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The answer is nowhere to be found in simple statistics. In order to decide whether the drug
will harm or help a patient, we first have to understand the story behind the data—the causal
mechanism that led to, or generated, the results we see. For instance, suppose we knew an
additional fact: Estrogen has a negative effect on recovery, so women are less likely to recover
than men, regardless of the drug. In addition, as we can see from the data, women are signifi-
cantly more likely to take the drug than men are. So, the reason the drug appears to be harmful
overall is that, if we select a drug user at random, that person is more likely to be a woman and
hence less likely to recover than a random person who does not take the drug. Put differently,
being a woman is a common cause of both drug taking and failure to recover. Therefore, to
assess the effectiveness, we need to compare subjects of the same gender, thereby ensuring
that any difference in recovery rates between those who take the drug and those who do not
is not ascribable to estrogen. This means we should consult the segregated data, which shows
us unequivocally that the drug is helpful. This matches our intuition, which tells us that the
segregated data is “more specific,” hence more informative, than the unsegregated data.

With a few tweaks, we can see how the same reversal can occur in a continuous example.
Consider a study that measures weekly exercise and cholesterol in various age groups. When
we plot exercise on the X-axis and cholesterol on the Y-axis and segregate by age, as in
Figure 1.1, we see that there is a general trend downward in each group; the more young
people exercise, the lower their cholesterol is, and the same applies for middle-aged people
and the elderly. If, however, we use the same scatter plot, but we don’t segregate by age
(as in Figure 1.2), we see a general trend upward; the more a person exercises, the higher their
cholesterol is. To resolve this problem, we once again turn to the story behind the data. If we
know that older people, who are more likely to exercise (Figure 1.1), are also more likely to
have high cholesterol regardless of exercise, then the reversal is easily explained, and easily
resolved. Age is a common cause of both treatment (exercise) and outcome (cholesterol). So
we should look at the age-segregated data in order to compare same-age people and thereby
eliminate the possibility that the high exercisers in each group we examine are more likely to
have high cholesterol due to their age, and not due to exercising.

However, and this might come as a surprise to some readers, segregated data does not always
give the correct answer. Suppose we looked at the same numbers from our first example of drug
taking and recovery, instead of recording participants’ gender, patients’ blood pressure were

Cholesterol

Exercise

Figure 1.1 Results of the exercise—cholesterol study, segregated by age
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Table 1.3  Age breakdown of voters in 2012 election
(all numbers in thousands)

Age group # of voters
18-29 20,539
3044 30,756
45-64 52,013

65+ 29,641
132,948

Table 1.4 Age breakdown of voters over the age of
29 in 2012 election (all numbers in thousands)

Age group # of voters
30-44 30,756
45-64 52,013

65+ 29,641
112,409

the data to form a new set (shown in Table 1.4), using only the cases where voters were older
than 29.
In this new data set, there are 112,409,000 total votes, so we would estimate that

30.756,000 _ .

P(Voter A 45| Voter Age > 29) = ——— =
(Voter Age < 45|Voter Age 9) 112.409.000

Conditional probabilities such as these play an important role in investigating causal questions,
as we often want to compare how the probability (or, equivalently, risk) of an outcome changes
under different filtering, or exposure, conditions. For example, how does the probability of
developing lung cancer for smokers compare to the analogous probability for nonsmokers?

Study questions
Study question 1.3.2

Consider Table 1.5 showing the relationship between gender and education level in the U.S.
adult population.

(a) Estimate P(High School).

(b) Estimate P(High School OR Female).
(c) Estimate P(High School | Female).
(d) Estimate P(Female | High School).
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Similarly, the expected value of any function of X—say, g(X)—is obtained by summing
g(x)P(X = x) over all values of X.

E[gX)] = ) g(0P(x) (1.11)

For example, if after rolling a die, I receive a cash prize equal to the square of the result, we
have g(X) = X2, and the expected prize is

El[g(X)] = (12>< %) + (22x é) ¥ (32 x é) + (42 x é) + <52>< é) + (62>< é) = 15.17
(1.12)

We can also calculate the expected value of Y conditional on X, E(Y|X = x), by multiplying
each possible value y of Y by P(Y = y|X = x), and summing the products.

EY|X=x)=) yP(¥ =y|X=1x) (1.13)

y

E(X)is one way to make a “best guess” of X’s value. Specifically, out of all the guesses g that
we can make, the choice “g = E(X)” minimizes the expected square error E(g — X)?. Similarly,
E(Y|X = x) represents a best guess of Y, given that we observe X = x. If g = E(Y|X = x), then
¢ minimizes the expected square error E[(g — Y)*|X = xﬁ.

For example, the expected age of a 2012 voter, as demonstrated by Table 1.3, is

E(Voter’s Age) =23.5x0.16 437 x0.23 + 54.5 % 0.39 + 70 X 0.22 = 48.9

(For this calculation, we have assumed that every age within each category is equally
likely, e.g., a voter is as likely to be 18 as 25, and as likely to be 30 as 44. We have also
assumed that the oldest age of any voter is 75.) This means that if we were asked to guess
the age of a randomly chosen voter, with the understanding that if we were off by e years,
we would lose ¢2 dollars, we would lose the least money, on average, if we guessed 48.9.
Similarly, if we were asked to guess the age of a random voter younger than the age of 45,
our best bet would be

E[Voter’s Age | Voter’s Age < 45] = 23.5 % 0.40 + 37 x 0.60 = 31.6 (1.14)

The use of expectations as a basis for predictions or “best guesses” hinges to a great extent
on an implicit assumption regarding the distribution of X or Y|X = x, namely that such distri-
butions are approximately symmetric. If, however, the distribution of interest is highly skewed,
other methods of prediction may be better. In such cases, for example, we might use the median
of the distribution of X as our “best guess’’; this estimate minimizes the expected absolute error
E(]g — X|). We will not pursue such alternative measures further here.

1.3.9 Variance and Covariance

The variance of a variable X, denoted Var(X) or o2, is a measure of roughly how “spread out”
the values of X in a data set or population are from their mean. If the values of X all hover close
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This result is not surprising, since Y (the sum of the two dice) can be written as
Y=X+Z7

where Z is the outcome of Die 2, and it stands to reason that if X increases by one unit, say
from X = 3 to X = 4, then E[Y] will, likewise, increase by one unit. The reader might be a bit
surprised, however, to find out that the reverse is not the case; the regression of X on Y does
not have a slope of 1.0. To see why, we write

E[X|Y =y] = E[Y — Z|Y = y] = 1.0y — E[Z|Y = y] (1.20)

and realize that the added term, E[Z|Y = y], since it depends (linearly) on y, makes the slope
less than unity. We can in fact compute the exact value of E[X|Y = y] by appealing to symmetry
and write

E[X|Y =y] = E[Z]Y = y]
which gives, after substituting in Eq. (1.20),
E[X|Y =y] =0.5y

The reason for this reduction is that, when we increase Y by one unit, each of X and Z con-
tributes equally to this increase on average. This matches intuition; observing that the sum of
the two dice is Y = 10, our best estimate of eachis X =5and Z = 5.

In general, if we write the regression equation for Y on X as

y=a+bx (1.21)

the slope b is denoted by Ryy, and it can be written in terms of the covariate oy as follows:

b=Ry = X (1.22)

From this equation, we see clearly that the slope of ¥ on X may differ from the slope
of X on Y—that is, in most cases, Ryy # Ryy. (Ryy = Ryy only when the variance of X is
equal to the variance of Y.) The slope of the regression line can be positive, negative, or zero.
If it is positive, X and Y are said to have a positive correlation, meaning that as the value of
X gets higher, the value of Y gets higher; if it is negative, X and Y are said to have a negative
correlation, meaning that as the value of X gets higher, the value of Y gets lower; if it is zero
(a horizontal line), X and Y have no linear correlation, and knowing the value of X does not
assist us in predicting the value of Y, at least linearly. If two variables are correlated, whether
positively or negatively (or in some other way), they are dependent.

1.3.11 Multiple Regression

It is also possible to regress a variable on several variables, using multiple linear regression.
For instance, if we wanted to predict the value of a variable Y using the values of the variables
X and Z, we could perform multiple linear regression of Y on {X, Z}, and estimate a regression
relationship

Y=ry+nrx+nrz (1.23)
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which represents an inclined plane through the three-dimensional coordinate system.

We can create a three-dimensional scatter plot, with values of Y on the y-axis, X on the
x-axis, and Z on the z-axis. Then, we can cut the scatter plot into slices along the Z-axis. Each
slice will constitute a two-dimensional scatter plot of the kind shown in Figure 1.4. Each of
those 2-D scatter plots will have a regression line with a slope r,. Slicing along the X-axis will
give the slope r,.

The slope of ¥ on X when we hold Z constant is called the partial regression coefficient and
is denoted by Ryy.,. Note that it is possible for Ryy to be positive, whereas Ryy., is negative
as shown in Figure 1.1. This is a manifestation of Simpson’s Paradox: positive association
between Y and X overall, that becomes negative when we condition on the third variable Z.

The computation of partial regression coefficients (e.g., r; and r, in (1.23)) is greatly facil-
itated by a theorem that is one of the most fundamental results in regression analysis. It states
that if we write Y as a linear combination of variables X, X,, ... , X, plus a noise term e,

Y=r0+r1X]+r2X2+-~-+rka+€ (124)

then, regardless of the underlying distribution of Y, X, X,, ... , X}, the best least-square coef-
ficients are obtained when ¢ is uncorrelated with each of the regressors X, X,, ... , X;. Thatis,

Cov(e,X;) =0 for i=1.2, ..,k

To see how this orthogonality principle is used to our advantage, assume we wish to compute
the best estimate of X = Die I given the sum

Y = Die I + Die 2

Writing
X=a+pY+e (1.25a)

our goal is to find @ and f in terms of estimable statistical measures. Assuming without loss
of generality E[e] = 0, and taking expectation on both sides of the equation, we obtain

E[X] = a+ PE[Y] (1.25b)

Further multiplying both sides of (1.25a) by Y and taking the expectation gives
E[XY] = aE[Y] + PE[Y’] + E[Ye] (1.26)

The orthogonality principle dictates E[Ye] = 0, and ( 1.25) and ( 1.26b) yield t wo equations
with t wo unknowns, a and f. Solving for a and f, we obtain

a = EX) - B2
Oy
p="2

Oy

which completes the derivation. The slope f could have been obtained from Eq. (1.22), by sim-
ply reversing X and Y, but the derivation above demonstrates a general method of computing
slopes, in two or more dimensions.
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object. A mathematical graph is a collection of vertices (or, as we will call them, nodes) and
edges. The nodes in a graph are connected (or not) by the edges. Figure 1.5 illustrates a simple
graph. X, Y, and Z (the dots) are nodes, and A and B (the lines) are edges.

X Y Z

Figure 1.5 An undirected graph in which nodes X and Y are adjacent and nodes Y and Z are adjacent
but not X and Z

Two nodes are adjacent if there is an edge between them. In Figure 1.5, X and Y are adjacent,
and Y and Z are adjacent. A graph is said to be a complete graph if there is an edge between
every pair of nodes in the graph.

A path between two nodes X and Y is a sequence of nodes beginning with X and ending
with Y, in which each node is connected to the next by an edge. For instance, in Figure 1.5,
there is a path from X to Z, because X is connected to Y, and Y is connected to Z.

Edges in a graph can be directed or undirected. Both of the edges in Figure 1.5 are
undirected, because they have no designated “in” and “out” ends. A directed edge, on the
other hand, goes out of one node and into another, with the direction indicated by an arrow
head. A graph in which all of the edges are directed is a directed graph. Figure 1.6 illustrates
a directed graph. In Figure 1.6, A is a directed edge from X to ¥ and B is a directed edge from
YtoZ

X Y V4

Figure 1.6 A directed graph in which node X is a parent of Y and Y is a parent of Z

The node that a directed edge starts from is called the parent of the node that the edge goes
into; conversely, the node that the edge goes into is the child of the node it comes from. In
Figure 1.6, X is the parent of Y, and Y is the parent of Z; accordingly, Y is the child of X,
and Z is the child of Y. A path between two nodes is a directed path if it can be traced along
the arrows, that is, if no node on the path has two edges on the path directed into it, or two
edges directed out of it. If two nodes are connected by a directed path, then the first node is the
ancestor of every node on the path, and every node on the path is the descendant of the first
node. (Think of this as an analogy to parent nodes and child nodes: parents are the ancestors of
their children, and of their children’s children, and of their children’s children’s children, etc.)
For instance, in Figure 1.6, X is the ancestor of both Y and Z, and both Y and Z are descendants
of X.

When a directed path exists from a node to itself, the path (and graph) is called cyclic. A
directed graph with no cycles is acyclic. For example, in Figure 1.7(a) the graph is acyclic;
however, the graph in Figure 1.7(b) is cyclic. Note that inlj\(a) there is no directed path from
any node to itself, whereas in! XW there are directed paths from X back to X, for example.
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32 Causal Inference in Statistics

(c) Using your results for (b), find a combination of parameters that exhibits Simpson’s
reversal.

Study question 1.5.3

Consider a graph X, — X, — X3 — X, of binary random variables, and assume that the con-
ditional probabilities between any two consecutive variables are given by

PX;=1X,_,,=1)=p
PX;=1|X;_.,=0)=¢
PX, = 1) = p,
Compute the following probabilities
PX, =1,X=0,X;=1,X,=0)
PX,=11X;=1)
PX, =1X,=1)

Study question 1.5.4

Define the structural model that corresponds to the Monty Hall problem, and use it to describe
the joint distribution of all variables.

Bibliographical Notes for Chapter 1

An extensive account of the history of Simpson’s paradox is given in Pearl (2009, pp. 174-182),
including many attempts by statisticians to resolve it without invoking causation. A more
recent account, geared for statistics instructors is given in (Pearl 2014c). Among the many
texts that provide basic introductions to probability theory, Lindley (2014) and Pearl (1988,
Chapters 1 and 2) are the closest in spirit to the Bayesian perspective used in Chapter 1. The
textbooks by Selvin (2004) and Moore et al. (2014) provide excellent introductions to clas-
sical methods of statistics, including parameter estimation, hypothesis testing and regression
analysis.

The Monty Hall problem, discussed in Section 1.3, appears in many introductory books
on probability theory (e.g., Grinstead and Snell 1998, p. 136; Lindley 2014, p. 201) and
is mathematically equivalent to the “Three Prisoners Dilemma” discussed in (Pearl 1988,
pp- 58-62). Friendly introductions to graphical models are given in Elwert (2013), Glymour
and Greenland (2008), and the more advanced texts of Pearl (1988, Chapter 3), Lauritzen
(1996) and Koller and Friedman (2009). The product decomposition rule of Section 1.5.2
was used in Howard and Matheson (1981) and Kiiveri et al. (1984) and became the semantic
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Graphical Models and Their Applications 37

SCM 2.2.3 (Work Hours, Training, and Race Time)

V={X,Y,Z},U= {UX» UY’ Uz}»F= {fx’fy’fz}

Jx 1 X=Uy
fy Y =84—x+Uy
100

SCMs 2.2.1-2.2.3 share the graphical model shown in Figure 2.1.

SCMs 2.2.1 and 2.2.3 deal with continuous variables; SCM 2.2.2 deals with categorical
variables. The relationships between the variables in 2.1.1 are all positive (i.e., the higher the
value of the parent variable, the higher the value of the child variable); the correlations between
the variables in 2.2.3 are all negative (i.e., the higher the value of the parent variable, the lower
the value of the child variable); the correlations between the variables in 2.2.2 are not linear at
all, but logical. No two of the SCMs share any functions in common. But because they share
a common graphical structure, the data sets generated by all three SCMs must share certain
independencies—and we can predict those independencies simply by examining the graphical
model in Figure 2.1. The independencies shared by data sets generated by these three SCMs,
and the dependencies that are likely shared by all such SCMs, are these:

1. ZandY ail*l G ependent
For some z,y, P(Z =z|Y =y) # P(Z =72)
2. Yand X arzé,\filé/pendent
For some y,x,P(Y =y|X =x) #P(Y =)
3. Z and X are likely dependent
For some z,x,P(Z =zl X =x) # P(Z =z)
4. Z and X are independent, conditional on Y
Forallx,y,z, PZ =z|X =x,Y =y)=P(Z =z|Y =)

To understand why these independencies and dependencies hold, let’s examine lti]ﬁe §raphical
model. First, we will verify that any two variables with an edge between them are,\?ll pendent.
Remember tth%% an arrow from one variable to another indicates that the first variable causes
the second A s i a the value of the first variable is part of the function
that determines the value of the second. Therefore, the second variable depends on the first for

Ux

X
Uy

Y
Uz

Figure 2.1 The graphical model of SCMs 2.2.1-2.2.3
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38 Causal Inference in Statistics

its value; there is some cas in which changing the value of the first variable changes the value
of the second. "Ilﬁat/{neans that when we examine those variables in the data set, the probability
that one variable t,akles a given value will change, given that we know the value of the other
variable. So iwcgausal model, regardless of the specific functions, two variables connected
by an edge are dependent. By this reasoning, we can see that in SCMs 2.2.1-2.2.3, Z and Y
are dependent, and Y and X are dependen;\.

From these two facts, we can conclude that Z and X are likely dependent. If Z depends on Y
for its value, and Y depends on X for its value, then Z likely depends on X for its value. There
are pathological cases in which this is not true. Consider, for example, the following SCM,
which also has the graph in Figure 2.1.

SCM 2.2.4 (Pathological Case of Intransitive Dependence)
V=A{X,Y,Z},U = {Uyx, Uy, Uz}, F = {fx.fy.f7}
Jx X =Uy

a IFX=1ANDU, =1
fr:Y={b IFX=2AND U, =1

¢ IFU, =2
fizo i FY=cORU; =1
YT IFU,=2

In this case, no matter what value Uy and U, take, X will have no effect on the value that
Z takes; changes in X account for variation in Y between a and b, but Y doesn’t affect Z unless
it takes the value c. Therefore, X and Z vary independently in this model. We will call cases
such as these intransitive cases.

However, intransitive cases form only a small number of the cases we will encounter. In
most cases, the values of X and Z vary together just as X and Y do, and Y and Z. Therefore,
they are likely dependent in the data set.

Now, let’s consider point 4: Z and X are independent conditional on Y. Remember that when
we condition on Y, we filter the data into groups based on the value of Y. So we compare all
the cases where Y = q, all the cases where Y = b, and so on. Let’s assume that we’re looking
at the cases where Y = a. We want to know whether, in these cases only, the value of Z is
independent of the value of X. Previously, we determined that X and Z are likely dependent,
because when the value of X changes, the value of Y likely changes, and when the value of Y
changes, the value of Z is likely to change. Now, however, examining only the cases where
Y = a, when we select cases with different values of X, the value of Uy changes so as to keep
Y atY = a, butsince Z depends only on Y and U, not on Uy, the value of Z remains unaltered.
So selecting a different value of X doesn’t change the value of Z. So, in the case where Y = q,
X is independent of Z. This is of course true no matter which specific value of ¥ we condition
on. So X is independent of Z, conditional on Y.

This configuration of variables—three nodes and two edges, with one edge directed into and
one edge directed out of the middle variable—is called a chain. Analogous reasoning to the
above tells us that in any graphical model, given any two variables X and Y, if the only path
between X and Y is composed entirely of chains, then X and Y are independent conditional
on any intermediate variable on that path. This independence relation holds regardless of the
functions that connect the variables. This gives us a rule:

# This occurs for example when X and Uy are fair coins and Y = 1 if and only X=U,. In this case P(Y=1|X=1) =
P(Y=11X=0) = P(Y=1)=1/2. Such pathological cases require precise numerical probabilities to achieve independence
(P(X=1)=P(Uy)=1/2); they are rare, and can be ignored for all practical purposes.
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40 Causal Inference in Statistics

If we assume that the error terms Uy, Uy, and U, are independent, then by examining the
graphical model in Figure 2.2, we can determine that SCMs 2.2.5 and 2.2.6 share the following
dependencies and independencies:

. Xand Y arel,l\éeeli)/endent.
For some x,y, P(X = x|Y = y) # P(X = x)
2. Xand Z arexczfc)ﬁendent.
For some x,z, PX = x|Z =2) # PX = x)
3. Z and Y are likely dependent.
For some z,y, P(Z =z|Y =y) # P(Z =2)
4. Y and Z are independent, conditional on X.
For all 4x,y,z, P(Y =y|Z =2, X=x) = P(Y = y|X =x)

Points 1 and 2 follow, once again, from the fact that ¥ and Z are both di %{cﬁly connected to
X by an arrow, so when the value of X changes, the values of both Y and ,I\C%Xnge. This tells
us something further, however: If ¥ changes when X changes, and Z changes when X changes,
then it is likely (though not certain) that ¥ changes together with Z, and vice versa. Therefore,
since a change in the value of Y gives us information about an associated change in the value
of Z,Y \glzld Z are likely dependent variables.

Why, then, are Y and Z independent conditional on X? Well, what happens when we condi-
tion on X? We filter the data based on the value of X. So now, we’re only comparing cases where
the value of X is constant. Since X does not change, the values of Y and Z do not change in
accordance with it—they change only in response to Uy and U, which we have assumed to be
independent. Therefore, any additional changes in the values of ¥ and Z must be independent
of each other.

This configuration of variables—three nodes, with two arrows emanating from the middle
variable—is called a fork. The middle variable in a fork is the common cause of the other two
variables, and of any of their descendants. If two variables share a common cause, and if that
common cause is part of the only path between them, then analogous reasoning to the above
tells us that these dependencies and conditional independencies are true of those variables.
Therefore, we come by another rule:

Rule 2 (Conditional Independence in Forks) Ifavariable X is a common cause of variables
Y and Z, and there is only one path between Y and Z, then Y and Z are independent conditional
on X.

2.3 Colliders

So far we have looked at two simple configurations of edges and nodes that can occur on a path
between two variables: chains and forks. There is a third such configuration that we speak of
separately, because it carries with it unique considerations and challenges. The third config-
uration contains a collider node, and it occurs when one node receives edges from two other
nodes. The simplest graphical causal model containing a collider is illustrated in Figure 2.3,
representing a common effect, Z, of two causes X and Y.

As is the case with every graphical causal model, all SCMs that have Figure 2.3 as their
graph share a set of dependencies and independencies that we can determine from the graphical
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Graphical Models and Their Applications 41

Ux Uy

Figure 2.3 A simple collider

model alone. In the case of the model in Figure 2.3, assuming independence of Uy, Uy, and
U,, these independencies are as follows:

1. Xand Z arlé,%%endent.

For some x,z, P(X = x|Z =2) # P(X = Xx)
2. Yand Z aré,@@};endent.

For some y,z, P(Y = y|Z=272) # P(Y =)
3. X and Y are independent.

For all x, y,[,fl’(( =x|Y =y)=PX =Xx)
4. XandY artlz/\t%pendent conditional on Z.

For some x,y,z, PX =x|Y =y,Z=2) # PX =x|Z =72)

The truth of the first two points was established in Section 2.2. Point 3 is self-evident; neither
X nor Y is a descendant or an ancestor of the other, nor do they depend for their value on the
same variable. They respond only to Uy and Uy, which are assumed independent, so there is no
causal mechanism by which variations in the value of X should be associated with variations
in the value of Y. This independence also reflects our understanding of how causation operates
in time; events that are independent in the present do not become dependent merely because
they may have common effects in the future.

Why, then, does point 4 hold? Why would two independent variables suddenly become
dependent when we condition on their common effect? To answer this question, we return
again to the definition of conditioning as filtering by the value of the conditioning variable.
When we condition on Z, we limit our comparisons to cases in which Z takes the same value.
But remember that Z depends, for its value, on X and Y. So, when comparing cases where
Z takes, for example, the value, any change in value of X must be compensated for by a change
in the value of Y—otherwise, the value of Z would change as well.

The reasoning behind this attribute of colliders—that conditioning on a collision node pro-
duces a dependence between the node’s parents—can be difficult to grasp at first. In the most
basic situation where Z = X + Y, and X and Y are independent variables, we have the follow-
ing logic: If I tell you that X = 3, you learn nothing about the potential value of Y, because
the two numbers are independent. On the other hand, if I start by telling you that Z = 10, then
telling you that X = 3 immediately tells you that ¥ must be 7. Thus, X and Y are dependent,
given that Z = 10.

This phenomenon can be further clarified through a real-life example. For instance, suppose
a certain college gives scholarships to two types of students: those with unusual musical talents
and those with extraordinary grade point averages. Ordinarily, musical talent and scholastic
achievement are independent traits, so, in the population at large, finding a person with musical
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Table 2.2 Conditional probability distributions for the distribution
in Table 2.2. (Top: Distribution conditional on Z = 1. Bottom:
Distribution conditional on Z = 0)

X Y PX,Y|Z=1)
Heads Heads 0.333
Heads Tails 0.333
Tails Heads 0.333
Tails Tails 0

X Y PrX,Y|Z=0)
Heads Heads 0
Heads Tails 0

Tails Heads 0

Tails Tails 1

Another example of colliders in action—one that may serve to further illuminate the diffi-
culty that such configurations can present to statisticians—is the Monty Hall Problem, which
we first encountered in Section 1.3. At its heart, the Monty Hall Problem reflects the presence
of a collider. Your initial choice of door is one parent node; the door behind which the car is
placed is the other parent node; and the door Monty opens to reveal a goat is the collision node,
causally affected by both the other two variables. The causation here is clear: If you choose
Door A, and if Door A has a goat behind it, Monty is forced to open whichever of the remaining
doors that has a goat behind it.

Your initial choice and the location of the car are independent; that’s why you initially have
a % chance of choosing the door with the car behind it. However, as with the two independent
coins, conditional on Monty’s choice of door, your initial choice and the placement of the
prizes are dependent. Though the car may only be behind Door B in % of cases, it will be

behind Door B in 2 of cases in which you choose Door A and Monty opened Door C.

Just as conditioning on a collider makes previously independent variables dependent, so too
does conditioning on any descendant of a collider. To see why this is true, let’s return to our
example of two independent coins and a bell. Suppose we do not hear the bell directly, but
instead rely on a witness who is somewhat unreliable; whenever the bell does not ring, there
is 50% chance that our witness will falsely report that it did. Letting W stand for the witness’s
report, the causal structure is shown in Figure 2.4, and the probabilities for all combinations
of X, Y, and W are shown in Table 2.3.

The reader can easily verify that, based on this table, we have

P(X = “Heads”|Y = “Heads”) = P(X = “Heads”) = %

and

P(X = “Heads”|W =1) = (0.25 + 0.25) e +(0.25+0.25 +0.25+0.125) = (;)%
and
0.5

P(X = “Heads”|Y = “Heads”, W = 1) = 0.25 e +(0.25+0.25) =05 < 085
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Uy Uy
UZ

X l Y
vy 12
\W

Figure 2.4 A simple collider, Z, with one child, W, representing the scenario from Table 2.3, with X
representing one coin flip, Y representing the second coin flip, Z representing a bell that rings if either X
or Y is heads, and W representing an unreliable witness who reports on whether or not the bell has rung

Table 2.3 Probability distribution for two flips of a fair coin and a bell
that rings if either flip results in heads, with X representing flip one,

Y representing flip two, and W representing a witness who, with variable
reliability, reports whether or not the bell has rung

X Y w PX,Y, W)
Heads Heads 1 0.25
Heads Tails 1 0.25
Tails Heads 1 0.25
Tails Tails 1 0.125
Tails Tails 0 0.125

Thus, X and Y are independent before reading the witness report, but become dependent
thereafter.

These considerations lead us to a third rule, in addition to the two we established in
Section 2.2.

Rule 3 (Conditional Independence in Colliders) If a variable Z is the collision node
between two variables X and Y, and there is only one path between X and Y, then X and Y are
unconditionally independent but are dependent conditional on Z and any descendants of Z.

Rule 3 is extremely important to the study of causality. In the coming chapters, we will see
that it allows us to test whether a causal model could have generated a data set, to discover
models from data, and to fully resolve Simpson’s Paradox by determining which variables to
measure and how to estimate causal effects under confounding.

Remark Inquisitive students may wonder why it is that dependencies associated with con-
ditioning on a collider are so surprising to most people—as in, for example, the Monty Hall
example. The reason is that humans tend to associate dependence with causation. Accordingly,
they assume (wrongly) that statistical dependence between two variables can only exist if there
is a causal mechanism that generates such dependence; that is, either one of the variables causes
the other or a third variable causes both. In the case of a collider, they are surprised to find a
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As we shall see in Section 3.8.3, this can occur when some of the error terms are correlated or,
equivalently, when some of the variables are unobserved. Second, this procedure tests models
globally. If we discover that the model is not a good fit to the data, there is no way for us to
determine why that is—which edges should be removed or added to improve the fit. Third,
when we test a model globally, the number of variables involved may be large, and if there is
measurement noise and/or sampling variation associated with each variable, the test will not
be reliable.

d-separation presents several advantages over this global testing method. First, it is nonpara-
metric, meaning that it doesn’t rely on the specific functions that connect variables; instead,
it uses only the graph of the model in question. Second, it tests models locally, rather than
globally. This allows us to identify specific areas, where our hypothesized model is flawed,
and to repair them, rather than starting from scratch on a whole new model. It also means that
if, for whatever reason, we can’t identify the coefficient in one area of the model, we can still
get some incomplete information about the rest of the model. (As opposed to the first method,
in which if we could not estimate one coefficient, we could not test any part of the model.)

If we had a computer, we could test and reject many possible models in this way, even-
tually whittling down the set of possible models to only a few whose testable implications
do not contradict the dependencies present in the data set. It is a set of models, rather than a
single model, because some graphs have indistinguishable implications. A set of graphs with
indistinguishable implications is called an equivalence class. Two graphs G| and G, are in
the same equivalence class if they share a common skeleton—that is, the same edges, regard-
less of the direction of those edges—and if they share common v-structures, that is, colliders
whose parents are not adjacent. Any two graphs that satisfy this criterion have identical sets of
d-separation conditions and, therefore, identical sets of testable implications (Verma and Pearl
1990).

The importance of this result is that it allows us to search a data set for the causal models
that could have generated it. Thus, not only can we start with a causal model and generate
a data set—but we can also start with a data set, and reason back to a causal model. This is
enormously useful, since the object of most data-driven research is exactly to find a model that
explains the data.

There are other methods of causal search—including some that rely on the kind of global
model testing with which we began the section—but a full investigation of them is beyond
the scope of this book. Those interested in learning more about search should refer to (Pearl
2000; Pearl and Verma 1991; Rebane and Pearl 2003; Spirtes and Glymour 1991; Spirtes et al.
1993).

Study questions
Study question 2.5.1

(a) Which of the arrows in Figure 2.9 can be reversed without being detected by any statistical
test? [Hint: Use the criterion for equivalence class.

(b) List all graphs that are observationally equivalent to the one in Figure 2.9.

(c) Listthe arrows in Figure 2.9 whose directionality can be determined from nonexperimental
data.
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(d) Write down a regression equation for Y such that, if a certain coefficient in that equation
is nonzero, the model of Figure 2.9 is wrong.

(e) Repeat question (d) for variable Zs.

(f) Repeat question (e) assuming the X is not measured.

(g) How many regression equations of the type described in (d) and (e) are needed to ensure
that the model is fully tested, namely, that if it passes all these tests it cannot be refuted
additional tests of these kind. [Hint: Ensure that you test every vanishing partial regression
coefficient that is implied by the product decomposition (1.29).]

Bibliographical Notes for Chapter 2

The distinction between chains and forks in causal models was made by Simon (1953) and
Reichenbach (1956) while the treatment of colliders (or common effect) can be traced back
to the English economist Pigou (1911) (see Stigler 1999, pp. 36—41). In epidemiology, collid-
ers came to be associated with “Selection bias” or “Berkson paradox” (Berkson 1946) while
in artificial intelligence it came to be known as the “explaining away effect” (Kim and Pearl
1983). The rule of d-separation for determining conditional independence by graphs (Defini-
tion 2.4.1) was introduced in Pearl (1986) and formally proved in Verma and Pearl (1988) using
the theory of graphoids (Pearl and Paz 1987). Gentle introductions to d-separation are available
in Hayduk et al. (2003), Glymour and Greenland (2008), and Pearl (2000, pp. 335-337). Algo-
rithms and software for detecting d-separation, as well as finding minimal separating sets are
described in Tian et al. (1998), Kyono (2010), and Textor et al. (2011). The advantages of local
over global model testing, are discussed in Pearl (2000, pp. 144—-145) and further elaborated
in Chen and Pearl (2014). Recent applications of d-separation include extrapolation across
populations (Pearl and Bareinboim 2014) and handling missing data (Mohan et al. 2013).

, recovering from sampling selection bias (Bareinboim et al. 2014),
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which is known as the “causal effect difference,” or “average causal effect” (ACE). In general,
however, if X and Y can each take on more than one value, we would wish to predict the
general causal effect P(Y = y|do(X = x)), where x and y are any two values that X and Y can
take on. For example, x may be the dosage of the drug and y the patient’s blood pressure.

We know from first principles that causal effects cannot be estimated from the data set
itself without a causal story. That was the lesson of Simpson’s paradox: The data itself was
not sufficient even for determining whether the effect of the drug was positive or negative. But
with the aid of the graph in Figure 3.3, we can compute the magnitude of the causal effect from
the data. To do so, we simulate the intervention in the form of a graph surgery (Figure 3.4)
just as we did in the ice cream example. The causal effect P(Y = y|do(X = x)) is equal to the
conditional probability P, (Y = y|X = x) that prevails in the manipulated model of Figure 3.4.
(This, of course, also resolves the question of whether the correct answer lies in the aggregated
or the Z-specific table—when we determine the answer through an intervention, there’s only
one table to contend with.)

Uz

L2

- o

Uy
Y

Figure 3.4 A modified graphical model representing an intervention on the model in Figure 3.3 that
sets drug usage in the population, and results in the manipulated probability P,,

X=x

The key to computing the causal effect lies in the observation that P,,, the manipulated
probability, shares two essential properties with P (the original probability function that pre-
vails in the preintervention model of Figure 3.3). First, the marginal probability P(Z = 7) is
invariant under the intervention, because the process determining Z is not affected by remov-
ing the arrow from Z to X. In our example, this means that the proportions of males and
females remain the same, before and after the intervention. Second, the conditional proba-
bility P(Y = y|Z = z, X = x) is invariant, because the process by which Y responds to X and
Z,Y = f(x, z,uy), remains the same, regardless of whether X changes spontaneously or by
deliberate manipulation. We can therefore write two equations of invariance:

P,Y=y|Z=2X=x)=PY=y|Z=2X=x) and P,(Z=27)=PZ=2)

We can also use the fact that Z and X are d-separated in the modified model and are, there-
fore, independent under the intervention distribution. This tells us that P,,(Z = z|X = x) =
P, (Z = z) = P(Z = 7), the last equality following from above. Putting these considerations
together, we have

P(Y = y|do(X = x))
=P,Y=y|X=x (by definition) (3.2)
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=Y P,(Y=ylX=xZ=2P,Z=2X=1x) (3.3)

=Y P, (Y =yX=x,Z=2P,(Z=2) (3.4)
4
Equation (3.3) is obtained mﬁﬁmyﬁfﬁl&%ﬁ%ﬁ and summing over all values
of Z=z(as in Eq. (1.9)),while )SEq.(3-4)> makes use of the independence of Z and X in the
modified model. a
Finally, using the invariance relations, we obtain a formula for the causal effect, in terms of
preintervention probabilities:

P(Y =yldo(X =x)) = ) P(Y =y|X =x.Z=)P(Z=2) (3.5)

Equation (3.5) is called the adjustment formula, and as you can see, it computes the associ-
ation between X and Y for each value z of Z, then averages over those values. This procedure
is referred to as “adjusting for Z” or “controlling for Z.”

This final expression—the right-hand side of Eq. (3.5)—can be estimated directly from the
data, since it consists only of conditional probabilities, each of which can be computed by the
filtering procedure described in Chapter 1. Note also that no adjustment is needed in a random-
ized controlled experiment since, in such a setting, the data are generated by a model which
already possesses the structure of Figure 3.4, hence, P,, = P regardless of any factors Z that
affect Y. Our derivation of the adjustment formula (3.5) constitutes therefore a formal proof
that randomization gives us the quantity we seek to estimate, namely P(Y = y|do(X = x)). In
practice, investigators use adjustments in randomized experiments as well, for the purpose of
minimizing sampling variations (Cox 1958).

To demonstrate the working of the adjustment formula, let us apply it numerically to
Simpson’s story, with X = 1 standing for the patient taking the drug, Z = 1 standing for the
patient being male, and Y = 1 standing for the patient recovering. We have

PY=1ldoX=1)=P¥=1X=1,Z=DPZ=1)+P¥Y =1|X=1,Z=0)P(Z = 0)

Substituting the figures given in Table 1.1 we obtain
0.93(87 + 270) + 0.73(263 + 80)

P(Y = l|do(X = 1)) = =0.832
(¥ = lldo(X = 1)) 700 700
while, similarly,
. 2 69(2
P(Y = 1|do(X = 0)) = 0.87(87 + 270) N 0.69(263+80) _ o010

700 700

Thus, comparing the effect of drug-taking (X = 1) to the effect of nontaking (X = 0), we
obtain

ACE = P(Y = 1|do(X = 1)) — P(Y = 1|do(X = 0)) = 0.832 — 0.7818 = 0.0502

giving a clear positive advantage to drug-taking. A more informal interpretation of ACE here is
that it is simply the difference in the fraction of the population that would recover if everyone
took the drug compared to when no one takes the drug.

We see that the adjustment formula instructs us to condition on gender, find the benefit of
the drug separately for males and females, and only then average the result using the percent-
age of males and females in the population. It also thus instructs us to ignore the aggregated
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these parents that we neutralize when we fix X by external manipulation. Denoting the parents
of X by PA(X), we can therefore write a general adjustment formula and summarize it in a rule:

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are desig-
nated as the parents of X, the causal effect of X on Y is given by

P(Y = yldo(X = x)) =) P(Y = y|X = x,PA = 9)P(PA = 7) (3.6)

where z ranges over all the combinations of values that the variables in PA can take.

If we multiply and divide the summand in (3.6) by the probability P(X = x|PA = z), we get
a more convenient form:
PX=x,Y=y,PA=7)

POIo) = Y =5 = (3.7)

which explicitly displays the role played by the parents of X in predicting the results of inter-
ventions. The factor P(X = x|PA = z) is known as the “propensity score” and the advantages
of expressing P(y|do(x)) in this form will be discussed in Section 3.5.

We can appreciate now what role the causal graph plays in resolving Simpson’s paradox,
and, more generally, what aspects of the graph allow us to predict causal effects from purely
statistical data. We need the graph in order to determine the identity of X’s parents—the set of
factors that, under nonexperimental conditions, would be sufficient for determining the value
of X, or the probability of that value.

This result alone is astounding; using graphs and their underlying assumptions, we were
able to identify causal relationships in purely observational data. But, from this discussion,
readers may be tempted to conclude that the role of graphs is fairly limited; once we identify
the parents of X, the rest of the graph can be discarded, and the causal effect can be evaluated
mechanically from the adjustment formula. The next section shows that things may not be
so simple. In most practical cases, the set of X’s parents will contain unobserved variables
that would prevent us from calculating the conditional probabilities in the adjustment formula.
Luckily, as we will see in future sections, we can adjust for other variables in the model to
substitute for the unmeasured elements of PA(X).

Study questions
Study questions 3.2.1

Referring to Study question 1.5.2 (Figure 1.10) and the parameters listed therein,

(a) Compute P(y|do(x)) for all values of x and y, by simulating the intervention do(x) on the
model.

(b) Compute P(y|do(x)) for all values of x and y, using the adjustment formula (3.5)

(c¢) Compute the ACE

ACE = P(y,|do(x,)) — P(y,|do(xy))
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and compare it to the Risk Difference
RD = P(y,|x)) — P(y;|xo)

What is the difference between ACE and the RD? What values of the parameters would
minimize the difference?

(d) Find a combination of parameters that exhibit Simpson’s reversal (as in Study question
1.5.2(c)) and show explicitly that the overall causal effect of the drug is obtained from the
desegregated data.

3.2.2  Multiple Interventions and the Truncated Product Rule

In deriving the adjustment formula, we assumed an intervention on a single variable, X, whose
parents were disconnected, so as to simulate the absence of their influence after intervention.
However, social and medical policies occasionally involve multiple interventions, such as those
that dictate the value of several variables simultaneously, or those that control a variable over
time. To represent multiple interventions, it is convenient to resort to the product decompo-
sition that a graphical model imposes on joint distributions, as we have discussed in Section
1.5.2. According to the Rule of Product Decomposition, the preintervention distribution in the
model of Figure 3.3 is given by the product

P(x,y,7) = P(2)P(x|2)P(y|x, z) (3.8)

whereas the postintervention distribution, governed by the model of Figure 3.4 is given by the
product

P(z,y|do(x)) = P, (2)P,,(y|x,z) = P(2)P(y|x,z) (3.9

with the factor P(x|z) purged from the product, since X becomes parentless as it is fixed at
X = x. This coincides with the adjustment formula, because to evaluate P(y|do(x)) we need to
marginalize (or sum) over z, which gives

P(yldo(x)) = ) PQP(x,2)

in agreement with (3.5).
This consideration also allows us to generalize the adjustment formula to multiple interven-

tions, that is, interventions that fix the values of a set of variables X to constants. We simply
write down the product decomposition of the preintervention distribution, and strike out all
factors that correspond to variables in the intervention set X. Formally, we write

P(xy,xy, ... ,x,|do(x)) = HP(xl-lpai) for all i with X; not in X.
i
This came to be known as the truncated product formula or g-formula. To illustrate, assume

that we intervene on the model of Figure 2.9 and set X to xand Z; to z;. The postintervention
distribution of the other variables in the model will be

P(z1, 20, w,y|ldo(X =x,Z3 = z3)) = P(2))P(2)P(WI)P(y|w, 23, 2)

where we have deleted the factors P(x|z;, z3) and P(z3|z;, z,) from the product.
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T — Y. This path is spurious since it lies outside the causal pathway from X to Y. Opening this
path will create bias and yield an erroneous answer. This means that computing the association
between X and Y for each value of W separately will not yield the correct effect of X on Y, and
it might even give the wrong effect for each value of W. In Figure2.8,

How then do we compute the causal effect of X on Y for a specific value w of W? W may
represent, for example, the level of posttreatment pain of a patient, and we might be interested
in assessing the effect of X on Y for only those patients who did not suffer any pain. Specifying
the value of W amounts to conditioning on W = w, and this, as we have realized, opens a
spurious path from X to Y by virtue of the fact the W is a collider.

The answer is that we still have the option of blocking that path using other variables. For
example, if we condition on 7, we would block the spurious path X - W « Z & T > Y,
even if W is part of the conditioning set. Thus to compute the w-specific causal effect, written

P(y|do(x), w), we adjust for T, and obtain X
=X,
P(Y =yldoX =x),W =w) = ZP(Y =y X=x,W=w,T=0)P(T = t|XV =w) (3.11)
t

Computing such W-specific causal effects is an essential step in examining effect modifi-
cation or moderation, that is, the degree to which the causal effect of X and Y is modified
by different values of W. Consider, again, the model in Figure 3.6, and suppose we wish to
test whether the causal effect for units at level W = w is the same as for units at level W = w/
(W may represent any pretreatment variable, such as age, sex, or ethnicity). This question calls
for comparing two causal effects,

P(Y =y|ldoX =x),W=w) and P =yldo(X =x),W=w)

In the specific example of Figure 3.6, the answer is simple, because W satisfies the backdoor
criterion. So, all we need to compare are the conditional probabilities P(Y = y|X =x, W = w)
and P(Y = y|X = x, W = w/); no summation is required. In the more general case, where W
alone does not satisfy the backdoor criterion, yet a larger set, 7 U W, does, we need to adjust
for members of 7', which yields Eq. (3.11). We will return to this topic in Section 3.5.

From the examples seen thus far, readers may get the impression that one should refrain
from adjusting for colliders. Such adjustment is sometimes unavoidable, as seen in Figure 3.7.
Here, there are four backdoor paths from X to Y, all traversing variable Z, which is a collider on
the path X « E - Z < A — Y. Conditioning on Z will unblock this path and will violate the
backdoor criterion. To block all backdoor paths, we need to condition on one of the following
sets: {E,Z},{A,Z},or {E,Z,A}. Each of these contains Z. We see, therefore, that Z, a collider,
must be adjusted for in any set that yields an unbiased estimate of the effect of X on Y.

E A

X Y

Figure 3.7 A graphical model in which the backdoor criterion requires that we condition on a collider
(Z) in order to ascertain the effect of X on Y
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It appears that tar deposits have a harmful effect in both groups; in smokers it increases
cancer rates from 10% to 15%, and in nonsmokers it increases cancer rates from 90% to 95%.
Thus, regardless of whether I have a natural craving for nicotine, I should avoid the harmful
effect of tar deposits, and no-smoking offers very effective means of avoiding them.

The graph of Figure 3.10(b) enables us to decide between these two groups of statisticians.
First, we note that the effect of X on Z is identifiable, since there is no backdoor path from X
to Z. Thus, we can immediately write

P(Z = zldo(X = x)) = P(Z = X = x) (3.12)

Next we note that the effect of Z on Y is also identifiable, since the backdoor path from Z to
Y,namely Z <~ X < U — Y, can be blocked by conditioning on X. Thus, we can write

P(Y =yldo(Z=z2)= ) P(Y =y|Z=12,X = ) P(X = X)) (3.13)

Both (3.12) and (3.13) are obtained through the adjustment formula, the first by conditioning
on the null set, and the second by adjusting for X.

We are now going to chain together the two partial effects to obtain the overall effect of
X on Y. The reasoning goes as follows: If nature chooses to assign Z the value z, then the
probability of ¥ would be P(Y = y|do(Z = z)). But the probability that nature would choose
to do that, given that we choose to set X at x, is P(Z = z|do(X = x)). Therefore, summing over
all states z of Z, we have

P(Y =yldo(X =x)) = Z P(Y = y|do(Z = 2))P(Z = z|do(X = x)) (3.14)

z

The terms on the right-hand side of (3.14) were evaluated in (3.12) and (3.13), and we can
substitute them to obtain a do-free expression for P(Y = y|do(X = x)). We also distinguish
between the x that appears in (3.12) and the one that appears in (3.13), the latter of which is
merely an index of summation and might as well be denoted x’. The final expression we have is

P(Y = y|do(X = x)) =
Y D PY =yZ=2X=x)PX=x)P(Z=z|X =x) (3.15)

xl

Equation (3.15) is known as the front-door formula.

Applying this formula to the data in Table 3.1, we see that the tobacco industry was wrong;
tar deposits have a harmful effect in that they make lung cancer more likely and smoking, by
increasing tar deposits, increases the chances of causing this harm.

The data in Table 3.1 are obviously unrealistic and were deliberately crafted so as to surprise
readers with counterintuitive conclusions that may emerge from naive analysis of observational
data. In reality, we would expect observational studies to show positive correlation between
smoking and lung cancer. The estimand of (3.15) could then be used for confirming and quan-
tifying the harmful effect of smoking on cancer.

The preceding analysis can be generalized to structures, where multiple paths lead from X
toY.
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Definition 3.4.1 (Front-Door) A set of variables Z is said to satisfy the front-door criterion
relative to an ordered pair of variables (X, Y) if

1. Z intercepts all directed paths from X to Y.
2. There is no unblocked path from X to Z.
3. All backdoor paths from Z to Y are blocked by X.

Theorem 3.4.1 (Front-Door Adjustment) If Z satisfies the front-door criterion relative to
(X,Y) and if P(x,z) > 0, then the causal effect of X on Y is identifiable and is given by the
formula

P(yldo(x)) = )" Plx) Y PGIY, 2)P() (3.16)

The conditions stated in Definition 3.4.1 are overly conservative; some of the backdoor paths
excluded by conditions (2) and (3) can actually be allowed provided they are blocked by some
variables. There is a powerful symbolic machinery, called the do-calculus, that allows analysis
of such intricate structures. In fact, the do-calculus uncovers all causal effects that can be iden-
tified from a given graph. Unfortunately, it is beyond the scope of this book (see Pearl 2009
and-Shpitser-and-Pearl-2008, for details). But the combination of the adjustment formula, the
backdoor criterion, and the front-door criterion covers numerous scenarios. It proves the enor-
mous, even revelatory, power that causal graphs have in not merely representing, but actually
discovering causal information.

Study questions
Study question 3.4.1

Assume that in Figure 3.8, only X, Y, and one additional variable can be measured. Which
variable would allow the identification of the effect of X on Y ? What would that effect be?

Study question 3.4.2

I went to a pharmacy to buy a certain drug, and I found that it was available in two different
bottles: one priced at $1, the other at $10. I asked the druggist, “What’s the difference?” and
he told me, “The $10 bottle is fresh, whereas the $1 bottle one has been on the shelf for 3 years.
But, you know, data shows that the percentage of recovery is much higher among those who
bought the cheap stuff. Amazing isn’t it?” I asked if the aged drug was ever tested. He said,
“Yes, and this is even more amazing; 95% of the aged drug and only 5% of the fresh drug
has lost the active ingredient, yet the percentage of recovery among those who got bad bottles,
with none of the active ingredient, is still much higher than among those who got good bottles,
with the active ingredient.”

Before ordering a cheap bottle, it occurred to me to have a good look at the data. The data
were, for each previous customer, the type of bottle purchased (aged or fresh), the concentra-
tion of the active ingredient in the bottle (high or low), and whether the customer recovered
from the illness. The data perfectly confirmed the druggist’s story. However, after making some
additional calculations, I decided to buy the expensive bottle after all; even without testing its

BareinboimandPearl2012.Pearl2009.ShpitserandPearl2008.andTian andPearl200z |
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effect is given by the following adjustment formula
PY =y|ldo(X =x),Z =72)
= ZP(Y =y X=x,S=52Z=2PS = sA| Z=1)

This modified adjustment formula is similar to Eq. (3.5) with two exceptions. First,
the adjustment set is S U Z, not just S and, second, the summation goes only over S, not
including Z. The U symbol in the expression S U Z stands for set addition (or union), which
means that, if Z is a subset of S, we have SUZ = §, and S alone need satisfy the backdoor
criterion.

Note that the identifiability criterion for z-specific effects is somewhat stricter than that
for nonspecific effect. Adding Z to the conditioning set might create dependencies that would
prevent the blocking of all backdoor paths. A simple example occurs when Z is a collider; con-
ditioning on Z will create new dependency between Z’s parents arrll}f\%hus violate the backdoor
requirement.

We are now ready to tackle our original task of estimating conditional interventions.
Suppose a policy maker contemplates an age-dependent policy whereby an amount x of drug
is to be administered to patients, depending on their age Z. We write it as do(X = g(2)).
To find out the distribution of outcome Y that results from this policy, we seek to estimate
P(Y = yldo(X = g(2))).

We now show that identifying the effect of such policies is equivalent to identifying the
expression for the z-specific effect P(Y = y|do(X = x),Z = z).

To compute P(Y = y|do(X = g(Z))), we condition on Z = z and write

P(Y = y|do(X = g(2)))
= ZP(Y = yldo(X = g8(2)), Z = 2)P(Z = z|do(X = g(Z)))

= ) P(Y =y|do(X = g(z)).Z = )P(Z = ) (3.17)

Z

The equality
P(Z =z|ldo(X = g(2))) = P(Z =2)

stems, of course, from the fact that Z occurs before X; hence, any control exerted on X can
have no effect on the distribution of Z. Equation (3.17) can also be written as

Z P(Y = y|do(X = X),2)|yg)P(Z = 2)

which tells us that the causal effect of a conditional policy do(X = g(Z)) can be evaluated
directly from the expression of P(Y = y|do(X = x),Z = z) simply by substituting g(z) for x
and taking the expectation over Z (using the observed distribution P(Z = z)).

Study question 3.5.1

Consider the causal model of Figure 3.8.

(a) Find an expression for the c-specific effect of X on Y.


kaoru
Text Box
may

kaoru
Line

kaoru
Polygonal Line

kaoru
Line

kaoru
Text Box
 | Z = z)

kaoru
Polygonal Line


v

¥
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Table 3.4 Conditional probability distribution P(Y, Z|X) for drug users
(X = yes) in the population of Table 3.3

X Y VA % of population
Yes Yes Male 0.232
Yes Yes Female 0.547
Yes No Male 0.02

Yes No Female 0.202

this time as a weighted table. In this case, X represents whether or not the patient took the drug,
Y represents whether the patient recovered, and Z represents the patient’s gender.

If we condition on “X = Yes,” we get the data set shown in Table 3.4, which was formed
in two steps. First, all rows with X = No were excluded. Second, the weights given to the
remaining rows were “‘renormalized,” that is, multiplied by a constant so as to make them
sum to one. This constant, according to Bayes’ rule, is 1/P(X = yes), and P(X = yes) in our
example, is the combined weight of the first four rows of Table 3.3, which amounts to

P(X = yes) = 0.116 + 0.274 + 0.01 + 0.101 =A0.501

The result is the weight distribution in the four top rows of Table 3.4; the weight of each row
has been boosted by a factorAl/ 0.501 =2.00.
Let us now examine the population created by the do(X = yes) operation, representing a
deliberate decision to administer the drug to the same population.
To calculate the distribution of weights in this population, we need to compute the factor
P(X = yes|Z = z) for each z, which, according to Table 3.3, is given by
(0.116 + 0.01)

o = 0247
(X= yeslz = Male) = (16 7 0.01 + 0334 4 0.051) A

(0.274 +0.101)
(0.274 + 0.101 + 0.079 + 0.036)

P(X = yes|Z = Female) = =0.765
Multiplying the gender-matching rows by 1/0.233 and 1/0.765, respectively, we obtain
Table 3.5, which represents the postintervention distribution of the population of Table 3.3.
The probability of recovery in this distribution can now be computed directly from the data,
by summing the first two rows:

P(Y = yes|do(X = yes)) = 0.476 + 0.357 = 0.833

Table 3.5 Probability distribution for the population of Table 3.3 under the
intervention do(X = Yes), determined via the inverse probability method

X Y V4 % of population
Yes Yes Male 0.476
Yes Yes Female 0.357
Yes No Male 0.041

Yes No Female 0.132
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the controlled direct effect (CDE) on Y of changing the value of X from x to x’ is defined as
CDE = P(Y = y|do(X = x),do(Z = 7)) — P(Y = y|do(X = x),do(Z = 2)) (3.18)

The obvious advantage of this definition over the one based on conditioning is its generality;
it captures the intent of “keeping Z constant” even in cases where the Z — Y relationship is
confounded (the same goes for the X — Z and X — Y relationships). Practically, this definition
assures us that in any case where the intervened probabilities are identifiable from the observed
probabilities, we can estimate the direct effect of X on Y. Note that the direct effect may differ
for different values of Z; for instance, it may be that hiring practices discriminate against
women in jobs with high qualification requirements, but they discriminate against men in jobs
with low qualifications. Therefore, to get the full picture of the direct effect, we’ll have to
perform the calculation for every relevant value z of Z. (In linear models, this will not be
necessary; for more information, see Section 3.8.)

Income
Qualification

Gender Hiring

Figure 3.12 A graphical model rep{showingqualification(Z) asa mediatorbetweergender(X) andhiring (Y),

with-seeioeconomicstatus-as-a-medigandincome(l) asa confoundeibetweergualificationandhiring.

How do we estimate the direct effect when its expression contains two do-operators? The
technique is more or less the same as the one employed in Section 3.2, where we dealt with a
single do-operator by adjustment. In our example of Figure 3.12, we first notice that there is no
backdoor path from X to Y in the model, hence we can replace do(x) with simply conditioning
on x (this essentially amounts to adjusting for all confounders). This results in

P(Y =y|X =x,do(Z=2)) — P(Y =y|X =xX,do(Z = 7))

Next, we attempt to remove the do(z) term and notice that two backdoor paths exist from Z
to Y, one through X and one through /. The first is blocked (since X is conditioned on) and the
second can be blocked if we adjust for /. This gives

NIPY=yX=x2Z=zl=i)-P¥=yX=x.Z=z1=0)PU =)

1

The last formula is do-free, which means it can be estimated from nonexperimental data.
In general, the CDE of X on Y, mediated by Z, is identifiable if the following two properties
hold:

1. There exists a set S; of variables that blocks all backdoor paths from Z to Y.
2. There exists a set S, of variables that blocks all backdoor paths from X to Y, after deleting
all arrows entering Z.
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enormous simplification of the procedure needed for causal analysis. We are all familiar with
the bell-shaped curve that characterizes the normal distribution of one variable. The reason it
is so popular in statistics is that it occurs so frequently in nature whenever a phenomenon is a
byproduct of many noisy microprocesses that add up to produce macroscopic measurements
such as height, weight, income, or mortality. Our interest in the normal distribution, however,
stems primarily from the way several normally distributed variables combine to shape their
joint distribution. The assumption of normality gives rise to four properties that are of enor-
mous use when working with linear systems:

1. Efficient representation

2. Substitutability of expectations for probabilities
3. Linearity of expectations

4. Invariance of regression coefficients.

Starting with two normal variables, X and Y, we know that their joint density forms a
three-dimensional cusp (like a mountain rising above the X—Y plane) and that the planes of
equal height on that cusp are ellipses like those shown in Figure 1.2. Each such ellipse is
characterized by five parameters: puy, uy, oy, oy, and pyy, as defined in Sections 1.3.8 and
1.3.9. The parameters uy and u, specify the location (or the center of gravity) of the ellipse
in the X-Y plane, the variances oy and oy specify the spread of the ellipse along the X and Y
dimensions, respectively, and the correlation coefficient pyy specifies its orientation. In three
dimensions, the best way to depict the joint distribution is to imagine an oval football sus-
pended in the X—Y-Z space (Figure 1.2); every plane of constant Z would then cut the football
in a two-dimensional ellipse like the ones shown in Figure 1.1.

As we go to higher dimensions, and consider a set of N normally distributed variables
X, X5, ..., Xy, we need not concern ourselves with additional parameters; it is sufficient to
specify those that characterize the N(N — 1)/2 pairs of variables, (X;, X;). In other words, the
joint density of (X,X,, ... ,Xy) is fully specified once we specify the bivariate d ensity of
(X, X;), with i and j (i # j) ranging from 1 to N. This is an enormously useful property, as it
offers an extremely parsimonious way of specifying the N-variable joint distribution. More-
over, since the joint distribution of each pair is specified by fi ve parameters, we conclude
that the joint distribution requires at most 5 X N(N — 1)/2 parameters (means, variances, and
covariances), each defined by e xpectation. In fact, the total number o f p arameters i s even
smaller than this, namely 2N + N(N — 1)/2; the first term gives the number of mean and vari-
ance parameters, and the second the number of correlations.

This brings us to another useful feature of multivariate normal distributions: they are fully
defined by expectations, so we need not concern ourselves with probability tables as we did
when dealing with discrete variables. Conditional probabilities can be expressed as conditional
expectations, and notions such as conditional independence that define the structure of graphi-
cal models can be expressed in terms of equality relationships among conditional expectations.
For instance, to express the conditional independence of ¥ and X, given Z,

P(Y|X,2) = P(Y|2)
we can write
E[Y|X,Z] = E[Y|Z]

(where Z is a set of variables).
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to simulate interventions by modifying equations in the model (see Pearl (2015() for histori-
cal account). Strotz and Wold (1960) later advocated “wiping out” the equation determining
X, and Spirtes et al. (1993) gave it a graphical representation in a form of a “manipulated
graph.” The “adjustment formula” of Eq. (3.5) as well as the “truncated product formula”
first appeared in Spirtes et al. (1993), though these are implicit in the G-computation formula
of Robins (1986), which was derived using counterfactual assumptions (see Chapter 4). The
backdoor criterion of Definition 3.3.1 and its implications for adjustments were introduced
in Rearl (1993), oIQ%JEQH@?W&Hﬁ&SﬁOH and a general cv\zl%%llus for identifying causal effects
(named do-calculus),were ig}]tﬁgd}legﬁéloiln 5%%5;; ({%%a)and,further improved in Tian and Pearl
(2002),and Shpitser and Pear (5007 A ectlona'a(. , and the identification of conditional inter-
ventions and c-specific effects is based on (Pear] 2009, pp. 113—114). Its extension to dynamic,
time-varying policies is described in Pearl and Robins (1995) and (Pearl 2009, pp. 119-126). <}—
The role of covariate-specific effects in assessing interaction, moderation or effect modifica-

tion is described in Morgan and Winship (2014Jand Vanderweele (2015), whereas applications

of Rule 2 to the detection of latent heterogeneity are described in Pearl (2015b). Additional
discussions on the use of inverse probability weighting (Section 3.6) can be found in Hernan

and Robins (2006). Our discussion of mediation (Section 3.7) and the identification of CDEs

are based on Pearl (2009, pp. 126—130), whereas the fallibility of “conditioning” on a mediator

to assess direct effects is demonstrated in Pearl (1998) as well as Cole and Hernan (2002).

The analysis of mediation has become extremely active in the past 15 years, primarily due
to the advent of counterfactual logic (see Section 4.4.5); a comprehensive account of this
progress is given in Vanderweele (2015). A tutorial survey of causal inference in linear sys-
tems (Section 3.8), focusing on parameter identification, is provided by Chen and Pear1 (2014).
Additional discussion on the confusion of regression versus structural equations can be found
in Bollen and Pearl (2013).

A classic, and still the best textbook on the relationships between structural and regession
coefficients is Heise (1975) (available online: http://www.indiana.edu/~socpsy/public_files/
CausalAnalysis.zip). Other classics are Duncan (1975), Kenny (1979), and Bollen (1989).
Classical texts, however, fall short of providing graphical tools of identification, such as those
invoking backdoor and G, (see Study question 3.8.1). A recent exception is Kline (2016).

Introductions to instrumental variables can be found in Greenland (2000) and in many text-
books of econometrics (e.g., Bowden and Turkington 1984, Wooldridge 2013). Generalized
instrumental variables, extending the classical definition of Section 3.8.3 were introduced in
Brito and Pearl (2002).

The program DAGitty (which is available online: http://www.dagitty.net/dags.html), permits
users to search the graph for generalized instrumental variables, and reports the resulting IV
estimators (Textor et al. 2011).

More recently thedo-calculuswasusedto
solveproblemsof externalvalidity, data-
fusion,andmeta-analysi¢Bareinboimand
Pearl2013,BareinboimandPearl2016,
PearlandBareinboim2014).
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If we try to express this estimate using do-expressions, we come to an impasse. Writing
E(driving time|do(freeway), driving time = 1 hour)

leads to a clash between the driving time we wish to estimate and the actual driving time
observed. Clearly, to avoid this clash, we must distinguish symbolically between the following
two variables:

1. Actual driving time
2. Hypothetical driving time under freeway conditions when actual surface driving time is
known to be 1 hour.

Unfortunately, the do-operator is too crude to make this distinction. While the do-operator
allows us to distinguish between two probabilities, P(driving time|do(freeway)) and
P(driving time|do(Sepulveda)), it does not offer us the means of distinguishing between
the two variables themselves, one standing for the time on Sepulveda, the other for the
hypothetical time on the freeway. We need this distinction in order to let the actual driving
time (on Sepulveda) inform our assessment of the hypothetical driving time.

Fortunately, making this distinction is easy; we simply use different subscripts to label the
two outcomes. We denote the freeway driving time by Yy_; (or Y;, where context permits) and
Sepulveda driving time by Yy_, (or ¥;). In our case, since Y, is the Y actually observed, the
quantity we wish to estimate is

EYy |X=0Y=Y,=1) @.1)

The novice student may feel somewhat uncomfortable at the sight of the last expression,
which contains an eclectic mixture of three variables: one hypothetical and two observed,
with the hypothetical variable Yy_, predicated upon one event (X = 1) and conditioned upon
the conflicting event, X = 0, which was actually observed. We have not encountered such a
clash before. When we used the do-operator to predict the effect of interventions, we wrote
expressions such as

E[Y|do(X = x)] 4.2)

and-we-sought-to-estimate-theminterms-of-observed-probabilitiessuehas PX= ¥ =)
The Y in this expression is predicated upon the event X = x. With our new notation, the
expression might as well have been written E[Yy_,]. But since all variables in this expression
were measured in the same world, there is no need to abandon the do-operator and invoke
counterfactual notation.

We run into problems with counterfactual expressions like (4.1) because Yy_; = yand X =0
are—and must be—events occurring under different conditions, sometimes referred to as “dif-
ferent worlds.” This problem does not occur in intervention expressions, because Eq. (4.1)
seeks to estimate our total drive time in a world where we chose the freeway, given that the
actual drive time (in the world where we chose Sepulveda) was 1 hour, whereas Eq. (4.2) seeks
to estimate the expected drive time in a world where we chose the freeway, with no reference
whatsoever to another world.
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causal effect of X on Y does not vary across population types, a property shared by all linear
models.

Such joint probabilities over multiple-world counterfactuals can easily be expressed using
the subscript notation, as in P(Y; =y,,Y, =y,), and can be computed from any structural
model as we did in Table 4.1. They cannot however be expressed using the do(x) notation,
because the latter delivers just one probability for each intervention X = x. To see the ramifi-
cations of this limitation, let us examine a slight modification of the model in Egs. (4.3) and
(4.4), in which a third variable Z acts as mediator between X and Y. The new model’s equations
are given by

X=U Z=aX+U,Y=0bZ 4.7)

and its structure is depicted in Figure 4.3. To cast this model in a context, let X = 1 stand for
having a college education, U, = 1 for having professional experience, Z for the level of skill
needed for a given job, and Y for salary.

Suppose our aim is to compute E[Yy_,|Z = 1], which stands for the expected salary of indi-
viduals with skill level Z = 1, had they received a college education. This quantity cannot
be captured by a do-expression, because the condition Z = 1 and the antecedent X = 1 refer
to two different worlds; the former represents current skills, whereas the latter represents a
hypothetical education in an unrealized past. An attempt to capture this hypothetical salary
using the expression E[Y|do(X = 1),Z = 1] would not reveal the desired information. The
do-expression stands for the expected salary of individuals who all finished college and have
since acquired skill level Z = 1. The salaries of these individuals, as the graph shows, depend
only on their skill, and are not affected by whether they obtained the skill through college or
through work experience. Conditioning on Z = 1, in this case, cuts off the effect of the interven-
tion that we’re interested in. In contrast, some of those who currently have Z = 1 might not have
gone to college and would have attained higher skill (and salary) had they gotten college edu-
cation. Their salaries are of great interest to us, but they are not included in the do-expression.
Thus, in general, the do-expression will not capture our counterfactual question:

E[Y|do(X = 1), Z=1] # E[Yy_,|Z = 1] (4.8)

We can further confirm this inequality by noting that, while E[Y|do(X = 1),Z = 1] is equal
to E[Y|do(X =0),Z =11, E[Yy_,1Z = 1] is not equal to E[Yy_y|Z = 1]; the formers treat
Z =1 as a postintervention condition that prevails for two different sets of units under the
two antecedents, whereas the latters treat it as defining one set of units in the current world
that would react differently under the two antecedents. The do(x) notation cannot capture the
latters because the events X = 1 and Z = 1 in the expression E[Yy_,|Z = 1] refer to two dif-
ferent worlds, pre- and postintervention, respectively. The expression E[Y|do(X = 1),Z = 1],

U, U,

x ¢ z b vy
(College)  (Skill) (Salary)

Figure 4.3 A model representing Eq. (4.7), illustrating the causal relations between college education
(X), skills (Z), and salary (Y)
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on the other hand, invokes only postintervention events, and that is why it is expressible in
do(x) notation.

A natural question to ask is whether counterfactual notation can capture the postintervention,
single-world expression E[Y|do(X = 1),Z = 1]. The answer is affirmative; being more flexi-
ble, counterfactuals can capture both single-world and cross-world probabilities. The transla-
tion of E[Y|do(X = 1), Z = 1] into counterfactual notation is simply E[Yy_,|Zy—; = 1], which
explicitly designates the event Z = 1 as postintervention. The variable Zy_ stands for the value
that Z would attain had X been 1, and this is precisely what we mean when we put Z = zin a
do-expression by Bayes’ rule:

P(Y = y,Z = z|do(X = 1))
P(Z = zldo(X = 1))

PIY = y|ldoX = 1),Z =7] =

This shows explicitly how the dependence of Z on X should be treated. In the special case
where Z is a preintervention variable, as age was in our discussion of conditional interventions
(Section 3.5) we have Zy_, = Z, and we need not distinguish between the two. The inequality
in (4.8) then turns into an equality.

Let’s look at how this logic is reflected in the numbers. Table 4.2 depicts the counterfactuals
associated with the model of (4.7), with all subscripts denoting the state of X. It was constructed
by the same method we used in constructing Table 4.1: replacing the equation X = u with the
appropriate constant (zero or one) and solving for Y and Z. Using this table, we can verify
immediately that

ElY||Z=1]1=(a+ 1)b (4.9)
ElY)|lZ=1]1=b (4.10)
ElY|doX=1),Z=1]=b A(see footnote 2) (4.11)
E[Y|do(X =0),Z=1]=b (4.12)

These equations provide numerical confirmation of the inequality in (4.8). They also demon-
strate a peculiar property of counterfactual conditioning that we have noted before: Despite
the fact that Z separates X from Y in the graph of Figure 4.3, we find that X has an effect on Y
for those units falling under Z = 1:

The reason for this behavior is best explained in the context of our salary example. While the
salary of those who have acquired skill level Z = 1 depends only on their skill, not on X, the

Table 4.2 The values attained by X(u), Y(u), Z(u), Y, (), Y, (u), Z,(u), and Z, (u) in the model of
Eq. 4.7)

X=u Z=aX+u, Y=>bZ

u, i, X(u) Z(u) Y(u) Y, (u) Y, (u) Zy(u) Z,(u)
0 0 0 0 0 0 ab 0 a
0 1 0 1 b b (a+ 1)b 1 a+1
1 0 1 a ab 0 ab 0 a
1 1 1 a+1 (a+ 1)b b (a+ 1)b 1 a+1

2 Strictly speaking, the quantity E[ Y| do(X=1), Z=1] in Eq. (4.11) is undefined because the observation Z=1 is not
possible post-intervention of do( X = 1). However, for the purposes of the example, we can imagine that Z =1 was

observed due to some error term & —* Z that accounts for the deviation. Eq. (4.11) then follows.
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Figure 4.4 Illustrating the graphical reading of counterfactuals. (a) The original model. (b) The modi-
fied model M in which the node labeled Y, represents the potential outcome Y predicated on X = x

This temporary visualization of counterfactuals is sufficient to answer some fundamental
questions about the statistical properties of Y, and how those properties depend on other vari-
ables in the model, specifically when those other variables are conditioned on.

When we ask about the statistical properties of Y,, we need to examine what would cause
Y, to vary. According to its structural definition, Y, represents the value of ¥ under a condition
where X is held constant at X = x. Statistical variations of Y, are therefore governed by all
exogenous variables capable of influencing ¥ when X is held constant, that is, when the arrows
entering X are removed, as in Figure 4.4(b). Under such conditions, the set of variables capable
of transmitting variations to Y are the parents of Y, (observed and unobserved) as well as
parents of nodes on the pathways between X and Y. In Figure 4.4(b), for example, these parents
are {Z;, W,, Us, Uy}, where Uy and Us, the error terms of ¥ and W;, are not shown in the

—> diagramAny set of variables that blocks a path to these parents also blocks that path to Y,
and will result in, therefore, a conditional independence for Y, . In particular, if we have a set Z
of covariate that satisfies the backdoor criterion in M (see Definition 3.3.1), that set also blocks
all paths between X and those parents, and consequently, it renders X and Y, independent in
every stratum Z = z.

These considerations are summarized formally in Theorem 4.3.1.

Theorem 4.3.1 (Counterfactual Interpretation of Backdoor) If a set Z of variables sat-
isfies the backdoor condition relative to (X, Y), then, for all x, the counterfactual Y, is condi-
tionally independent of X given Z

PY,|X,Z)=P(Y,|Z) (4.15)
Theorem 4.3.1 has far-reaching consequences when it comes to estimating the probabilities
of counterfactuals from observational studies. In particular, it implies that P(Y, = y) is iden-

tifiable by the adjustment formula of Eq. (3.5). To prove this, we conditionalize on Z (as in
Eq. (1.9)) and write

P(Y,=y)= Y P(Y,=)|Z=2)P()

= Y P(Y, =yIZ=2X =0)P()
(Thesevariablesremain z
thesamean bothmodels.)

= ) P(Y =)|Z=z.X = 0)P(2) (4.16)
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The second line was licensed by Theorem 4.3.1, whereas the third line was licensed by the
consistency rule (4.6).

The fact that we obtained the familiar adjustment formula in Eq. (4.16) is not really sur-
prising, because this same formula was derived in Section 3.2 (Eq. (3.4)), for P(Y = y|do(x)),
and we know that P(Y, = y) is just another way of writing P(Y = y|do(x)). Interestingly, this
derivation invokes only algebraic steps; it makes no reference to the model once we ensure
that Z satisfies the backdoor criterion. Equation (4.15), which converts this graphical real-
ity into algebraic notation, and allows us to derive (4.16), is sometimes called “conditional
ignorability”’; Theorem 4.3.1 gives this notion a scientific interpretation and permits us to test
whether it holds in any given model.

Having a graphical representation for counterfactuals, we can resolve the dilemma we faced
in Section 4.3.1 (Figure 4.3), and explain graphically why a stronger education (X) would have
had an effect on the salary (Y) of people who are currently at skill level Z = z, despite the fact
that, according to the model, salary is determined by skill only. Formally, to determine if the
effect of education on salary (Y,) is statistically independent of the level of education, we need
to locate Y, in the graph and see if it is d-separated from X given Z. Referring to Figure 4.3,
we see that Y, can be identified with U,, the only parent of nodes on the causal path from X
to Y (and therefore, the only variable that produces variations in Y, while X is held constant).
A quick inspection of Figure 4.3 tells us that Z acts as a collider between X and U,, and,
therefore, X and U, (and similarly X and Y,) are not d-separated given Z. We couclude
therefore

Errlx,z1# E[v,|2]

despite the fact that
ElY|X,Z] = E[Y|Z]

In Study question 4.3.1, we evaluate these counterfactual expectations explicitly, assuming
a linear Gaussian model. The graphical representation established in this section permits us
to determine independencies among counterfactuals by graphical means, without assuming
linearity or any specific parametric form. This is one of the tools that modern causal analysis
has introduced to statistics, and, as we have seen in the analysis of the education—skill-salary
story, it takes a task that is extremely hard to solve by unaided intuition and reduces it to simple
operations on graphs. Additional methods of visualizing counterfactual dependencies, called
“twin networks,” are discussed in (Pearl 2000, pp. 213-215).

4.3.3 Counterfactuals in Experimental Settings

Having convinced ourselves that every counterfactual question can be answered from a fully
specified structural model, we next move to the experimental setting, where a model is not
available, and the experimenter must answer interventional questions on the basis of a finite
sample of observed individuals. Let us refer back to the “encouragement design” model of
Figure 4.1, in which we analyzed the behavior of an individual named Joe, and assume that
the experimenter observes a set of 10 individuals, with Joe being participant 1. Each individual
is characterized by a distinct vector U; = (Uy, Uy, Uy), as shown in the first three columns of
Table 4.3.
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alone, instead of a complete model. Much more can be obtained from experimental studies,
where even the graph becomes dispensable.

Assume that we have no information whatsoever about the underlying model. All we have
are measurements on Y taken in an experimental study in which X is randomized over two
levels, X =0and X = 1.

Table 4.4 describes the responses of the same 10 participants (Joe being participant 1)
under such experimental conditions, with participants 1,5,6,8, and 10 assigned to X =0,
and the rest to X = 1. The first two columns give the true potential outcomes (taken from
Table 4.3), while the last two columns describe the information available to the experimenter,
where a square indicates that the response was not observed. Clearly, Y, is observed only
for participants assigned to X =0 and, similarly, Y, is observed only for those assigned
to X = 1. Randomization assures us that, although half of the potential outcomes are not
observed, the difference between the observed means in the treatment and control groups
will converge to the difference of the population averages, E(Y; — Y;)) = 0.9. This is because
randomization distributes the black squares at random along the two rightmost columns of
Table 4.4, independent of the actual values of Y and Y, so as the number of sample increases,
the sample means converge to the population means.

This unique and important property of randomized experiments is not new to us, since
randomization, like interventions, renders X independent of any variable that may affect Y
(as in Figure 4.4(b)). Under such conditions, the adjustment formula (4.16) is applicable with
Z = {1}, yielding E[Y,]=E[Y|X =x], where x =1 represents treated units and x =0
untreated. Table 4.4 helps us understand what is actually computed when we take sample
averages in experimental settings and how those averages are related to the underlying
counterfactuals, Y, and Y.

Table 4.4 Potential and observed outcomes in a randomized clinical trial with X randomized
overX =0and X =1

Predicted Observed
potential outcomes outcomes
Participant Y, Y, Y, Y,
1 1.05 1.95 1.05 ]
2 0.44 1.34 [ 1.34
3 0.56 1.46 [} 1.46
4 0.50 1.40 [ | 1.40
5 1.22 2.12 1.22 ]
6 0.66 1.56 0.66 ]
7 0.92 1.82 ] 1.82
8 0.44 1.34 0.44 ]
9 0.46 1.36 ] 1.36
10 0.62 1.52 0.62 [ ]

2'g

True average treatment effect: 0.90  Study average treatment effect: 0.68
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Using Eq. (4.21), we readily get an estimable, noncounterfactual expression for ETT
ETT = E[Y, - Yy|lX = 1]
=E[Y||X =1] - E[Y,|X =1]
=E[Y|X=1]- ) E[Y|X=0,Z=zP(Z=2|X=1)
z

where the first term in the final expression is obtained using the consistency rule of Eq. (4.6).
In other words, E[Y;|X = 1] = E[Y|X = 1] because, conditional on X = 1, the value that Y
would get had X been 1 is simply the observed value of Y.

Another situation permitting the identification of ETT occurs for binary X whenever both
experimental and nonexperimental data are available, in the form of P(Y = y|do(X = x)) and
P(X =x,Y =), respectively. Still another occurs when an intermediate variable is available
between X and Y satisfying the front-door criterion (Figure 3.10(b)). What is common to these
situations is that an inspection of the causal graph can tell us whether ETT is estimable and, if
so, how.

Study questions
Study question 4.4.1

(a) Prove that, if X is binary, the effect of treatment on the treated can be estimated from both
observational and experimental data. Hint: Decompose E[Y ] into

E[Y,] = E[Y,|X'1P(xX) + E[Y,|x]P(x)

(b) Apply the result of Question (a) to Simpson’s story with the nonexperimental data of Table
1.1, and estimate the effect of treatment on those who used the drug by choice. [Hint:
Estimate E[Y,] assuming that gender is the only confounder. ]

(c¢) Repeat Question (b) using Theorem 4.3.2 and the fact that Z in Figure 3.3 satisfies the
backdoor criterion. Show that the answers to (b) and (c¢) coincide.

4.4.2 Additive Interventions

Example 4.4.2 In many experiments, the external manipulation consists of adding (or sub-
tracting) some amount from a variable X without disabling preexisting causes of X, as required
by the do(x) operator. For example, we might give 5 mg/l of insulin to a group of patients with
varying levels of insulin already in their systems. Here, the preexisting causes of the manip-
ulated variable continue to exert their influences, and a new quantity is added, allowing for
differences among units to continue. Can the effect of such interventions be predicted from
observational studies, or from experimental studies in which X was set uniformly to some
predetermined value x?

If we write our question using counterfactual variables, the answer becomes obvious.
Suppose we were to add a quantity g to a treatment variable X that is currently at level X = x’.
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The reader may also wonder why E[Y|add(q)] is not equal to the average causal effect

ZE[YMO(X:X +q)] - E[Y|d0(X=x)ﬂ P(X =x)

After all, if we know that adding ¢ to an individual at level X = x would increase its expected
Y by E[Y|do(X = x + q)] — E[Y|do(X = x)], then averaging this increase over X should give
us the answer to the policy question E[Y|add(g)]. Unfortunately, this average does not capture
the policy question. This average represents an experiment in which subjects are chosen at
random from the population, a fraction P(X = x) are given an additional dose ¢, and the rest
are left alone. But things are different in the policy question at hand, since P(X = x) represents
the proportion of subjects who entered level X = x by free choice, and we cannot rule out the
possibility that subjects who attain X = x by free choice would react to add(q) differently from
subjects who “receive” X = x by experimental decree. For example, it is quite possible that sub-
jects who are highly sensitive to add(g) would attempt to lower their X level, given the choice.
We translate into counterfactual analysis and write the inequality:

E[Yl|add(q)] - E[Y] = Y E[Y, XIP(X = x) # 3 E[Y,,,IP(X = x)

Equality holds only when Y, is independent of X, a condition that amounts to nonconfounding
(see Theorem 4.3.1). Absent this condition, the estimation of E[Y |add(q)] can be accomplished
either by g-specific intervention or through stronger assumptions that enable the translation of
ETT to do-expressions, as in Eq. (4.21).

Study question 4.4.2

Joe has never smoked before but, as a result of peer pressure and other personal factors, he
decided to start smoking. He buys a pack of cigarettes, comes home, and asks himself: “I am
about to start smoking, should 1?”

(a) Formulate Joe’s question mathematically, in terms of ETT, assuming that the outcome of
interest is lung cancer.

(b) What type of data would enable Joe to estimate his chances of getting cancer given that
he goes ahead with the decision to smoke, versus refraining from smoking.

(¢) Use the data in Table 3.1 to estimate the chances associated with the decision in (b).

4.4.3  Personal Decision Making

Example 4.4.3 Ms Jones, a cancer patient, is facing a tough decision between two possible
treatments: (i) lumpectomy alone or (ii) lumpectomy plus irradiation. In consultation with
her oncologist, she decides on (ii). Ten years later, Ms Jones is alive, and the tumor has not
recurred. She speculates: Do I owe my life to irradiation?

Mrs Smith, on the other hand, had a lumpectomy alone, and her tumor recurred after a year.
And she is regretting: I should have gone through irradiation.

Can these speculations ever be substantiated from statistical data? Moreover, what good
would it do to confirm Ms Jones’s triumph or Mrs Smith’s regret?
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of interest, for example, P(Y, =y), for the observational as well as experimental sampled
populations.

Example 4.5.1 (Attribution in Legal Setting) A lawsuit is filed against the manufacturer of
drug x, charging that the drug is likely to have caused the death of Mr A, who took it to relieve

back pains. The manufacturer claims that experimental data on patients with back pains show

conclusively that drug x has only minor effects on death rates. However, the plaintiff argues that

the experimental study is of little relevance to this case because it represents average effects on

patients in the study, not on patients like Mr A who did not participate in the study. In particular,

argues the plaintiff, Mr A is unique in that he used the drug of his own volition, unlike subjects

in the experimental study, who took the drug to comply with experimental protocols. To support
this argument, the plaintiff furnishes nonexperimental data on patients who, like Mr A, chose
drug x to relieve back pains but were not part of any experiment, and who experienced lower
death rates than those who didn’t take the drug. The court must now decide, based on both the

experimental and nonexperimental studies, whether it is “more probable than not” that drug

X was in fact the cause of Mr A’s death.

To illustrate the usefulness of the bounds in Eq. (4.30), consider (hypothetical) data asso-
ciated with the two studies shown in Table 4.5. (In the analyses below, we ignore sampling
variability.)

The experimental data provide the estimates

P(y|do(x)) = 16/1000 = 0.016 (4.35)

P(y|do(x')) = 14/1000 = 0.014 (4.36)

whereas the nonexperimental data provide the estimates

P(y) =30/2000 = 0.015 (4.37)
P(x,y) =2/2000 = 0.001 (4.38)
P(y|lx) =2/1000 = 0.002 (4.39)
P(y|lx") =28/1000 = 0.028 (4.40)

Table 4.5 Experimental and nonexperimental data used to illustrate the estimation
of PN, the probability that drug x was responsible for a person’s death (y)

Experimental Nonexperimental
do(x) do(x") X X'
Deaths (y) 16 14 2 28

Survivals (') 984 986 998 972
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We note that, in general, the total effect can be decomposed as
TE = NDE — NIE, (4.48)

where NIE, stands for the NIE under the reverse transition, from 7 = 1 to 7 = 0. This implies
that NIE is identifiable whenever NDE and TE are identifiable. In linear systems, where reversal
of transitions amounts to negating the signs of their effects, we have the standard additive
formula, TE = NDE + NIE.

We further note that 7E and CDE(m) are do-expressions and can, therefore, be estimated
from experimental data or in observational studies using the backdoor or front-door adjust-
ments. Not so for the NDE and NIE; a new set of assumptions is needed for their identification.
Conditions for identifying natural effects

The following set of conditions, marked A-1 to A-4, are sufficient for identifying both direct
and indirect natural effects.

We can identify the NDE and NIE provided that there exists a set W of measured covariates
such that

A-1 No member of W is a descendant of 7.

A-2 W blocks all backdoor paths from M to Y (after removing T — M and T — Y).

A-3 The W-specific effect of T on M is identifiable (possibly using experiments or adjust-
ments).

A-4 The W-specific joint effect of {7, M} on Y is identifiable (possibly using experiments or
adjustments).

Theorem 4.5.2 (Identification of the NDE) When conditions A-1 and A-2 hold, the natural
direct effect is experimentally identifiable and is given by

NDE =Y Y [E[Y|do(T = 1,M = m),W = w] — E[Y|do(T = 0,M = m), W = wl]

m w

X P(M = m|do(T = 0), W = w)P(W =w) (4.49)

The identifiability of the do-expressions in Eq. (4.49) is guaranteed by conditions A-3 and A-4
and can be determined using the backdoor or front-door criteria.

Corollary 4.5.1 If conditions A-1 and A-2 are satisfied by a set W that also deconfounds the
relationships in A-3 and A-4, then the do-expressions in Eq. (4.49) are reducible to conditional
expectations, and the natural direct effect becomes

NDE =) M[E[Y|T = 1,M =m,W =w] - E[Y|T =0,M =m,W = wl]

m w

X P(M =m|T =0,W = w)P(W = w) (4.50)

In the nonconfounding case (Figure 4.6(a)), NDE reduces to

NDE = Y [E[Y|T =1,M =m] - E[Y|T =0,M =mlIP(M =m|T = 0). 4.51)
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Similarly, using (4.48)and TE = E[ Y | X=1] — E[ Y| X =0], NIE becomes

NIE= Y E[Y|T=0,M=ml[PM=m|T=1)-PM=m|T =0)] (4.52)

The last two expressions are known as the mediation formulas. We see that while NDE is a
weighted average of CDE, no such interpretation can be given to NIE.

The counterfactual definitions of NDE and NIE (Eqs. (4.46) and (4.47)) permit us to give
these effects meaningful interpretations in terms of “response fractions.” The ratio NDE/TE
measures the fraction of the response that is transmitted directly, with M “frozen.” NIE/TE
measures the fraction of the response that may be transmitted through M, with Y blinded to
X. Consequently, the difference (TE — NDE)/TE measures the fraction of the response that is
necessarily due to M.

Numerical example: Mediation with binary variables

To anchor these mediation formulas in a concrete example, we return to the encouragement-
design example of Section 4.2.3 and assume that 7 = 1 stands for participation in an enhanced
training program, Y = 1 for passing the exam, and M = 1 for a student spending more than
3 hours per week on homework. Assume further that the data described in Tables 4.6 and 4.7
were obtained in a randomized trial with no mediator-to-outcome confounding (Figure 4.6(a)).
The data shows that training tends to increase both the time spent on homework and the rate
of success on the exam. Moreover, training and time spent on homework together are more
likely to produce success than each factor alone.

Our research question asks for the extent to which students’ homework contributes to their
increased success rates regardless of the training program. The policy implications of such
questions lie in evaluating policy options that either curtail or enhance homework efforts,
for example, by counting homework effort in the final grade or by providing students with

Table 4.6 The expected success (Y) for treated (7' = 1) and untreated (7' = 0)
students, as a function of their homework (M)

Treatment Homework Success rate
T M EY|T=t,M =m)
1 1 0.80
1 0 0.40
0 1 0.30
0 0 0.20

Table 4.7 The expected homework (M) done by treated
(Y = 1) and untreated (7" = 0) students

Treatment Homework
T EM|T = 1)
0.40

1 0.75
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