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Abstract

Probabilistic circuits (PCs) is a unifying rep-
resentation for probabilistic models that sup-
port tractable inference. Numerous applica-
tions of PCs like controllable text generation
depend on the ability to efficiently multiply
two circuits. Existing multiplication algo-
rithms require that the circuits respect the
same structure, i.e. variable scopes decom-
poses according to the same vtree. In this
work, we propose and study the task of re-
structuring structured(-decomposable) PCs,
that is, transforming a structured PC such
that it conforms to a target vtree. We pro-
pose a generic approach for this problem
and show that it leads to novel polynomial-
time algorithms for multiplying circuits re-
specting different vtrees, as well as a practi-
cal depth-reduction algorithm that preserves
structured decomposibility. Our work opens
up new avenues for tractable PC inference,
suggesting the possibility of training with less
restrictive PC structures while enabling effi-
cient inference by changing their structures
at inference time.

1 INTRODUCTION

A key challenge in deep generative modeling is the in-
tractability of probabilistic reasoning (Roth, 1996; Geh
et al., 2024). To address this challenge, probabilistic
circuits (PCs) (Darwiche, 2003; Poon and Domingos,
2011; Choi et al., 2020) has emerged as a unifying
representation of tractable generative models, which
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support efficient and exact evaluation of various infer-
ence queries like marginalization. The tractability of
PCs has now proven crucial in a range of applications,
such as causal inference (Zečević et al., 2021; Wang
and Kwiatkowska, 2023; Busch et al., 2024), knowl-
edge graph learning (Loconte et al., 2023) and ensur-
ing fairness in decision making (Choi et al., 2021).

Probabilistic circuits represent distributions as com-
putation graphs of sums and products. A crucial as-
pect to the design of PCs is the structure of the com-
putation graph, that is, how distributions are fac-
torized into (conditionally) independent components.
The structure of PCs affects their tractability, model-
ing performance and computational efficiency. In this
work, we consider the problem of restructuring PCs:
constructing a new PC that follows a particular (tar-
get) structure while representing the same distribu-
tion. We present a general algorithm for restructuring
structured-decomposable circuits by considering their
graphical model representations. Specifically, we lever-
age the graphical models to reason about conditional
independencies and recursively construct a new PC
conforming to the desired structure.

We then investigate two key applications of PC re-
structuring: circuit multiplication and depth reduc-
tion. Circuit multiplication is a fundamental opera-
tion used for answering various inference queries (Ver-
gari et al., 2021), such as conditioning on logical con-
straints (Choi et al., 2015; Ahmed et al., 2022; Liu
et al., 2024b; Zhang et al., 2023, 2024), computing
expected predictions of classifiers (Khosravi et al.,
2019) and causal backdoor adjustment (Wang and
Kwiatkowska, 2023), as well as in improving the ex-
pressive power of circuits through squaring (Loconte
et al., 2024c,b; Wang and Van den Broeck, 2024).
Though the problem of multiplying circuits of differ-
ent structures is in general #P-hard (Vergari et al.,
2021), we identify a new class of PCs, which we call
contiguous circuits, where it is possible to multiply
circuits of different structures in polynomial (or quasi-
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polynomial) time using our algorithm.

We also consider depth reduction, a well-established
theoretical tool for reducing the depth of a cir-
cuit (Valiant et al., 1983; Raz and Yehudayoff, 2008).
Recent PC implementations have focused on layer-wise
parallelization of PC inference via modern GPUs, and
depth reduction enables greater parallelization (Pe-
harz et al., 2020; Dang et al., 2021; Liu et al., 2024a;
Loconte et al., 2024a). In this work, we show that our
restructuring algorithm can be used to transform a
structured-decomposable circuit to an equivalent log-
depth circuit, with much tighter upper bounds than
given by prior work. This opens up new possibilities of
practically implementing depth reduction techniques
to speed up PC inference.

2 PROBABILISTIC CIRCUITS

Notation We will use uppercase to denote variables
(e.g. X) and lowercase to denote values of those vari-
ables (e.g. x). We use boldface to denote sets of vari-
ables/values (e.g. X,x).

Definition 2.1 (Probabilistic Circuit). A probabilis-
tic circuit (PC) A = (G,w) represents a joint prob-
ability distribution over random variables X through
a rooted directed acyclic (computation) graph (DAG),
consisting of sum (⊕), product (⊗), and leaf nodes
(L), parameterized by w. Each node t represents a
probability distribution pt(X), defined recursively by:

pt(x) =


ft(x) if t is a leaf node∏

c∈ch(t) pc(x) if t is a product node∑
c∈ch(t) wt,cpc(x) if t is a sum node

where ft(x) is a univariate input distribution function
(e.g. Gaussian, Categorical), we use ch(t) to denote
the set of children of a node t, and wt,c is the non-
negative weight associated with the edge (t, c) in the
DAG, which satisfy the constraint that

∑
c∈ch(t) wt,c =

1 for every sum node t. We define the scope of a node t
to be the variables it depends on. The function repre-
sented by a PC, denoted pA (x), is the function repre-
sented by its root node; and the size of a PC, denoted
|A |, is the number of edges in its graph.

Intuitively, product nodes represent a factorized prod-
uct of its child distributions, while sum nodes repre-
sent a weighted mixture of its child distributions. For
simplicity, in the rest of this paper we assume that
sum/leaf and product nodes alternate (i.e. child of a
sum is a product, and child of a product is a leaf or
sum), and that each product has exactly two children.
The key feature of PCs is their tractability, i.e., the
ability to answer queries about the distributions they

represent exactly and in polynomial time. Two com-
monly assumed properties known as smoothness and
decomposability ensure efficient marginalization:

Definition 2.2 (Smoothness and Decomposability).
A sum node is smooth if all of its children have the
same scope. A product node is decomposable if its
children have disjoint scope. A PC is smooth (resp.
decomposable) if all of its sum (resp. product) nodes
are smooth (resp. decomposable).

Intuitively, decomposability requires that a product
node partitions its scope among its children. For
many other important queries, it is useful to enforce a
stronger form of decomposability, known as structured-
decomposability, that requires that product nodes with
the same scope decompose in the same way.

Definition 2.3 (Vtree). A vtree V over variables X is
a rooted binary tree, where each X ∈X is associated
with a unique leaf node v (we write Xv for the variable
associated with node v). Each inner node v covers a
set of variables Xv, satisfying Xv = Xl ∪ Xr where
l, r are the children of v. We write Vv to denote the
subtree rooted at v.

Definition 2.4 (Structured Decomposability). A PC
A is structured-decomposable (w.r.t a vtree V ) if ev-
ery product node t ∈ A decomposes its scope accord-
ing to some inner vtree node v ∈ V .

The main advantage of structured decomposability is
that it enables tractable circuit multiplication of two
circuits respecting the same vtree, which is a core sub-
routine for many applications. However, structured
decomposable circuits can be less expressive efficient
in general (de Colnet and Mengel, 2021).

3 PC RESTRUCTURING

In this section, we describe a generic approach that
restructures any structured-decomposable PC respect-
ing a target vtree. The approach consists of three
steps: (1) construct a Bayesian network representa-
tion of the PC; (2) find sets of latent variables in the
Bayesian network that induce conditional independe-
cies required by the target vtree; (3) construct a new
structured PC recursively leveraging the conditional
independence derived in (2).

3.1 Structured PCs as Bayesian Networks

It is known that one can efficiently compile a tree-
shaped Bayesian network to an equivalent probabilis-
tic circuit (Darwiche, 2003; Poon and Domingos, 2011;
Dang et al., 2020; Liu and Van den Broeck, 2021). In
this subsection, we describe how to go in the oppo-
site direction, i.e. converting an arbitrary structured-
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decomposable PC to a tree-shaped Bayesian network
with linearly many variables.

Let A be a structured PC over variables X respecting
vtree V . Given a vtree node v ∈ V , we write prod(v)
to denote the set of all product nodes with scope Xv.
We define the hidden state size h of the circuit to be
maxv∈V |prod(v)|. Writing n for the number of vari-
ables, the size of the circuit is then O(nh2).1

We begin by providing a latent variable interpreta-
tion of structured PCs. Specifically, we define an aug-
mented PC which explicitly associates latent variables
with product nodes for each variable scope. Given
some vtree node v, let us associate each t ∈ prod(v)
with a unique index idx(t) ∈ {0, ..., |prod(v)|−1}, also
writing tv,i to refer to the product node with index i in
prod(v). Then we can introduce a categorical latent
variable Zv whose value corresponds to a particular
product node in prod(v):

Definition 3.1 (Augmented PC). Given a structured-
decomposable and smooth PC A over variables X re-
specting vtree V , we define the augmented PC Aaug

to be a copy of A where for each vtree node v ∈ V ,
we add an additional child taug to each product node
t ∈ prod(v) that is a leaf node with scope Zv and leaf
function ftaug

(Zv) = 1Zv=idx(t).

It is not hard to see that the augmented PC Aaug

is a PC over variables X,Z and retains structured
decomposability and smoothness. Further, the stan-
dard marginalization algorithm for PCs ensures that
the augmented PC has the correct distribution:

Proposition 3.2. pA (X) =
∑

z pAaug(X, z)

Let Vv→Zv be the rooted DAG obtained by replacing
all inner nodes v in vtree V with variable Zv (cf. Fig.
1). Now, we claim that the augmented PC can be
interpreted as a Bayesian network with graph struc-
ture Vv→Zv

. To do this, we construct a distribution
p∗(X,Z), based on the augmented PC, that factor-
izes as required by the Bayesian network structure.
There are three cases to consider: (i) the root node
p∗(Zroot(V )), (ii) the leaf nodes p∗(Xv|Zp), and (iii)
other nodes p∗(Zv|Zp) (where we write p for the par-
ent of v in V ). In case (i), we set p∗(Zv = i) := wi

where wi is the weight of the edge from the root sum
node to the product node tv,i. In case (ii), we set
p∗(Xv|Zp = j) = pt(Xv), where t is the leaf node child
(with scope Xv) of the product node tp,j . Finally, in
case (iii) we note that due to alternating sums and
products, tp,j must have a sum node child, which may

1The number of active sum nodes per vtree node is at
most h, as each such node must have a different product
node parent corresponding to the parent vtree node scope.
This leads to O(h2) edges per vtree node.
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(a) A (contiguous) vtree V
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(b) Bayesian network Vv 7→Zv
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(c) A labelling of vtree W .

Figure 1: Fig. 1a shows a vtree V for some contiguous
PC A ; Fig. 1b shows a Bayesian network representa-
tion GA for A ; Fig. 1c shows a valid labelling of vtree
W with respect to GA .

or may not have a weighted edge to tv,i (whose weight
we denote by wij if it exists). We thus define:

p∗(Zv = i|Zp = j) =

{
wij ∃ path from tp,j to tv,i

0 otherwise

It remains to show that this distribution faithfully
represents the distribution of the augmented PC, i.e.
pAaug = p∗. The intuitive idea is that each value of Z
corresponds to a subtree of Aaug, whose value is pre-
cisely given by the product of weights and leaf func-
tions specified by the Bayesian network; we refer read-
ers to the Appendix for the complete proof. We thus
have the following mapping from structured PCs to
tree-shaped Bayesian networks:

Theorem 3.3. Let A be a structured-decomposable
and smooth PC over variables X respecting vtree V .
Then there exists a Bayesian network GA over vari-
ables X and Z = {Zv|v ∈ V } with graph Vv 7→Zv such
that

∑
z pG(X, z) = pA (X).

Since we have shown that pA and pG represents the
same distribution over the observed variables X, we
will drop the subscripts when there is no ambiguity.

3.2 Recursive PC Restructuring

Suppose we have a PC A with its Bayesian network
representation GA and vtree V , and let W be some
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p(Xw |Cw)

p(Xl |Cl) p(Xr |Cr)

p(Xw |Cl, Cr)
p(Cl, Cr |Cw)

Figure 2: Recursive construction of vectors of sum
nodes representing p(Xw |Cw)

other vtree. We now show how to construct a new PC
respectingW that encodes the same distribution as A .
The rough idea is to label each vtree node w∈W with
a subset of latent variables Cw⊆GA such that Xw is
conditionally independent from X \Xw given Cw. To
characterize such properties, we introduce covers:

Definition 3.4 (Cover). Given a tree-shaped
Bayesian network GA as constructed in Sec. 3.1, we
say that C ⊆ Z covers S ⊆ X if C blocks2 all paths
between S and X\S in GA .

Our definition of cover is a special case of d-
separation (Geiger et al., 1990), which characterizes
conditional independence for Bayesian networks:

Proposition 3.5 (Geiger et al. (1990)). A,B⊆GA

are conditionally independent given C ⊆ GA if and
only if C blocks all paths between A and B. In partic-
ular, if C covers S then S and X\S are conditionally
independent given C.

Our goal is to recursively construct vectors of sum
nodes ⊕i representing the probability distributions
p(Xw |Cw= i). Letting l and r be the children of w, we
will establish a recurrence relation between p(Xw |Cw),
p(Xl |Cl) and p(Xr |Cr). This requires the vtree labels
to satisfy the following properties:

Definition 3.6 (Valid Vtree Labelling). Given the
Bayesian network GA and target vtree W , a valid la-
belling of W with respect to GA associates each node
w∈W with a subset of latent variables Cw⊆GV s.t.

1. Cw covers Xw in GA .
2. Cl blocks all paths between Xl and Cr ∪Cw.
3. Cr blocks all paths between Xr and Cl ∪Cw.

Furthermore, w.l.o.g., we set Croot of W := ∅ and
CXj

:=parent of Xj in GA for the leaf nodes Xj ∈W .
See Figure 1c for an example.

Assuming that we have computed a valid labelling for
W , we can then proceed to construct the desired PC

2a path P is blocked by a set S if P ∩ S ̸= ∅.

by a bottom-up recursion on W . For the base case,
if w is a leaf node representing some random variable
Xj , p(Xj |CXj

) = p(Xj | parent of Xj in GA ), which
is directly given by the conditional probability table of
GA . For the induction step, when w is a inner node
with children l and r, we have the recurrence relation:

p(Xw |Cw)

=
∑

(Cl∪Cr)\Cw

p(Xl,Xr |Cl,Cr) · p(Cl,Cr |Cw)

=
∑

(Cl∪Cr)\Cw

p(Xl |Cl) · p(Xr |Cr) · p(Cl,Cr |Cw)

Here the first step follows from Property 2 and 3, and
the second step follows from all properties in Defin-
tion 3.6. The circuit materialization of the recurrence
relation is shown in Figure 2. Note that if w is the
root, then p(Xw | Cw) becomes p(X), which is a sin-
gle sum node representing the distribution of A . The
complete recursion is given by Algorithm 1.

Algorithm 1 Construct PC with respect to W

procedure ConstructCircuit(w)
if w is a leaf node Xi then

return p(Xi |CXi
)

end if
l, r ← Children(w)⊕

Xl,Cl
←ConstructCircuit(l)⊕

Xr,Cr
←ConstructCircuit(r)⊕

Xw,Cw
←

∑
(Cl∪Cr)\Cw

⊕
Cl
·
⊕

Cr
·p(Cl,Cr|Cw)

return
⊕

Cw

end procedure

Theorem 3.7. Let h be the number of hidden states of
the original PC A and n the number of random vari-
ables. The number of hidden states of the restructured
PC is given by O(hM ) where M =maxw∈W |Cl ∪ Cr|
and the size of the restructured PC is bounded by
O(nhM ′

) where M ′=maxw∈W |Cl ∪Cr ∪Cw| ≤ 2M .
We refer to M ′ as the cardinality of the labelling Cw.

Proof. Let A ′ be the restructured circuit respecting
W . As described in Algorithm 1, for each inner node
w ∈ W , we construct two layers of nodes as shown
in Figure 2. By construction, the product layer con-
tains all product nodes respecting the vtree node w
and its cardinality is given by O(h|Cl∪Cr|); we set
M := maxw∈W |Cl ∪ Cr| and it follows that the hid-
den states size of B is given by O(hM ). Similarly,
the number of edges in the sum layer is given by
O(h|Cl∪Cr∪Cw|) and the number of product edges is
given by O(h|Cl∪Cr|); since there are O(n) vtree nodes
in total, the total number of edges in B is given by
O(nhM ′

), with M ′ = maxw∈W |Cl ∪Cr ∪Cw|.
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Remark 3.8. By Theorem 3.7, the restructured PC A ′

has hidden state size O(hM ), which gives a circuit of
size Θ(nh2M ) only if A ′ is densely connected. In fact,
we will show in Section 4 and 5 that the restructured
PCs are often sparsely connected, resulting in sizes
much smaller than O(nh2M ). Thus, while the graphi-
cal model representation is useful for reasoning about
conditional independencies, the circuit representation
allows us to visualize and exploit the sparsity for effi-
cient inference (Dang et al., 2022a; Liu et al., 2024a).

3.3 Computing Vtree Labelling

The next question that immediately arises is how to
compute a valid labelling for W with respect to GA .
One naive solution is to set Cw to be Z, the set of all
latent variables in GA . However, this is not desirable
as M ′ =maxw∈W |Cl ∪Cr ∪Cw|= |Z|=n−1, result-
ing in the restructured circuit having exponential size
O(nhn−1). Hence we present a greedy approach that
computes a labelling while trying to minimize M ′.

The algorithm proceeds top-down on W . For the base
case where w is the root, we set Cw := ∅. For the
inductive step, let l and r be the children of w and
assume that we have computed Cw as a cover for Xw

in GA : we (1) split GA into connected components
{Gi} via Cw; then (2) within each connected com-
ponent Gi, we compute a minimum d-separator Ci

that blocks all paths between Xl ∩Gi and Xr ∩Gi by
calling the sub-routine MinimumSeparator. We set
Dw := (

⋃
iCi)∪Cw and observe that Dw covers both

Xl andXr inGA . To computeCl, similarly forCr, we
consider all paths starting from Xl and stopping im-
mediately when reaching some Zj ∈ Dw, and we let Cl

to be the set containing all such Zjs. The pseudo code
is shown in Algorithm 2. Note that the MinimumSep-

Algorithm 2 Computing Cw for w∈W
procedure ComputeLabel(w,Cw)
{Gi} ← ConnectedComponents(GA ,Cw)
Ci ←MinimumSeparator(Gi,Xl∩Gi,Xr∩Gi)
Dw ← (

⋃
iCi) ∪Cw

Cl ← {Zj ∈Dw : Paths(Xl, Zj) ∩Dw={Zj}}
Cr ← {Zj ∈Dw : Paths(Xr, Zj) ∩Dw={Zj}}
ComputeLabel(l,Cl)
ComputeLabel(r,Cr)

end procedure

arator procedure called in Algorithm 2 computes a
minimum d-separator that blocks all paths between
Xl and Xr in the subgraph Gi. Even though polytime
algorithms for computing minimum d-separators exist
in literature (Tian et al., 1998), we derive a linear-time
algorithm that is easy to implement for our use case,
where Gi is a rooted tree with leaves in Xl, Xr and

Cw. We refer readers to the Appendix for details.

Proposition 3.9. Algorithm 2 computes a valid la-
belling with respect to GA .

Proof. We prove by a top-down induction on W that
the labelling Cw computed by Algorithm 2 is valid.
Assume that Cw covers Xw in GA , we want to show
that Cl and Cr satisfy the properties from Defini-
tion 3.6. To prove that Cl covers Xl, we consider a
path from Xa∈Xl to Xb∈X\Xl. (1) If Xa and Xb are
in the same Gi, then the path is blocked by Ci. (2) If
Xa and Xb are in different Gis, then the path contains
some node Z ∈ Cw, and we can choose from the path
the first Z∈Cw. Then Z∈Cl by construction, imply-
ing that the path is blocked by Cl. Hence we conclude
that Cl is a cover for Xl, satisfying Property 1. To
prove that Cl satisfies Property 2, we argue that be-
cause Cr and Cw are both subsets of Dw, all paths
from Xl to Cr ∪Cw will be blocked by Cl by the way
that Cl is constructed. We can show that Cr satisfies
Property 1 and Property 3 by the same argument.

Though Algorithm 2 computes a valid labelling while
greedily minimizing |Cl ∪ Cr ∪ Cw|, we do not know
whether M ′ = maxw∈W |Cl∪Cr∪Cw| is globally min-
imized or not. In addition, we hypothesize that if we
can find a minimum vtree labelling, then the size of the
PC constructed by Algorithm 1 is optimal. We leave it
as an open problem to design an algorithm that com-
putes minimum labellings and prove the optimality of
Algorithm 1 given a minimum labelling.

Nonetheless we show that Algorithm 1 yields novel
polynomial-time algorithms for the tasks of PC mul-
tiplication and depth-reduction. Specifically, we show
that for important subclasses of PCs, we can compute
vtree labellings of constant or O(log n) cardinality. We
refer readers to Section 4 and Section 5 for details.

3.4 Corollaries

With our restructuring algorithm in hand, we now ex-
amine the restructuring of two other types of circuits:
namely, deterministic PCs, and logical circuits.

Definition 3.10 (Determinism). A sum node is de-
terministic if for every value x of X, at most one child
c returns a non-zero value (i.e. pc(x) > 0). A PC is
determinstic if all of its sum nodes are deterministic.

Determinism is crucial for tractability of various infer-
ence queries such as computing the most likely state
(MAP) (Peharz et al., 2016; Conaty et al., 2017) or
computing the entropy of the PC’s distribution (Shih
and Ermon, 2020; Vergari et al., 2021). It is thus of
interest to ask whether applying our restructuring al-
gorithm maintains determinism.
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Claim 3.11. Algorithm 1 preserves determinism.

Proof. If the original circuit is deterministic, then each
assignment to the observed variables fully determines
the values of all latent variables (and thus the latents
being conditioned on for the restructuring). Hence the
constructed sum nodes are deterministic.

Although we have focused on probabilistic circuits up
to this point, our restructuring algorithm also ap-
plies to logical circuits - in particular, structured-
decomposable negation normal form (SDNNF) cir-
cuits3 (Pipatsrisawat and Darwiche, 2008). To see
this, we use a simple trick: (1) convert the logical cir-
cuit into a probabilistic circuit by replacing ∨ with
⊕ and ∧ with ⊗, and assigning positive weights to ⊕
edges; (2) restructure the PC; (3) convert the PC back
to a logical circuit by replacing ⊕ with ∨ and ⊗ with
∧, and removing the weights. It is immediate that the
logical circuits and the corresponding PCs have the
same support throughout the process.

It is also not hard to see that this procedure for log-
ical circuits retains determinism, so, e.g, an ordered
binary decision diagram (OBDD) can be efficiently re-
structured into a deterministic SDNNF with the re-
verse order while maintaining the ability to perform
model counting (Darwiche and Marquis, 2002).

4 PC MULTIPLICATION

One important application of restructuring PCs is cir-
cuit multiplication: given two PCs A and B, the
goal is to construct a tractable PC C such that
pC (x) ∝ pA (x) · pB(x). PC multiplication was pre-
viously only addressed for structured PCs respecting
the same vtree (Shen et al., 2016; Vergari et al., 2021).
Circuit restructuring immediately gives us a means of
multiplying two structured circuits respecting differ-
ent vtrees, as we can simply restructure one of them
to be compatible with the other. Though the restruc-
tured PC will in general have exponential size, in this
section, we consider practical cases where circuit mul-
tiplications with respect to different vtrees is tractable.

We start by introducing a new structural property of
tractable PCs called contiguity.

Definition 4.1 (Contiguity). Given the canonical or-
dering of variables X1, X2, . . . , Xn, a PC node is con-
tiguous if its scope is of the form Xa, Xa+1, . . . , Xb for
some 1≤a≤b≤n. A smooth and decomposable PC is
contiguous if all of its nodes are contiguous.

3Many other representations, such as the ordered binary
decision diagram (OBDD) and deterministic finite automa-
ton (DFA), can be converted efficiently to (deterministic)
SDNNFs (Amarilli et al., 2024).

Z1

X1

Z2

X2

Zn

Xn

Figure 3: GA for A with a linear vtree

Note that a contiguous circuit is not necessarily
structured-decomposable and 0.5⊗p(X1)⊗p(X2, X3)⊕
0.5⊗p(X1, X2)⊗p(X3) is such an example. Intuitively,
random variables forming contiguous scopes can often
be covered by vtree labellings of small cardinalities.

Case 1. For the multiplication of contiguous PCs A
and B, we start by considering the case when A is a
contiguous structured PC respecting the linear vtree
V and B is a contiguous structured PC respecting
an arbitrary vtree W . It follows from Section 3.1 that
the Bayesian network representation for A is a hidden
Markov model (Rabiner, 1989), as shown in Figure 3.
By the definition of contiguity, each node w ∈W has
a scope of the form Xa:b := {Xa, . . . , Xb} and we can
label it withCa:b := {Za, Zb+1}; in particular, we drop
Za if a = 1 and drop Zb+1 if b = n.

Claim 4.2. Ca:b is a valid vtree labelling of W re-
specting GA with cardinality M ′ = 3.

Then it follows from Theorem 3.7 that the size of A ′,
i.e., the PC obtained by restructuring A respecting
W , is bounded by O(nh3), with O(|A |2) being a looser
bound. Eventually we can compute the product of A ′

of B tractably by the existing algorithm for multiply-
ing two circuits respecting the same vtree (Shen et al.,
2016; Vergari et al., 2021).

Theorem 4.3. Let A and B be contiguous structured
PCs. If A has a linear vtree, then A and B can
be multiplied in polynomial time and the size of the
product PC is bounded by O(|A |2|B|).

Case 2. Then we consider the more general case where
A is a contiguous structured PC of depth d respecting
vtree V and B is a contiguous structured PC with an
arbitrary vtree W . Similarly to the previous case, our
goal is to come up with a small labelling of W with
respect to GA . Since A is contiguous, its vtree V
can be viewed as a segment tree (Cormen et al., 2022).
Algorithm 3, which is adapted from the segment tree
querying algorithm, computes a cover Ca:b ⊆ GA for
each contiguous segment Xa:b. For each w∈W , Xw =
Xa:b for some 1 ≤ a ≤ b ≤ n and we set Cw = Ca:b =
SegmentCover(V,Xa:b).

Proposition 4.4. Cw is a valid vtree labelling with
respect to GA .

In addition to the fact that Cw is a valid labelling,
by the runtime analysis of the original segment tree
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Algorithm 3 Compute Cover for Segment Xa:b

procedure SegmentCover(v, Xa:b)
if Xa:b = ∅ then

return ∅
end if
if Xa:b = Xv then

return {Zv}
end if
l, r ← Children(v)
L← SegmentCover(l,Xl ∩Xa:b)
R← SegmentCover(r,Xr ∩Xa:b)
return L ∪R

end procedure

querying algorithm, we know that the number of nodes
visited at each level of V is at most 4 and it follows that
|Cw| ≤ 4d; hence the cardinality of Cw is bounded by
12d. Then following a similar analysis, we have the
following results for multiplying two contiguous PCs.

Theorem 4.5. Let A and B be contiguous structured
PCs. Let d be the depth of the vtree for A , then A
and B can be multiplied in time O(|A |12d|B|).

Corollary 4.6. If A is of depth O(log n) then A and
B can be multiplied in quasi-polynomial time.

Remark 4.7. In this work, we assumed product nodes
always have two children and binary vtrees. Hence
the depths of PCs are lower-bounded by Ω(log n) un-
der such assumptions. However, if we allow product
nodes to have arbitrarily many children, we can have
PCs of smaller or even constant depths (Raz and Yehu-
dayoff, 2009) and we hypothesize that Theorem 3.7
can be adapted to such generalized cases thus giving a
polynomial-time algorithm for multiplying contiguous
structured circuits of constant depths.

Remark 4.8. Thus far, we have assumed that both A
and B are structured PCs. We claim that we can fur-
ther generalize our results by removing the constraint
that B has to be structured, and Theorems 4.3 and 4.5
would still hold. We illustrate the idea by showing how
to multiply a contiguous structured PC A respecting a
linear vtree and an arbitrary contiguous PC B. Since
B is not structured decomposable, we cannot restruc-
ture A to the vtree of B. However, we can use the
same idea as Algorithm 1 to restructure A “on-the-
fly” as we multiply it with B in a bottom-up way.
Specifically, for each possible scope Xa:b that appears
in B, we recursively construct circuit representations
for the functions pq(Xa:b) · pA (Xa:b |Za= i, Zb=j) for
i, j and q∈B with scope Xa:b. The recurrence relation
is similar to that of Algorithm 1 and we refer readers
to the Appendix for details.

As an explicit application of circuit multiplication, let
us consider constrained text generation (Zhang et al.,

2024), in which linear PCs (HMMs) are multiplied
with deterministic finite automata (DFAs) represent-
ing the logical constraint. Our results imply that one
can also multiply a HMM with a contiguous logical cir-
cuit such as a sentential decision diagram (SDD) (Dar-
wiche, 2011), which have been shown to be exponen-
tially more expressive efficient (Bova, 2016).

5 PC DEPTH REDUCTION

Algorithm 4 Depth Reduction Vtree

1: procedure BalancedVtree(V,Sl = ∅,Sr = ∅)
2: if |V | = 1 then
3: return leaf(V ; Sl ∪ Sr)
4: end if
5: v ← root(V )
6: l, r ← Children(v)
7: while |Vr| > 2

3 |V | do
8: v ← r
9: l, r ← Children(v) ▷ assume |Vl|≤|Vr|

10: end while
11: V ′

l ← BalancedVtree(V[v 7→l],Sl, {Zv})
12: V ′

r ← BalancedVtree(Vr, {Zv},Sr)
13: return join(V ′

l , V
′
r ;Sl ∪ Sr)

14: end procedure

Depth reduction of a probabilistic circuit refers to
the construction of an equivalent circuit with reduced
depth, e.g. to a depth logarithmic in the number of
variables. A depth reduction algorithm for general cir-
cuits is known (Valiant et al., 1983; Raz and Yehuday-
off, 2008; Yin and Zhao, 2024) but does not take ad-
vantage of structuredness. We show how to reduce a
structured-decomposable circuit to an equivalent log-
depth circuit by restructuring. The key step is to iden-
tify a log-depth vtree such that restructuring to that
vtree using Algorithm 1 (and some valid choice of la-
bels) results in at most a polynomial increase in size.

Algorithm 4 constructs a log-depth vtree labelling of
constant cardinality. Intuitively, each step of the algo-
rithm breaks a vtree down into two connected compo-
nents, which are then depth-reduced recursively. One
selects a single vtree node by traversing the vtree top-
down, until the split would be balanced in the sense
that the two connected components have size between
1
3 and 2

3 of the input vtree (Lines 7-10). The algorithm
simulataneously constructs a valid label for the vtree
node. The join routine then returns a labelled vtree
that consists of a single root node with the aforemen-
tioned label, connected to the depth-reduced vtrees for
the components. Note that the algorithm produces ex-
actly one vtree node for each vtree node in the original
vtree; we can thus write v(w) for the node in V cor-
responding to w. Then we have the following result:
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Theorem 5.1 (Depth Reduction Vtree). Given any
vtree V , Algorithm 4 returns a vtree W of depth
O(log |V |) with a valid labelling of cardinality 3.

Proof. The depth reduction to O(log |V |) is achieved
as the algorithm increases the depth by one in each
recursive call, but reduces the vtree size by a multi-
plicative factor. The validity condition holds due to
the separation into connected components (the labels
can also be obtained from Algorithm 2). The value of
M ′ follows by noting that Sl and Sr are either empty
or singleton sets, and that the algorithm produces
Cw = Sl∪Sr,Cl = Sl∪{Zv(w)}, andCr = {Zv(w)}∪Sl

where Zv(w) for each inner node w ∈W .

Remark 5.2. Firstly, the depth-reduced PC retains
structuredness, which is not guaranteed by the exist-
ing depth-reduction algorithms. Secondly, exploiting
structuredness and tracking the hidden state size en-
ables a more fine-grained analysis of the size of the
depth-reduced circuit. Since the size of the original
circuit is O(nh2), using the known cubic bound on the
size of the depth-reduced circuit (Raz and Yehudayoff,
2008) gives O(n3h6). However, by Theorem 5.1, we see
that M ′=maxw∈W |Cl,Cr,CW | ≤ 3 and so by Theo-
rem 3.7 we immediately obtain a much tighter bound
of O(nh3) for the size of the resulting circuit.

Corollary 5.3. Any structured PC over n variables
and with hidden state size h can be restructured to a
structured PC of depth O(log n) and size O(nh3) that
represents the same distribution.

While this result is of independent theoretical inter-
est, the sub-quadratic complexity of O(nh3) also opens
up practical applications of depth-reduction. Al-
most all PC inference and learning algorithms involve
forward/backward passes through the computation
graph, where computation is only parallelized across
nodes of the same depth such that O(depth of PC)
sequential computations are required. This is prob-
lematic when the number of variables n is large, as is
often the case in applications such as computational
biology (Dang et al., 2022b). In such cases, depth re-
duction can be a practical strategy where the improved
parallelism outweighs the increased circuit size.

6 RELATED WORK

Probabilistic circuits have emerged as a unifying repre-
sentation of tractable probabilistic models (Choi et al.,
2020; Sidheekh and Natarajan, 2024), such as sum-
product networks (Poon and Domingos, 2011), cutset
networks (Rahman et al., 2014), probabilistic senten-
tial decision diagrams (Kisa et al., 2014) and proba-

bilistic generating circuits (Zhang et al., 2021; Harvi-
ainen et al., 2023; Agarwal and Bläser, 2024; Broad-
rick et al., 2024). Significant effort has been devoted to
learning PC structures to fit data (Liang et al., 2017;
Dang et al., 2020; Yang et al., 2023), but the impli-
cations for the structure-dependent queries have been
less studied. We bridge this gap by providing a general
restructuring algorithm with specific cases of (quasi-
)polynomial complexity.

As tractable representations of distributions, PCs have
been employed extensively as a compilation target
for inference in graphical models (Darwiche, 2003;
Chavira and Darwiche, 2008; Rooshenas and Lowd,
2014). Hidden tree-structured Bayesian networks have
also been used as a starting point for the learning
of a probabilistic circuit (Dang et al., 2020; Liu and
Van den Broeck, 2021; Dang et al., 2022a). A particu-
larly useful analysis technique for learning probabilis-
tic circuits has been to interpret them as latent vari-
able models (Peharz et al., 2016). Decomposable and
smooth PCs can be interpreted as Bayesian networks
by introducing a latent variable for each sum node in
the PC (Zhao et al., 2015). Our conversion from struc-
tured PC to Bayesian network is most closely related
to the decompilation methods of Butz et al. (2020);
Papantonis and Belle (2023), but we do not assume
the PC has been compiled from a Bayesian network.

The seminal work of Valiant et al. (1983) showed that
any poly-size arithmetic circuit can be transformed
into an equivalent circuit of polylogarithmic depth.
Raz and Yehudayoff (2008) show that this procedure
maintains syntactic multilinearity (decomposability).
Recently, Yin and Zhao (2024) showed a quasipoly-
nomial upper bound on converting decomposable and
smooth PCs to tree-shaped PCs via a depth-reduction
procedure. Our application of restructuring focuses on
structured-decomposable circuits and shows a tighter
bound based on a graphical model interpretation.

7 CONCLUSION

We introduce the problem of restructuring probabilis-
tic circuits, and develop a general algorithm for re-
structuring a structured-decomposable circuit to any
target vtree structure. Our method exploits an inter-
pretation of structured-decomposable circuits as latent
tree Bayesian networks, which enables recursive con-
struction of a circuit respecting the target vtree using
probabilistic semantics of the Bayesian network. As
concrete applications of restructuring, we show how to
tractably multiply two circuits which do not necessar-
ily share the same structure but satisfy a contiguity
property, and show how to restructure a circuit to log-
depth with a sub-quadratic increase in size.
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Supplementary Materials

A ADDITIONAL PROOFS

Proposition 3.2. pA (X) =
∑

z pAaug(X, z)

Proof. Suppose that A is a structured decomposable and smooth PC respecting vtree V . Write prod(v) and
sum(v) for the set of product and sum nodes with scope Xv. The augmented PC Aaug is decomposable as if leaves
with scope {Zv} were contained in (the subcircuits rooted at) two different children t1, t2 of a product node,
then their parents (nodes in prod(v)) would be contained in t1, t2, which is a contradiction of decomposability of
A . It is also smooth as for any sum node, if one sum node contains some leaf with scope {Zv}, then it contains
some node in sum(v), hence by smoothness of A all sum nodes contain some node in sum(v) and thus some leaf
with scope {Zv}.

Consider the standard marginalization algorithm for PCs (Darwiche, 2003; Choi et al., 2020), where one replaces
each leaf whose scope is contained within the variables being marginalized out with the constant 1. This correctly
marginalizes the function represented by the PC if the PC is decomposable and smooth. If we marginalize over
all newly introduced latents Z, it is immediate that the resulting PC represents the same function as A .

Theorem 3.3. Let A be a structured-decomposable and smooth PC over variables X respecting vtree V . Then
there exists a Bayesian network GA over variables X and Z = {Zv|v ∈ V } with graph Vv 7→Zv

such that∑
z pG(X, z) = pA (X).

Proof. In Section 3.1 we described a Bayesian network pG = p∗ with the required graph. It remains to show
that this network represents the same distribution as A . We will do this by showing that the Bayesian network
has the same distribution as the augmented PC, i.e. pG(X,Z) = pAaug(X,Z).

The key observation is to consider the induced trees of the augmented PC (Zhao et al., 2016):

Definition A.1 (Induced Trees). Given a decomposable and smooth circuit A , let T be a subgraph of A . We
say that T is an induced tree of A if (1) root(A ) ∈ T ; (2) If t ∈ T is a sum node, then exactly one child
of t (and the corresponding edge) is in T ; and (3) If t ∈ T is a product node, then all children of t (and the
corresponding edges) are in T .

It is easy to see that an induced tree T is indeed a tree, as otherwise decomposability would be violated. Let T
be the set of all induced trees of Aaug. Each induced tree defines a function:

pAaug,T (X,Z) :=
∏

(ti,tj)∈sumedges(T )

wti,tj

∏
t∈leavesX(T )

ft(Xsc(t))
∏

t∈leavesZ(T )

ft(Zsc(t)) (1)

where sumedges(T ) denotes the set of outgoing edges from sum nodes in T , and leavesX(T ), leavesZ(T )
denote the set of leaf nodes in T with scope corresponding to a variable in X,Z respectively. The distribution
of the augmented PC is then in fact given by the sum of these functions over all induced trees:

Proposition A.2 (Zhao et al. (2016)). pAaug
(X,Z) =

∑
T∈T pAaug,T (X,Z).

Now, let path(v, i, j) be a predicate indicating whether there is a path between tp,j and tv,i (where we use p
to denote the parent vtree node of v, and as before e.g. tv,i indicates the product node with scope Xv and
corresponding to Zv = i). We will consider two cases depending on the value of the latents. Specifically, we
will say that an assignment z is consistent if path(v, zv, zp) holds for all non-root inner nodes in the vtree, and
inconsistent otherwise.
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If an assignment z is inconsistent, then for any assignment x of the observed variables, we have that pG(x, z) = 0
by definition of the Bayesian network distribution. Now consider any induced subtree T ∈ T . Each T must
contain one product node for every variable scope. In particular, T must contain some product node tv,i
such that zv ̸= i (otherwise, since z is inconsistent, a (connected) tree would be impossible). We then have
pAaug,T (x, z) = 0 for all x, as Equation 1 then contains a leaf function ft(zv) = 1zv=i = 0. Thus pAaug

(x, z) =∑
T∈T pAaug,T (x, z) = 0 for any x.

If an assignment z is consistent, note that, by our assumption of alternating sums and products, there can be
exactly one path from tp,j to tv,j , as tp,j has a unique sum node child with scope containing Xv, and this sum
node must immediately have tv,j as a child. Thus there is exactly one induced tree T containing tv,zv for all
(non-root) inner vtree nodes v. Further, examining the definition of the Bayesian network distribution pG(X, z),
this exactly matches the definition of pAaug,T (X, z): each sum node edge weight in the tree corresponds to a
sum node edge weight along a path from some tp,zp to tv,zv and thus the CPT of Zv given Zp (the root sum
node edge weight corresponds to the CPT for Zroot(V )), and each leaf node distribution for observed variables
corresponds to the CPT for that variable given its parent.

Thus we have shown that pAaug
(X,Z) = pG(X,Z), as required.

Proposition 4.4. Cw is a valid vtree labelling with respect to GA .

Proof. We first show that Cw satisfies the following properties:

1. Xa:b =
⋃

Zi∈Ca:b
Leaves(Zi) is a disjoint union.

2. If a≤c≤ d≤ b, then for Z∈Cc:d, there exists Z ′ ∈ Ca:b such that Z ′ is an ancestor of Z in GA .

Property 1 follows from the proof of correctness of the segment tree querying algorithm. Property 2 follows from
Property 1 together with the key observation that we can compute Cc:d via

⋃
Zi∈Ca:b

SegmentCover(Zi,Xc:d∩
Leaves(Zi)). Let w = a : b be a node in W with children l = a : c and r = c + 1 : b; it follows from Property 1
that Ca:b covers Xa:b and Ca:c blocks all paths from Xa:c to Cc+1:b; it follows from Property 2 that Ca:c blocks
all paths from Xa:c to Xa:b. Hence we conclude that Cw is a valid labelling. A minor catch is that Cw may
contain variables in X, but we can replace them by their parent in GA without affecting the validity of Cw.

Corollary 5.3. Any structured PC over n variables and with hidden state size h can be restructured to a
structured PC of depth O(log n) and size O(nh3) that represents the same distribution.

Proof. By Theorem 5.1, given a structured PC X over n variables with hidden state size h and respecting vtree
V , we can generate a vtree W of depth O(log n) and with labelling cardinality M ′ = 3. Thus, by Theorem 3.7
we can construct a PC representing the same function and respecting vtree W of size O(nh3). The depth of the
PC is then also O(log n) as we have assumed alternating sum and product nodes, so the depth of the circuit is
at most double that of the vtree.

B Computing Minimum D-separators

Let G be a tree-shaped Bayesian network rooted at Z; in particular, assume that the leaves of G ⊆ X∪Z and
the internal nodes of G ⊆ Z (e.g. Figure 1b). Then, we want to prove that Algorithm 5 computes a minimum
d-separator C ⊆ G for A,B ⊆ X.

As shown in Algorithm 5, given tree-shaped Bayesian network G rooted at Z, the procedure MinimumSepartor
computes three sets of latent variables CA, CB and C. Specifically, we shall prove the following properties:

1. CA is a minimum d-separator between A and B that also blocks all paths from A to Z.
2. CB is a minimum d-separator between A and B that also blocks all paths from B to Z.
3. Either CA or CB is a minimum d-separator between A and B in G (rooted at Z); hence C is a minimum

d-separator between A and B in G.

Proof of Property 3. It suffices to show that P := {d-separators between A and B} and Q := {d-separators
between A and B that blocks all paths from A to Z} ∪ {d-separators between A and B that blocks all paths
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Algorithm 5 Computing minimum d-separators for tree-shaped Bayesian network G rooted at Z

procedure MinimumSeparator(Z, A, B)
if A=∅ and B=∅ then

return ∅,∅,∅
end if
if B=∅ then

return {Z},∅,∅
end if
if A=∅ then

return ∅, {Z},∅
end if
for Zi∈Children(Z) do

Ci,A,Ci,B,Ci ←MinimumSeparator(
Zi,A∩Leaves(Zi),B∩Leaves(Zi))

end for
CA ←Min(

⋃
iCi ∪ {Z},

⋃
iCi,A)

CB ←Min(
⋃

iCi ∪ {Z},
⋃

iCi,B)
C←Min(CA,CB)
return CA,CB,C

end procedure

from B to Z} are the same set. It is obvious that Q ⊆ P and let’s prove that P ⊆ Q. Let C be a d-separator
between A and B in G, then C either blocks all path from A to Z or blocks all path from B to Z; suppose not,
then there is a path connecting A and B through Z; contradiction.

Proof of Property 1 and Property 2. We prove Property 1 (and Property 2) by a bottom-up induction on G.
First of all it is easy to verify that the three base cases, i.e. A = ∅ and B = ∅, A = ∅ and B = ∅, are correct.

We now prove Property 1 (the proof for Property 2 is symmetric) by induction; first of all it is clear that both⋃
iCi ∪ {Z} and

⋃
iCi,A form d-separators between A and B, and it remains to show that the minimum of

these two is a minimum d-separator between A and B that blocks all paths from A to Z. Suppose, towards a
contradiction, let CA

′ be such a d-separator of size < Min(|
⋃

iCi ∪ {Z}|, |
⋃

iCi,A|). There are two cases:

• If CA
′ contains Z: let Gi be the subtree rooted at Zi and set Ci

′ = CA
′ ∩ Gi. It is immediate that

Ci
′ is a d-separator between A and B in Gi and by assumption, there exists at least one one i such that

|Ci
′| < |Ci|; contradicting the induction hypothesis.

• If CA
′ does not contain Z: let Gi be the subtree rooted at Zi and set Ci,A

′ = CA
′ ∩ Gi. Similarly, it

is not hard to see that Ci,A
′ is a d-separator between A and B in Gi that blocks all paths from A ∩ Gi

to Zi. By assumption, there exists at least one i such that |Ci,A
′| < |Ci,A|; contradicting the induction

hypothesis.

C MULTIPLICATION WITH NON-STRUCTURED CIRCUITS

Given a contiguous structured PC A respecting a linear vtree and an arbitrary contiguous PC B, which is not
necessarily structured, we show a recursive algorithm that multiplies A and B in polynomial time. Specifically,
for each possible scope Xa:b that appears in B, we recursively construct circuit representations for the functions
pq(Xa:b) · pA (Xa:b | Za= i, Zb=j) for ⊕ nodes q∈B with scope Xa:b and i, j hidden states of A . In particular,
from pA (Xa:b | Za= i, Zb=j) we drop Za = i if a = 1 and drop Zb+1 = j if b = n, thus pA (Xa:b | Za= i, Zb=j)
corresponds to pA (Xa:b |Ca:b) as defined in Case 1. of Section 4.

The recurrence relation is similar to that of Algorithm 1. In the following derivation, we use the notations: (1)
denote the children of ⊕ node q by c∈Ch(q); (2) denote the children of ⊗ node c by c1 and c2; (3) denote the
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weight of the edge connecting q and c by wqc; (4) for each ⊗ node c∈Ch(q), c splits Xq={Xa, . . . , Xb} into two
contiguous segments, and denote them by Xc1 ={Xa, . . . , Xmc} and Xc2 = {Xmc+1, . . . , Xb} for some a≤mc≤b.

pq(Xa:b) · pA (Xa:b+1 | Za= i, Zb+1=j)

=
∑

c∈Ch(q)

pc(Xa:b) · wqc · pA (Xa:b+1 | Za= i, Zb+1=j)

=
∑

c∈Ch(q)

pc1(Xa:mc
) · pc2(Xmc+1:b+1) · wqc · pA (Xa:b+1 | Za= i, Zb+1=j)

=
∑

c∈Ch(q)

pc1(Xa:mc
) · pc2(Xmc+1:b+1) · wqc ·

∑
k

pA (Xa:b+1, Zmc
=k | Za= i, Zb+1=j)

=
∑

c∈Ch(q)

∑
k

wqc · pA (Zmc+1=k | Za= i, Zb+1=j)

· pc1(Xa:mc) · pA (Xa:mc | Zmc+1=k, Za= i, Zb+1=j) · pc2(Xmc+1:b) · pA (Xa:b | Zmc+1=k, Za= i, Zb+1=j)

=
∑

c∈Ch(q)

∑
k

wqc · pA (Zmc+1=k | Za= i, Zb+1=j)

· pc1(Xa:mc
) · pA (Xa:mc

| Za= i, Zmc+1=k) · pc2(Xmc+1:b) · pA (Xa:b | Zmc+1=k, Zb+1=j)

Now let’s analyze the complexity of the constructed circuit, which we denote by C . C has O(mkh2) ⊕ nodes
in total, where m is the number of scopes in B, k := maxS a scope in B |{⊕ ∈ B with scope S}|, and h is the
hidden states size of A . Suppose that each ⊕ node in B has at most r children, then each ⊕ node in C has
at most O(rh) children. Hence the size of C is bounded by O(mkh2 · rh) = O(mkr · h3). Note that O(mkr)
corresponds to O(|B|) and O(h3) is upper-bounded by O(h4), which is O(|A |2); hence the size of C is bounded
by O(|A |2|B|), which is the same complexity as stated in Theorem 4.3. Hence, we can remove the assumption
that B has to be structured from Theorem 4.3.

Theorem C.1. Let A and B be contiguous PCs with B not necessarily structured. If A is structured respecting
the linear vtree, then A and B can be multiplied in polynomial time and the size of the product PC is bounded
by O(|A |2|B|).

By a similar recursive construction, we can also remove the assumption that B has to be structured from
Theorem 4.5:

Theorem C.2. Let A and B be contiguous PCs. If A is structured of depth d, then then we can construct a
product circuit of A and B of size bounded by O(|A |12d|B|).
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