
On the Paradox of Learning to Reason from Data
Honghua Zhang Liunian Harold Li Tao Meng Kai-Wei Chang Guy Van den Broeck
University of California, Los Angeles

Acknowledgements: This work is partially supported by a DARPA PTG grant, NSF grants #IIS-1943641,
#IIS-1956441, #CCF-1837129, Samsung, CISCO, and a Sloan Fellowship. This work is supported in part by
Amazon scholarship.

Can BERT Learn Logical Reasoning? BERT Learns Statistical Features

What is Logical Reasoning

SimpleLogic

Facts:
Alice is fast.
Alice is normal.

Rules:
If Alice is fast and smart, then Alice is bad.
If Alice is normal, then Alice is smart.
If Alice is normal and happy, then Alice is sad.

Query 1: Alice is bad. [Answer: True]
Query 2: Alice is sad. [Answer: False]

Sampling Data from SimpleLogic

A B C

D E F
A B C

D E F

A B C

D E F

(1) Randomly sample facts & rules.
Facts: B, C
Rules: A, B à D. B à E. B, C à F.

(1) Randomly assign labels to
predicates.
True: B, C, E, F.
False: A, D.

(2) Set B, C (randomly chosen
among B, C, E, F) as facts and
sample rules (randomly)
consistent with the label
assignments.

(2) Compute the correct
labels for all predicates given
the facts and rules.

Rule-Priority

Label-Priority

What is Statistical Feature

Paradox

Statistical Features are Inherent

BERT uses Statistical Features

Monotonicity of entailment: any facts and rules can be
freely added to the hypothesis of any proven fact.

Removing Statistical Feature (is Hard)

Main Message
1. We do not claim/believe that language models cannot be

used to solve any reasoning problems in general :)

2. There is a fundamental difference between learning to
reason and learning to achieve high performance on NLP
benchmarks using statistical features.

3. Caution should be taken when we seek to train neural
models end-to-end to solve logical reasoning tasks.

1. If BERT has learned to reason,
it should not exhibit such generalization failure.

2. If BERT has not learned to reason,
it is baffling how it achieves near-perfect in-distribution
test accuracy.

The more rules given, the more likely a predicate is proved.

Pr(label = True | rule# = x) should increase (roughly)
monotonically with x

1. BERT trained on RP fails to generalize to RP_b, suggesting
that BERT leverages rule# to make predictions.

2. BERT trained on RP_b generalizes slightly better, indicating
that statistical features inhibit model generalization.

1. SimpleLogic is a tractable fragment of logical
reasoning problems in propositional logic:
a. bounded vocabulary (≤ 150) & bounded number

of rules/facts (≤ 120).
b. bounded reasoning steps (≤ 6).
c. finite domain (≈ 10!"# examples).
d. only definite clauses.
e. predicates are purely symbolic.

2. No language variance: templated language.

3. Examples are self-contained and require no prior
knowledge.

4. Transformers can solve SimpleLogic:

If a certain statistic of examples has a strong correlation
with their labels but cannot be used to fully determine the
labels, we call it a statistical feature.

We down-sample from RP to obtain RP_b such that:

1. Pr(label = True | rule# = x) = 0.5 for all x

2. Pr(rule# = x) stays the same as RP

We need to sample roughly 10x RP before down-sample,
taking more than a day on a 40-core CPU. Cost of sampling
grows exponentially for jointly removing statistical features.

Test accuracy on LP/RP for the BERT model trained on LP/RP; the
accuracy is shown for examples with reasoning depth from 0 to 6.
BERT trained on RP achieves almost perfect test accuracy; however,
the accuracy drops significantly when it's tested on LP (vice versa).

Test accuracy for the BERT model trained on RP/RP_b

Statistical Features Explain the Paradox

Though statistical features are strong signals for in-distribution
examples, they vary as the distribution changes.

Theorem. for transformer encoders with n layers
and 12 attention heads, there exists a set of
parameters that it correctly solves all reasoning
problems in SimpleLogic with depth ≤ 𝑛 – 2.

Pr(label = True | rule#) for LP (left) and uniform distributions (right).

We construct two datasets RP and LP, each with 280k
examples, sampled from Rule-Priority and Label-Priority.

1. Deductive Reasoning: the ability to draw conclusions
only based on given facts and rules.

2. We say a model can reason if it can reliably emulate
a reasoning function (e.g., forward chaining).

References: [1] Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020. Transformers as soft reasoners over language. In IJCAI. ijcai.org.
[2] Yanai Elazar, Hongming Zhang, Yoav Goldberg, and Dan Roth. 2021. Back to square one: Artifact detection, training and commonsense disentangle- ment in the winograd schema. arXiv preprint arXiv:2104.08161.
[3] Roni Khardon and Dan Roth. 1997. Learning to reason. Journal of the ACM (JACM), 44(5):697–725.

Train Test 0 1 2 3 4 5 6

RP RP 99.9 99.8 99.7 99.3 98.3 97.5 95.5
LP 99.8 99.8 99.3 96.0 90.4 75.0 57.3

LP RP 97.3 66.9 53.0 54.2 59.5 65.6 69.2
LP 100.0 100.0 99.9 99.9 99.7 99.7 99.0

Table 1: Test accuracy on LP/RP for the BERT model
trained on LP/RP; the accuracy is shown for test exam-
ples with reasoning depth from 0 to 6. BERT trained
on RP achieves almost perfect accuracy on its test
set; however the accuracy drops significantly when it’s
tested on LP (vice versa).

Test 0 1 2 3 4 5 6

RP&LP 99.9 99.9 99.8 99.4 98.8 98.1 95.6
LP⇤ 98.1 97.2 92.5 80.3 65.8 55.6 55.2

Table 2: BERT trained on a mixture over RP and LP
fails on LP⇤, a test set that slightly differs from LP.

the test accuracy drops significantly when the train313

and test examples are sampled via different algo-314

rithms. Specifically, as shown in the second and315

third rows of Table 1, the BERT model trained on316

RP fails drastically on LP, and vice versa. Since the317

correct reasoning function does not change across318

different data distributions, this generalization fail-319

ure indicates BERT is has not learned to conduct320

logical reasoning. A subsequent question naturally321

arises: can the model learn to reason if we train322

the model on both RP and LP?323

Training on both RP and LP is not enough.324

We train BERT on the mixture of RP and LP, and325

BERT again achieves nearly perfect test accuracy.326

Can we now conclude that BERT has learned to327

approximate the correct reasoning function? We328

slightly tweak the sampling algorithm of LP by in-329

creasing the expected number of alternative proof330

trees to generate LP⇤. Unfortunately, we observe331

that the model performance again drops signifi-332

cantly on LP⇤ (Table 2); such a result resembles333

what we observed in Table 1. In fact, we find no334

evidence that consistently enriching the training dis-335

tribution will bring a transformative change such336

that the model can learn to reason.337

Discussion. The experiments above reveal a pat-338

tern of generalization failure: if we train the model339

on one data distribution, it fails almost inevitably340

on a different distribution. In other words, the341

model seems to be emulating an incorrect “reason-342

ing function” specific to its training distribution.343

4 BERT Learns Statistical Features 344

To this point, we have shown that a BERT model 345

achieving high in-distribution accuracy does not 346

learn the correct reasoning function. In this section, 347

we seek to provide an explanation for this peculiar 348

generalization failure. Our analysis suggests that 349

even the simplest statistics of reasoning problems 350

can provide significant information about their la- 351

bels, which we denote as statistical features. Such 352

statistical features are inherent to the task of log- 353

ical reasoning rather than a problem with specific 354

datasets. When BERT is trained on data with sta- 355

tistical features, it tends to make predictions based 356

on such features rather than learning to emulate 357

the correct reasoning function; thus, BERT fails to 358

generalize to the whole problem space. However, 359

unlike the shallow shortcuts found in other typical 360

NLP tasks, such statistical features can be countless 361

and extremely complicated, and thus very difficult 362

to be removed from training data. 363

4.1 Statistical Features Inherently Exists 364

What is a statistical feature? If a certain statis- 365

tic of an example has a strong correlation with its 366

label, we call it a statistical feature. 367

As an illustrating example, we consider the num- 368

ber of rules in a reasoning problem (#rule). As 369

shown in Figure 4a, the #rule for reasoning prob- 370

lems in RP exhibit a strong correlation with their 371

labels: when #rule > 40, the number of positive 372

examples exceeds 50% by large margins; formally, 373

Pre⇠RP(label(e) = 1 | #rule(e) = x) > 0.5 for 374

x > 40, which makes it possible for the model to 375

guess the label of an example with relatively high 376

accuracy by only using its #rule. Hence, we call 377

#rule a statistical feature for the dataset RP. 378

Statistical features are inherent to logical rea- 379

soning problems. Continuing with our example, 380

we show that #rule inherently exists as a statistical 381

feature for logical reasoning problems in general; 382

that is, it is not specific to the RP dataset. Consider 383

the following property about logical entailment: 384

Property (Monotonicity of entailment). Any facts 385

and rules can be freely added to the hypothesis of 386

any proven fact. 387

It follows that, intuitively, given a fixed set of 388

predicates and facts, any predicate is more likely 389

to be proved when more rules are given, that is, 390

Pr(label(e) = 1 | #rule(e) = x) should increase 391

roughly monotonically as x increases. Since this 392

5

in particular, there are three criteria that we need453

to satisfy: (1) label is balanced for the feature; (2)454

the marginal distribution of the feature remains un-455

changed; (3) the dataset size remains unchanged.456

Formally, our first goal is to sample D0 ⇢ D457

such that, for all x:458

Pre⇠D0(label(e) = 1 | #rule(e) = x) = 0.5459

Intuitively, this equation says that on D0, one can-460

not do better than 50% by only looking at the #rule461

of an example. Specifically, for all possible values462

of x, if Pre⇠D(label(e)=1 | #rule(e)=x) > 0.5, we463

drop some positive examples with #rule = x from464

D; otherwise, we drop some negative examples.465

However, we would not meet the second crite-466

rion by naively dropping the minimum number of467

examples; consider the following statistics for RP:468

469

#rule before drop after drop
#examples / positive % #examples / positive %

38 6860 / 49.9% 6822 / 50.0%
80 2322 / 92.7% 339 / 50.0%

470

As shown in the table, if we naively drop the mini-471

mum number of examples from RP such that Equa-472

tion 1 is satisfied, we will be left with only 339 ex-473

amples with #rule = 80, where the number (6822)474

of examples with #rule = 38 remains unchanged.475

This could be a serious issue in terms of dataset476

coverage: examples with some particular #rule will477

dominate D0 and there will not be enough exam-478

ples for other #rule. Recall that this is also the479

reason we choose RP/LP over uniform sampling480

to generate our datasets (Sec. 3.1). Hence, we also481

need to make sure that as we remove statistical482

features from D, their marginal distributions in D0483

stay close to D:484

Pre⇠D0(#rule(e)) = Pre⇠D(#rule(e)).485

In this way, D0’s coverage of examples with differ-486

ent #rule remains the same as D.487

When both criteria (1) and (2) are satisfied,488

the size of D0 will be much smaller than D and489

the ratio k = |D|/|D0| can be estimated from490

minx Pre⇠D(label(e)=1 | #rule(e)=x). Hence, to491

make sure that criterion (3) is met, that is the size of492

D0 is the same as D, we need to pre-sample k ⇥D493

and obtain D0 by down-sampling.494

Following this approach, by down-sampling495

from k ⇥ RP, we construct RP_balance, where496

#rule is no longer a statistical feature. A rough497

estimation shows that if we were to balance498

Train Test 0 1 2 3 4 5 6

RP_b
RP 99.8 99.7 99.7 99.4 98.5 98.1 97.0

RP_b 99.4 99.6 99.2 98.7 97.8 96.1 94.4
LP 99.6 99.6 99.6 97.6 93.1 81.3 68.1

RP
RP 99.9 99.8 99.7 99.3 98.3 97.5 95.5

RP_b 99.0 99.3 98.5 97.5 96.7 93.5 88.3
LP 99.8 99.8 99.3 96.0 90.4 75.0 57.3

Table 3: The BERT model trained on RP performs
worse on RP_balance (RP_b), indicating that the model
uses #rule as a statistical feature to make predictions.

Pre⇠RP(label(e) = 1|#rule(e) = x) for x up to 110, 499

the ratio k > 100, that is, we need to spend over 500

100x running time (200 hours on a 40-core CPU) to 501

pre-sample roughly 56 million examples; the com- 502

putational cost would be even more expensive if we 503

want to completely remove #rule as a statistical fea- 504

ture. Hence, we only balance this conditional prob- 505

ability for 0  x  80, which takes 10x running 506

time (20 hours on a 40-core CPU) to pre-sample 507

5.6 million examples. Not balancing the label for 508

x > 80 is acceptable as 90% of the examples in 509

RP have #rule  80. We train the BERT model on 510

RP_balance, and the results are reported in Table 3. 511

BERT uses statistical features to make predic- 512

tions. As shown in Table 3, BERT trained on 513

RP shows large performance drop when tested on 514

RP_balance, while BERT trained on RP_balance 515

shows even better performance on RP than RP- 516

trained BERT. Since RP_balance is down-sampled 517

from RP, the accuracy drop from RP to RP_balance 518

can only be explained by that BERT trained on RP 519

is using #rule to make predictions. 520

Removing statistical features helps generaliza- 521

tion. As shown in Table 3, compared to RP- 522

trained BERT, BERT trained on RP_balance 523

achieves higher accuracy when tested on LP; in 524

particular, for examples with reasoning depth 6, 525

the model trained on RP_balance attains an accu- 526

racy of 68.1%, approximately 10% higher than the 527

model trained on RP. This is a clear signal that 528

when #rule is removed as a statistical feature, the 529

model generalizes better, suggesting that statistical 530

features can hinder the generalization of the model. 531

Statistical features explain the paradox. Now 532

we have a good explanation for the paradox: on 533

the first hand, as we have discussed in Section 4.1, 534

statistical features can be arbitrarily complex and 535

powerful neural models can identify and use them 536

to achieve high in-distribution accuracy; on the 537

7

All arguments extend to other LMs: e.g., we
show that all experiment results hold for T-5.

0.0

0.5

1.0

0 40 80 120

1%

2%

0%

Pr(label=1 |rule#) Pr(rule#)

rule#

rule#
0.0

0.5

1.0

0 40 80 120

Pr(label=1 |rule#)

1%

2%

0%

Pr(rule#)

0.0

0.5

1.0

0 40 80 120
LP
rule#

Pr(label=1 |rule#)

0.0

0.5

1.0

0 40 80 120

Pr(label=1 |rule#, pred#=30)

Uniform
rule#

