# Probabilistic Generating Circuits Honghua Zhang<sup>1</sup> Brendan Juba<sup>2</sup> Guy Van den Broeck<sup>1</sup> <sup>1</sup>University of California, Los Angeles <sup>2</sup>Washington University in St. Louis

| Probab          | Proba           |         |                  |  |               |
|-----------------|-----------------|---------|------------------|--|---------------|
| $\frac{X_1}{0}$ | $\frac{X_2}{0}$ | $X_3$ 0 | $\Pr_{eta}$ 0.02 |  | $g_eta =$     |
| 0               | 0               | 1       | 0.08             |  |               |
| 0               | 1               | 0       | 0.12             |  |               |
| 0               | 1               | 1       | 0.48             |  | Probab        |
| 1               | 0               | 0       | 0.02             |  |               |
| 1               | 0               | 1       | 0.08             |  | $g_{eta} = ($ |
| 1               | 1               | 0       | 0.04             |  |               |
| 1               | 1               | 1       | 0.16             |  |               |
|                 |                 |         |                  |  | *In Mathemat  |

What are TPMs?

*Tractable Probabilistic Models* (TPMs) are models for probability distributions such that:

- The size of the model is efficient with respect to the <u>#</u> <u>of random variables</u>. (expressively efficient)
- Probabilistic inference is efficient with respect to the <u>size of the model</u>. (tractable)

### Contributions

- We study the use of probability generating functions (PGFs) as probabilistic models.
- We propose a new class of TPMs called Probabilistic Generating Circuits (PGCs) to represent PGFs efficiently.
- PGCs support *tractable marginals/likelihoods* and are *strictly* more expressively efficient than other TPMs including decomposable probabilistic circuits (PCs) [1] like *sum-product networks* (SPNs) [2] and *determinantal point processes* (DPPs) [3].

# PGC

PGCs represent PGFs as directed acyclic graphs (DAGs), and they contain three types of nodes:

- Sum nodes  $\bigoplus$  with weighted edges to children.
- Product nodes X with un-weighted edges to children.
- Leaf nodes:  $z_i$  or constant.

### ability Generating Function\*

- $\frac{0.16z_1z_2z_3}{0.000} + 0.04z_1z_2 + 0.08z_1z_3 + 0.02z_1$
- $+0.48z_2z_3 + 0.12z_2 + 0.08z_3 + 0.02.$



ability Generating Function (Compact Form)

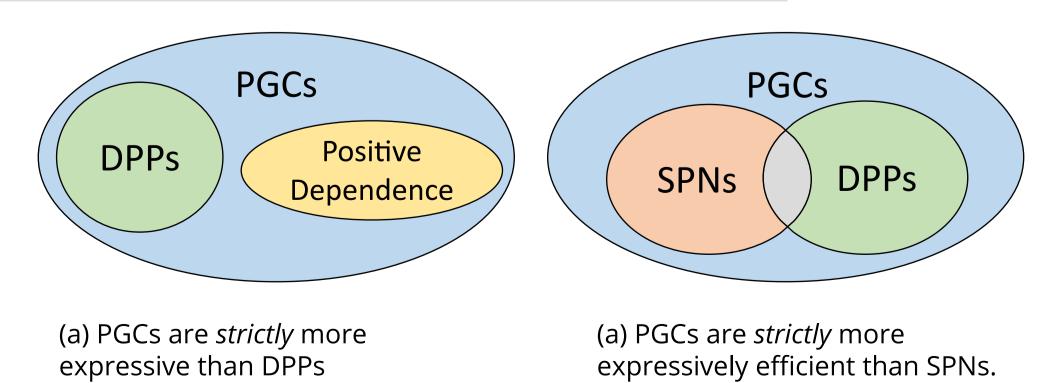
 $(0.1(z_1+1)(6z_2+1)-0.4z_1z_2)(0.8z_3+0.2)$ 

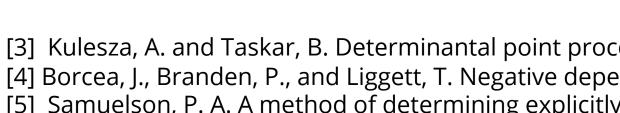
atics, distributions over discrete random variables are often represented as probability generating functions (PGFs): each term corresponds to one possible assignment and the coefficients give the corresponding probabilities.

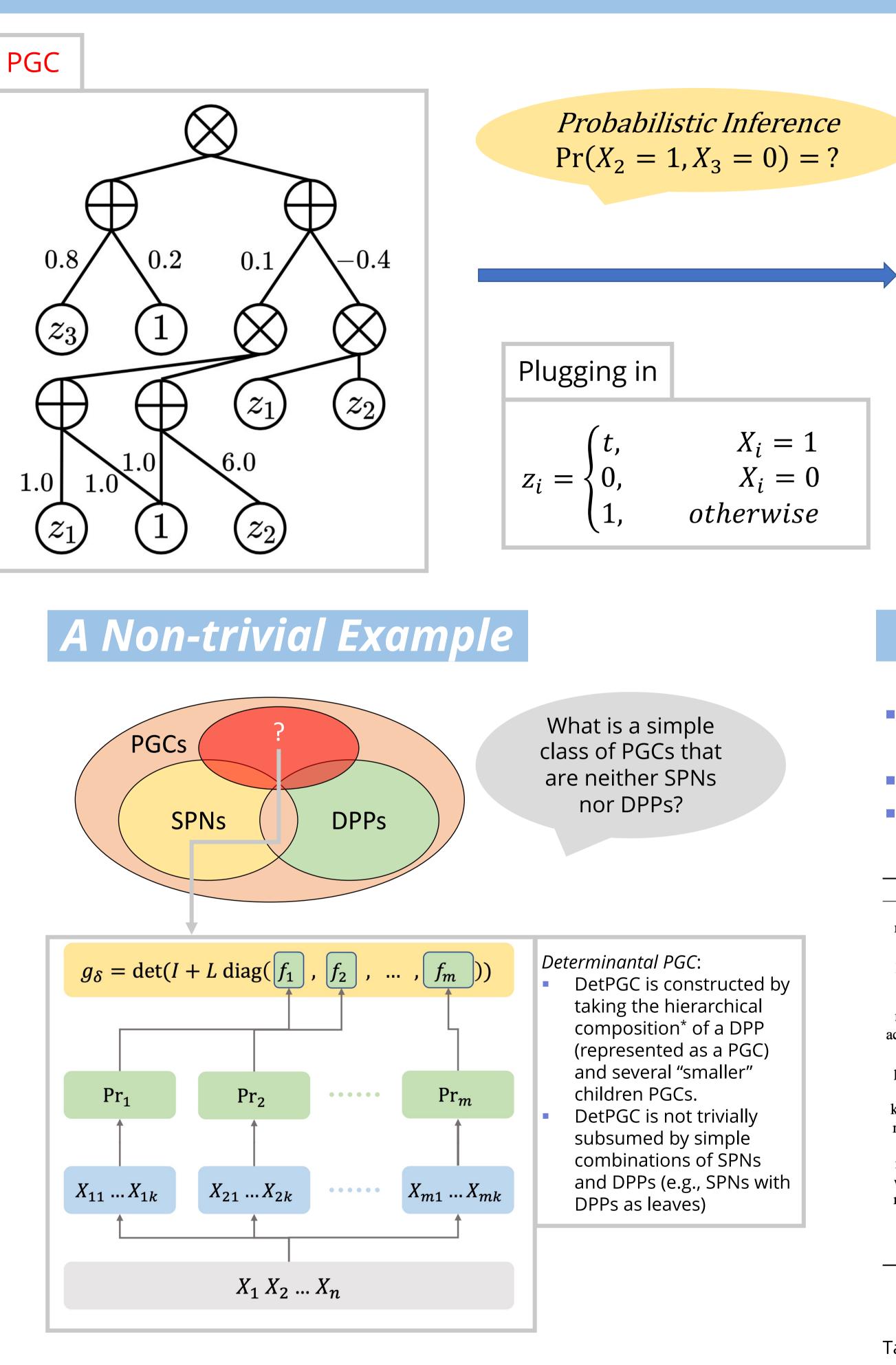
## Other TPMs as PGCs

### Decomposable PCs (SPNs) as PGCs

Given a smooth and decomposable PC (SPN), by replacing its leaf variables accordingly, we immediately obtain a PGC that represents the same distribution.

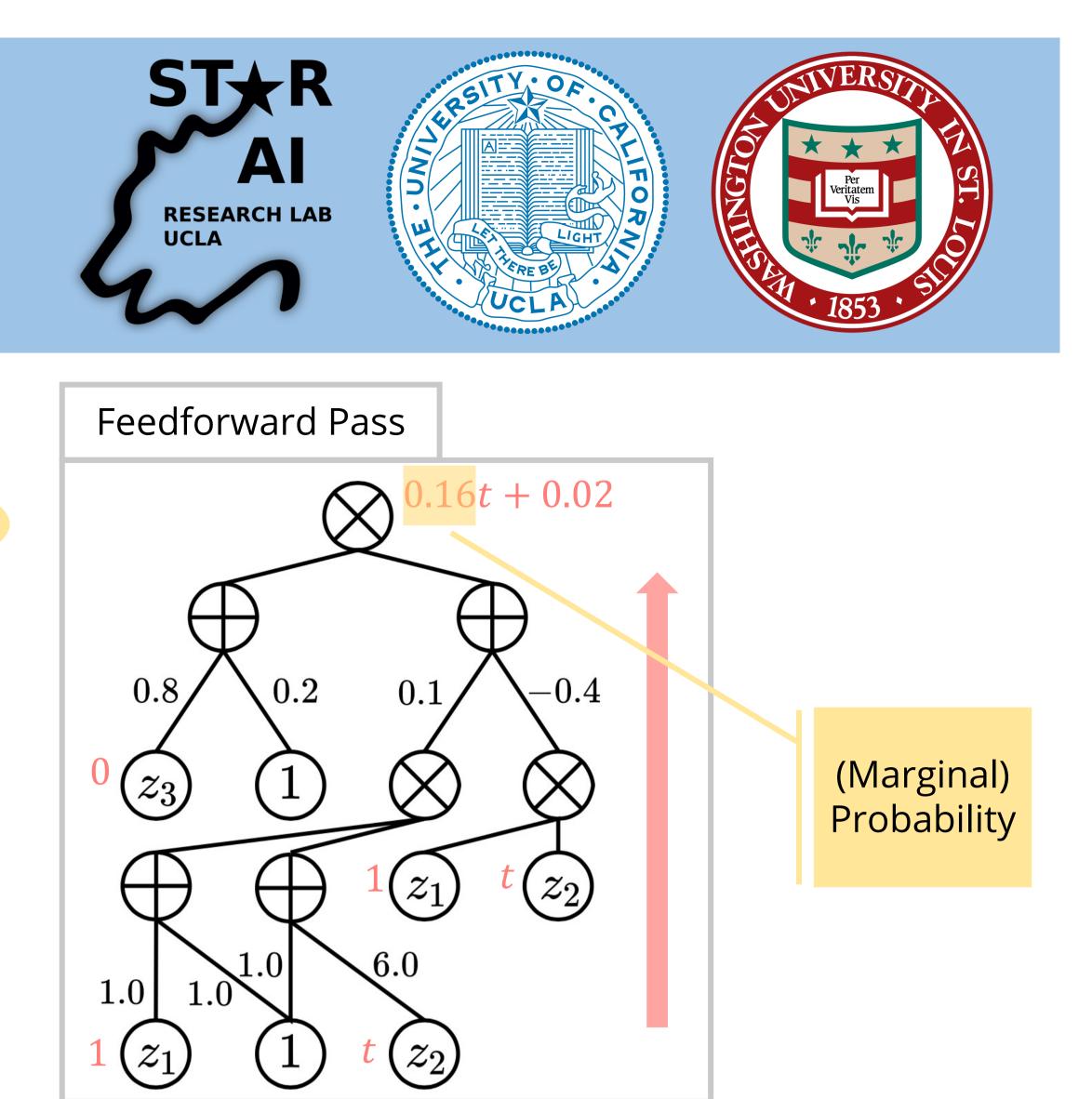

### DPPs as PGCs


Given a DPP (L-ensemble) with kernel matrix L, its probability generating function is given by [4]:


$$y_L = rac{1}{\det(L+I)} \det(I + L \operatorname{diag}(z_1, \dots, z_n)).$$

By encoding a polynomial-time division-free determinant algorithm [5] as PGC, we obtain a polynomial-size PGC that represents the DPP.

PGCs are <u>strictly</u> more expressively efficient








### \**Hierarchical Composition:*

Given a "parent" PGC  $g(z_1, ..., z_n)$  and "child" PGCs  $f_1, ..., f_n$  on distinct variables, the composition  $g(f_1, \dots, f_n)$  is a valid PGC.



### Experiments: a proof-of-concept

Density estimation benchmarks: the Twenty Datasets, the Amazon Baby Registries.

Model: SimplePGCs, which are mixtures over DetPGCs. Baselines: DPPs, Strudel, Einsum Networks, Mixture of Trees.

|           | DPP                         | Strudel           | EiNet              | MT                | SimplePGC                |                                    | DPP            | Strudel | EiNet    | MT     | SimplePGC                  |
|-----------|-----------------------------|-------------------|--------------------|-------------------|--------------------------|------------------------------------|----------------|---------|----------|--------|----------------------------|
| nltcs     | -9.23                       | -6.07             | -6.02              | -6.01             | $-6.05^{*}$              | opporal                            |                |         | -9.24    | -9.31  | $-9.10^{*^{\dagger}\circ}$ |
| msnbc     | -6.48                       | -6.04             | -6.12              | -6.07             | $-6.06^{\dagger\circ}$   | apparel                            | -9.88          | -9.51   |          |        |                            |
| kdd       | -2.45                       | -2.14             | -2.18              | -2.13             | $-2.14^{*\dagger}$       | bath                               | -8.55          | -8.38   | -8.49    | -8.53  | $-8.29^{*\dagger\circ}$    |
| plants    | -31.20                      | -13.22            | -13.68             | -12.95            | $-13.52^\dagger$         | bedding                            | -8.65          | -8.50   | -8.55    | -8.59  | $-8.41^{*\dagger\circ}$    |
| audio     | -49.31                      | -42.20            | -39.88             | -40.08            | $-40.21^{*}$             | carseats                           | -4.74          | -4.79   | -4.72    | -4.76  | $-4.64^{*\dagger\circ}$    |
| jester    | -63.88                      | -54.24            | -52.56             | -53.08            | $-53.54^*$               | diaper                             | -10.61         | -9.90   | -9.86    | -9.93  | $-9.72^{*\dagger\circ}$    |
| netflix   | -64.18                      | -57.93            | -56.54             | -56.74            | $-57.42^{*}$             | feeding                            | -11.86         | -11.42  | -11.27   | -11.30 | $-11.17^{*\dagger\circ}$   |
| accidents | -35.61                      | -29.05            | -35.59             | -29.63            | $-30.46^\dagger$         | furniture                          | -4.38          | -4.39   | -4.38    | -4.43  | $-4.34^{*\dagger\circ}$    |
| retail    | -11.43                      | -10.83            | -10.92             | -10.83            | $-10.84^\dagger$         |                                    | -9.14          | -9.15   | -9.18    | -9.23  | $-9.04^{*\dagger\circ}$    |
| pumsb     | -51.98                      | -24.39            | -31.95             | -23.71            | $-29.56^\dagger$         | gear                               | 10-1 24(19)0 M |         |          |        |                            |
| dna       | -82.19                      | -87.15            | -96.09             | -85.14            | $-80.82^{*\dagger\circ}$ | gifts                              | -3.51          | -3.39   | -3.42    | -3.48  | $-3.47^{\circ}$            |
| kosarek   | -13.35                      | -10.70            | -11.03             | -10.62            | $-10.72^{\dagger}$       | health                             | -7.40          | -7.37   | -7.47    | -7.49  | $-7.24^{st \dagger \circ}$ |
| msweb     | -11.31                      | -9.74             | -10.03             | -9.85             | $-9.98^{\dagger}$        | media                              | -8.36          | -7.62   | -7.82    | -7.93  | $-7.69^{\dagger\circ}$     |
| book      | -41.22                      | -34.49            | -34.74             | -34.63            | $-34.11^{*\dagger\circ}$ | moms                               | -3.55          | -3.52   | -3.48    | -3.54  | $-3.53^\circ$              |
| movie     | -41.22<br>-83.55            | -54.49<br>-53.72  | -51.71             | -54.60            | $-53.15^{*\circ}$        | safety                             | -4.28          | -4.43   | -4.39    | -4.36  | $-4.28^{*\dagger\circ}$    |
| webkb     |                             | -154.83           | -157.28            | -156.86           | 1                        | strollers                          | -5.30          | -5.07   | -5.07    | -5.14  | $-5.00^{*\dagger\circ}$    |
| reuters   | -107.44                     | -154.85<br>-86.35 | -137.28<br>-87.37  | -150.80<br>-85.90 | -135.23<br>-87.65        |                                    |                |         |          |        | $-7.62^{\dagger\circ}$     |
| 20ng      | 6. (10. The P. Marker P. 19 | -30.35<br>-153.87 | -87.37<br>-153.94  | -154.24           |                          | toys                               | -8.05          | -7.61   | -7.84    | -7.88  | $=7.02^{\circ}$            |
| bbc       | -174.43<br>-278.15          | -256.53           | -103.94<br>-248.33 |                   | $-254.81^{*\circ}$       |                                    |                |         |          |        |                            |
|           | A 1000 1000                 |                   |                    |                   |                          |                                    |                |         | - I:L I: |        |                            |
| ad        | -63.20                      | -16.52            | -26.27             | -16.02            | $-21.65^{\dagger}$       | (b) Average log-likelihoods on the |                |         |          |        |                            |

(a) Average log-likelihoods on the Twenty Datasets

(b) Average log-likelihoods on the Amazon Baby Registries.

Table 1. Bold numbers indicate the best log-likelihood. For SimplePGC, annotations \*, † and • mean better log-likelihood compared to Strudel, EiNet and MT, respectively.



**Acknowledgements:** This work is partially supported by NSF grants #IIS-1943641, #IIS-1633857, #CCF-1837129, #CCF-1718380, #IIS-1908287, and #IIS-1939677, DARPA XAI grant #N66001-17-2-4032, Sloan and UCLA Samueli Fellowships, and gifts from Intel and Facebook Research.