Sir Francis Galton demonstrates his “Galton board” or “quincunx” at the Royal

Institution. He saw this pinball-like apparatus as an analogy for the inheritance
of genetic traits like stature. The pinballs accumulate in a bell-shaped curve that
is similar to the distribution of human heights. The puzzle of why human heights
don’t spread out from one generation to the next, as the balls would, led him to
the discovery of “regression to the mean.” (Source: Drawing by Dakota Harr.)
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FROM BUCCANEERS TO GUINEA PIGS:
THE GENESIS OF CAUSAL INFERENCE

And yet it moves.

—ATTRIBUTED TO GALILEO GALILEI (1564—1642)

FOR close to two centuries, one of the most enduring rituals in
British science has been the Friday Evening Discourse at the
Royal Institution of Great Britain in London. Many discoveries of
the nineteenth century were first announced to the public at this
venue: Michael Faraday and the principles of photography in 1839;
J. J. Thomson and the electron in 1897; James Dewar and the liq-
uefaction of hydrogen in 1904.

Pageantry was an important part of the occasion; it was lit-
erally science as theater, and the audience, the cream of British
society, would dress to the nines (tuxedos with black tie for men).
At the appointed hour, a chime would strike, and the evening’s
speaker would be ushered into the auditorium. Traditionally he
would begin the lecture immediately, without introduction or
preamble. Experiments and live demonstrations were part of the
spectacle.

On February 9, 1877, the evening’s speaker was Francis Gal-
ton, FRS, first cousin of Charles Darwin, noted African explorer,
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inventor of fingerprinting, and the very model of a Victorian gen-
tleman scientist. Galton’s title was “Typical Laws of Heredity.”
His experimental apparatus for the evening was a curious contrap-
tion that he called a quincunx, now often called a “Galton board.”
A similar game has often appeared on the televised game show The
Price Is Right, where it is known as Plinko. The Galton board con-
sists of a triangular array of pins or pegs, into which small metal
balls can be inserted through an opening at the top. The balls
bounce downward from one row to the next, pinball style, before
settling into one of a line of slots at the bottom (see frontispiece).
For any individual ball, the zigs and zags to the left or right look
completely random. However, if you pour a lot of balls into the
Galton board, a startling regularity emerges: the accumulated balls
at the bottom will always form a rough approximation to a bell-
shaped curve. The slots nearest the center will be stacked high with
balls, and the number of the balls in each slot gradually tapers
down to zero at the edges of the quincunx.

This pattern has a mathematical explanation. The path of any
individual ball is like a sequence of independent coin flips. Each
time a ball hits a pin, it bounces either to the left or the right, and
from a distance its choice seems completely random. The sum of
the results—say, the excess of the rights over the lefts—determines
which slot the ball ends up in. According to the central limit the-
orem, proven in 1810 by Pierre-Simon Laplace, any such random
process—one that amounts to a sum of a large number of coin
flips—will lead to the same probability distribution, called the
normal distribution (or bell-shaped curve). The Galton board is
simply a visual demonstration of Laplace’s theorem.

The central limit theorem is truly a miracle of nineteenth-
century mathematics. Think about it: even though the path of any
individual ball is unpredictable, the path of 1,000 balls is extremely
predictable—a convenient fact for the producers of The Price Is
Right, who can estimate accurately how much money the contes-
tants will win at Plinko over the long run. This is the same law that
makes insurance companies so profitable, despite the uncertainties
in human affairs.
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The well-dressed audience at the Royal Institute must have
wondered what all this had to do with the laws of heredity, the
promised lecture topic. To illustrate the connection, Galton
showed them some data collected in France on the heights of mil-
itary recruits. These also follow a normal distribution: many men
are of about average height, with a gradually diminishing number
who are either extremely tall or extremely short. In fact, it does
not matter whether you are talking about 1,000 military recruits or
1,000 balls in the Galton board: the numbers in each slot (or height
category) are almost the same.

Thus, to Galton, the quincunx was a model for the inheritance
of stature or, indeed, many other genetic traits. It is a causal model.
In simplest terms, Galton believed the balls “inherit” their position
in the quincunx in the same way that humans inherit their stature.

But if we accept this model—provisionally—it poses a puz-
zle, which was Galton’s chief subject for the evening. The width
of the bell-shaped curve depends on the number of rows of pegs
placed between the top and the bottom. Suppose we doubled the
number of rows. This would create a model for two generations
of inheritance, with the first half of the rows representing the first
generation and the second half representing the second. You would
inevitably find more variation in the second generation than in the
first, and in succeeding generations, the bell-shaped curve would
get wider and wider still.

But this is not what happens with actual human stature. In fact,
the width of the distribution of human heights stays relatively con-
stant over time. We didn’t have nine-foot humans a century ago,
and we still don’t. What explains the stability of the population’s
genetic endowment? Galton had been puzzling over this enigma for
roughly eight years, since the publication of his book Hereditary
Genius in 1869.

As the title of the book suggests, Galton’s true interest was not
carnival games or human stature but human intelligence. As a
member of an extended family with a remarkable amount of scien-
tific genius, Galton naturally would have liked to prove that genius

runs in families. And he had set out to do exactly that in his book.
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He painstakingly compiled pedigrees of 605 “eminent” Englishmen
from the preceding four centuries. But he found that the sons and
fathers of these eminent men were somewhat less eminent and the
grandparents and grandchildren less eminent still.

It’s easy enough for us now to find flaws in Galton’s program.
What, after all, is the definition of eminence? And isn’t it possible
that people in eminent families are successful because of their priv-
ilege rather than their talent? Though Galton was aware of such
difficulties, he pursued this futile quest for a genetic explanation at
an increasing pace and determination.

Still, Galton was on to something, which became more appar-
ent once he started looking at features like height, which are easier
to measure and more strongly linked to heredity than “eminence.”
Sons of tall men tend to be taller than average—Dbut not as tall as
their fathers. Sons of short men tend to be shorter than average—
but not as short as their fathers. Galton first called this phenome-
non “reversion” and later “regression toward mediocrity.” It can
be noted in many other settings. If students take two different stan-
dardized tests on the same material, the ones who scored high on
the first test will usually score higher than average on the second
test but not as high as they did the first time. This phenomenon of
regression to the mean is ubiquitous in all facets of life, education,
and business. For instance, in baseball the Rookie of the Year (a
player who does unexpectedly well in his first season) often hits a
“sophomore slump,” in which he does not do quite as well.

Galton didn’t know all of this, and he thought he had stumbled
onto a law of heredity rather than a law of statistics. He believed
that regression to the mean must have some cause, and in his Royal
Institution lecture he illustrated his point. He showed his audience
a two-layered quincunx (Figure 2.1).

After passing through the first array of pegs, the balls passed
through sloping chutes that moved them closer to the center of the
board. Then they would pass through a second array of pegs. Gal-
ton showed triumphantly that the chutes exactly compensated for
the tendency of the normal distribution to spread out. This time,
the bell-shaped probability distribution kept a constant width from
generation to generation.
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FIGURE 2.1. The Galton board, used by Francis Galton as an analogy

il

for the inheritance of human heights. (a) When many balls are dropped
through the pinball-like apparatus, their random bounces cause them to
pile up in a bell-shaped curve. (b) Galton noted that on two passes, A and
B, through the Galton board (the analogue of two generations) the bell-
shaped curve got wider. (c) To counteract this tendency, he installed chutes
to move the “second generation” back closer to the center. The chutes are
Galton’s causal explanation for regression to the mean. (Source: Francis
Galton, Natural Inberitance [1889].)

Thus, Galton conjectured, regression toward the mean was a
physical process, nature’s way of ensuring that the distribution of
height (or intelligence) remained the same from generation to gen-
eration. “The process of reversion cooperates with the general law
of deviation,” Galton told his audience. He compared it to Hooke’s
law, the physical law that describes the tendency of a spring to re-
turn to its equilibrium length.

Keep in mind the date. In 1877, Galton was in pursuit of a
causal explanation and thought that regression to the mean was a
causal process, like a law of physics. He was mistaken, but he was
far from alone. Many people continue to make the same mistake
to this day. For example, baseball experts always look for causal
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explanations for a player’s sophomore slump. “He’s gotten over-
confident,” they complain, or “the other players have figured out
his weaknesses.” They may be right, but the sophomore slump
does not need a causal explanation. It will happen more often than
not by the laws of chance alone.

The modern statistical explanation is quite simple. As Daniel
Kahneman summarizes it in his book Thinking, Fast and Slow,
“Success = talent + luck. Great success = a little more talent + a lot
of luck.” A player who wins Rookie of the Year is probably more
talented than average, but he also (probably) had a lot of luck.
Next season, he is not likely to be so lucky, and his batting average
will be lower.

By 1889, Galton had figured this out, and in the process—partly
disappointed but also fascinated—he took the first huge step to-
ward divorcing statistics from causation. His reasoning is subtle
but worth making the effort to understand. It is the newborn disci-
pline of statistics uttering its first cry.

Galton had started gathering a variety of “anthropometric”
statistics: height, forearm length, head length, head width, and so
on. He noticed that when he plotted height against forearm length,
for instance, the same phenomenon of regression to the mean took
place. Tall men usually had longer-than-average forearms—but
not as far above average as their height. Clearly height is not a cause
of forearm length, or vice versa. If anything, both are caused by ge-
netic inheritance. Galton started using a new word for this kind of
relationship: height and forearm length were “co-related.” Even-
tually, he opted for the more normal English word “correlated.”

Later he realized an even more startling fact: in generational
comparisons, the temporal order could be reversed. That is, the
fathers of sons also revert to the mean. The father of a son who is
taller than average is likely to be taller than average but shorter than
his son (see Figure 2.2). Once Galton realized this, he had to give
up any idea of a causal explanation for regression, because there is
no way that the sons’ heights could cause the fathers’ heights.

This realization may sound paradoxical at first. “Wait!” you’re
saying. “You’'re telling me that tall dads usually have shorter sons,

and tall sons usually have shorter dads. How can both of those

9780465097609-text.indd 58 @ 3/13/18 9:56 AM



From Buccaneers to Guinea Pigs: The Genesis of Causal Inference 59

son's height (Y)

75

70

65

—— Regression of son’s height (Y)
’ on father’s height (X)

’ -=-Y=X
H Families with 72-inch fathers
—— Families with 71-inch sons

60,7 * Average son of 72-inch father = 71 inches

N ¢ Average father of 71-inch son = 70 inches

65 70 75 father's height (X)

FIGURE 2.2. The scatter plot shows a data set of heights, with each dot rep-
resenting the height of a father (on the x-axis) and his son (on the y-axis).
The dashed line coincides with the major axis of the ellipse, while the solid
line (called the regression line) connects the rightmost and leftmost points
on the ellipse. The difference between them accounts for regression to the
mean. For example, the black star shows that 72" fathers have, on the aver-
age, 71" sons. (That is, the average height of all the data points in the verti-
cal strip is 71".) The horizontal strip and white star show that the same loss
of height occurs in the noncausal direction (backward in time). (Source:
Figure by Maayan Harel, with a contribution from Christopher Boucher.)

statements be true? How can a son be both taller and shorter than
his father?”

The answer is that we are talking not about an individual fa-
ther and an individual son but about two populations. We start
with the population of six-foot fathers. Because they are taller than
average, their sons will regress toward the mean; let’s say their
sons average five feet, eleven inches. However, the population of
father-son pairs with six-foot fathers is not the same as the pop-
ulation of father-son pairs with five-foot-eleven-inch sons. Every
father in the first group is by definition six feet tall. But the second
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group will have a few fathers who are taller than six feet and a lot
of fathers who are shorter than six feet. Their average height will
be shorter than five feet, eleven inches, again displaying regression
to the mean.

Another way to illustrate regression is to use a diagram called
a scatter plot (Figure 2.2). Each father-son pair is represented by
one dot, with the x-coordinate being the father’s height and the
y-coordinate being the son’s height. So a father and son who are
both five feet, nine inches (or sixty-nine inches) will be represented
by a dot at (69, 69), right at the center of the scatter plot. A fa-
ther who is six feet (or seventy-two inches) with a son who is five-
foot-eleven (or seventy-one inches) will be represented by a dot at
(72, 71), in the northeast corner of the scatter plot. Notice that the
scatter plot has a roughly elliptical shape—a fact that was crucial
to Galton’s analysis and characteristic of bell-shaped distributions
with two variables.

As shown in Figure 2.2, the father-son pairs with seventy-two-
inch fathers lie in a vertical slice centered at 72; the father-son pairs
with seventy-one-inch sons lie in a horizontal slice centered at 71.
Here is visual proof that these are two different populations. If we
focus only on the first population, the pairs with seventy-two-inch
fathers, we can ask, “How tall are the sons on average?” It’s the
same as asking where the center of that vertical slice is, and by
eye you can see that the center is about 71. If we focus only on the
second population with seventy-one-inch sons, we can ask, “How
tall are the fathers on average?” This is the same as asking for the
center of the horizontal slice, and by eye you can see that its center
is about 70.3.

We can go farther and think about doing the same procedure
for every vertical slice. That’s equivalent to asking, “For fathers of
height x, what is the best prediction of the son’s height (y)?” Alter-
natively, we can take each horizontal slice and ask where its center
is: for sons of height y, what is the best “prediction” (or retrodic-
tion) of the father’s height?

As he thought about this question, Galton stumbled on an im-
portant fact: the predictions always fall on a line, which he called
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the regression line, which is less steep than the major axis (or axis
of symmetry) of the ellipse (Figure 2.3). In fact there are two such
lines, depending on which variable is being predicted and which
is being used as evidence. You can predict the son’s height based
on the father’s or the father’s based on the son’s. The situation is
completely symmetric. Once again this shows that where regres-
sion to the mean is concerned, there is no difference between cause
and effect.

The slope of the regression enables you to predict the value of
one variable, given that you know the value of the other. In the
context of Galton’s problem, a slope of 0.5 would mean that each
extra inch of height for the father would correspond, on average,
to an extra half inch for the son, and vice versa. A slope of 1 would

be perfect correlation, which means every extra inch for the father

Plate X.
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FIGURE 2.3. Galton’s regression lines. Line OM gives the best prediction of
a son’s height if you know the height of the father; line ON gives the best
prediction of a father’s height if you know the height of the son. Neither is
the same as the major axis (axis of symmetry) of the scatter plot. (Source:
Francis Galton, Journal of the Anthropological Institute of Great Britain
and Ireland [1886], 246263, Plate X.)
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is passed deterministically to the son, who would also be an inch
taller. The slope can never be greater than 1; if it were, the sons
of tall fathers would be taller on average, and the sons of short
fathers would be shorter—and this would force the distribution
of heights to become wider over time. After a few generations we
would start having 9-foot people and 2-foot people, which is not
observed in nature. So, provided the distribution of heights stays
the same from one generation to the next, the slope of the regres-
sion line cannot exceed 1.

The law of regression applies even when we correlate two differ-
ent quantities, like height and IQ. If you plot one quantity against
the other in a scatter plot and rescale the two axes properly, then
the slope of the best-fit line always enjoys the same properties. It
equals 1 only when one quantity can predict the other precisely;
it is 0 whenever the prediction is no better than a random guess.
The slope (after scaling) is the same no matter whether you plot X
against Y or Y against X. In other words, the slope is completely
agnostic as to cause and effect. One variable could cause the other,
or they could both be effects of a third cause; for the purpose of
prediction, it does not matter.

For the first time, Galton’s idea of correlation gave an objec-
tive measure, independent of human judgment or interpretation,
of how two variables are related to one another. The two vari-
ables can stand for height, intelligence, or income; they can stand
in causal, neutral, or reverse-causal relation. The correlation will
always reflect the degree of cross predictability between the two
variables. Galton’s disciple Karl Pearson later derived a formula
for the slope of the (properly rescaled) regression line and called it
the correlation coefficient. This is still the first number that statis-
ticians all over the world compute when they want to know how
strongly two different variables in a data set are related. Galton
and Pearson must have been thrilled to find such a universal way of
describing the relationships between random variables. For Pear-
son, especially, the slippery old concepts of cause and effect seemed
outdated and unscientific, compared to the mathematically clear

and precise concept of a correlation coefficient.
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GALTON AND THE ABANDONED QUEST

Itis anirony of history that Galton started out in search of causation
and ended up discovering correlation, a relationship that is obliv-
ious of causation. Even so, hints of causal thinking remained in
his writing. “It is easy to see that correlation [between the sizes of
two organs] must be the consequence of the variations of the two
organs being partly due to common causes,” he wrote in 1889.

The first sacrifice on the altar of correlation was Galton’s elab-
orate machinery to explain the stability of the population’s genetic
endowment. The quincunx simulated the creation of variations in
height and their transmission from one generation to the next. But
Galton had to invent the inclined chutes in the quincunx specifi-
cally to rein in the ever-growing diversity in the population. Having
failed to find a satisfactory biological mechanism to account for
this restoring force, Galton simply abandoned the effort after eight
years and turned his attention to the siren song of correlation. His-
torian Stephen Stigler, who has written extensively about Galton,
noticed this sudden shift in Galton’s aims and aspirations: “What
was silently missing was Darwin, the chutes, and all the ‘survival of
the fittest.” . . . In supreme irony, what had started out as an attempt
to mathematize the framework of the Origin of Species ended with
the essence of that great work being discarded as unnecessary!”

But to us, in the modern era of causal inference, the original
problem remains. How do we explain the stability of the popula-
tion, despite Darwinian variations that one generation bestows on
the next?

Looking back on Galton’s machine in the light of causal di-
agrams, the first thing I notice is that the machine was wrongly
constructed. The ever-growing dispersion, which begged Galton
for a counterforce, should never have been there in the first place.
Indeed, if we trace a ball dropping from one level to the next in
the quincunx, we see that the displacement at the next level in-
herits the sum total of variations bestowed upon it by all the pegs
along the way. This stands in blatant contradiction to Kahneman’s

equations:
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Success = talent + luck

Great success = A little more talent + a lot of luck.

According to these equations, success in generation 2 does not in-
herit the luck of generation 1. Luck, by its very definition, is a tran-
sitory occurrence; hence it has no impact on future generations. But
such transitory behavior is incompatible with Galton’s machine.
To compare these two conceptions side by side, let us draw their
associated causal diagrams. In Figure 2.4(a) (Galton’s conception),
success is transmitted across generations, and luck variations accu-
mulate indefinitely. This is perhaps natural if “success” is equated
to wealth or eminence. However, for the inheritance of physical
characteristics like stature, we must replace Galton’s model with
that in Figure 2.4(b). Here only the genetic component, shown here

(a)
Generation 0 Success 0
l Luck 1
Generation 1 Success 1
l Luck 2
Generation 2 Success 2

|

(b)

Generation 0 Talent 0
L Success 0

Generation 1 Talent 1 Luck 1
L Success 1

Generation 2 Talent 2 Luck 2
l Success 2

FIGURE 2.4. Two models of inheritance. (a) The Galton board model,
in which luck accrues from generation to generation, leading to an
ever-wider distribution of success. (b) A genetic model, in which luck
does not accrue, leading to a constant distribution of success.
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as talent, is passed down from one generation to the next. Luck af-
fects each generation independently, in such a way that the chance
factors in one generation have no way of affecting later genera-
tions, either directly or indirectly.

Both of these models are compatible with the bell-shaped dis-
tribution of heights. But the first model is not compatible with
the stability of the distribution of heights (or success). The second
model, on the other hand, shows that to explain the stability of
success from one generation to the next, we only need explain the
stability of the genetic endowment of the population (talent). That
stability, now called the Hardy-Weinberg equilibrium, received a
satisfactory mathematical explanation in the work of G. H. Hardy
and Wilhelm Weinberg in 1908. And yes, they used yet another
causal model—the Mendelian theory of inheritance.

In retrospect, Galton could not have anticipated the work of
Mendel, Hardy, and Weinberg. In 1877, when Galton gave his lec-
ture, Gregor Mendel’s work of 1866 had been forgotten (it was
only rediscovered in 1900), and the mathematics of Hardy and
Weinberg’s proofs would likely have been beyond him. But it is in-
teresting to note how close he came to finding the right framework
and also how the causal diagram makes it easy to zero in on his
mistaken assumption: the transmission of luck from one genera-
tion to the next. Unfortunately, he was led astray by his beautiful
but flawed causal model, and later, having discovered the beauty of
correlation, he came to believe that causality was no longer needed.

As a final personal comment on Galton’s story, I confess to
committing a cardinal sin of history writing, one of many sins I
will commit in this book. In the 1960s, it became unfashionable
to write history from the viewpoint of modern-day science, as I
have done above. “Whig history” was the epithet used to mock the
hindsighted style of history writing, which focused on successful
theories and experiments and gave little credit to failed theories
and dead ends. The modern style of history writing became more
democratic, treating chemists and alchemists with equal respect
and insisting on understanding all theories in the social context of

their own time.
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When it comes to explaining the expulsion of causality from sta-
tistics, however, I accept the mantle of Whig historian with pride.
There simply is no other way to understand how statistics became
a model-blind data-reduction enterprise, except by putting on our
causal lenses and retelling the stories of Galton and Pearson in the
light of the new science of cause and effect. In fact, by so doing, I
rectify the distortions introduced by mainstream historians who,
lacking causal vocabulary, marvel at the invention of correlation

and fail to note its casualty—the death of causation.

PEARSON: THE WRATH OF THE ZEALOT

It remained to Galton’s disciple, Karl Pearson, to complete the task
of expunging causation from statistics. Yet even he was not en-
tirely successful.

Reading Galton’s Natural Inheritance was one of the defin-
ing moments of Pearson’s life: “I felt like a buccaneer of Drake’s
days—one of the order of men ‘not quite pirates, but with decidedly
piratical tendencies,’ as the dictionary has it!” he wrote in 1934. “I
interpreted . . . Galton to mean that there was a category broader
than causation, namely correlation, of which causation was only
the limit, and that this new conception of correlation brought psy-
chology, anthropology, medicine and sociology in large part into
the field of mathematical treatment. It was Galton who first freed
me from the prejudice that sound mathematics could only be ap-
plied to natural phenomena under the category of causation.”

In Pearson’s eyes, Galton had enlarged the vocabulary of sci-
ence. Causation was reduced to nothing more than a special case
of correlation (namely, the case where the correlation coefficient is
1 or =1 and the relationship between x and y is deterministic). He
expresses his view of causation with great clarity in The Gram-
mar of Science (1892): “That a certain sequence has occurred
and reoccurred in the past is a matter of experience to which we
give expression in the concept causation. . .. Science in no case
can demonstrate any inherent necessity in a sequence, nor prove
with absolute certainty that it must be repeated.” To summarize,

causation for Pearson is only a matter of repetition and, in the
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deterministic sense, can never be proven. As for causality in a non-
deterministic world, Pearson was even more dismissive: “the ulti-
mate scientific statement of description of the relation between two
things can always be thrown back upon . .. a contingency table.”
In other words, data is all there is to science. Full stop. In this view,
the notions of intervention and counterfactuals discussed in Chap-
ter 1 do not exist, and the lowest rung of the Ladder of Causation
is all that is needed for doing science.

The mental leap from Galton to Pearson is breathtaking and
indeed worthy of a buccaneer. Galton had proved only that one
phenomenon—regression to the mean—did not require a causal
explanation. Now Pearson was completely removing causation
from science. What made him take this leap?

Historian Ted Porter, in his biography Karl Pearson, describes
how Pearson’s skepticism about causation predated his reading of
Galton’s book. Pearson had been wrestling with the philosophical
foundation of physics and wrote (for example), “Force as a cause
of motion is exactly on the same footing as a tree-god as a cause
of growth.” More generally, Pearson belonged to a philosophical
school called positivism, which holds that the universe is a product
of human thought and that science is only a description of those
thoughts. Thus causation, construed as an objective process that
happens in the world outside the human brain, could not have any
scientific meaning. Meaningful thoughts can only reflect patterns
of observations, and these can be completely described by correla-
tions. Having decided that correlation was a more universal de-
scriptor of human thought than causation, Pearson was prepared
to discard causation completely.

Porter paints a vivid picture of Pearson throughout his life as a
self-described Schwdrmer, a German word that translates as “en-
thusiast” but can also be interpreted more strongly as “zealot.”
After graduating from Cambridge in 1879, Pearson spent a year
abroad in Germany and fell so much in love with its culture that he
promptly changed his name from Carl to Karl. He was a socialist
long before it became popular, and he wrote to Karl Marx in 1881,
offering to translate Das Kapital into English. Pearson, arguably
one of England’s first feminists, started the Men’s and Women’s
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Club in London for discussions of “the woman question.” He was
concerned about women’s subordinate position in society and ad-
vocated for them to be paid for their work. He was extremely pas-
sionate about ideas while at the same time very cerebral about his
passions. It took him nearly half a year to persuade his future wife,
Maria Sharpe, to marry him, and their letters suggest that she was
frankly terrified of not living up to his high intellectual ideals.
When Pearson found Galton and his correlations, he at last
found a focus for his passions: an idea that he believed could trans-
form the world of science and bring mathematical rigor to fields like
biology and psychology. And he moved with a buccaneer’s sense of
purpose toward accomplishing this mission. His first paper on sta-
tistics was published in 1893, four years after Galton’s discovery of
correlation. By 1901 he had founded a journal, Biometrika, which
remains one of the most influential statistical journals (and, some-
what heretically, published my first full paper on causal diagrams
in 1995). By 1903, Pearson had secured a grant from the Worshipful
Company of Drapers to start a Biometrics Lab at University Col-
lege London. In 1911 it officially became a department when Gal-
ton passed away and left an endowment for a professorship (with
the stipulation that Pearson be its first holder). For at least two de-
cades, Pearson’s Biometrics Lab was the world center of statistics.
Once Pearson held a position of power, his zealotry came out
more and more clearly. As Porter writes in his biography, “Pear-
son’s statistical movement had aspects of a schismatic sect. He
demanded the loyalty and commitment of his associates and
drove dissenters from the church biometric.” One of his earliest
assistants, George Udny Yule, was also one of the first people to
feel Pearson’s wrath. Yule’s obituary of Pearson, written for the
Royal Society in 1936, conveys well the sting of those days, though

couched in polite language.

The infection of his enthusiasm, it is true, was invaluable; but
his dominance, even his very eagerness to help, could be a dis-
advantage. . .. This desire for domination, for everything to be
just as he wanted it, comes out in other ways, notably the edit-

ing of Biometrika—surely the most personally edited journal that
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was ever published. ... Those who left him and began to think
for themselves were apt, as happened painfully in more instances
than one, to find that after a divergence of opinion the mainte-
nance of friendly relations became difficult, after express criticism

impossible.

Even so, there were cracks in Pearson’s edifice of causality-free
science, perhaps even more so among the founders than among the
later disciples. For instance, Pearson himself surprisingly wrote
several papers about “spurious correlation,” a concept impossible
to make sense of without making some reference to causation.

Pearson noticed that it’s relatively easy to find correlations that
are just plain silly. For instance, for a fun example postdating Pear-
son’s time, there is a strong correlation between a nation’s per cap-
ita chocolate consumption and its number of Nobel Prize winners.
This correlation seems silly because we cannot envision any way
in which eating chocolate could cause Nobel Prizes. A more likely
explanation is that more people in wealthy, Western countries eat
chocolate, and the Nobel Prize winners have also been chosen pref-
erentially from those countries. But this is a causal explanation,
which, for Pearson, is not necessary for scientific thinking. To him,
causation is just a “fetish amidst the inscrutable arcana of modern
science.” Correlation is supposed to be the goal of scientific under-
standing. This puts him in an awkward position when he has to
explain why one correlation is meaningful and another is “spuri-
ous.” He explains that a genuine correlation indicates an “organic
relationship” between the variables, while a spurious correlation
does not. But what is an “organic relationship”? Is it not causality
by another name?

Together, Pearson and Yule compiled several examples of spu-
rious correlations. One typical case is now called confounding, and
the chocolate-Nobel story is an example. (Wealth and location are
confounders, or common causes of both chocolate consumption
and Nobel frequency.) Another type of “nonsense correlation” of-
ten emerges in time series data. For example, Yule found an incred-
ibly high correlation (0.95) between England’s mortality rate in a
given year and the percentage of marriages conducted that year in

9780465097609-text.indd 69 @ 3113118 9:56 AM



70 THE BOOK OF WHY

the Church of England. Was God punishing marriage-happy An-
glicans? No! Two separate historical trends were simply occurring
at the same time: the country’s mortality rate was decreasing and
membership in the Church of England was declining. Since both
were going down at the same time, there was a positive correlation
between them, but no causal connection.

Pearson discovered possibly the most interesting kind of “spuri-
ous correlation” as early as 1899. It arises when two heterogeneous
populations are aggregated into one. Pearson, who, like Galton,
was a fanatical collector of data on the human body, had obtained
measurements of 806 male skulls and 340 female skulls from the
Paris Catacombs (Figure 2.5). He computed the correlation be-
tween skull length and skull breadth. When the computation was
done only for males or only for females, the correlations were
negligible—there was no significant association between skull
length and breadth. But when the two groups were combined, the
correlation was 0.197, which would ordinarily be considered sig-
nificant. This makes sense, because a small skull length is now an
indicator that the skull likely belonged to a female and therefore
that the breadth will also be small. However, Pearson considered it
a statistical artifact. The fact that the correlation was positive had

FIGURE 2.5. Karl Pearson with a skull from the Paris Catacombs.
(Source: Drawing by Dakota Harr.)
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no biological or “organic” meaning; it was just a result of combin-
ing two distinct populations inappropriately.

This example is a case of a more general phenomenon called
Simpson’s paradox. Chapter 6 will discuss when it is appropri-
ate to segregate data into separate groups and will explain why
spurious correlations can emerge from aggregation. But let’s take
a look at what Pearson wrote: “To those who persist in looking
upon all correlations as cause and effect, the fact that correlation
can be produced between two quite uncorrelated characters A and
B by taking an artificial mixture of two closely allied races, must
come rather as a shock.” As Stephen Stigler comments, “I cannot
resist the speculation that he himself was the first one shocked.”
In essence, Pearson was scolding himself for the tendency to think
causally.

Looking at the same example through the lens of causality, we
can only say, What a missed opportunity! In an ideal world, such
examples might have spurred a talented scientist to think about the
reason for his shock and develop a science to predict when spurious
correlations appear. At the very least, he should explain when to
aggregate the data and when not to. But Pearson’s only guidance to
his followers is that an “artificial” mixture (whatever that means)
is bad. Ironically, using our causal lens, we now know that in some
cases the aggregated data, not the partitioned data, give the correct
result. The logic of causal inference can actually tell us which one
to trust. I wish that Pearson were here to enjoy it!

Pearson’s students did not all follow in lockstep behind him.
Yule, who broke with Pearson for other reasons, broke with him
over this too. Initially he was in the hard-line camp holding that
correlations say everything we could ever wish to understand
about science. However, he changed his mind to some extent when
he needed to explain poverty conditions in London. In 1899, he
studied the question of whether “out-relief” (that is, welfare de-
livered to a pauper’s home versus a poorhouse) increased the rate
of poverty. The data showed that districts with more out-relief
had a higher poverty rate, but Yule realized that the correlation
was possibly spurious: these districts might also have more elderly

people, who tend to be poorer. However, he then showed that even
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in comparisons of districts with equal proportions of elderly peo-
ple, the correlation remained. This emboldened him to say that the
increased poverty rate was due to out-relief. But after stepping out
of line to make this assertion, he fell back into line again, writing in
a footnote, “Strictly speaking, for ‘due to’ read ‘associated with.””
This set the pattern for generations of scientists after him. They
would think “due to” and say “associated with.”

With Pearson and his followers actively hostile toward causation,
and with halfhearted dissidents such as Yule fearful of antagoniz-
ing their leader, the stage was set for another scientist from across
the ocean to issue the first direct challenge to the causality-avoiding

culture.

SEWALL WRIGHT, GUINEA PIGS, AND PATH DIAGRAMS

When Sewall Wright arrived at Harvard University in 1912, his ac-
ademic background scarcely suggested the kind of lasting effect he
would have on science. He had attended a small (and now defunct)
college in Illinois, Lombard College, graduating in a class of only
seven students. One of his teachers had been his own father, Philip
Wright, an academic jack-of-all-trades who even ran the college’s
printing press. Sewall and his brother Quincy helped out with the
press, and among other things they published the first poetry by a
not-yet-famous Lombard student, Carl Sandburg.

Sewall Wright’s ties with his father remained very close long
after he graduated from college. Papa Philip moved to Massachu-
setts when Sewall did. Later, when Sewall worked in Washington,
DC, Philip did likewise, first at the US Tariff Commission and then
at the Brookings Institution as an economist. Although their aca-
demic interests diverged, they nevertheless found ways to collab-
orate, and Philip was the first economist to make use of his son’s
invention of path diagrams.

Wright came to Harvard to study genetics, at the time one of the
hottest topics in science because Gregor Mendel’s theory of domi-
nant and recessive genes had just been rediscovered. Wright’s advi-
sor, William Castle, had identified eight different hereditary factors

(or genes, as we would call them today) that affected fur color in
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rabbits. Castle assigned Wright to do the same thing for guinea
pigs. After earning his doctorate in 1915, Wright got an offer for
which he was uniquely qualified: taking care of guinea pigs at the
US Department of Agriculture (USDA).

One wonders if the USDA knew what it was getting when it
hired Wright. Perhaps it expected a diligent animal caretaker who
could straighten out the chaos of twenty years of poorly kept re-
cords. Wright did all that and much, much more. Wright’s guinea
pigs were the springboard to his whole career and his whole the-
ory of evolution, much like the finches on the Galapagos islands
that had inspired Charles Darwin. Wright was an early advocate of
the view that evolution is not gradual, as Darwin had posited, but
takes place in relatively sudden bursts.

In 1925, Wright moved on to a faculty position at the Univer-
sity of Chicago that was probably better suited to someone with
his wide-ranging theoretical interests. Even so, he remained very
devoted to his guinea pigs. An often told anecdote says that he was
once holding an unruly guinea pig under his arm while lecturing,
and absentmindedly began using it to erase the blackboard (see
Figure 2.6). While his biographers agree that this story is likely
apocryphal, such stories often contain more truth than dry biog-
raphies do.

Wright’s early work at the USDA interests us most here. The
inheritance of coat color in guinea pigs stubbornly refused to play
by Mendelian rules. It proved virtually impossible to breed an all-
white or all-colored guinea pig, and even the most inbred fami-
lies (after multiple generations of brother-sister mating) still had
pronounced variation, from mostly white to mostly colored. This
contradicted the prediction of Mendelian genetics that a particular
trait should become “fixed” by multiple generations of inbreeding.

Wright began to doubt that genetics alone governed the amount
of white and postulated that “developmental factors” in the womb
were causing some of the variations. With hindsight, we know
that he was correct. Different color genes are expressed in different
places on the body, and the patterns of color depend not only on
what genes the animal has inherited but where and in what combi-

nations they happen to be expressed or suppressed.
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FIGURE 2.6. Sewall Wright was the first person to develop a mathemati-
cal method for answering causal questions from data, known as path dia-
grams. His love of mathematics surrendered only to his passion for guinea
pigs. (Source: Drawing by Dakota Harr.)

As it often happens (at least to the ingenious!), a pressing re-
search problem leads to new methods of analysis, which vastly
transcended their origins in guinea pig genetics. Yet, for Sewall
Wright, estimating the developmental factors probably seemed like
a college-level problem that he could have solved in his father’s
math class at Lombard. When looking for the magnitude of some
unknown quantity, you first assign a symbol to that quantity, next
you express what you know about this and other quantities in the
form of mathematical equations, and finally, if you have enough
patience and enough equations, you can solve them and find your
quantity of interest.

In Wright’s case, the desired and unknown quantity (shown in
Figure 2.7) was d, the effect of “developmental factors” on white
fur. Other causal quantities that entered into his equations in-
cluded h, for “hereditary” factors, also unknown. Finally—and
here comes Wright’s ingenuity—he showed that if we knew the

causal quantities in Figure 2.7, we could predict correlations in the
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FIGURE 2.7. Sewall Wright’s first path diagram, illustrating the factors
leading to coat color in guinea pigs. D = developmental factors (after con-
ception, before birth), E = environmental factors (after birth), G = genetic
factors from each individual parent, H = combined hereditary factors from
both parents, O, O” = offspring. The objective of analysis was to estimate
the strength of the effects of D, E, H (written as d, e, b in the diagram).
(Source: Sewall Wright, Proceedings of the National Academy of Sciences
[1920], 320-332.)

data (not shown in the diagram) by a simple graphical rule. This
rule sets up a bridge from the deep, hidden world of causation to
the surface world of correlations. It was the first bridge ever built
between causality and probability, the first crossing of the barrier
between rung two and rung one on the Ladder of Causation. Hav-
ing built this bridge, Wright could travel backward over it, from
the correlations measured in the data (rung one) to the hidden
causal quantities, d and b (rung two). He did this by solving alge-
braic equations. This idea must have seemed simple to Wright but
turned out to be revolutionary because it was the first proof that
the mantra “Correlation does not imply causation” should give
way to “Some correlations do imply causation.”

In the end, Wright showed that the hypothesized developmental
factors were more important than heredity. In a randomly bred
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population of guinea pigs, 42 percent of the variation in coat pat-
tern was due to heredity, and 58 percent was developmental. By
contrast, in a highly inbred family, only 3 percent of the variation
in white fur coverage was due to heredity, and 92 percent was de-
velopmental. In other words, twenty generations of inbreeding had
all but eliminated the genetic variation, but the developmental fac-
tors remained.

As interesting as this result is, the crux of the matter for our
history is the way that Wright made his case. The path diagram in
Figure 2.7 is the street map that tells us how to navigate over this
bridge between rung one and rung two. It is a scientific revolution
in one picture—and it comes complete with adorable guinea pigs!

Notice that the path diagram shows every conceivable factor
that could affect a baby guinea pig’s pigmentation. The letters D,
E, and H refer to developmental, environmental, and hereditary
factors, respectively. Each parent (the sire and the dam) and each
child (offspring O and O’) has its own set of D, E, and H factors.
The two offspring share environmental factors but have different
developmental histories. The diagram incorporates the then novel
insights of Mendelian genetics: a child’s heredity (H) is determined
by its parents’ sperm and egg cells (G and G”), and these in turn
are determined from the parents’ heredity (H” and H””’) via a mix-
ing process that was not yet understood (because DNA had not
been discovered). It was understood, though, that the mixing pro-
cess included an element of randomness (labeled “Chance” in the
diagram).

One thing the diagram does not show explicitly is the difference
between an inbred family and a normal family. In an inbred family
there would be a strong correlation between the heredity of the sire
and the dam, which Wright indicated with a two-headed arrow
between H” and H””. Aside from that, every arrow in the diagram
is one-way and leads from a cause to an effect. For example, the
arrow from G to H indicates that the sire’s sperm cell may have a
direct causal effect on the offspring’s heredity. The absence of an
arrow from G to H’ indicates that the sperm cell that gave rise to
offspring O has no causal effect on the heredity of offspring O’.
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When you take apart the diagram arrow by arrow in this way, I
think you will find that every one of them makes perfect sense. Note
also that each arrow is accompanied by a small letter (a, b, ¢, etc.).
These letters, called path coefficients, represent the strength of the
causal effects that Wright wanted to solve for. Roughly speaking,
a path coefficient represents the amount of variability in the target
variable that is accounted for by the source variable. For instance,
it is fairly evident that 50 percent of each child’s hereditary makeup
should come from each parent, so that a should be 1/2. (For tech-
nical reasons, Wright preferred to take the square root, so thata =
IN2 and 2 = 1/2.)

This interpretation of path coefficients, in terms of the amount
of variation explained by a variable, was reasonable at the time.
The modern causal interpretation is different: the path coefficients
represent the results of a hypothetical intervention on the source
variable. However, the notion of an intervention would have to
wait until the 1940s, and Wright could not have anticipated it
when he wrote his paper in 1920. Fortunately, in the simple models
he analyzed then, the two interpretations yield the same result.

I want to emphasize that the path diagram is not just a pretty
picture; it is a powerful computational device because the rule for
computing correlations (the bridge from rung two to rung one) in-
volves tracing the paths that connect two variables to each other
and multiplying the coefficients encountered along the way. Also,
notice that the omitted arrows actually convey more significant as-
sumptions than those that are present. An omitted arrow restricts
the causal effect to zero, while a present arrow remains totally ag-
nostic about the magnitude of the effect (unless we a priori impose
some value on the path coefficient).

Wright’s paper was a tour de force and deserves to be considered
one of the landmark results of twentieth-century biology. Certainly
it is a landmark for the history of causality. Figure 2.7 is the first
causal diagram ever published, the first step of twentieth-century
science onto the second rung of the Ladder of Causation. And not
a tentative step but a bold and decisive one! The following year
Wright published a much more general paper called “Correlation
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and Causation” that explained how path analysis worked in other
settings than guinea pig breeding.

I don’t know what kind of reaction the thirty-year-old scientist
expected, but the reaction he got surely must have stunned him.
It came in the form of a rebuttal published in 1921 by one Henry
Niles, a student of American statistician Raymond Pearl (no rela-
tion), who in turn was a student of Karl Pearson, the godfather of
statistics.

Academia is full of genteel savagery, which I have had the honor
to weather at times in my own otherwise placid career, but even so
I have seldom seen a criticism as savage as Niles’s. He begins with
a long series of quotes from his heroes, Karl Pearson and Fran-
cis Galton, attesting to the redundancy or even meaninglessness
of the word “cause.” He concludes, “To contrast ‘causation’ and
‘correlation’ is unwarranted because causation is simply perfect
correlation.” In this sentence he is directly echoing what Pearson
wrote in Grammar of Science.

Niles further disparages Wright’s entire methodology. He
writes, “The basic fallacy of the method appears to be the assump-
tion that it is possible to set up a priori a comparatively simple
graphic system which will truly represent the lines of action of
several variables upon each other, and upon a common result.”
Finally, Niles works through some examples and, bungling the
computations because he has not taken the trouble to understand
Wright’s rules, he arrives at opposite conclusions. In summary, he
declares, “We therefore conclude that philosophically the basis of
the method of path coefficients is faulty, while practically the re-
sults of applying it where it can be checked prove it to be wholly
unreliable.”

From the scientific point of view a detailed discussion of Niles’s
criticism is perhaps not worth the time, but his paper is very im-
portant to us as historians of causation. First, it faithfully reflects
the attitude of his generation toward causation and the total grip
that his mentor, Karl Pearson, had on the scientific thinking of his
time. Second, we continue to hear Niles’s objections today.

Of course, at times scientists do not know the entire web of re-

lationships between their variables. In that case, Wright argued, we
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can use the diagram in exploratory mode; we can postulate certain
causal relationships and work out the predicted correlations be-
tween variables. If these contradict the data, then we have evidence
that the relationships we assumed were false. This way of using path
diagrams, rediscovered in 1953 by Herbert Simon (a 1978 Nobel
laureate in economics), inspired much work in the social sciences.

Although we don’t need to know every causal relation between
the variables of interest and might be able to draw some conclu-
sions with only partial information, Wright makes one point with
absolute clarity: you cannot draw causal conclusions without
some causal hypotheses. This echoes what we concluded in Chap-
ter 1: you cannot answer a question on rung two of the Ladder of
Causation using only data collected from rung one.

Sometimes people ask me, “Doesn’t that make causal reasoning
circular? Aren’t you just assuming what you want to prove?” The
answer is no. By combining very mild, qualitative, and obvious as-
sumptions (e.g., coat color of the son does not influence that of the
parents) with his twenty years of guinea pig data, he obtained a
quantitative and by no means obvious result: that 42 percent of the
variation in coat color is due to heredity. Extracting the nonobvi-
ous from the obvious is not circular—it is a scientific triumph and
deserves to be hailed as such.

Wright’s contribution is unique because the information leading
to the conclusion (of 42 percent heritability) resided in two distinct,
almost incompatible mathematical languages: the language of dia-
grams on one side and that of data on the other. This heretical idea
of marrying qualitative “arrow-information” to quantitative “data-
information” (two foreign languages!) was one of the miracles that
first attracted me, as a computer scientist, to this enterprise.

Many people still make Niles’s mistake of thinking that the goal
of causal analysis is to prove that X is a cause of Y or else to find the
cause of Y from scratch. That is the problem of causal discovery,
which was my ambitious dream when [ first plunged into graphi-
cal modeling and is still an area of vigorous research. In contrast,
the focus of Wright’s research, as well as this book, is representing
plausible causal knowledge in some mathematical language, com-

bining it with empirical data, and answering causal queries that are
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of practical value. Wright understood from the very beginning that
causal discovery was much more difficult and perhaps impossible.
In his response to Niles, he writes, “The writer [i.e., Wright him-
self] has never made the preposterous claim that the theory of path
coefficients provides a general formula for the deduction of causal
relations. He wishes to submit that the combination of knowledge
of correlations with knowledge of causal relations to obtain cer-
tain results, is a different thing from the deduction of causal rela-

tions from correlations implied by Niles’ statement.”

E PUR SI MUOVE (AND YET IT MOVES)

If T were a professional historian, I would probably stop here. But
as the “Whig historian” that I promised to be, I cannot contain
myself from expressing my sheer admiration for the precision of
Wright’s words in the quote ending the previous section, which
have not gone stale in the ninety years since he first articulated
them and which essentially defined the new paradigm of modern
causal analysis.

My admiration for Wright’s precision is second only to my
admiration for his courage and determination. Imagine the situ-
ation in 1921. A self-taught mathematician faces the hegemony of
the statistical establishment alone. They tell him, “Your method
is based on a complete misapprehension of the nature of causal-
ity in the scientific sense.” And he retorts, “Not so! My method
generates something that is important and goes beyond anything
that you can generate.” They say, “Our gurus looked into these
problems already, two decades ago, and concluded that what you
have done is nonsense. You have only combined correlations with
correlations and gotten correlations. When you grow up, you will
understand.” And he continues, “I am not dismissing your gurus,
but a spade is a spade. My path coefficients are not correlations.
They are something totally different: causal effects.”

Imagine that you are in kindergarten, and your friends mock
you for believing that 3 + 4 =7, when everybody knows that 3 + 4
= 8. Then imagine going to your teacher for help and hearing her
say, too, that 3 + 4 = 8. Would you not go home and ask yourself if
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perhaps there was something wrong with the way you were think-
ing? Even the strongest man would start to waver in his convic-
tions. I have been in that kindergarten, and I know.

But Wright did not blink. And this was not just a matter of
arithmetic, where there can be some sort of independent verifica-
tion. Only philosophers had dared to express an opinion on the
nature of causation. Where did Wright get this inner conviction
that he was on the right track and the rest of the kindergarten class
was just plain wrong? Maybe his Midwestern upbringing and the
tiny college he went to encouraged his self-reliance and taught him
that the surest kind of knowledge is what you construct yourself.

One of the earliest science books I read in school told of how
the Inquisition forced Galileo to recant his teaching that Earth
revolves around the sun and how he whispered under his breath,
“And yet it moves” (E pur si muove). 1 don’t think that there is a
child in the world who has read this legend and not been inspired
by Galileo’s courage in defending his convictions. Yet as much as
we admire him for his stand, I can’t help but think that he at least
had his astronomical observations to fall back on. Wright had only
untested conclusions—say, that developmental factors account for
58 percent, not 3 percent, of variation. With nothing to lean on
except his internal conviction that path coefficients tell you what
correlations do not, he still declared, “And yet it moves!”

Colleagues tell me that when Bayesian networks fought against
the artificial intelligence establishment (see Chapter 3), I acted stub-
bornly, single-mindedly, and uncompromisingly. Indeed, I recall
being totally convinced of my approach, with not an iota of hesita-
tion. But I had probability theory on my side. Wright didn’t have
even one theorem to lean on. Scientists had abandoned causation,
so Wright could not fall back on any theoretical framework. Nor
could he rely on authorities, as Niles did, because there was no one
for him to quote; the gurus had already pronounced their verdicts
three decades earlier.

But one solace to Wright, and one sign that he was on the right
path, must have been his understanding that he could answer
questions that cannot be answered in any other way. Determining

the relative importance of several factors was one such question.
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Another beautiful example of this can be found in his “Correlation
and Causation” paper, from 1921, which asks how much a guinea
pig’s birth weight will be affected if it spends one more day in the
womb. I would like to examine Wright’s answer in some detail to
enjoy the beauty of his method and to satisfy readers who would
like to see how the mathematics of path analysis works.

Notice that we cannot answer Wright’s question directly, be-
cause we can’t weigh a guinea pig in the womb. What we can do,
though, is compare the birth weights of guinea pigs that spend
(say) sixty-six days gestating with those that spend sixty-seven
days. Wright noted that the guinea pigs that spent a day longer
in the womb weighed an average of 5.66 grams more at birth. So,
one might naively suppose that a guinea pig embryo grows at 5.66
grams per day just before it is born.

“Wrong!” says Wright. The pups born later are usually born
later for a reason: they have fewer litter mates. This means that
they have had a more favorable environment for growth through-
out the pregnancy. A pup with only two siblings, for instance, will
already weigh more on day sixty-six than a pup with four siblings.
Thus the difference in birth weights has two causes, and we want
to disentangle them. How much of the 5.66 grams is due to spend-
ing an additional day in utero and how much is due to having fewer
siblings to compete with?

Wright answered this question by setting up a path diagram
(Figure 2.8). X represents the pup’s birth weight. O and P represent
the two known causes of the birth weight: the length of gestation
(P) and rate of growth in utero (Q). L represents litter size, which

X = birth weight

Q = prenatal growth rate (Unobserved)

P = gestation period

L = size of litter

A = other causes of groth rate (Unobserved)

C = other causes of gestation periond (Unobserved)

FIGURE 2.8. Causal (path) diagram for birth-weight example.
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affects both P and Q (a larger litter causes the pup to grow slower
and also have fewer days in utero). It’s very important to realize
that X, P, and L can be measured, for each guinea pig, but QO can-
not. Finally, A and C are exogenous causes that we don’t have any
data about (e.g., hereditary and environmental factors that control
growth rate and gestation time independently of litter size). The
important assumption that these factors are independent of each
other is conveyed by the absence of any arrow between them, as
well as of any common ancestor.

Now the question facing Wright was, “What is the direct effect
of the gestation period P on the birth weight X?” The data (5.66
grams per day) don’t tell you the direct effect; they give you a cor-
relation, biased by the litter size L. To get the direct effect, we need
to remove this bias.

In Figure 2.8, the direct effect is represented by the path coeffi-
cient p, corresponding to the path P - X. The bias due to litter size
corresponds to the path P ¢ L - Q = X. And now the algebraic
magic: the amount of bias is equal to the product of the path co-
efficients along that path (in other words, [ times I’ times gq). The
total correlation, then, is just the sum of the path coefficients along
the two paths: algebraically, p + (I X I’ X q) = 5.66 grams per day.

If we knew the path coefficients [, ', and g, then we could just
work out the second term and subtract it from 5.66 to get the de-
sired quantity p. But we don’t know them, because O (for example)
is not measured. But here’s where the ingenuity of path coefficients
really shines. Wright’s methods tell us how to express each of the
measured correlations in terms of the path coefficients. After doing
this for each of the measured pairs (P, X), (L, X), and (L, P), we
obtain three equations that can be solved algebraically for the un-
known path coefficients, p, ', and [ X g. Then we are done, because
the desired quantity p has been obtained.

Today we can skip the mathematics altogether and calculate p
by cursory inspection of the diagram. But in 1920, this was the first
time that mathematics was summoned to connect causation and
correlation. And it worked! Wright calculated p to be 3.34 grams
per day. In other words, had all the other variables (A, L, C, Q)
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been held constant and only the time of gestation increased by a
day, the average increase in birth weight would be 3.34 grams per
day. Note that this result is biologically meaningful. It tells us how
rapidly the pups are growing per day before birth. By contrast, the
number 5.66 grams per day has no biological significance, because
it conflates two separate processes, one of which is not causal but
anticausal (or diagnostic) in the link P < L. Lesson one from this
example: causal analysis allows us to quantify processes in the real
world, not just patterns in the data. The pups are growing at 3.34
grams per day, not 5.66 grams per day. Lesson two, whether you
followed the mathematics or not: in path analysis you draw con-
clusions about individual causal relationships by examining the
diagram as a whole. The entire structure of the diagram may be
needed to estimate each individual parameter.

In a world where science progresses logically, Wright’s response
to Niles should have produced a scientific excitement followed by
an enthusiastic adoption of his methods by other scientists and
statisticians. But that is not what happened. “One of the mysteries
of the history of science from 1920 to 1960 is the virtual absence
of any appreciable use of path analysis, except by Wright himself

bl

and by students of animal breeding,” wrote one of Wright’s ge-
neticist colleagues, James Crow. “Although Wright had illustrated
many diverse problems to which the method was applicable, none
of these leads was followed.”

Crow didn’t know it, but the mystery extended to social sciences
as well. In 1972, economist Arthur Goldberger lamented the “scan-
dalous neglect” of Wright’s work during that period and noted,
with the enthusiasm of a convert, that “[Wright’s] approach. ..
sparked the recent upsurge of causal modeling in sociology.”

If only we could go back and ask Wright’s contemporaries,
“Why didn’t you pay attention?” Crow suggests one reason: path
analysis “doesn’t lend itself to ‘canned’ programs. The user has to
have a hypothesis and must devise an appropriate diagram of mul-
tiple causal sequences.” Indeed, Crow put his finger on an essential
point: path analysis requires scientific thinking, as does every exer-
cise in causal inference. Statistics, as frequently practiced, discour-

ages it and encourages “canned” procedures instead. Scientists will
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always prefer routine calculations on data to methods that chal-
lenge their scientific knowledge.

R. A. Fisher, the undisputed high priest of statistics in the genera-
tion after Galton and Pearson, described this difference succinctly. In
1925, he wrote, “Statistics may be regarded as . . . the study of meth-
ods of the reduction of data.” Pay attention to the words “methods,”
and “data.” Wright abhorred the idea of statistics as

M

“reduction,’
merely a collection of methods; Fisher embraced it. Causal analysis
is emphatically not just about data; in causal analysis we must in-
corporate some understanding of the process that produces the data,
and then we get something that was not in the data to begin with.
But Fisher was right about one point: once you remove causation
from statistics, reduction of data is the only thing left.

Although Crow did not mention it, Wright’s biographer Wil-
liam Provine points out another factor that may have affected the
lack of support for path analysis. From the mid-1930s onward,
Fisher considered Wright his enemy. I previously quoted Yule on
how relations with Pearson became strained if you disagreed with
him and impossible if you criticized him. Exactly the same thing
could be said about Fisher. The latter carried out nasty feuds with
anyone he disagreed with, including Pearson, Pearson’s son Egon,
Jerzy Neyman (more will be said on these two in Chapter 8), and
of course Wright.

The real focus of the Fisher-Wright rivalry was not path analy-
sis but evolutionary biology. Fisher disagreed with Wright’s theory
(called “genetic drift”) that a species can evolve rapidly when it
undergoes a population bottleneck. The details of the dispute are
beyond the scope of this book, and the interested reader should
consult Provine. Relevant here is this: from the 1920s to the 1950s,
the scientific world for the most part turned to Fisher as its oracle
for statistical knowledge. And you can be certain that Fisher never
said one kind word to anyone about path analysis.

In the 1960s, things began to change. A group of social scientists,
including Otis Duncan, Hubert Blalock, and the economist Arthur
Goldberger (mentioned earlier), rediscovered path analysis as a
method of predicting the effect of social and educational policies.
In yet another irony of history, Wright had actually been asked to
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speak to an influential group of econometricians called the Cowles
Commission in 1947, but he utterly failed to communicate to them
what path diagrams were about. Only when economists arrived at
similar ideas themselves was a short-lived connection forged.

The fates of path analysis in economics and sociology followed
different trajectories, each leading to a betrayal of Wright’s ideas.
Sociologists renamed path analysis as structural equation model-
ing (SEM), embraced diagrams, and used them extensively until
1970, when a computer package called LISREL automated the cal-
culation of path coefficients (in some cases). Wright would have
predicted what followed: path analysis turned into a rote method,
and researchers became software users with little interest in what
was going on under the hood. In the late 1980s, a public challenge
(by statistician David Freedman) to explain the assumptions be-
hind SEM went unanswered, and some leading SEM experts even
disavowed that SEMs had anything to do with causality.

In economics, the algebraic part of path analysis became known
as simultaneous equation models (no acronym). Economists es-
sentially never used path diagrams and continue not to use them
to this day, relying instead on numerical equations and matrix
algebra. A dire consequence of this is that, because algebraic
equations are nondirectional (that is, x = y is the same as y = x),
economists had no notational means to distinguish causal from re-
gression equations and thus were unable to answer policy-related
questions, even after solving the equations. As late as 1995, most
economists refrained from explicitly attributing causal or counter-
factual meaning to their equations. Even those who used structural
equations for policy decisions remained incurably suspicious of di-
agrams, which could have saved them pages and pages of compu-
tation. Not surprisingly, some economists continue to claim that
“it’s all in the data” to this very day.

For all these reasons, the promise of path diagrams remained
only partially realized, at best, until the 1990s. In 1983, Wright him-
self was called back into the ring one more time to defend them,
this time in the American Journal of Human Genetics. At the time

he wrote this article, Wright was past ninety years old. It is both
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wonderful and tragic to read his essay, written in 1983, on the very
same topic he had written about in 1923. How many times in the his-
tory of science have we had the privilege of hearing from a theory’s
creator sixty years after he first set it down on paper? It would be
like Charles Darwin coming back from the grave to testify at the
Scopes Monkey Trial in 1925. But it is also tragic, because in the
intervening sixty years his theory should have developed, grown,
and flourished; instead it had advanced little since the 1920s.

The motivation for Wright’s paper was a critique of path anal-
ysis, published in the same journal, by Samuel Karlin (a Stanford
mathematician and recipient of the 1989 National Medal of Sci-
ence, who made fundamental contributions to economics and pop-
ulation genetics) and two coauthors. Of interest to us are two of
Karlin’s arguments.

First, Karlin objects to path analysis for a reason that Niles did
not raise: it assumes that all the relationships between any two
variables in the path diagram are linear. This assumption allows
Wright to describe the causal relationships with a single number,
the path coefficient. If the equations were not linear, then the effect
on Y of a one-unit change in X might depend on the current value
of X. Neither Karlin nor Wright realized that a general nonlinear
theory was just around the corner. (It would be developed three
years later by a star student in my lab, Thomas Verma.)

But Karlin’s most interesting criticism was also the one that he
considered the most important: “Finally, and we think most fruit-
fully, one can adopt an essentially model-free approach, seeking
to understand the data interactively by using a battery of displays,
indices, and contrasts. This approach emphasizes the concept of
robustness in interpreting results.” In this one sentence Karlin ar-
ticulates how little had changed from the days of Pearson and how
much influence Pearson’s ideology still had in 1983. He is saying
that the data themselves already contain all scientific wisdom; they
need only be cajoled and massaged (by “displays, indices, and con-
trasts”) into dispensing those pearls of wisdom. There is no need
for our analysis to take into account the process that generated the

data. We would do just as well, if not better, with a “model-free
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approach.” If Pearson were alive today, living in the era of Big
Data, he would say exactly this: the answers are all in the data.

Of course, Karlin’s statement violates everything we learned in
Chapter 1. To speak of causality, we must have a mental model of
the real world. A “model-free approach” may take us to the first
rung of the Ladder of Causation, but no farther.

Wright, to his great credit, understood the enormous stakes
and stated in no uncertain terms, “In treating the model-free ap-
proach (3) as preferred alternative . . . Karlin et al. are urging not
merely a change in method, but an abandonment of the purpose
of path analysis and evaluation of the relative importance of vary-
ing causes. There can be no such analysis without a model. Their
advice to anyone with an urge to make such an evaluation is to
repress it and do something else.”

Wright understood that he was defending the very essence of the
scientific method and the interpretation of data. I would give the
same advice today to big-data, model-free enthusiasts. Of course,
it is okay to tease out all the information that the data can provide,
but let’s ask how far this will get us. It will never get us beyond the
first rung of the Ladder of Causation, and it will never answer even
as simple a question as “What is the relative importance of various
causes?” E pur si muove!

FROM OBJECTIVITY TO SUBJECTIVITY—
THE BAYESIAN CONNECTION

One other theme in Wright’s rebuttal may hint at another reason
for the resistance of statisticians to causality. He repeatedly states
that he did not want path analysis to become “stereotyped.” Ac-
cording to Wright, “The unstereotyped approach of path analysis
differs profoundly from the stereotyped modes of description de-
signed to avoid any departures from complete objectivity.”

What does he mean? First, he means that path analysis should
be based on the user’s personal understanding of causal processes,
reflected in the causal diagram. It cannot be reduced to mechanical
routines, such as those laid out in statistics manuals. For Wright,
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drawing a path diagram is not a statistical exercise; it is an exercise
in genetics, economics, psychology, or whatever the scientist’s own
field of expertise is.

Second, Wright traces the allure of “model-free” methods to
their objectivity. This has indeed been a holy grail for statisticians
since day one—or since March 15, 1834, when the Statistical So-
ciety of London was founded. Its founding charter said that data
were to receive priority in all cases over opinions and interpreta-
tions. Data are objective; opinions are subjective. This paradigm
long predates Pearson. The struggle for objectivity—the idea of
reasoning exclusively from data and experiment—has been part of
the way that science has defined itself ever since Galileo.

Unlike correlation and most of the other tools of mainstream
statistics, causal analysis requires the user to make a subjective
commitment. She must draw a causal diagram that reflects her
qualitative belief—or, better yet, the consensus belief of researchers
in her field of expertise—about the topology of the causal processes
at work. She must abandon the centuries-old dogma of objectivity
for objectivity’s sake. Where causation is concerned, a grain of wise
subjectivity tells us more about the real world than any amount of
objectivity.

In the above paragraph, I said that “most of” the tools of sta-
tistics strive for complete objectivity. There is one important ex-
ception to this rule, though. A branch of statistics called Bayesian
statistics has achieved growing popularity over the last fifty years
or so. Once considered almost anathema, it has now gone com-
pletely mainstream, and you can attend an entire statistics confer-
ence without hearing any of the great debates between “Bayesians”
and “frequentists” that used to thunder in the 1960s and 1970s.

The prototype of Bayesian analysis goes like this: Prior Belief +
New Evidence > Revised Belief. For instance, suppose you toss a
coin ten times and find that in nine of those tosses the coin came up
heads. Your belief that the coin is fair is probably shaken, but how
much? An orthodox statistician would say, “In the absence of any
additional evidence, I would believe that this coin is loaded, so I

would bet nine to one that the next toss turns up heads.”
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A Bayesian statistician, on the other hand, would say, “Wait
a minute. We also need to take into account our prior knowledge
about the coin.” Did it come from the neighborhood grocery or a
shady gambler? If it’s just an ordinary quarter, most of us would
not let the coincidence of nine heads sway our belief so dramat-
ically. On the other hand, if we already suspected the coin was
weighted, we would conclude more willingly that the nine heads
provided serious evidence of bias.

Bayesian statistics give us an objective way of combining the
observed evidence with our prior knowledge (or subjective be-
lief) to obtain a revised belief and hence a revised prediction of
the outcome of the coin’s next toss. Still, what frequentists could
not abide was that Bayesians were allowing opinion, in the form
of subjective probabilities, to intrude into the pristine kingdom of
statistics. Mainstream statisticians were won over only grudgingly,
when Bayesian analysis proved a superior tool for a variety of ap-
plications, such as weather prediction and tracking enemy subma-
rines. In addition, in many cases it can be proven that the influence
of prior beliefs vanishes as the size of the data increases, leaving a
single objective conclusion in the end.

Unfortunately, the acceptance of Bayesian subjectivity in main-
stream statistics did nothing to help the acceptance of causal subjec-
tivity, the kind needed to specify a path diagram. Why? The answer
rests on a grand linguistic barrier. To articulate subjective assump-
tions, Bayesian statisticians still use the language of probability, the
native language of Galton and Pearson. The assumptions entering
causal inference, on the other hand, require a richer language (e.g.,
diagrams) that is foreign to Bayesians and frequentists alike. The
reconciliation between Bayesians and frequentists shows that phil-
osophical barriers can be bridged with goodwill and a common lan-
guage. Linguistic barriers are not surmounted so easily.

Moreover, the subjective component in causal information does
not necessarily diminish over time, even as the amount of data in-
creases. Two people who believe in two different causal diagrams
can analyze the same data and may never come to the same con-

clusion, regardless of how “big” the data are. This is a terrifying
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prospect for advocates of scientific objectivity, which explains their
refusal to accept the inevitability of relying on subjective causal
information.

On the positive side, causal inference is objective in one criti-
cally important sense: once two people agree on their assumptions,
it provides a 100 percent objective way of interpreting any new
evidence (or data). It shares this property with Bayesian inference.
So the savvy reader will probably not be surprised to find out that
[ arrived at the theory of causality through a circuitous route that
started with Bayesian probability and then took a huge detour
through Bayesian networks. I will tell that story in the next chapter.
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