
Tractable Probabilistic Models (TPMs) are generative 
models 𝑝!"#(𝑥$:&) that allow efficient conditioning. We 
use hidden Markov models (HMMs) as an example. 
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Prompting is Not All You Need
Generate a sentence using "frisbee", "caught" and "dog", 
following the given order.

Constrained Generation is Challenging 

GeLaTo Probabilistic Reasoning with Constraints

Experiments

We propose GeLaTo (Generating Language with Tractable 
Constraints) to guide autoregressive generation from LLMs.

After a perfect throw, the frisbee glided through the air, 
and the dog, with incredible agility, caught it mid-flight.

Here's the correct sentence: The dog caught the frisbee 
in mid-air, showing off its amazing catching skills.

ChatGPT fails to follow simple logical constraints!

Steers LM to satisfy 𝛼. 
Intractable for LLMs.

Off-the-shelf LM 
distribution.

That's not correct. Generate a sentence using "frisbee", 
"caught" and "dog". The keywords should appear in the 
order as specified.

Advantages of GeLaTo
1. Logical constraint 𝛼 is guaranteed to be satisfied.

- When generating next token 𝑥!'$, if  𝑥!"# = 𝑤 would 
make α unsatisfiable, then 𝑝$%&'!( 𝑥!"# 𝛼, 𝑥#:*) = 0; hence 
w would not be generated.

2. The training of 𝑝(## does not depend on 𝛼, which is 
only imposed during generation. Once 𝑝(## is trained, 
GeLaTo generalizes to any tractable constraints.

Logical Constraint α: e.g., text contains keyword “winter” 

Constrained Autoregressive Generation. Our goal is to 
generate from

Requires marginalization over all 
suffixes 𝑥!'$:& containing “winter”.

p(xt+1 |x1:t, α) ∝ p(xt+1 |x1:t) ⋅ p(α |xt+1, x1:t)

Consider a logical constraint 𝛼 encoded as:

each 𝑤)* is a a string of tokens (“keywords”) that must appear

Input Concepts: snow, car, drive
Output 1: The car drives down a snow-covered road.
Output 2: Driving through the snow, the car crashed.

- Compute 𝑝(## 𝛼 𝑥$:!, 𝑥!'$  to approximate 𝑝+# 𝛼 𝑥$:!, 𝑥!'$ ; 
then generate from:

Given some prompt 𝜋 that represents 𝛼, e.g., “keywords 
= XXX”, we can combine 𝑝(## and 𝑝+# by taking their 
weighted geometric mean:

Table 2. Human evaluation results on CommonGen (supervised setting).

Table 3. Time (seconds) for generating one sentence on CommonGen.

Table 4. BLEU-4 scores for Yelp!Review and News datasets

Table 1. Automatic evaluation results on CommonGen.
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Method Generation Quality Constraint
ROUGE-L BLEU-4 CIDEr Success Rate

Unsupervised dev test dev test dev test dev test
InsNet - - 18.7 - - - 100.0 -
NeuroLogic - 41.9 - 24.7 - 14.4 - -
A*esque - 44.3 - 28.6 - 15.6 - -
NADO - - 26.2 - - - - -
GeLaTo 44.3 43.8 30.3 29.0 15.6 15.5 100.0 100.0
Supervised dev test dev test dev test dev test

NeuroLogic - 42.8 - 26.7 - 14.7 - 93.9†

A*esque - 43.6 - 28.2 - 15.2 - 97.9†

NADO 44.4† - 30.8 - 16.1† - 88.8† -
GeLaTo 46.2 45.9 34.0 34.1 17.2 17.5 100.0 100.0

Table 1. Performance comparison of different generation methods for unsupervised and supervised settings on the CommonGen dataset,
measured by generation quality and constraint satisfaction. For hyper-parameter tuning, we conduct cross-validation on a small subset of
the training set and report evaluation results for both validation (dev) and test set. All methods except for InsNet uses GPT2-large as their
base model. Numbers with † are reproduced by ourselves.

frisbee snow”, the lexical constraint can be represented as:

[I(catch) _ I(caught) _ . . . ]

^[I(fr � is � bee) _ I(fr � is � bees) _ . . . ]

^[I(snow) _ I(snow � ing) _ I(snow � ed) _ . . . ];

here each clause encodes the constraint that a keyword has
to appear, in any form of its inflections; each literal I(w) in-
dicates the occurrence of a string of tokens w (i.e. keystring),
which represents the tokenization of a specific inflection of
a keyword and � denotes the concatenation of individual
tokens. For the keywords, we use LemmInflect3 to gen-
erate their inflections. We also enforce the constraint that
each keystring, whenever it appears in the generated text, is
followed by either a space, a comma or an heosi token.

Decoding. p(xt+1 | x1:t,↵) defined in Section 2 (see Eq. 1
and 2) induces the conditional distribution p(x1:n | ↵) =Q

t p(xt+1 | x1:t,↵). We adopt beam search to greedily
search for x1:n that maximizes p(x1:n | ↵); we experiment
with different beam sizes: 16, 32, 64 and 128. Finally, we
re-rank all beams generated by beam search by their log-
likelihood given by the domain-adapted GPT2-large model
and select the top beam.

Metrics. We evaluate the quality of generation via human
evaluation and some commonly used automatic metrics in-
cluding ROUGE (Lin & Hovy, 2003), BLEU (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016). In addition to generation quality, we also
measure the constraint satisfaction performance via cover-
age, the average percentage of concepts presented in the
generated sentences and success rate, the percentage of
generated sentences that perfectly satisfy the constraints.

3https://github.com/bjascob/LemmInflect

4.3. Results and Analysis

Main evaluation results are presented in Table ??. GeLaTo
outperforms all baselines in both unsupervised and super-
vised settings by a large margin, achieving not only signifi-
cantly higher BLEU and ROUGE scores but also 100% con-
straint satisfaction. The unsupervised setting is more chal-
lenging given that the base model is never trained with task-
specific supervision; despite this, GeLaTo achieves 30.3
BLEU score in the unsupervised setting, while NADO (the
best performing baseline) obtains 30.8 BLEU score in the
supervised setting. To provide more insight into GeLaTo,
we also conduct the following ablation studies.

Generation Quality vs. Approximation Performance.
As discussed in Section 2, GeLaTo assumes that distilled
HMMs are good enough approximations for base models;
our hypothesis is that the better the HMM approximates the
base model, the better the generation quality. With GeLaTo,
we generate from different HMM checkpoints from the dis-
tillation procedure, and report the average log-likelihoods
and BLEU scores (without re-ranking the beams). As shown
in Figure 3, as the training proceeds, both log-likelihood
and BLEU score improves, exhibiting a clear positive cor-
relation. This finding motivates the development of better
tractable probabilistic models for language modeling.

Robustness of Hyperparameter w. As described in Sec-
tion 2, for the supervised setting, the formulation of GeLaTo
involves a hyperparameter 0w1 that decides how much
the TPM or the base model contributes to generation. For
our experiments, w is set to 0.3 based on cross-validation re-
sults on the training set. Figure 4 shows the BLEU score (af-
ter re-ranking) on the validation set of CommonGen given
different values of w. The performance of GeLaTo is very
robust with respect to different choices of w, achieving
SoTA BLEU scores for 0.1w0.8.
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at each step, e.g., suppose we have generated the first t 
tokens 𝑥!:# as “the weather is”; then we generate the next 
token 𝑥#$! from

The Yelp!Review and News datasets are similar to 
CommonGen except for that they require keywords to 
appear in the given order.

References: [1] Lu, S., Meng, T., and Peng, N. Insnet: An efficient, flexible, and performant insertion-based text generation model. In NeurIPS, 2022.
[2] Lu, X., West, P., Zellers, R., Le Bras, R., Bhagavatula, C., and Choi, Y. Neurologic decoding:(un) supervised neural text generation with predicate logic constraints. In Proceedings of NAACL, 2021.
[3] Lu, X., Welleck, S., West, P., Jiang, L., Kasai, J., Khashabi, D., Le Bras, R., Qin, L., Yu, Y., Zellers, R., Smith, N. A., and Choi, Y. NeuroLogic a*esque decoding: Constrained text generation with lookahead heuristics. In Proceedings of NAACL, 2022.
[4] Meng, T., Lu, S., Peng, N., and Chang, K.-W. Controllable text generation with neurally-decomposed oracle. In NeurIPS, 2022.

Acknowledgements: This work was funded in part by the DARPA Perceptually-enabled Task 
Guidance (PTG) Program under contract number HR00112220005, NSF grants #IIS-1943641, #IIS-
1956441, #CCF-1837129, an SRA from Meta, a research gift from Amazon Alexa AI, and a gift from 
RelationalAI. GVdB discloses a financial interest in RelationalAI.

- Train 𝑝%&& on 𝐷~𝑝'& to minimize their KL-divergence. 
Step 1. Distilling an HMM from LM

Step 2. Probabilistic Reasoning with Constraints

*GeLaTo can also help prompting!  

*GeLaTo can enforce various logical constraints

1. Keywords appear (in any order/form of inflections)
2. (Some) keywords are generated following a specific order.
3. (Some) keywords must appear at specified positions.
4. (Some) keywords must not appear in the generated text.

Commonsense Generation (CommonGen)

Run-time Comparison

Yelp!Review and News: fixing order of keywords

Efficient Probabilistic Reasoning for HMMs 

HMMs define distributions over 𝑥!:( and latent variables 𝑧!:(:

Assume 𝛼 only contains single-token keywords, then we can 
compute 𝑝 𝛼#:( , as well as 𝑝 𝛼!:(, 𝑥!:# , by

The time complexity for sampling from 
𝑝)*'+#, 𝑥!:( 𝛼) is 𝑂 2&𝑛

Need to compute  𝑝%&&(𝛼|𝑥!:#, 𝑥#$!) to enforce 𝛼.

Tractable Control for Autoregressive Language Generation

B
LE

U
-4

23

27

31

35

0.0 0.2 0.4 0.6 0.8 1.0

30.8

w

Figure 4. BLEU score on CommonGen (dev) for different values
of w. GeLaTo achieves SoTA performance for 0.1w0.8.

robust with respect to different choices of w, achieving
SoTA BLEU scores for 0.1w0.8.

Effect of Beam Size. GeLaTo uses beam search for gener-
ation and we study how its performance is affected by the
choice of beam size. Figure 5 shows that for both unsuper-
vised and supervised settings, the performance of GeLaTo
improves monotonically as the beam size increases.

Run-time Comparison. We conduct an empirical evalua-
tion of the run-time (in seconds) of GeLaTo on Common-
Gen, in comparison to NeuroLogic A*esque and vanilla
GPT2-large; all methods are evaluated on a single NVIDIA
A100 GPU with 40 GB memory; the run-time is measured
on 100 randomly sampled examples for each # of concepts.

GeLaTo achieves its best performance with beam-size=128;
yet we also report the run-time for beam-size=16, where it
achieves performance better than all baselines. For the un-
supervised setting, GeLaTo is much faster than NeuroLogic
A*esque, which suffers from an unconstrained search space.
For the supervised setting, GeLaTo is slower than A*esque
but the run-time for beam-size = 16 is still comparable.

# of concepts 3 4 5
Unsupervised
A*esque 472.9 542.5 613.9
GeLaTo (16) 13.5 ± 4.4 21.9 ± 5.37 39.3 ± 6.3
GeLaTo (128) 69.8 ± 32.3 97.9 ± 39.5 143.0 ± 44.4
Supervised
A*esque 8.5 9.6 11.4
GPT2 (16) 5.8 ± 1.1 13.0 ± 1.6 29.3 ± 3.2
GPT2 (128) 9.4 ± 1.8 21.1 ± 11.9 33.7 ± 3.5
GeLaTo (16) 11.1 ± 2.8 22.0 ± 5.0 41.6 ± 5.6
GeLaTo (128) 49.8 ± 20.8 88.7 ± 30.5 127.6 ± 30.4

Table 2. Time of generating one example (seconds) on Common-
Gen (dev). Results for NeuroLogic A*esque, finetuned GPT2-large
and GeLaTo are reported; beam-sizes are shown in parentheses.

Human Evaluation. We conduct human evaluation for sen-
tences generated on CommonGen (dev), following the setup
of prior works (Lu et al., 2022b; Meng et al., 2022). Specif-
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Figure 5. BLEU score (y-axis) obtained by GeLaTo on Common-
Gen (dev), with various beam-sizes (x-axis), for both unsuper-
vised (circles) and supervised (triangles) settings.

ically, we mix sentences generated by different methods,
and each sentence is presented to one human annotator to
be evaluated on four aspects: concepts, plausibility, quality,
and overall rating. The results are shown in Table 3. To
test statistical significance, we conduct the Wilcoxon signed
rank two-sided test with p-value < 0.05 and GeLaTo per-
forms best in all metrics compared to prior SoTA. We refer
readers to Appendix B for details of human evaluation.

Method Concepts Plausibility Quality Overall

GPT2 2.47 2.52 2.65 2.28
NADO 2.71 2.54 2.73 2.54
GeLaTo 2.73 2.52 2.70 2.60

Table 3. Human evaluation results on CommonGen for finetuned
GPT2-Large, NADO and GeLaTo, all under the supervised setting.

Method \Dataset Yelp!Review News

InsNet 5.8 5.0
NADO 6.0 4.5
GeLaTo 6.6 5.4

Table 4. BLEU-4 scores for Yelp!Review and News datasets; for
InsNet and NADO we present the best results of all settings while
the results of GeLaTo are obtained under the unsupervised setting.

Fixing Order of Keywords. Following prior works (Meng
et al., 2022; Lu et al., 2022a), we evaluate GeLaTo on
Yelp!Review and News datasets. They are more challenging
in that they require keywords to appear in specific orders;
besides, the average sequence lengths for both datasets are
approximately 64 tokens, twice of that of CommonGen.
With a minor modification to Algorithm 1, GeLaTo is easily
adapted to generate text with ordered keywords. For both
datasets, the training examples do not provide keywords
thus there is no immediate way to finetune the base mod-
els in a supervised way. Yet, as shown in Table 4.3, the
unsupervised GeLaTo alone achieves SoTA BLEU scores.
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Table 4. BLEU-4 scores for Yelp!Review and News datasets; for
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Yelp!Review and News datasets. They are more challenging
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