (e.g.,
whether they store key-value pairs or individual objects) are ab-
stracted away.

The second challenge is to select program entities that corre-
spond to these abstract operations. Research from [35, 44] focuses



on methods. For example, methods put and get implement the
semantics of ADD and GET, respectively, for class Hashtable.
While identifying abstract operations at the method level is a
straightforward idea, it is impossible to perform without user an-
notations because different container types use different methods
for these operations. To automate this process, we propose to oper-
ate at the statement level. The key insight is that the core behavior
of each operation can be implemented by a single statement. The
statements that implement the ADD and GET operations are usu-
ally heap stores and loads, respectively. Such statements will be
referred to semantics-achieving statements. For example, for class
ArrayList, the statement achieving the functionality of ADD is
a heap store array[i] = o in method ArrayList.add, where
array refers to the backing array of the list and o is a formal pa-
rameter referring to the object1 to be added. Identifying semantics-
achieving statements bridges the gap between the low-level code
analysis and the high-level container semantics.

The third challenge is to develop precise and efficient al-
gorithms to discover container structures. The identification of
semantics-achieving statements for a particular container object
requires reasoning about the container data structure, in order to
detect the objects that are added to the container from the client
code (i.e., element objects) as well as the helper objects that are
created by the container (i.e., inside objects). There are usually
multiple layers in the data structure of a container type, and a naive
approach based on points-to analysis may not be able to distinguish
among elements added to different container objects that have the
same type. To obtain precise information about the use of a con-
tainer, it is crucial to prune, context-sensitively, nodes and edges
irrelevant to the container in the points-to graph. While there exists
a body of precise reasoning techniques such as shape analysis (e.g.,
[6, 7, 34]) and decision procedures for verification of pointer-based
data structures (e.g., [17, 20]), these analyses tend to be expensive
and do not scale well to large applications.

Our analysis attempts to refine the object sub-graph rooted at
each container object by taking advantage of the CFL-reachability
formulation of pointer aliasing. The key observation is that if an
object o can be reached from a container object c through (direct
or transitive) field dereferences, there must exist a chain of stores
of the form a0.f0 = o; a1.f1 = b0; a2.f2 = b1; . . . ; an.fn =
bn−1; bn = c, such that the two reference variables in each pair
(ai, bi) for 0 ≤ i ≤ n are aliases. Because aliasing relationships
can be computed by solving CFL-reachability on a flow graph [37],
the goal of our analysis is to find valid paths (in terms of both heap
accesses and method calls) on the flow graph that contain such
chains of stores. We consider all objects o that have such paths
reaching the container object and that are not inside objects created
by the container. Among those, element objects are the ones that
have a chain of stores a0.f0 = o; a1.f1 = b0; . . . such that all ai

and bi along the chain point to inside objects of the container. We
have successfully applied this demand-driven analysis to large Java
applications, including the eclipse framework (and its plugins).
The description of the analysis can be found in Section 2.

Static inference and dynamic profiling of execution frequencies
If the ADD operations of a container are executed a very small
number of times, the container may suffer from an underutilization
problem. If the frequency of its GET operations is much smaller
than the frequency of its ADD operations, the container may be
overpopulated. The next step of the analysis is to compare the fre-
quencies of these operations, using the semantics-achieving state-
ments (annotated with the relevant calling contexts) identified by
the base analysis.

1 From now on we will use “object” to denote the static abstraction (i.e.,
allocation site) of a set of run-time objects created by the allocation site.

A natural choice for comparing the frequencies of the semantics-
achieving statements is to instrument these statements and to de-
velop a dynamic analysis by profiling the observed frequencies.
However, the usefulness of this approach may be limited because
it does not directly point to the underlying cause of the problem.
Furthermore, the generated results depend completely on the spe-
cific inputs and runs being observed: containers whose behaviors
are suspicious in one particular run may behave appropriately in
other runs, making it hard to identify problematic containers.

An alternative is to design a static analysis that detects perfor-
mance problems by looking for certain source code properties that
can approximate the relationship between execution frequencies,
regardless of inputs and runs. There exist a number of analyses
that can be employed to infer such a relationship. For example,
semantics-achieving statements are often nested in loops. Various
techniques such as interval analysis [40] and symbolic bound anal-
ysis [11, 12] may be used to discover the loop bounds. However,
such techniques are often ineffective in handling dynamic heap data
structures, and it is difficult to scale them to large programs. We
take a much simpler approach where data flow does not need to be
considered: relative frequencies are inferred based on the nesting
of the loops where the semantics-achieving statements are located.
Despite this simplicity, the inferred relationships are execution in-
dependent and, in our experience, lead to low false positive rates
when used to find optimizable containers.

We have implemented both the dynamic frequency profiler
(Section 3.1) and the static inference analysis (Section 3.2). De-
tailed comparison between them is provided in Section 3.2 and
demonstrated experimentally in Section 4.

Features of the base analysis The base analysis needs to be suf-
ficiently precise, as both the static inference algorithm and the dy-
namic frequency profiler rely on it to find problematic containers.
Our algorithmic design is focused on three important features of
the analysis. First, since we are interested only in containers, the
algorithm is demand-driven, so that it can perform only the work
necessary to answer queries about the usage of containers. Sec-
ond, because a container type can be instantiated many times in the
program, failure to distinguish elements added into different con-
tainer objects of the same type could result in a large number of
false positives. To avoid this, if the analysis cannot find a highly-
precise solution under a client-defined time budget, it does not re-
port any ADD and GET operations (instead of reporting them based
on over-conservative approximations). In a practical tool that iden-
tifies potential bloat, the precise identification of inefficiently-used
containers (i.e., reducing the false positive rate) is much more im-
portant than reporting all potentially problematic ones with many
false warnings (i.e., reducing the false negative rate). This choice
aims at higher programmer productivity and real-world usefulness.
Finally, the analysis is client-driven, as the amount of information
it produces can be controlled by the client-defined time budget.

Evaluation Section 4 presents experimental results showing that
the static tool successfully finds inefficient uses of containers. It
generates a total of 295 warnings for the 21 Java programs in
our benchmark set. For each benchmark, we randomly picked 20
warnings for manual inspection. Among those, we found a very
small number of false positives (e.g., 4 for the largest benchmark
eclipse). Further experiments showed that (1) most of the stat-
ically reported containers indeed exhibit problematic behaviors at
run time, and (2) the inefficient uses of these containers are much
easier to understand than the uses of containers reported by the dy-
namic analysis.

The static inference approach is useful for detecting container
problems during coding, before performance tuning has started. It
is a good programming practice to fix (static) performance warn-



1 class ContainerClient{

2 static void main(String[] args){
3 ContainerClient client = new ContainerClient();

4 Container c = new Container();
5 for(int i = 0; i < 1000; i++){
6 client.addElement(c, new Integer(i));

7 }
8 client.foo(c);

9 client.bar();
10 }

11 void foo(Container n){
12 Integer i = (Integer)n.get(10);
13 Container d = new Container();

14 addElement(d, new String("first"));
15 addElement(d, new String("second"));

16 String s = (String)d.get(0);
17 }
18 void bar(){

19 for(int j = 0; j < 5; j++){
20 Container a = new Container();

21 for(int i = 0; i < 10; i++)
22 addElement(a, new Double(i));

23 for(int i = 0; i < a.size(); i++){
24 Double b = (Double)a.get(i);
25 ...

26 }
27 }

28 }
29 void addElement(Container c, Object e){
30 c.add(e);

31 }
32 }

33
34 class Container{

35 Object[] arr;
36 int pos = 0;
37 Container(){

38 t = new Object[1000]; this.arr = t;
39 }

40 void add(Object e){
41 t = this.arr; t[pos++] = e;
42 }

43 Object get(int index){
44 t = this.arr; ret = t[index]; return ret;

45 }
46 }

Figure 2. Running example.

ings early, in order to avoid potential performance problems before
they pile up and become observable. It has already been recog-
nized [22] that bloat can easily accumulate when insufficient at-
tention is paid to performance during development. Once coding
is complete and performance tuning starts, information about run-
time frequency of container allocation can focus the programmer’s
attention on statically-identified containers that are most likely to
provide optimization payoffs.2 Using this approach, we studied the
warnings for the DaCapo bloat and chart benchmarks, and easily
identified fixes that reduced object creation rates by 30% for bloat
and 5% for chart, leading to execution time reduction of 24.5% for
bloat and 3.5% for chart. These promising initial findings sug-
gest that our tools could be useful in practice to find and exploit
opportunities for performance gains.

2. Formulation of Container Operations

This section starts with an outline of the CFL-reachability formu-
lation of context-sensitive points-to/alias analysis for Java [37].
We formulate the base analysis for identification of semantics-
achieving statements as a new CFL-reachability problem, and then
present algorithms to solve this problem.

2 Allocation frequencies can even be collected before the static analysis,
allowing the demand-driven static algorithm to focus on hot containers.

2.1 CFL-Reachability Formulation of Points-to Analysis

A variety of program analyses can be stated as CFL-reachability
problems [30]. CFL-reachability is an extension of standard graph
reachability that allows for filtering of uninteresting paths. Given a
directed graph with labeled edges, a relation R over graph nodes
can be formulated as a CFL-reachability problem by defining a
context-free grammar such that a pair of nodes (n, n′) ∈ R if and
only if there exists a path from n to n′ for which the sequence
of edge labels along the path is a word in the language L defined
by the grammar. Such a path will be referred to as an L path. If
there exists an L path from n to n′, then n′ is L-reachable from n
(denoted by n L n′). For any non-terminal S in L’s grammar, S
paths and n S n′ are defined similarly.

Existing work on points-to analysis for Java [37, 39] employs
this formulation to model (1) context sensitivity via method en-
tries and exits, and (2) heap accesses via object field reads and
writes. A demand-driven analysis is formulated as a single-source
L-reachability problem which determines all nodes n′ such that
n L n′ for a given source node n. The analysis can be expressed
by CFL-reachability for language LF ∩ RC. Language LF, where
F stands for “flows-to”, ensures precise handling of field accesses.
Regular language RC ensures a degree of calling context sensitivity.
Both languages encode balanced-parentheses properties.

LF-reachability is performed on a graph representation G of a
Java program (sometimes referred to as a flow graph), such that
if a heap object represented by the abstract location o can flow
to variable v during the execution of the program, there exists
an LF path in G from o to v. The flow graph is constructed by
creating edges for the following canonical statements: an edge

o
new
−−→ x is created for an allocation x = new O; an edge y

assign
−−−→

x is created for an assignment x = y; edges y
store(f)
−−−−→ x and

y
load(f)
−−−−→ x are created for a field write x.f = y and a field read x =

y.f , respectively. Parameter passing is represented as assignments
from actuals to formals; method return values are treated similarly.
Writes and reads of array elements are handled by collapsing all
elements into an artificial field arr elm .

Language LF Consider a simplified flow graph G with only
new and assign edges. In this case the language is regular and its
grammar can be written simply as flowsTo → new ( assign )∗,
which shows the transitive flow due to assign edges. Clearly,
o flowsTo v in G means that o belongs to the points-to set of v.

For field accesses, inverse edges are introduced to allow a CFL-
reachability formulation. For each graph edge x → y labeled with
t, an edge y → x labeled with t̄ is introduced. For any path p,
an inverse path p̄ can be constructed by reversing the order of
edges in p and replacing each edge with its inverse. In the grammar
this is captured by a new non-terminal flowsTo used to represent
the inverse paths for flowsTo paths. For example, if there exists
a flowsTo path from object o to variable v, there also exists a
flowsTo path from v to o.

May-alias relationships can be modeled by defining a non-
terminal alias such that alias → flowsTo flowsTo . Two vari-
ables a and b may alias if there exists an object o such that o can
flow to both a and b. The field-sensitive points-to relationships can
be modeled by flowsTo → new ( assign | store(f) alias load(f) )∗.
This production checks for balanced pairs of store(f) and load(f)
operations, taking into account the potential aliasing between the
variables through which the store and the load occur.

Language RC The context sensitivity of the analysis ensures
that method entries and exits are balanced parentheses: C →
entry(i) C exit(i) |C C | ǫ. Here entry(i) and exit(i) correspond
to the i-th call site in the program. This production describes only
a subset of the language, where all parentheses are fully balanced.
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Figure 3. Flow graph for the running example.

Since a realizable path does not need to start and end in the same
method, the full definition of RC also allows a prefix with unbal-
anced closed parentheses and a suffix with unbalanced open paren-
theses [37]. In the absence of recursion, the balanced-parentheses
language is a finite regular language (thus the notation RC instead
of LC); approximations are introduced as necessary to handle re-
cursive calls. Context sensitivity is achieved by considering entries
and exits along a LF path and ensuring that the resulting string is
in RC. For the purposes of this context-sensitivity check, an entry
edge is treated as an exit edge and vice versa.

2.2 Example

The code in Figure 2 shows an example used for illustration of
the static analysis throughout the paper. The example is based on a
common usage scenario of Java containers. A simple implemen-
tation of a data structure Container is instantiated three times
(at lines 4, 13 and 20) by a client ContainerClient. In the ex-
ample code, statement t[pos++] = e (at line 41) is the one that
achieves the functionality of ADD, and statement ret = t[index ] (at
line 44) is the one achieving the functionality of GET. Of course,
these statements do not make much sense by themselves. For each
semantics-achieving statement, we also need to identify the calling
contexts that are relevant to the container of interest. The (state-
ment,contexts) pair is used later to find underutilized and overpop-
ulated containers.

Through this example, we show how the CFL-reachability for-
mulation of points-to analysis works. We will use ti to denote the
variable t whose first occurrence is at line i, and oi to denote the ab-
stract object for the allocation site at line i. For example, e40 and o4

represent variable e declared at line 40 and the Container object
created at line 4. As another example, o14 represents the String
object created at line 14. Node tmpi denotes a temporary variable
created artificially to connect an object and an actual parameter. For
example, tmp6 is used to link the Integer object created at line 6
and the actual parameter of the call to addElement.

The program representation for the example is shown in Fig-
ure 3; for simplicity, the inverse edges are not shown. Each entry
and exit edge is also treated as an assign edge for language LF to
represent parameter passing and method returns. The analysis can
conclude that the points-to set of i12 has a single object o6, because
there exists a flowsTo path between them. To see this, first note
that this41 alias this38 because object o4 can flow to both this41

and this38. Similarly, this44 alias this38 and this41 alias this44

can be derived. Second, t41 and t44 are aliases because object o38

can flow to both t41 and t44. For example, o38 flowsTo t41 can be
derived as follows:

o38 new t38 store(arr) this38 alias this41 load(arr) t41
⇒ o38 flowsTo t41

Finally, o6 flowsTo i12 can be derived as follows:
o6 new tmp6 store(arr elm) t41 alias t44 load(arr elm) i12

⇒ o6 flowsTo i12

In addition, this flowsTo path is a realizable interprocedural
path because it contains matched pairs of entry and exit edges. The
chain of entry and exit edges along the path is entry6 → entry30

→ entry30 → entry6 → entry4 → entry4 → entry8 → entry12 →
exit12, which does not have any unmatched pair of method entry
and return. (Recall that an entry edge is treated as an exit edge.)

2.3 Formulation of Container Operations

This section presents our formulation of container operations based
on the CFL-reachability formulation of points-to analysis.

DEFINITION 1. (Container). A container type Γ is an abstract data
type with a set Σ of element objects, and two basic operations
ADD and GET that operate on Σ. A container object γn is an
instantiation of Γ with n elements forming an element set Σγ .
ADD maps a pair of a container object and an element object
to a container object. GET maps a container object to one of its
elements. The effects of the operations are as follows:

• ADD(γn
pre , o) :γm

post ≡ o /∈ Σγpre ∧ o ∈ Σγpost ∧ m=n+1 ∧
∀p : p ∈ Σγpre → p ∈ Σγpost

• GET(γn) : o ≡ o ∈ Σγ

Following the common Java practice, the definition does not
allow a container to have primitive-typed elements.3 Furthermore,
for the purposes of our tool, operations that reduce the size of a
container are ignored. Despite their simplicity, these two abstract
container operations capture many common usage scenarios for
Java containers.

To identify semantics-achieving statements for a container, we
first introduce relation reachFrom (short for “reachable from”).
For each abstract object o, set {o′ | o′ reachFrom o} consists of
the object itself and other abstract objects whose run-time instances
could potentially be reached from an instance of o through one or
more level(s) of field deference(s). The semantic domains that will
be used are defined in a standard way as follows:

Obj♮: Domain of abstract objects, as represented by object
allocation sites

C♮ ⊂ Obj♮: Domain of container objects

V♮: Domain of variable identifiers

F♮: Domain of instance field identifiers

Call♮: Domain of method entry and exit edges

DEFINITION 2. (Relation reachFrom ). reachFrom ⊆ Obj♮ ×
Obj♮ is defined by the following production

reachFrom → flowsTo store(f) flowsTo reachFrom | ǫ

In addition, the string consisting of entry and exit edge labels on a
reachFrom path has to be accepted by language RC.

For example, there exists a reachFrom path from o6 to o4. To
see this, first note that o38 reachFrom o4 holds, because of o38

flowsTo t38 store(arr) this38 flowsTo o4. Second, there exists

3 For brevity, we may use “container” instead of “container object”.



a reachFrom path from o6 to o38, because of o6 flowsTo e40

store(arr elm) t41 flowsTo o38. Finally, o6 reachFrom o4 due
to the transitive property of the relation. In addition, this entire
reachFrom path does not contain any unmatched pair of method
entry and exit.

Note that an object subgraph reachable from a container (i.e.,
containing only nodes relevant to the container) can be computed
by searching for the reachFrom paths ending at the container
object. Nodes irrelevant to the container can be filtered out by
the context-sensitivity check of language RC . Finding reachFrom
paths is a single-target CFL-reachability problem with O(n3k3)
complexity, where n is the number of nodes in the flow graph and
k is the size of language LF. However, checking context sensitivity
is exponential, as the size of language RC is exponential in the size
of the program (due to the exponential number of call chains). To
ensure both high precision and scalability, a time constraint (dis-
cussed later) is imposed on the analysis to inspect each container
in the program. If no valid reachFrom paths are found within the
given time budget, the analysis gives up on the container and moves
on to check the next one.

Based on reachFrom , we can distinguish element objects and
inside objects from the set of all objects reachable from the con-
tainer object.

DEFINITION 3. (Element object and inside object). An object i ∈
Obj♮ is an inside object with respect to a container object c (where
i is different from c) if (1) (i, c) ∈ reachFrom , and (2) i is created
in the container class, its (direct or transitive) superclass, or any
other class specified by the user.

An object e ∈ Obj♮ is an element object with respect to c if
(1) (e, c) ∈ reachFrom , (2) e is neither c, nor an inside object of
c, and (3) for some reachFrom path from e to c, all object nodes
along the path (except for e and c) are inside objects with respect
to c.

In our example, o4, o13 and o20 are container objects. Object o6

is an element object for o4; o14 and o15 are element objects for o13;
and o22 is an element object for o20. Object o38 is an inside object
for all three containers. In the rest of the discussion we will use Ic

and Ec to denote the domains of inside objects and element objects
with respect to a container c ∈ C♮.

The definition of inside objects provides the flexibility to use a
programmer-defined list that separates the client classes from the
classes that are involved in the implementation of the container
functionality. At present, the tool does not require such a list, as
it targets only containers from the Java collections framework. In
this case, it is sufficient to distinguish a client object from a Java
collection internal object by checking if the object is created within
the java.util package. (Note that the tool does not check the
efficient use of containers within the JDK library code.) However,
the class list will be useful if the tool is extended to inspect user-
defined containers, because such containers may use an object
created in a non-container class as an internal object. Such a (non-
container) utility class should be explicitly listed as such.

The semantics-achieving statements are the loads/stores that
read/write element objects from/to inside objects of a container.

DEFINITION 4. (Semantics-achieving statements). A statement
that achieves the functionality of ADD with respect to a container

object c is a store of the form a.f = b (where a, b ∈ V♮, f ∈
F♮), such that there exists an addTo path from an object ob that
b points to, to the container object c. This addTo path has the
following components: (1) a flowsTo path between ob and b, (2)

an edge b
store(f)
−−−−→ a representing the store, (3) a flowsTo path be-

tween a and an object oa, and (4) a reachFrom path from oa to c.

Using ⊕ to denote path concatenation, the path is

addTo(ob, c) , flowsTo(ob, b) ⊕ b
store(f)
−−−−→ a⊕ flowsTo(a, oa)

⊕ reachFrom(oa, c)

where oa, ob ∈ Obj♮, oa ∈ Ic, and ob ∈ Ec.
A statement that achieves the functionality of GET with respect

to a container object c is a load of the form b = a.f (where a, b ∈
V♮, f ∈ F♮), such that there exists a getFrom path from an object
ob that b points to, to the container object c where

getFrom(ob, c) , flowsTo(ob, b) ⊕ b
load(f)
−−−−→ a⊕ flowsTo(a, oa)

⊕ reachFrom(oa, c)

where oa, ob ∈ Obj♮, oa ∈ Ic, and ob ∈ Ec.
In addition, the string consisting of entry and exit labels on an

addTo or a getFrom path has to be accepted by language RC.

The goal of the analysis is to identify semantics-achieving state-
ments by finding all addTo and getFrom paths for each container.
An addTo path is a reachFrom path from ob to c, which mod-
els the process of element object ob being added to the container.
Hence, the computation of addTo paths can be performed along
with the computation of reachFrom paths. However, the computa-
tion of a getFrom path requires a priori knowledge of reachFrom
paths and cannot be performed until all reachFrom paths, ele-
ment objects, and inside objects are identified. In the running exam-
ple, there exists an addTo path from o6 to o4, and the semantics-
achieving statement on this path is the store t[pos++] = e. There
also exists a getFrom path from o6 to o4, because of o6 flowsTo

ret and t44 flowsTo o38 reachFrom o4. The semantics-achieving
statement on this path is the load ret = t[index ] at line 44.

The identification of semantics-achieving statements is not suf-
ficient to understand the usage of a particular container object, as
different container objects can have the same semantics-achieving
statements. For example, all of the addTo (or getFrom) paths be-
tween o6 and o4, o14 and o13, and o22 and o20 have t[pos++]
= e at line 41 (or ret = t[index ] at line 44) as their semantics-
achieving statement. These statements are executed from multiple
calling contexts and it is crucial to identify the contexts that corre-
spond to the container object to be inspected.

DEFINITION 5. (Relevant context). For each addTo or getFrom
path p that ends at container object c, let r be the prefix of p that
appears before the semantics-achieving statement on p. In other
words, r is the flowsTo path before the corresponding store/load

statement that achieves the ADD/GET functionality. Let l ∈ Call♮
⋆

be the chain of entry and exit edges (some of which may be
inverted) along r. The relevant context for the semantics-achieving
statement on p is a sub-chain of l that contains only the unbalanced

entry and exit edges.

The chain of entry and exit edges before the semantics-
achieving statement on p represents the method invocations that
cause the element object ob to flow to variable b. This chain mod-
els the process of the element object being added to/retrieved from
the container. The remaining entry and exit edges on p are ir-
relevant for this adding/retrieving process, because they represent
calls that cause the inside objects (rather than the element objects)
to flow into the container. We do not need to consider balanced
entry/exit edges, as they represent completed invocations along
the data flow. An example will be given shortly to illustrate this
modeling. Note that there could be multiple relevant contexts for a
semantics-achieving statement, because a container can have mul-
tiple element objects and each element objects can be added to (and
retrieved from) the container through multiple calls.



Algorithm 1: Solving single source addTo-reachability.

Input: Flow graph, container c, context-insensitive points-to solution pts

Output: Map solution : pairs (heap store achieving ADD, relevant contexts)

1 Map〈Statement, Set〈Stack〉〉 solution ←∅
2 Set〈AllocNode〉 reachFrom←{c} // reachable objects

3 Set〈AllocNode〉 elemObj ←∅ // element objects

4 List〈AllocNode〉 objectList ←{c} // worklist

5 List〈Set〈Stack〉〉 contextSetList ←{{EMPTY STACK}}
6 while objectList 6= ∅ do

7 remove an allocation node o from the head of objectList

8 remove a set contexts of context stacks from the head of

contextSetList

9 Set〈Stack〉 baseContexts←∅

10 foreach store a.f = b such that o ∈ pts(a) do

11 foreach context stack s ∈ contexts do

12 baseContexts← baseContexts ∪

COMPUTEFlowsTo (o, a, s)

13 Set〈Stack〉 rhsContexts←∅

14 foreach allocation node ob ∈ pts(b) do

15 foreach context stack s ∈ baseContexts do

16 rhsContexts← rhsContexts ∪

COMPUTEFlowsTo (b, ob, s)

17 if rhsContexts 6= ∅ then

18 reachFrom← reachFrom ∪ {ob}

19 if (o = c OR o is an inside object) AND (ob is NOT an inside

object) then

20 elemObj ← elemObj ∪ {ob} // An element

object is found

21 solution ← solution ∪ (a.f = b, rhsContexts)

22 else

23 objectList← append(objectList, ob)

24 contextSetList ←

append(contextSetList, rhsContexts)

25 return solution

The chain of unbalanced entry and exit edges, together with the
semantics-achieving statement, can be used to represent a specific
(ADD or GET) operation executed on a specific container object.
For example, the chain of entry and exit edges on the addTo path
from o6 to o4 before semantics-achieving statement t[pos++] = e
is entry6 → entry30, which is the relevant context for the store op-
eration with respect to container o4. As another example, the chain
on the getFrom path from o6 to o4 before the load operation ret
= t[index ] is entry6 → entry30 → entry30 → entry6 → entry4 →
entry4 → entry8 → entry12. Hence, the relevant context for this
getFrom path is entry8 → entry12, which captures the fact that
element object o6 is retrieved from container o4. Later we will con-
sider the relationship between the execution frequencies of state-
ments t[pos++] = e and ret = t[index ] only under their respective
relevant contexts entry6 → entry30 and entry8 → entry12.

2.4 Analysis Algorithms

The algorithms for solving addTo- and getFrom -reachability are
shown in Algorithm 1 and Algorithm 2, respectively.

Both algorithms rely on an initial context-insensitive points-to
set to find candidates for semantics-achieving statements. Algo-
rithm 1 iteratively computes a set of reachable objects. The i-th
element of list contextSetList keeps a set of relevant contexts for
the i-th object in worklist objectList . Each context is represented
by a stack, which contains exactly the chain of unbalanced entry

and exit edges of a flowsTo path. Initially, objectList contains the
container object c and contextSetList contains an empty stack.
Map solution contains pairs of semantics-achieving statement and
relevant contexts, which will be returned after the function finishes.

Algorithm 2: Solving single source getFrom -reachability.

Input: Flow graph, container c, context-insensitive points-to solution pts ,
relation reachFrom, set elemObj

Output: Map solution : pairs (heap load achieving GET, relevant contexts)

1 Map〈Statement, Set〈Stack〉〉 solution←∅
2 foreach allocation node o ∈ elemObj do

3 foreach load b = a.f , such that o ∈ pts(b) do

4 Set〈Stack〉 lhsContexts←∅

5 lhsContexts← COMPUTEFlowsTo (o, b, EMPTY STACK)

6 Set〈AllocNode〉 ins← pts(a) ∩ reachFrom

7 Set〈Stack〉 baseContexts←∅

8 foreach AllocNode oa ∈ ins do // A candidate load

9 foreach context stack s ∈ lhsContexts do

10 baseContexts← baseContexts ∪

COMPUTEFlowsTo (a, oa, s)

11 if baseContexts 6= ∅ then

12 solution ← solution ∪ (b = a.f , lhsContexts)

13 return solution

Function COMPUTEFlowsTo (o, a, s) at line 12 attempts to find
flowsTo paths from an object o to a variable a, under calling con-
text s that leads to the method creating o. Due to space limitations
this function is not shown; conceptually, it is similar to the FIND-
POINTSTO algorithm described in [37]. The function returns a set
of contexts (i.e., stacks) that are chains of unbalanced edges on the
identified flowsTo paths from o to a. An empty set returned means
that there does not exist any valid flowsTo path between them.

Similarly, function COMPUTEFlowsTo (b, ob, s) at line 16 at-
tempts to find a flowsTo path from variable b to object ob, under
calling context s that leads to the method declaring b. The purpose
of this function is to connect the chain of entry and exit edges on
the flowsTo path from o to a with the chain of entry and exit edges
on the flowsTo path from b to ob, and to check if the combined
chain corresponds to a realizable call path. If the combined chain
is a realizable path (i.e., rhsContexts 6= ∅ at line 17), ob is added
to set reachFrom of reachable objects. Furthermore, if ob is found
to be an element object (line 20 and line 21), it is included in set
elemObj , which will be used later by Algorithm 2. At this time, it
is clear that store a.f = b is a semantics-achieving statement, and
its relevant contexts are contained in set rhsContexts . If ob is not
an element object, we append ob to the worklist (and also append
rhsContexts to contextSetList ) for further processing. Some sub-
sequent iteration of the while loop will use this context set to com-
pute flowsTo path from object od to variable d for a new store c.f
= d (line 12), etc. In this case, remembering and eventually using
rhsContexts ensures that no unrealizable paths can be produced
during the discovery of the container’s data structure.

Note that we omit a check for recursive data structures in the
algorithm. In fact, an object is not added into the worklist, if it has
been visited earlier during the processing of reachable objects. In
other words, the back reference edges between inside objects in the
object graph are ignored, because they have nothing to do with the
element objects. It is also possible for an element object to have
a back reference edge going to an inside object or the container
object (although this is not likely to happen in practice). This back
edge is also ignored, because we are interested in the process where
the element object is added to the container, rather than in the shape
of the data structure of the container object.

Algorithm 2 inspects each element object o computed in Algo-
rithm 1 (line 2) and attempts to find load statements of the form b
= a.f such that b could point to o. As before, the algorithm starts
from a context-insensitive solution, and then checks if there exists a
flowsTo path from o to b (line 5). If such flowsTo paths are found,



it uses the set of contexts returned (i.e., chains of unbalanced edges
extracted from these paths) to compute flowsTo paths from a to ob-
ject oa that a may potentially point to. Note that we use an intersec-
tion between pts (a) and reachFrom (line 6) to filter out irrelevant
objects that are not reachable from container c. If a flowsTo path
can be found (line 11-line 12), this load is a semantics-achieving
statement and the relevant contexts for it are contained in the set
lhsContexts .

Precision improvement Not all load statements identified in get-
From paths correspond to GET operations. For example, methods
equals and remove in many container classes need to load el-
ement objects for comparison (rather than returning them to the
client). To avoid the imprecise results generated in these situations,
we employ a heuristic when selecting statements that implement
GET operations. A load b = a.f is selected if (1) it is on a valid
getFrom path, and (2) the points-to set of b and the points-to set
of the return variable of the method where the load is located have
a non-empty intersection. This heuristic is based on the common
usage of Java containers: only methods that can return element ob-
jects can be used to retrieve objects by a client.

It would be interesting to investigate other heuristics in future
refinements of the analysis. In situations where individual state-
ments are not precise enough to capture the semantics of ADD and
GET, it may be possible to find courser-grained program entities
(e.g., methods) that correspond to these abstract operations. For ex-
ample, a splay tree may perform both stores and loads for a single
GET operation. At present, it is unclear how to generalize the anal-
ysis to model such cases.

3. Execution Frequency Comparison

This section describes the dynamic profiling algorithm and the
static inference algorithm to compare the execution frequencies of
semantics-achieving statements.

3.1 Dynamic Frequency Profiling

During the execution, the profiling framework needs to record,
for each container object, its ADD and GET frequencies. A key
challenge is how to instrument the program in a way so that the
frequencies of semantics-achieving statements can be associated
with their corresponding container objects. In many cases, the con-
tainer object is not visible in the method containing its semantics-
achieving statements. For example, the store that implements ADD
for HashMap is located in the constructor of class HashMap.Entry
where the root HashMap object cannot be referenced. In this and
similar cases, it is unclear where the instrumentation code should
be placed to access the container object.

We use relevant contexts to determine the instrumentation
points. Given a pair (s, e0, e1, . . . , en) of a semantics-achieving
statement s and its context, we check whether the receiver of each
call site ei can be the container object c. This check is performed in
a bottom-up manner (i.e., from n down to 0). The instrumentation
code is inserted before the first call site ei : a.f() found during
the check such that the points-to set of a includes c. For example,
one instrumentation site for HashMap is placed before the call to
addEntry in method put, because the receiver variable of the call
site can point to the HashMap object:

class HashMap{ ...

void put(K key, V value){ ...
// increment the ADD frequency for "this" container

recordADD(this);
this.addEntry(..., key, value, ...);

}

void addEntry(..., K key, V value, ...){ ...
table[...] = new Map.Entry(..., key, value, ...);

}

}

class Entry{
Entry(..., K key, V value, ...){

// these are stores achieving ADD
this.key = key;

this.value = value;
}

}

3.2 Static Inference of Potentially-Smaller Relationships

This subsection describes the static inference algorithm that de-
tects inefficiencies by inferring potentially-smaller/larger relation-
ships for the execution frequencies of two (semantics-achieving
statement, contexts) pairs. These relationships are computed by
traversing an interprocedural inequality graph, which models the
interprocedural nesting among the loops containing the semantics-
achieving statements.

DEFINITION 6. (Inequality graph). An inequality graph IG =
(N , E ) has node set N ⊆ L ∪ M, where L is the domain of
loop head nodes, and M is the domain of method entry nodes.
The edge set is E ⊆ C ∪ I, where C represents call edges and I
represents inequality edges.

3.2.1 Inequality Graph Construction

For two statements s1 and s2 that are located in loops l1 and l2 re-
spectively, we say that the execution frequency of s1 is potentially-
smaller than the execution frequency of s2 if l2 is nested within
l1. Such a relationship does not necessarily reflect the real run-time
execution frequencies (thus the use of “potentially”). For example,
if s2 is guarded by a non-loop predicate inside l2, it is possible that
it is executed less frequently than s1 because the path containing s2

can be skipped many times inside the body of l2. One example of
this situation comes from a common container implementation sce-
nario. When the client attempts to add an object into the container,
the implementation first checks if the object is already in the con-
tainer, and stores it only if the container does not have it already. In
this situation, the semantics-achieving statement is under the non-
loop predicate that checks whether the element object is already in
the container.

Despite this potential imprecision, this modeling of execution
frequency, to a large degree, captures the high-level programmer’s
intent. For example, in many cases the programmer just wants
to add objects using the nested loops without even caring about
whether they have been added before. Even though the statically-
inferred potentially-smaller relationship may not hold for some par-
ticular runs of a program, the problems found using this relation-
ship may reflect inefficient uses of containers in general. In addi-
tion, the loop nesting relationship itself may clearly suggest a fix if
a problem really exists. For example, the problem may be solved
simply by pulling some operations out of a loop. We have found
this approach based on loop nesting to work well in practice.

The algorithm for constructing the inequality graph is shown in
Algorithm 3. For each method m in the call graph, intraprocedural
inequality edges are first added (line 4-line 11). For each loop head,
we find the loop in which it is nested (line 6). If it is not nested in
any loop (line 7-line 8), we create an inequality edge between the
entry node of the method and the loop head node. Otherwise, the
edge is created between the head of the surrounding loop and the
node (line 9-line 11).

For each caller of m, a call edge is added to connect the two
methods (line 14-25). Specifically, the loop where the call site for
m is located (or the entry node of the caller) is found (line 17), and
a call edge is created to link the head of the loop (or the entry node
of the caller) and m’s entry node. Call edges are useful in filtering
out irrelevant calling contexts during the traversal of the inequality
graph. Figure 4 shows an inequality graph for the running example.



Algorithm 3: Algorithm for constructing the inequality graph.

Input: Call graph CG

Output: Inequality graph IG

1 foreach method m in the call graph do

2 EntryNode entry← GETENTRYNODE(m)

3 CFG cfg← BUILDCFG(m)

4 foreach loop l ∈ cfg do // add inequality edges
5 LoopHeadNode head← GETLOOPHEADNODE(l)

6 Loop l′← FINDSURROUNDINGLOOP(head , cfg)

7 if l′ = null then

8 CREATEINEQUALITYEDGE(entry
≤
−→ head)

9 else

10 LoopHeadNode head′← GETLOOPHEADNODE(l′ )

11 CREATEINEQUALITYEDGE(head′ ≤
−→ head )

12 foreach incoming call graph edge e do // add call edges
13 Method caller ← SOURCE(e)

14 CFG cfg← GETCFG(caller )

15 Loop l = FINDSURROUNDINGLOOP(e.callsite , cfg)

16 if l = null then

17 EntryNode entry′← GETENTRYNODE(caller )

18 CREATECALLEDGE(entry′ call(e)
−−−−−→ entry)

19 else

20 LoopHeadNode head← GETLOOPHEADNODE(l)

21 CREATECALLEDGE(head
call(e)
−−−−−→ entry)

Here we use ei to denote the entry node for the method declared at
line i, and li to denote the loop head node located at line i. Each call
edge is annotated with calli, which represents the call site at line i.
Each inequality edge is annotated with ≤i, where i is a globally-
named index. Inverse edges are allowed for call edges: if there is a
call edge calle between nodes m and n, an edge calle exists between
n and m. Unlike in the flow graph, there are no exit edges in the
inequality graph because it is not necessary to model any data flow.

An inequality edge is used to represent only potentially-smaller
relationships. The potentially-larger relationships could potentially
be represented by inverse edges; however, we do not allow the use
of such inverse edges because a path in the graph must represent
only one of these two relationships (i.e., either smaller or larger,
but not both).

DEFINITION 7. (Valid potentially-smaller path). Given two in-
equality graph nodes m and n, a path p from m to n is a valid
potentially-smaller path if the chain of call edges (including in-
verse edges) on p forms a realizable interprocedural path (i.e., the
sequence of edge labels on the chain forms a string in language
RC). Path p is a strictly-smaller path if (1) p is a valid potentially-
smaller path and (2) p contains at least one inequality edge.

One can easily define a grammar with starting non-terminal
potentially-smaller to capture the above definition of validity. Sim-
ilarly to the flowsTo computation, finding a valid potentially-
smaller path in the inequality graph requires a context-sensitivity
check of call and call edges.

3.2.2 Inefficiency Detection as Source-Sink Problems

Detecting underutilized containers To find an underutilized con-
tainer, we need to compare the execution frequencies of the con-
tainer allocation site c and each store s that implements the func-
tionality of ADD under relevant context r with respect to c. In the
following definition, lh(s) denotes the loop head (if s is within a
loop) or the entry node of the method (if s is not in a loop) for
statement s.
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Figure 4. Inequality graph for the running example.

DEFINITION 8. (Underutilized container). Given a container al-
location site c and a set of statement-contexts pairs that implement
ADD operations for c, an underutilized container problem occurs
for c if there does not exist a pair (store, contexts) for which
(1) a strictly-smaller path p exists from lh(c) to lh(store), and
(2) there exists a context t ∈ contexts such that p ends with the
chain of call edges represented by t.

Informally, an underutilized container problem is reported if
there does not exist an ADD operation such that the loop where
it is located is nested within the loop where the container allocation
site is located.

Consider again the running example. Recall that the statement-
contexts pair that achieves ADD operation for container o4 is
(t[pos++] = e, {entry6 → entry30}). There exists a strictly-smaller
path ≤1→ call6 → call30 from node e2 to e40, which are the
method entry nodes for the allocation site of o4 (line 4) and for
t[pos++] = e (line 41), respectively. In addition, this path contains
the call chain call6 → call30, which is exactly the context contained
in set {entry6 → entry30} in the pair (comparing only labels on the
call edges and the entry edges). Hence, no underutilized container
problem will be reported for container o4.

As another example, the statement-contexts pair for ADD on o13

is (t[pos++] = e, {entry14 → entry30, entry15 → entry30}). The
tool reports that o13 exhibits an underutilized container problem,
because no strictly-smaller paths from the entry node e11 of its
allocation site (line 13) to the entry node e40 of t[pos++] = e
can be found, under relevant calling context entry14 → entry30 or
entry15 → entry30. The problem does not occur for container o20,
since there is a strictly-smaller path ≤4→ call22 → call30 from
the allocation site at line 20 to the store operation t[pos++] = e
that implements ADD, under the relevant calling context entry22 →
entry30.

Note that although the number of elements added to container
o13 (i.e., 2) is in fact larger than the number of times its allocation
site can be executed (i.e.,1), it is not a false positive to report it
as an underutilized container. This is because the creation of the
container (which could cost hundreds of run-time instructions) can
be easily avoided by introducing extra variables for storing the data.
It could be the case that, while the ADD operations for a container
are in the same loop as the allocation site of the container, it may not
be easy to perform an optimization because there could be a large
number of distinct ADD operations (e.g., the programmer intends
to add many elements without using loops). However, we have
found that this situation rarely occurs in real-world programs. Once
an underutilized container problem is reported, there is usually an



obvious container that holds a very small number of elements, and
a specialization can be easily created.

Detecting overpopulated containers To find an overpopulated
container, it is necessary to compare the number of GET operations
against the number of ADD operations for the container.

DEFINITION 9. (Overpopulated container). Given a container al-
location site c, a set S1 of statement-contexts pairs that implement
ADD for c, and a set S2 of statement-contexts pairs that imple-
ment GET for c, c is an overpopulated container if for any pair
(store, contexts1) ∈ S1 and any pair (load, contexts2) ∈
S2, (1) there exists a valid potentially-smaller path p from lh(load)
to lh(store), and (2) there exist a context t1 ∈ contexts1 and a

context t2 ∈ contexts2 such that p starts with the chain of (in-
verse) call edges represented by t2 and ends with the chain of call
edges represented by t1.

Informally, an overpopulated container is reported if for every
pair of GET and ADD operations, a potentially-smaller relationship
can be inferred between them.

In the running example, an overpopulated container problem is
detected for container o4. Recall that the statement-contexts pair
that implements ADD is (t[pos++] = e, {entry6 → entry30}),
and the statement-contexts pair that implements GET is (ret =
t[index ], {entry8 → entry12}). There exists an potentially-smaller

path between these two statements: call12 → call8 →≤1→
call6 → call30. This path contains the call edges call6 → call30
(i.e. t1) and call8 → call12 (i.e., t2). Container o13 is also overpop-
ulated, because there exists a valid potentially-smaller path from
the GET to any of the two ADD operations.

Container o20 is not overpopulated, since no potentially-smaller
path can be found from its GET operation (i.e., the statement-
contexts pair (ret = t[index ], {entry24})) to its ADD operation
(i.e., pair (t[pos++] = e, {entry22 → entry30})).

3.2.3 Analysis Algorithm

In general, both the proof and the disproof of a certain path under
certain calling contexts requires a traversal of the inequality graph.
The traversal has to follow the call edges represented by a start con-
text and an end context, which are the relevant contexts associated
with semantics-achieving statements. The start context is an empty
stack if the statement is the allocation site of the container. A stan-
dard worklist-based algorithm is used in the expected way to per-
form a breadth-first traversal of the graph. The traversal terminates
immediately if call edges in the path are detected to form a cycle,
because there is no way to reason about the number of ADD and
GET operations for a container if calls connecting these operations
are involved in recursion.

Trade-off between the analysis scalability and the amount of in-
formation produced Because the inequality graph does not con-
tain any data flow information, the graph traversal algorithm can
follow arbitrary call and call edges when selecting the path. The
start and end contexts are useful when the algorithm attempts to
decide which call/call edge to follow. Suppose the algorithm is in-
specting method m. The algorithm decides to leave m through a
call edge if (1) this edge is on the end context, or (2) it can lead
to the end context. On the other hand, it follows a call edge if (1)
the edge is on the start context, or (2) there does not exist any call
edge going out of m that is on the end context or can lead to the
end context. A call edge is “leading to” a context when the method
that the call edge goes to can (directly or transitively) invoke the
source method of the first call edge on the context. In addition, we
keep track of the set of methods that the related addTo and getFrom
paths have passed. The traversal of the inequality graph never en-
ters a method if this method is not in this set.

While the start and end contexts are useful, the worst-case time
complexity of a naive graph traversal algorithm is still exponential,
as the number of distinct calling contexts is exponential in the
size of the program. This motivates the need to define a trade-
off framework to handle the analysis scalability and the amount
of information produced.

One factor considered by this framework is the number of un-
balanced call/call edges in a valid potentially-smaller path. These
numbers represent the length of the method sequences on the call
stack that the path crosses, and they implicitly determine the run-
ning time of the algorithm. A path crossing too many calls is
usually an indicator of an unrealizable interprocedural path (e.g.,
due to spurious call graph edges). Furthermore, even though an
inefficiently-used container can be found by traversing a long in-
terprocedural path on the inequality graph, it may be hard to op-
timize it as the data it carries might be needed by many places in
the program. In this framework, the number of unbalanced call/call
edges allowed in a path can be pre-set as a threshold. While this
introduces unsoundness, it improves the scalability and presents to
the user a set of containers that are potentially easy to specialize.

Another factor (orthogonal to the number of unbalanced call/
call edges) that is taken into account is the time used to inspect
each container. If a TimeOutException is caught during the in-
spection of a container, the analysis moves on to the next container,
without generating any warnings about this current one. We exper-
imented with different time thresholds, and some of these results
are described in Section 4.

3.3 Comparison between Static Inference and Dynamic
Profiling

Compared with all existing bloat detection techniques based on dy-
namic analysis [22, 23, 26, 35, 42], a major weakness of a static
analysis approach is its inability to estimate precisely the execu-
tion frequencies of various statements. However, it has the follow-
ing three advantages over the dynamic approaches. First, the static
analysis can be used as a coding assistance tool to find container-
related problems during development, before testing and tuning
have begun. It is desirable to avoid inefficient operations early,
even before meaningful run-time executions are possible. Second,
a problem detected by the static analysis usually indicates a pro-
grammer intent (or mistake) that is inherent in the program, while
the results from a dynamic analysis depend heavily on the specific
run-time execution being observed. Finally, the process of locating
the underlying cause from the dynamically-observed symptoms is
either completely manual or involves ad hoc techniques that do not
quickly lead a tool user to the problematic code. For example, a pro-
filer can find a container exhibiting few lookup operations, but it is
hard for it to effectively explain this behavior to the programmer.
The static tool explicitly reports the loops that cause the generation
of the warnings, thus reducing the effort to “connect the dots” from
the manifestation of the problem to the core cause.

4. Empirical Evaluation

We have implemented the static and dynamic analyses based on the
Soot program analysis framework [41], and evaluated their effec-
tiveness on the set of 21 Java programs shown in Table 1. All exper-
iments used a dual-core machine with an Intel Xeon 2.80GHz pro-
cessor, running Linux 2.6.9 and Sun JDK 1.5.0 with 4GB of max
heap space. The Sridharan-Bodik analysis framework from [37]
was adapted to compute CFL-reachability. A parallel version of the
analysis was used: 4 threads were ran to simultaneously inspect
containers. Note that the total numbers of reachable methods for
some programs are significantly larger than the numbers shown in
previous work [37] for the same programs. This is because of the



Benchmark #M(K) #Con T1 = 20 min T2 = 40 min Dynamic vs Static

#UC #OC #NC #FP RT(s) #UC #OC #NC #FP RT(s) #DU #DO #SN #DN #MS

jack 12.5 34 8 4 2 * 1725 8 4 0 * 2561 8 4 * * *
javac 13.4 45 12 10 5 * 5040 12 10 5 * 5040 12 10 * * *
soot-c 10.4 15 0 1 3 0 1235 0 1 0 0 1440 0 1 0 0 0
sablecc-j 21.4 29 3 5 0 1 1140 - - - - - 3 5 0 4 0
jess 12.8 4 2 2 0 0 790 - - - - - 2 2 0 0 0
muffin 21.4 108 4 7 78 0 28213 5 16 56 0 66472 5 16 0 18 2
jb 8.2 9 1 7 0 0 64 - - - - - 1 7 0 0 0
polyglot 8.6 18 1 6 1 1 1259 0 6 1 0 2447 0 6 2 1 1
jflex 20.2 44 2 5 17 0 6785 2 5 14 0 16092 2 5 1 8 0
jlex 8.2 16 1 0 0 0 474 - - - - - 1 0 0 0 0
java-cup 8.4 10 1 3 0 0 519 - - - - - 1 3 0 0 0
antlr 12.9 15 2 2 0 0 584 - - - - - 2 2 0 2 0

bloat 10.8 260 18 46 118 1♯ 34542 24 76 17 2♯ 49844 24 72 2 18 1

chart 17.4 286 15 29 52 1♯ 26406 21 38 12 1♯ 35406 21 36 3 16 1
xalan 12.8 1 0 1 0 0 222 - - - - - 0 1 0 0 0
hsqldb 12.5 1 0 0 0 0 99 - - - - - 0 0 0 0 0
luindex 10.7 1 0 1 0 0 69 - - - - - 0 1 0 0 0
ps 13.5 42 0 8 0 0 1077 - - - - - 0 8 0 5 0
pmd 15.3 39 8 7 0 0 1322 - - - - - 5 7 0 19 0

jython 27.5 75 5 26 5 0♯ 7055 5 26 1 0♯ 9745 5 21 1 17 2

eclipse1 41.0 1623 18 25 1097 0♯ 447465 18 32 956 0♯ 825897 18 27 0 20 0

eclipse2 41.0 1623 47 121 351 3♯ 32151 47 137 104 4♯ 57897 45 110 5 20 0

Table 1. #M is the number of methods (in thousands) in Soot’s Spark context-insensitive call graph. #Con is the total number of containers
inspected in the application code. There are two rows for eclipse: (1) analyzing all plugins together and (2) analyzing them one at a time.
Results are shown with T1 = 20 minutes and T2 = 40 minutes limit for the static tool to inspect each container. The last part of the table
compares the static and dynamic analyses.

use of the JDK 1.5.0 library which is much larger than the JDK
1.3 library used in that previous work. Many of the programs were
chosen from the DaCapo [2] benchmark set. The analysis was able
to run on all of the DaCapo programs, but we excluded from the ta-
ble the programs that do not use any Java containers. For eclipse,
we analyzed the main framework and the following plugins that
are necessary for the DaCapo run: org.eclipse.jdt, org.eclipse.core,
org.eclipse.text, org.eclipse.osgi, and org.eclipse.debug.

Static analysis The first part of Table 1 (T1 and T2) shows the
warnings generated by the static tool, the false positives, and the
running times for two different configurations: 20 and 40 minutes
allowed to inspect each container. If all containers can be com-
pletely inspected under the first configuration, the second config-
uration is not applied, and “-” marks the corresponding column.
The table shows the number of underutilized container warnings
(#UC), the number of overpopulated container warnings (#OC),
the number of containers whose inspection is not completed due to
time out (#NC), the number of false positives (#FP), and the total
running time in seconds (RT). For programs with many warnings,
we randomly picked 20 warnings (including both types of prob-
lems) for manual checking; the numbers of false positives found in
these samples are reported and marked with ♯. The analysis running
time shown in the table includes the identification of semantics-
achieving statements and the inference of potentially-smaller rela-
tionships. They are not listed separately because the running time
is dominated by the former.

We have tuned the analysis by adjusting the maximum number
of unbalanced call/call edges traversed. All numbers from 3 to 10
were evaluated. We observed that problems caused by certain con-
tainer usage patterns are missing in the reports when this parameter
is set to a number less than 7. Hence, 7 was chosen as the parameter
value for the experiments. This value appears to be an appropriate
choice for the set of benchmarks we used, and it may need to be
re-adjusted for programs with different container usage patterns.

False positives are determined by manually inspecting each pro-
gram. Given a warning, we examine the code and check whether the
container is appropriately used, and whether there is a better way of
using it. This is a subjective choice in which we are trying to simu-

late what an “intelligent programmer” would do. Although there is
no objective perfect answer, such an evaluation provides valuable
indication of the real-world usefulness of the tool. For programs
such as jack and javac whose source code is not publicly avail-
able, we mark the #FP columns with “*”, meaning that the warn-
ings are not checked. Overall, the results of study are promising,
since the number of false positives is low across the benchmark set.

In general, false negatives can be introduced by the unsoundness
of the analysis. For example, a container problem can be missed
if the container structure cannot be completely discovered within
the allowed time limit, or if the call chain required to expose
the problem is too long. The numbers of false negatives were
not investigated because they can be reduced by increasing the
resource budget (i.e., time limit and maximum call chain length).
For example, for most programs in our study, a budget of T = 40
min allows the analysis to successfully inspect all containers in the
application code (i.e., to achieve #NC = 0).

The tool could not finish the inspection of many container ob-
jects in eclipse1. This performance is caused in part by the ex-
tremely large code base of eclipse, and in part by the lack of
precise contexts in many flowsTo or flowsTo paths computed by
the underlying Sridharan-Bodik framework (because of the use of
“match edges” [37]). In our current work we decided to use the
framework as-is and to focus on demonstrating that the approach
successfully identifies problematic containers. Future work can im-
prove the Sridharan-Bodik machinery to provide more precise con-
text information for our analysis.

Splitting a large code base for scalability Note that both analysis
time and the number of timed-out containers decrease substantially
when eclipse plugins are analyzed individually (row eclipse2).
This is because the number of calling contexts for each container
method is reduced significantly. In general, it is not always valid
to analyze separately the components of a large program. However,
separate analysis can be made more general by first employing a
relatively inexpensive escape analysis, which identifies container
objects that may be passed across the boundaries of components (or
plugins). A container that can never escape the component where
it is created can be safely analyzed in the absence of other com-



ponents. This is similar to the observation that context sensitiv-
ity is not necessary for an object that never escapes its creating
method. While element objects could still flow in and out of com-
ponents, there exist techniques to handle incomplete programs, for
example, by creating placeholders for missing objects [33]. For a
non-escaping container, all semantics-achieving statements under
the relevant calling contexts triggered by the creating component
would be confined to that component.

Comparison with a dynamic approach The dynamic analysis in-
struments each semantics-achieving statement, runs the program,
and reports containers whose (1) ADD frequencies are smaller
than 10, and (2) ADD frequency/GET frequency ratios are greater
than 2. The intersections between the sets of statically and dynami-
cally generated warnings are shown in the last part of Table 1: #DU
and #DO are the numbers of containers reported by the static anal-
ysis (from #UC and #OC, respectively) that also appear in the dy-
namic analysis reports. Note that most inefficiently-used containers
found by the static analysis are also reported by the dynamic analy-
sis, which shows that the static warnings indeed produce containers
that exhibit problematic run-time behavior.

It is not as easy to use the dynamic analysis to find containers
that are optimizable across all inputs and runs, compared to using
the static analysis. Columns #SN and #DN show the numbers of
containers reported by the static analysis and the dynamic analysis,
respectively, for which we did not manage to come up with opti-
mization solutions. To determine #SN, we examined each container
that was already subjected to a manual check for false positives
(with T = 40 min, and with 20 randomly chosen containers for pro-
grams with more than 20 warnings). To determine #DN, we exam-
ined all dynamically-reported containers, if there were at most 20
of them; otherwise, we examined the 20 containers with the high-
est potential for performance improvement: the ten containers with
the largest number of ADD operations, and the ten containers with
the largest ratio of ADD to GET operations. Among all these ex-
amined containers, #DN is the number of those for which we could
not determine an appropriate optimization.

In the course of this experiment, it became clear that the prob-
lems reported by the static analysis are easier to fix than those
reported by the dynamic analysis. For instance, among the top
20 dynamically-reported containers for bloat, a program analy-
sis framework in DaCapo, we eventually came up with optimiza-
tion solutions for only two, and one of them was also in the static
analysis report. The remaining containers are used to hold various
kinds of program structures such as CFGs and ASTs. While they
are not retrieved frequently in one particular run (with the inputs
provided by DaCapo), it is hard to optimize them as their elements
may be heavily used when the program is run with other inputs. In
contrast, most of the container problems reported by the static anal-
ysis are straightforward and the programmer can quickly come up
with optimization solutions after she understands the loop nesting
relationships that cause the tool to report the warnings.

While static analysis reports can precisely pinpoint the causes of
inefficiency problems, they cannot say anything about the severity
of the warnings. When the analysis is used during development
(i.e., without any test runs) to find container-related problems, this
information may not be required because a programmer should,
ideally, fix all reported warnings to avoid potential bloat. However,
ranking of warnings becomes highly necessary when the tool is
used for performance tuning and problem diagnosis, as the reported
warnings have different performance impact and importance. For
example, when we attempt to find optimization opportunities for
bloat, it is unclear, among the total of 100 warnings generated by
the static analysis, which ones to inspect first. It is impractical to
examine and fix all of them, a task that can be very labor-intensive
and time-consuming. A natural solution is to rank the statically-

reported containers based on their run-time allocation frequencies;
this was the approach used in the two case studies described below.

As discussed earlier, the time budget limitations and the con-
straints on call chain length may cause the static analysis to miss
problematic containers that are (mis-)used in complex ways. Con-
sider the “top” inefficiently-used containers from the dynamic re-
ports (the same 20 or less containers examined when determining
#DN). Column #MS shows the number of such containers that are
missed by the static analysis. While there are only few missed con-
tainers, a more comprehensive study of their properties could be
performed in future work, in order to identify new usage patterns
that may be used to refine our current static analysis.

Performance improvement from specializing containers For
bloat we found that among the containers that have warnings,
the most frequently-allocated container is an ArrayList created
by method children for each expression tree node to provide ac-
cess to its children nodes. The number of objects added in this
container is always less than three, and in many cases, it does not
contain any objects. We studied the code and found an even worse
problem: even when the children do not change, this container is
never cached in the node. Every time method children is invoked,
a new list is created and the node’s children are added. By creating
a specialized version that takes advantage of container types such
as Collections.emptyList and Collections.singletonList
and that caches the children list in each node, we were able to re-
duce the number of objects created from 129253586 to 89913518
(30% reduction), and the running time from 147 seconds to 110
seconds (24.5% reduction).

We have also inspected the report generated for chart. Many
problems reported are centered around method getChunks de-
clared in an interface, which returns an ArrayList. This interface
is implemented by more than 10 classes, each of which has its
own implementation of getChunks. While many of these con-
crete classes do not have any chunks associated, they have to
create and return an empty ArrayList, in order to be consis-
tent with the interface declaration. By further studying the clients
that invoke these getChunks methods, we found that many of
them need only to know the number of chunks (i.e., by invoking
getChunks().size()). We quickly modified the code to replace the
empty ArrayList with the specialized Collections.emptyList,
add a method getSize in each of the corresponding classes that
calculates the number of chunks without creating a new list, and re-
place the calls getChunks().size() with calls to the new getSize
method. This process took us less than an hour. The modified ver-
sion achieved 3.5% running time reduction and 5% reduction of
the number of generated objects. Note that these case studies only
addressed two obvious problems and did not go into any depth; in
general, significant optimizations may be possible if a developer fa-
miliar with the code thoroughly analyzes the reported inefficiently-
used containers and creates appropriate specialized versions.

5. Related Work

Bloat detection Mitchell et al. [24] propose a manual approach
that detects bloat by structuring behavior according to the flow of
information, and their later work [23] introduces a way to find data
structures that consume excessive amounts of memory. Work by
Dufour et al. [9] uses a blended escape analysis to characterize and
find excessive use of temporary data structures. By approximating
object lifetimes, the analysis has been shown to be useful in clas-
sifying the usage of newly created objects in the problematic ar-
eas. Shankar et al. propose Jolt [36], a tool that makes aggressive
method inlining decisions based on the identification of regions that
make extensive use of temporary objects. Recent work [26] finds
memory leaks and bloat in C/C++ programs by segregating ob-



jects based on their allocation contexts and staleness. The research
from [42] detects memory bloat by profiling copy chains. Our pre-
vious work proposes a container profiling approach to detecting
Java memory leaks [44] and the work in [35] dynamically identi-
fies inappropriately-used Java collections. The work from [43] pro-
poses a dynamic technique to find low-utility data structures based
on the profiling of cost and benefit. Our work differs from all these
existing dynamic approaches in that it proposes the first static tech-
nique to find memory inefficiencies. It can be used both in the de-
velopment phase to find mistakes and inappropriate coding patterns
that may lead to bloat, and in the tuning phase, with the help of a
dynamic allocation-frequency profile, to detect inefficiently-used
containers that can be optimized across inputs, environments, and
configurations.

CFL-reachability It is well known that method calls and returns
can be treated as pairs of balanced parentheses using a context-free
language [28, 30, 31, 32]. Sridharan and Bodik propose a CFL-
reachability formulation to precisely model heap accesses and call-
ing contexts for computing a points-to solution for Java [37]. As an
extension of this formulation, Zheng and Rugina [46] define a CFL-
reachability formulation for C/C++ alias analysis. Our previous
work [45] proposes the CFL-reachability formulation of a must-
not-alias analysis (based on a simplified context-free language) in
order to scale the Sridharan-Bodik points-to analysis.

CFL-reachability can be used to implement polymorphic flow
analysis [27], shape analysis [29], and information flow analy-
sis [19]. The work in [16, 21] studies the connection between
CFL-reachability and set-constraints, shows the similarity between
the two problems, and provides new implementation strategies for
problems that can be formulated in this manner. While based on the
Sridharan-Bodik formulation of points-to analysis, our approach
takes into account container-specific structures, and could poten-
tially have a range of applications in problems that need reasoning
about container behavior. Examples of such problems include sum-
mary generation for containers for more scalable static analyses,
static container-based memory leak detection [13], and other tech-
niques (e.g., thin slicing [38]) that need to track the flow of con-
tainer elements while ignoring objects that form the internal con-
tainer structures.

Object reachability analysis The work closest to ours is the dis-
joint reachability analysis proposed by Naik and Aiken [25] for
eliminating false positives in their Java data race detector. This
analysis is also flow-insensitive and takes into account loop in-
formation to distinguish instances created by the same allocation
site. Unlike this analysis, which uses object-sensitivity to compute
reachability information, we employ a CFL-reachability formula-
tion that is capable of filtering out information irrelevant to con-
tainer objects; as a result, our analysis may scale to larger programs.
Other reachability analysis algorithms range from flow-sensitive
approximations of heap shape (e.g., [6, 7, 34]) to decision proce-
dures (e.g., [17, 20]). While our analysis is less precise in discov-
ering the shape of data structures, it is more scalable and has been
shown to be effective in detecting container problems.

There exists a large body of work on ownership types and their
inference algorithms [1, 5, 8, 10, 13, 18]. Ownership types provide
a way of specifying object encapsulation and enable local reasoning
about program correctness in object-oriented languages. Existing
ownership type inference algorithms may not be able to provide
precise container information, because containers are usually de-
signed to have polymorphic object ownership—some objects of a
container type may own their elements while others may not. In ad-
dition, containers are complicated because they can be nested: the
elements in a container may themselves be containers. As a pointer
to a container is passed around, ownership of the container may

transfer. While the work from [14] proposes an abstract object own-
ership model specifically for containers, it requires the tool users
to specify correct interfaces for container implementation routines,
which are then used in the ownership inference algorithm. Our ap-
proach is completely automated and does not require any user an-
notations for detecting problems with the built-in Java collections.

6. Conclusions

This paper presents practical static and dynamic analyses that can
automatically find inefficiently-used containers. The goal of these
analyses is to check, for each container, whether it has enough data
added and whether it is looked up sufficient number of times. At
the heart of these tools is a base static analysis that abstracts con-
tainer functionality into basic operations ADD and GET, and de-
tects them by formulating CFL-reachability problems. The identi-
fied operations can be used by a static inference engine that infers
the relationship between their execution frequencies, and by a dy-
namic analysis that instruments these statements and finds bloat by
profiling their frequencies. Experimental results show that the static
analysis can scale to large Java applications and can generate pre-
cise warnings about the suspicious usage of containers. Promising
initial case studies suggest that the proposed techniques could be
useful for identifying container-related optimization opportunities.
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