
C H A P T E R S E V E N

The Logic of Structure-Based Counterfactuals

And the Lord said,
“If I find in the city of Sodom fifty good men,
I will pardon the whole place for their sake.”

Genesis 18:26

Preface 

This chapter provides a formal analysis of structure-based counterfactuals, a concept
introduced briefly in Chapters 1 and 3 that will occupy the rest of our discussion in this
book. Through this analysis, we will obtain sharper mathematical definitions of other
concepts that were introduced in earlier chapters, including causal models, action, causal
effects, causal relevance, error terms, and exogeneity. 

After casting the concepts of causal model and counterfactuals in formal mathematical
terms, we will demonstrate by examples how counterfactual questions can be answered
from both deterministic and probabilistic causal models (Section 7.1). In Section 7.2.1, we
will argue that policy analysis is an exercise in counterfactual reasoning and demonstrate
this thesis in a simple example taken from econometrics. This will set the stage for our
discussion in Section 7.2.2, where we explicate the empirical content of counterfactuals in
terms of policy predictions. Section 7.2.3 discusses the role of counterfactuals in the inter-
pretation and generation of causal explanations. Section 7.2 concludes with discussions
of how causal relationships emerge from actions and mechanisms (Section 7.2.4) and how
causal directionality can be induced from a set of symmetric equations (Section 7.2.5). 

In Section 7.3 we develop an axiomatic characterization of counterfactual and causal
relevance relationships as they emerge from the structural model semantics. Section 7.3.1
will identify a set of properties, or axioms, that allow us to derive new counterfactual re-
lations from assumptions, and Section 7.3.2 demonstrates the use of these axioms in
algebraic derivation of causal effects. Section 7.3.3 introduces axioms for the relation-
ship of causal relevance and, using their similarity to the axioms of graphs, describes the
use of graphs for verifying relevance relationships.

The axiomatic characterization developed in Section 7.3 enables us to compare struc-
tural models with other approaches to causality and counterfactuals, most notably those
based on Lewis’s closest-world semantics (Sections 7.4.1–7.4.4). The formal equiva-
lence of the structural approach and the Neyman–Rubin potential-outcome framework is
discussed in Section 7.4.4. Finally, we revisit the topic of exogeneity and extend our dis-
cussion of Section 5.4.3 with counterfactual definitions of exogenous and instrumental
variables in Section 7.4.5.
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202 The Logic of Structure-Based Counterfactuals

The final part of this chapter (Section 7.5) compares the structural account of causal-
ity with that based on probabilistic relationships. We elaborate our preference toward the
structural account and highlight the difficulties that the probabilistic account is currently
facing. 

7.1 STRUCTURAL MODEL SEMANTICS

How do scientists predict the outcome of one experiment from the results of other
experiments run under totally different conditions? Such predictions require us to envi-
sion what the world would be like under various hypothetical changes and so invoke
counterfactual inference. Though basic to scientific thought, counterfactual inference
cannot easily be formalized in the standard languages of logic, algebraic equations, or
probability. The formalization of counterfactual inference requires a language within
which the invariant relationships in the world are distinguished from transitory relation-
ships that represent one’s beliefs about the world, and such distinction is not supported
by standard algebras, including the algebra of equations, Boolean algebra, and proba-
bility calculus. Structural models offer such distinction, and this section presents a struc-
tural model semantics of counterfactuals as defined in Balke and Pearl (1994a,b), Galles
and Pearl (1997, 1998), and Halpern (1998),1 which stands in sharp contrast to the
experimental perspective of Rubin (1974). Related approaches have been proposed in
Simon and Rescher (1966) and Ortiz (1999). 

We start with a deterministic definition of a causal model, which consists (as we
have discussed in earlier chapters) of functional relationships among variables of inter-
est, each relationship representing an autonomous mechanism. Causal and counterfactual
relationships are defined in this model in terms of response to local modifications of those
mechanisms. Probabilistic relationships emerge naturally by assigning probabilities to
background conditions. After demonstrating, by examples, how this model facilitates the
computation of counterfactuals in both deterministic and probabilistic contexts (Section
7.1.2), we then present a general method of computing probabilities of counterfactual ex-
pressions using causal diagrams (Section 7.1.3).

7.1.1 Definitions: Causal Models, Actions, and Counterfactuals

A “model,” in the common use of the word, is an idealized representation of reality that
highlights some aspects and ignores others. In logical systems, however, a model is a
mathematical object that assigns truth values to sentences in a given language, where
each sentence represents some aspect of reality. Truth tables, for example, are models
in propositional logic; they assign a truth value to any Boolean expression, which may
represent an event or a set of conditions in the domain of interest. A joint probability
function, as another example, is a model in probability logic; it assigns a truth value to

1 Similar models, called “neuron diagrams” (Lewis 1986, p. 200; Hall 2004), are used informally by
philosophers to illustrate chains of causal processes.



any sentence of the form where A and B are Boolean expressions rep-
resenting events. A causal model, naturally, should encode the truth values of sentences
that deal with causal relationships; these include action sentences (e.g., “A will be true
if we do B”), counterfactuals (e.g., “A would have been different were it not for B”),
and plain causal utterances (e.g., “A may cause B” or “B occurred because of A”). Such
sentences cannot be interpreted in standard propositional logic or probability calculus be-
cause they deal with changes that occur in the external world rather than with changes in
our beliefs about a static world. Causal models encode and distinguish information about
external changes through an explicit representation of the mechanisms that are altered in
such changes.

Definition 7.1.1 (Causal Model)

A causal model is a triple

where:

(i) U is a set of background variables, (also called exogenous),2 that are deter-
mined by factors outside the model;

(ii) V is a set {V1, V2,…, Vn6 of variables, called endogenous, that are determined
by variables in the model – that is, variables in and

(iii) F is a set of functions 5 f1, f2,…, fn6 such that each fi is a mapping from (the
respective domains of) to Vi, where and and the
entire set F forms a mapping from U to V. In other words, each fi in

assigns a value to Vi that depends on (the values of) a select set of variables in
and the entire set F has a unique solution V (u).3,4

Every causal model M can be associated with a directed graph, G(M), in which each
node corresponds to a variable and the directed edges point from members of PAi and
Ui toward Vi. We call such a graph the causal diagram associated with M. This graph
merely identifies the endogenous and background variables that have direct influence on
each Vi; it does not specify the functional form of fi. The convention of confining the
parent set PAi to variables in V stems from the fact that the background variables are of-
ten unobservable. In general, however, we can extend the parent sets to include observed
variables in U.

V � U,

vi � fi (pai, ui),  i � 1, p , n,

PAi � V \ViUi � UUi � PAi

U � V;

M � �U, V, F�,

P(A � B) � p,
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2 We will try to refrain from using the term “exogenous” in referring to background conditions, be-
cause this term has acquired more refined technical connotations (see Sections 5.4.3 and 7.4). The
term “predetermined” is used in the econometric literature.

3 The choice of PAi (connoting parents) is not arbitrary, but expresses the modeller’s understanding
of which variables Nature must consult before deciding the value of Vi. 

4 Uniqueness is ensured in recursive (i.e., acyclic) systems. Halpern (1998) allows multiple solu-
tions in nonrecursive systems.



Definition 7.1.2 (Submodel)

Let M be a causal model, X a set of variables in V, and x a particular realization of X.
A submodel Mx of M is the causal model

where

(7.1)

In words, Fx is formed by deleting from F all functions fi corresponding to members of
set X and replacing them with the set of constant functions X � x.

Submodels are useful for representing the effect of local actions and hypothetical
changes, including those implied by counterfactual antecedents. If we interpret each
function fi in F as an independent physical mechanism and define the action do(X � x)
as the minimal change in M required to make X � x hold true under any u, then Mx
represents the model that results from such a minimal change, since it differs from M
by only those mechanisms that directly determine the variables in X. The transforma-
tion from M to Mx modifies the algebraic content of F, which is the reason for the name
“modifiable structural equations” used in Galles and Pearl (1998).5

Definition 7.1.3 (Effect of Action)

Let M be a causal model, X a set of variables in V, and x a particular realization of X.
The effect of action do(X � x) on M is given by the submodel Mx.

Definition 7.1.4 (Potential Response)

Let X and Y be two subsets of variables in V. The potential response of Y to action do(X �
x), denoted Yx(u), is the solution for Y of the set of equations Fx,

6 that is,

We will confine our attention to actions in the form of do(X � x). Conditional actions
of the form “do(X � x) if Z � z” can be formalized using the replacement of equations
by functions of Z, rather than by constants (Section 4.2). We will not consider disjunc-
tive actions of the form “do(X � x or Z � z),” since these complicate the probabilistic
treatment of counterfactuals. 

Definition 7.1.5 (Counterfactual)

Let X and Y be two subsets of variables in V. The counterfactual sentence “Y would be
y (in situation u), had X been x” is interpreted as the equality with Yx(u)
being the potential response of Y to X � x.

Yx(u) � y,

Yx(u) � Ymx
(u).

Fx � 5fi : Vi � X6 � 5X � x6.

Mx � �U, V, Fx�,
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5 Structural modifications date back to Haavelmo (1943), Marschak (1950), and Simon (1953). An
explicit translation of interventions into “wiping out” equations from the model was first proposed
by Strotz and Wold (1960) and later used in Fisher (1970), Sobel (1990), Spirtes et al. (1993), and
Pearl (1995a). A similar notion of submodel was introduced by Fine (1985), though not specifically
for representing actions and counterfactuals.

6 If Y is a set of variables then Yx(u) stands for a vector of functions ( (u),
Y2x

(u), p ).
Y1x

Y � (Y1, Y2, p ),



Definition 7.1.5 thus interprets the counterfactual phrase “had X been x” in terms of a hy-
pothetical modification of the equations in the model; it simulates an external action (or
spontaneous change) that modifies the actual course of history and enforces the condition
“X � x” with minimal change of mechanisms. This is a crucial step in the semantics of
counterfactuals (Balke and Pearl 1994b), as it permits x to differ from the current value of
X(u) without creating logical contradiction; it also suppresses abductive inferences (or
backtracking) from the counterfactual antecedent X � x.7 In Chapter 3 (Section 3.6.3)
we used the notation Y(x, u) to denote the unit-based conditional “the value that Y would
obtain in unit u, had X been x,” as used in the Neyman–Rubin potential-outcome model.
Throughout the rest of this book we will use the notation Yx(u) to denote counterfactu-
als tied specifically to the structural model interpretation of Definition 7.1.5 (paralleling
(3.51)); Y(x, u) will be reserved for generic subjunctive conditionals, uncommitted to
any specific semantics.

Definition 7.1.5 endows the atomic mechanisms 5 fi6 themselves with interventional–
counterfactual interpretation, because yi � fi(pai, ui) is the value of Vi in the submodel
My\yi. In other words, ƒi(pai, ui) stands for the potential response of Vi when we inter-
vene on all other variables in V.

This formulation generalizes naturally to probabilistic systems as follows.

Definition 7.1.6 (Probabilistic Causal Model)

A probabilistic causal model is a pair

where M is a causal model and P(u) is a probability function defined over the domain of
U.

The function P(u), together with the fact that each endogenous variable is a function of
U, defines a probability distribution over the endogenous variables. That is, for every set
of variables we have

(7.2)

The probability of counterfactual statements is defined in the same manner, through the
function Yx(u) induced by the submodel Mx:

(7.3)

Likewise, a causal model defines a joint distribution on counterfactual statements.
That is, P(Yx � y, Zw � z) is defined for any (not necessarily disjoint) sets of vari-
ables Y, X, Z, and W. In particular, and are well
defined for and are given by x � x�

P(Yx � y, Yx� � y�)P(Yx � y, X � x�)

P(Yx � y) � a5u � Yx(u)�y6 P(u).

P(y) � P(Y � y) � a5u�Y(u)�y6P(u).

Y � V,

�M, P(u)�,
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7 Simon and Rescher (1966, p. 339) did not include this step in their account of counterfactuals and
noted that backward inferences triggered by the antecedents can lead to ambiguous interpretations.



(7.4)

and

(7.5)

If x and x� are incompatible then Yx and Yx’ cannot be measured simultaneously, and
it may seem meaningless to attribute probability to the joint statement “Y would be y if
X � x and Y would be if X � x�.” Such concerns have been a source of recent ob-
jections to treating counterfactuals as jointly distributed random variables (Dawid 2000).
The definition of Yx and in terms of the solution for Y in two distinct submodels, gov-
erned by a standard probability space over U, neutralizes these objections by interpret-
ing the contradictory joint statement as an ordinary event in U-space.

Of particular interest to us would be probabilities of counterfactuals that are condi-
tional on actual observations. For example, the probability that event X � x “was the
cause” of event Y � y may be interpreted as the probability that Y would not be equal
to y had X not been x, given that X � x and Y � y have in fact occurred (see Chap-
ter 9 for an in-depth discussion of the probabilities of causation). Such probabilities are
well defined in the model just described; they require the evaluation of expressions of
the form with x� and y� incompatible with x and y, re-
spectively. Equation (7.4) allows the evaluation of this quantity as follows:

(7.6)

In other words, we first update P(u) to obtain P(u ƒ x, y) and then use the updated dis-
tribution P(u ƒ x, y) to compute the expectation of the equality 

This substantiates the three-step procedure introduced in Section 1.4, which we now
summarize in a theorem. 

Theorem 7.1.7

Given model the conditional probability P(BA ƒ e) of a counterfactual sen-
tence “If it were A then B,” given evidence e, can be evaluated using the following three
steps.

1. Abduction – Update P(u) by the evidence e to obtain P(u ƒ e).

2. Action – Modify M by the action do(A), where A is the antecedent of the coun-
terfactual, to obtain the submodel MA.

3. Prediction – Use the modified model to compute the probability
of B, the consequence of the counterfactual.

�MA, P(u � e)�

�M, P(u)�,

Yx�(u) � y�.

� a
u

P(Yx�(u) � y�)P(u � x, y).

P(Yx� � y� � X � x, Y � y) �
P(Yx� � y�, X � x, Y � y)

P(X � x, Y � y)

P(Yx� � y� � X � x, Y � y),

Yx�

y�

P(Yx � y, Yx� � y�) � a5u�Yx(u)�y &Yx�(u)�y�6P(u).

P(Yx � y, X � x�) � a5u � Yx(u)�y & X(u)�x�6P(u)
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To complete this section, we introduce two additional objects that will prove useful in
subsequent discussions: worlds8 and theories.

Definition 7.1.8 (Worlds and Theories)

A causal world w is a pair where M is a causal model and u is a particular re-
alization of the background variables U. A causal theory is a set of causal worlds.

A world w can be viewed as a degenerate probabilistic model for which P(u) � 1. Causal
theories will be used to characterize partial specifications of causal models, for example,
models sharing the same causal diagram or models in which the functions fi are linear
with undetermined coefficients. 

7.1.2 Evaluating Counterfactuals: Deterministic Analysis

In Section 1.4.1 we presented several examples demonstrating the interpretation of ac-
tions and counterfactuals in structural models. We now apply the definitions of Section
7.1.1 to demonstrate how counterfactual queries, both deterministic and probabilistic, can
be answered formally using structural model semantics. 

Example 1: The Firing Squad

Consider a two-man firing squad as depicted in Figure 7.1, where A, B, C, D, and U
stand for the following propositions:

U � court orders the execution;

C � captain gives a signal;

A � rifleman A shoots;

B � rifleman B shoots;

D � prisoner dies.

Assume that the court’s decision is unknown, that both riflemen are accurate, alert,
and law-abiding, and that the prisoner is not likely to die from fright or other extraneous
causes. We wish to construct a formal representation of the story, so that the following
sentences can be evaluated mechanically.

�M, u�,
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Figure 7.1 Causal relationships in the example of the two-
man firing squad.

8 Adnan Darwiche called my attention to the importance of this object.



S1 Prediction – If rifleman A did not shoot, then the prisoner is alive:

S2 Abduction – If the prisoner is alive, then the captain did not signal:

S3 Transduction – If rifleman A shot, then B shot as well:

S4 Action – If the captain gave no signal and rifleman A decides to shoot, then the
prisoner will die and B will not shoot.

S5 Counterfactual – If the prisoner is dead, then the prisoner would be dead even
if rifleman A had not shot:

Evaluating Standard Sentences

To prove the first three sentences we need not invoke causal models; these sentences
involve standard logical connectives and thus can be handled using standard logical de-
duction. The story can be captured in any convenient logical theory (a set of proposition-
al sentences), for example,

or

where each theory admits the two logical models

In words, any theory T that represents our story should imply that either all five proposi-
tions are true or all are false; models m1 and m2 present these two possibilities explicitly.
The validity of S1–S3 can easily be verified, either by derivation from T or by noting that
the antecedent and consequent in each sentence are both part of the same model.

Two remarks are worth making before we go on to analyze sentences S4 and S5.
First, the two-way implications in T1 and T2 are necessary for supporting abduction;
if we were to use one-way implications (e.g., C A), then we would not be able to
conclude C from A. In standard logic, this symmetry removes all distinctions be-
tween the tasks of prediction (reasoning forward in time), abduction (reasoning from
evidence to explanation), and transduction (reasoning from evidence to explanation and
then from explanation to predictions). Using two-way implication, these three modes of
reasoning differ only in the interpretations they attach to antecedents and consequents of
conditional sentences – not in their methods of inference. In nonstandard logics (e.g.,
logic programming), where the implication sign dictates the direction of inference and
even contraposition is not licensed, metalogical inference machinery must be invoked to
perform abduction (Eshghi and Kowalski 1989).

1

m1: 5U, C, A, B, D6   and   m2: 5¬ U, ¬ C, ¬ A, ¬ B, ¬ D6.

T2:  U 3  C 3  A 3  B 3  D,

T1: U 3  C,  C 3  A,  C 3  B,  A ¡ B 3  D

D 1 D¬A.

¬ C 1 DA & ¬ BA.

A 1 B.

¬ D 1 ¬ C.

¬ A 1 ¬ D.
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Second, the feature that renders S1–S3 manageable in standard logic is that they all
deal with epistemic inference – that is, inference from beliefs to beliefs about a static
world. Sentence S2, for example, can be explicated to state: If we find that the prisoner
is alive, then we have the license to believe that the captain did not give the signal. The
material implication sign in logic does not extend beyond this narrow meaning,
to be contrasted next with the counterfactual implication.

Evaluating Action Sentences 

Sentence S4 invokes a deliberate action, “rifleman A decides to shoot.” From our discus-
sion of actions (see, e.g., Chapter 4 or Definition 7.1.3), any such action must violate
some premises, or mechanisms, in the initial theory of the story. To formally identify
what remains invariant under the action, we must incorporate causal relationships into
the theory; logical relationships alone are not sufficient. The causal model corresponding to
our story is as follows.

Model M

(U)
C � U (C)
A � C (A)
B � C (B)

(D)

Here we use equality rather than implication in order to (i) permit two-way inference and
(ii) stress that, unlike logical sentences, each equation represents an autonomous mecha-
nism (an “integrity constraint” in the language of databases) – it remains invariant unless
specifically violated. We further use parenthetical symbols next to each equation in order
to identify explicitly the dependent variable (on the l.h.s.) in the equation, thus represent-
ing the causal asymmetry associated with the arrows in Figure 7.1.

To evaluate S4, we follow Definition 7.1.3 and form the submodel MA, in which the
equation A � C is replaced by A (simulating the decision of rifleman A to shoot regard-
less of signals).

Model MA

(U)
C � U (C)
A (A)
B � C (B)

(D)

Facts:

Conclusions:

We see that, given we can easily deduce D and and thus confirm the validity
of S4.

It is important to note that “problematic” sentences like S4, whose antecedent vio-
lates one of the basic premises in the story (i.e., that both riflemen are law-abiding) are
handled naturally in the same deterministic setting in which the story is told. Traditional

¬ B¬ C,

A, D, ¬ B, ¬ U, ¬ C

¬ C

D � A ¡ B

D � A ¡ B

( 1 )

7.1 Structural Model Semantics 209



logicians and probabilists tend to reject sentences like S4 as contradictory and insist on
reformulating the problem probabilistically so as to tolerate exceptions to the law A �

C.9 Such reformulations are unnecessary; the structural approach permits us to process
commonplace causal statements in their natural deterministic habitat without first im-
mersing them in nondeterministic decor. In this framework, all laws are understood to
represent “defeasible” default expressions – subject to breakdown by deliberate interven-
tion. The basic laws of physics remain immutable, of course, but their applicability to any
given scenario is subject to modification by agents’ actions or external intervention.

Evaluating Counterfactuals

We are now ready to evaluate the counterfactual sentence S5. Following Definition 7.1.5,
the counterfactual stands for the value of D in submodel . This value is ambigu-
ous because it depends on the value of U, which is not specified in . The observation
D removes this ambiguity; upon finding the prisoner dead we can infer that the court has
given the order (U) and, consequently, if rifleman A had refrained from shooting then
rifleman B would have shot and killed the prisoner, thus confirming 

Formally, we can derive by using the steps of Theorem 7.1.7 (though no prob-
abilities are involved). We first add the fact D to the original model M and evaluate U;
then we form the submodel and reevaluate the truth of D in , using the value
of U found in the first step. These steps are explicated as follows.

Step 1

Model M

(U)
C � U (C)
A � C (A)
B � C (B)

(D)

Facts: D

Conclusions:

Step 2

Model 

(U)
C � U (C)

(A)
B � C (B)

(D)

Facts: U

Conclusions: U, ¬ A, C, B, D

D � A ¡ B

¬ A

M¬A

U, A, B, C, D

D � A ¡ B

M¬AM¬A

D¬A

D¬A.

M¬A

M¬AD¬A
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9 This problem, I speculate, was one of the primary forces for the emergence of probabilistic causal-
ity in the 1960s (see Section 7.5 for review).



Note that it is only the value of U, the background variable, that is carried over from
step 1 to step 2; all other propositions must be reevaluated subject to the new modification
of the model. This reflects the understanding that background factors U are not affected
by either the variables or the mechanisms in the model 5 fi6; hence, the counterfactual con-
sequent (in our case, D) must be evaluated under the same background conditions as those
prevailing in the actual world. In fact, the background variables are the main carriers of
information from the actual world to the hypothetical world; they serve as the “guardians
of invariance” (or persistence) in the dynamic process that transforms the former into the
latter (an observation by David Heckerman, personal communication).

Note also that this two-step procedure for evaluating counterfactuals can be com-
bined into one. If we use an asterisk to distinguish postmodification from premodifica-
tion variables, then we can combine M and Mx into one logical theory and prove the
validity of S5 by purely logical deduction in the combined theory. To illustrate, we
write S5 as (read: If D is true in the actual world, then D would also be true
in the hypothetical world created by the modification and prove the validity of D*
in the combined theory as follows.

Combined Theory
(U)

C* � U C � U (C)
A � C (A)

B* � C* B � C (B)
(D)

Facts: D

Conclusions: U, A, B, C, D, C*, B*, D*

Note that U need not be “starred,” reflecting the assumption that background conditions
remain unaltered. 

It is worth reflecting at this point on the difference between S4 and S5. The two ap-
pear to be syntactically identical, as both involve a fact implying a counterfactual, and yet
we labeled S4 an “action” sentence and S5 a “counterfactual” sentence. The difference
lies in the relationship between the given fact and the antecedent of the counterfactual
(i.e., the “action” part). In S4, the fact given is not affected by the antecedent (A);
in S5, the fact given (D) is potentially affected by the antecedent The difference
between these two situations is fundamental, as can be seen from their methods of eval-
uation. In evaluating S4, we knew in advance that C would not be affected by the model
modification do(A); therefore, we were able to add C directly to the modified model MA.
In evaluating S5, on the other hand, we were contemplating a possible reversal, from D
to attributable to the modification do . As a result, we first had to add fact D to
the preaction model M, summarize its impact via U, and reevaluate D once the modifica-
tion do takes place. Thus, although the causal effect of actions can be expressed
syntactically as a counterfactual sentence, this need to route the impact of known facts
through U makes counterfactuals a different species than actions (see Section 1.4).

We should also emphasize that most counterfactual utterances in natural language
presume, often implicitly, knowledge of facts that are affected by the antecedent. For

( ¬ A)

( ¬ A)¬ D,

( ¬ A).
( ¬ C)

¬ A*,

D � A ¡ BD* � A* ¡ B*

¬ A*

¬ A*)
D 1 D*¬A*
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example, when we say that “B would be different were it not for A,” we imply knowl-
edge of what the actual value of B is and that B is susceptible to A. It is this sort of
relationship that gives counterfactuals their unique character – distinct from action
sentences – and, as we saw in Section 1.4, it is this sort of sentence that would require
a more detailed specification for its evaluation: some knowledge of the functional mech-
anisms fi (pai, ui) would be necessary. 

7.1.3 Evaluating Counterfactuals: Probabilistic Analysis

To demonstrate the probabilistic evaluation of counterfactuals (equations (7.3)–(7.5)),
let us modify the firing-squad story slightly, assuming that:

1. there is a probability P(U) � p that the court has ordered the execution;

2. rifleman A has a probability q of pulling the trigger out of nervousness; and

3. rifleman A’s nervousness is independent of U.

With these assumptions, we wish to compute the quantity – namely, the
probability that the prisoner would be alive if A had not shot, given that the prisoner is
in fact dead.

Intuitively, we can figure out the answer by noting that is true if and only if the
court has not issued an order. Thus, our task amounts to that of computing 
which evaluates to q(1 � p)/[1 � (1 � q)(1 � p)]. However, our aim is to demonstrate
a general and formal method of deriving such probabilities, based on (7.4), that makes
little use of intuition. 

The probabilistic causal model (Definition 7.1.6) associated with the new story con-
tains two background variables, U and W, where W stands for rifleman A’s nervousness.
This model is given as follows.

Model 

C � U (C)
(A)

B � C (B)
(D)

In this model, the background variables are distributed as

(7.7)

Following Theorem 7.1.7, our first step (abduction) is to compute the posterior probabi-
lity accounting for the fact that the prisoner is found dead. This is easily
evaluated to:

P(u, w � D),

P(u, w) � μ
pq if u � 1, w � 1,

p(1 � q) if u � 1, w � 0,

(1 � p)q if u � 0, w � 1,

(1 � p)(1 � q) if u � 0, w � 0.

D � A ¡ B

A � C ¡ W

(U, W) ~ P (u, w)

�M, P(u, w)�

P( ¬ U � D),
¬ D¬A

P( ¬ D¬A � D)
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(7.8)

The second step (action) is to form the submodel while retaining the posterior
probability of (7.8).

Model 

C � U (C)
(A)

B � C (B)
(D)

The last step (prediction) is to compute in this probabilistic model. Noting that
the result (as expected) is

7.1.4 The Twin Network Method

A major practical difficulty in the procedure just described is the need to compute, store,
and use the posterior distribution P(u ƒ e), where u stands for the set of all background
variables in the model. As illustrated in the preceding example, even when we start with
a Markovian model in which the background variables are mutually independent, condi-
tioning on e normally destroys this independence and so makes it necessary to carry over
a full description of the joint distribution of U, conditional on e. Such description may
be prohibitively large if encoded in the form of a table, as we have done in (7.8).

A graphical method of overcoming this difficulty is described in Balke and Pearl
(1994b); it uses two networks, one to represent the actual world and one to represent
the hypothetical world. Figure 7.2 illustrates this construction for the firing-squad story
analyzed.

The two networks are identical in structure, save for the arrows entering A*, which
have been deleted to mirror the equation deleted from Like Siamese twins, the
two networks share the background variables (in our case, U and W), since those re-
main invariant under modification. The endogenous variables are replicated and labeled
distinctly, because they may obtain different values in the hypothetical versus the actual

M¬A.

P( ¬ D¬A � D) � P( ¬ U � D) �
q(1 � p)

1 � (1 � q)(1 � p)
.

¬ D 1 ¬ U,
P( ¬ D)

D � A ¡ B

¬ A

(U, W)~P(u, w � D)

�M¬A, P(u, w � D)�

M¬A

P(u, w � D) � b p(u, w)
1�(1�p)(1�q)

if  u � 1 or w � 1,

0 if  u � 0 and w � 0.
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Figure 7.2 Twin network representation of the firing squad.



world. The task of computing in the model thus reduces to
that of computing in the twin network shown, setting A* to false.

In general, if we wish to compute the counterfactual probability where
X, Y, and Z are arbitrary sets of variables (not necessarily disjoint), Theorem 7.1.7
instructs us to compute P(y) in the submodel which reduces to computing
an ordinary conditional probability in an augmented Bayesian network. Such
computation can be performed by standard evidence propagation techniques. The advan-
tages of delegating this computation to inference in a Bayesian network are that the dis-
tribution need not be explicated, conditional independencies can be exploited,
and local computation methods can be employed (such as those summarized in Section
1.2.4).

The twin network representation also offers a useful way of testing independencies
among counterfactual quantities. To illustrate, suppose that we have a chainlike causal
diagram, and that we wish to test whether Yx is independent of X given Z

The twin network associated with this chain is shown in Figure 7.3.
To test whether holds in the original model, we test whether Z d-separates X
from Y* in the twin network. As can be easily seen (via Definition 1.2.3), conditioning
on Z renders the path between X and Y* d-connected through the collider at Z, and
hence does not hold in the model. This conclusion is not easily discernible
from the chain model itself or from the equations in that model. In the same fashion, we
can see that whenever we condition either on Y or on 5Y, Z6, we form a connection be-
tween Y* and X; hence, Yx and X are not independent conditional on those variables.
The connection is disrupted, however, if we do not condition on either Y or Z, in which
case 

The twin network reveals an interesting interpretation of counterfactuals of the form
, where Z is any variable and stands for the set of Z’s parents. Consider the ques-

tion of whether Zx is independent of some given set of variables in the model of Figure 7.3.
The answer to this question depends on whether Z* is d-separated from that set of vari-
ables. However, any variable that is d-separated from Z* would also be d-separated from
UZ, so the node representing UZ can serve as a one-way proxy for the counterfactual vari-
able Zx. This is not a coincidence, considering that Z is governed by the equation

. By definition, the probability of Zx is equal to the probability of Z under
the condition where X is held fixed at x. Under such condition, Z may vary only if UZ
varies. Therefore, if UZ obeys a certain independence relationship, then Zx (more generally,

z � fZ 
(x, uZ)

PAZZpaZ

Yx �� X.

Yx � � X � Z

Yx �� X � Z
(i.e., Yx ��  X � Z).

X S Z S Y,

P(u � z)

P(y* � z)
�Mx, P(u � z)�,

P(Yx � y � z),
P( ¬ D* � D)

�M¬A, P(u, y � z)�P( ¬ D)
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Figure 7.3 Twin network representation of the counterfactual Yx in the
model X S Z S Y.



) must obey that relationship as well. We thus obtain a simple graphical representation
for any counterfactual variable of the form , in terms of the so called “error-term” Uz.
Using this representation, we can easily verify from Figure 7.3 that 
and both hold in the twin-network and, therefore,

must hold in the model.  Additional considerations involving twin networks, including
generalizations to multi-networks (representing counterfactuals under different anticedants)
are reported in Shpitser and Pearl (2007). See Sections 11.3.2 and 11.7.3.

7.2 APPLICATIONS AND INTERPRETATION OF STRUCTURAL

MODELS

7.2.1 Policy Analysis in Linear Econometric Models: An Example

In Section 1.4 we illustrated the nature of structural equation modeling using the canon-
ical economic problem of demand and price equilibrium (see Figure 7.4). In this chapter,
we use this problem to answer policy-related questions. 

To recall, this example consists of the two equations

(7.9)

(7.10)

where q is the quantity of household demand for a product A, p is the unit price of prod-
uct A, i is household income, w is the wage rate for producing product A, and u1 and
u2 represent error terms – omitted factors that affect quantity and price, respectively
(Goldberger 1992). 

This system of equations constitutes a causal model (Definition 7.1.1) if we define
V � 5Q, P6 and U � 5U1, U2, I, W6 and assume that each equation represents an au-
tonomous process in the sense of Definition 7.1.3. It is normally assumed that I and W
are observed, while U1 and U2 are unobservable and independent of I and W. Since the
error terms U1 and U2 are unobserved, a complete specification of the model must include
the distribution of these errors, which is usually taken to be Gaussian with the covariance
matrix It is well known in economics (dating back to Wright 1928)
that the assumptions of linearity, normality, and the independence of 5I, W6 and 5U1, U26
permit consistent estimation of all model parameters, including the covariance matrix

However, the focus of this book is not the estimation of parameters but rather theirg ij.

g ij �  cov(ui, uj).

p � b2 q � d2w � u2,

q � b1 p � d1i � u1,

Yz �� X � 5Yx, Zx6  and  Yz �� Zx � 5Y, Z6
(UY �� UZ � 5Y, Z6)G

(UY �� X � 5Y*, Z*6)G

ZpaZ

ZpaZ
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Figure 7.4 Causal diagram illustrating the relation-
ship between price (P) and demand (Q).



utilization in policy predictions. Accordingly, we will demonstrate how to evaluate the
following three queries.

1. What is the expected value of the demand Q if the price is controlled at P � p0?

2. What is the expected value of the demand Q if the price is reported to be P �
p0?

3. Given that the current price is P � p0, what would be the expected value of the
demand Q if we were to control the price at P � p1?

The reader should recognize these queries as representing (respectively) actions, predic-
tions, and counterfactuals – our three-level hierarchy. The second query, representing
prediction, is standard in the literature and can be answered directly from the covariance
matrix without reference to causality, structure, or invariance. The first and third queries
rest on the structural properties of the equations and, as expected, are not treated in the
standard literature of structural equations.10

In order to answer the first query, we replace (7.10) with p � p0, leaving

(7.11)

(7.12)

with the statistics of U1 and I unaltered. The controlled demand is then q � b1p0 � d1i �

u1, and its expected value (conditional on I � i) is given by

(7.13)

Since U1 is independent of I, the last term evaluates to

and, substituted into (7.13), yields

The answer to the second query is obtained by conditioning (7.9) on the current ob-
servation and taking the expectation,

(7.14)

The computation of is a standard procedure once is given (Whittaker
1990, p. 163). Note that, although U1 was assumed to be independent of I and W, this
independence no longer holds once P � p0 is observed. Note also that (7.9) and (7.10)

g ijE[U1 � p0, i, w]

E(Q � p0, i, w) � b1 p0 � d1i � E(U1 � p0, i, w).

5P � p0, I � i, W � w6

E[Q � do(P � p0), i] � E(Q) � b1(p0 � E(P)) � di (i � E(I)).

E(U1 � i) � E(U1) � E(Q) � b1E(P) � d1E(I)

E[Q � do(P � p0), i] � b1 p0 � d1i � E(U1 � i).

p � p0,

p � b1 p � d1i � u1,
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explanation, and Section 11.5.4 a more recent assessment based on Heckman and Vytlacil (2007).



both participate in the solution and that the observed value p0 will affect the expected
demand Q (through even when b1 � 0, which is not the case in query 1.

The third query requires the expectation of the counterfactual quantity , con-
ditional on the current observations (see Section 11.7.1).
According to Definition 7.1.5, is governed by the submodel

(7.15)

(7.16)

the density of u1 should be conditioned on the observations 
We therefore obtain

(7.17)

The expected value is the same as in the solution to the second query;
the latter differs only in the term b1p1. A general matrix method for evaluating counter-
factual queries in linear Gaussian models is described in Balke and Pearl (1995a). 

At this point, it is worth emphasizing that the problem of computing counterfactual
expectations is not an academic exercise; it represents in fact the typical case in almost
every decision-making situation. Whenever we undertake to predict the effect of pol-
icy, two considerations apply. First, the policy variables (e.g., price and interest rates
in economics, pressure and temperature in process control) are rarely exogenous. Policy
variables are endogenous when we observe a system under operation; they become exoge-
nous in the planning phase, when we contemplate actions and changes. Second, policies
are rarely evaluated in the abstract; rather, they are brought into focus by certain even-
tualities that demand remedial correction. In troubleshooting, for example, we observe
undesirable effects e that are influenced by other conditions X � x and wish to predict
whether an action that brings about a change in X would remedy the situation. The infor-
mation provided by e is extremely valuable, and it must be processed (using abduction)
before we can predict the effect of any action. This step of abduction endows practical
queries about actions with a counterfactual character, as we have seen in the evaluation of
the third query (7.17).

The current price p0 reflects economic conditions (e.g., Q) that prevail at the time of
decision, and these conditions are presumed to be changeable by the policies considered.
Thus, the price P represents an endogenous decision variable (as shown in Figure 7.4)
that becomes exogenous in deliberation, as dictated by the submodel . The hypo-
thetical mood of query 3 translates into a practical problem of policy analysis: “Given
that the current price is P � p0, find the expected value of the demand (Q) if we change
the price today to P � p1.” The reasons for using hypothetical phrases in practical
decision-making situations are discussed in the next section, as well as 11.7.2. 

7.2.2 The Empirical Content of Counterfactuals

The word “counterfactual” is a misnomer, since it connotes a statement that stands con-
trary to facts or, at the very least, a statement that escapes empirical verification. Coun-
terfactuals are in neither category; they are fundamental to scientific thought and carry
as clear an empirical message as any scientific law.

Mp�p1

E(U1 � p0, i, w)

E(Qp�p1 � p0, i, w) � b1p1 � d1i � E(U1 � p0, i, w).

5P � p0, I � i, W � �6.
p � p1;

q � b1p � d1i � u1,

Qp�p1

5P � p0, I � i, W � w6
Qp�p1

E(U1 � p0, i, w))

7.2 Applications and Interpretation of Structural Models 217



Consider Ohm’s law, V � IR. The empirical content of this law can be encoded in
two alternative forms.

1. Predictive form: If at time t0 we measure current I0 and voltage V0 then, ceteris
paribus, at any future times if the current flow is I(t) then the voltage will
be 

2. Counterfactual form: If at time t0 we measure current I0 and voltage V0 then, had
the current flow at time t0 been instead of I0, the voltage would have been

On the surface, it seems that the predictive form makes meaningful and testable em-
pirical claims, whereas the counterfactual form merely speculates about events that have
not (and could not have) occurred, since it is impossible to apply two different currents
into the same resistor at the same time. However, if we interpret the counterfactual form
to be neither more nor less than a conversational shorthand of the predictive form, the
empirical content of the former shines through clearly. Both enable us to make an infinite
number of predictions from just one measurement (I0, V0), and both derive their validity
from a scientific law that ascribes a time-invariant property (the ratio V/I) to any object
that conducts electricity. 

But if counterfactual statements are merely a roundabout way of stating sets of pre-
dictions, why do we resort to such convoluted modes of expression instead of using the
predictive mode directly? One obvious answer is that we often use counterfactuals to
convey not the predictions themselves but rather the logical ramifications of those pre-
dictions. For example, the intent of saying: “if A were not to have shot, then the prisoner
would still be alive” may be merely to convey the factual information that B did not shoot.
The counterfactual mood, in this case, serves to supplement the fact conveyed with log-
ical justification based on a general law. The less obvious answer rests with the ceteris
paribus (all else held equal) qualification that accompanies the predictive claim, which is
not entirely free of ambiguities. What should be held constant when we change the cur-
rent in a resistor – the temperature? the laboratory equipment? the time of day? Certainly
not the reading on the voltmeter!

Such matters must be carefully specified when we pronounce predictive claims and
take them seriously. Many of these specifications are implicit (and hence superfluous)
when we use counterfactual expressions, especially when we agree on the underlying
causal model. For example, we do not need to specify under what temperature and pres-
sure the predictions should hold true; these are implied by the statement “had the current
flow at time t0 been instead of I0.” In other words, we are referring to precisely those
conditions that prevailed in our laboratory at time t0. The statement also implies that we
do not really mean for anyone to hold the reading on the voltmeter constant; variables
should run their natural course, and the only change we should envision is in the mecha-
nism that (according to our causal model) is currently determining the current.

I�

V� �
V0 I�

I0
.

I�

V(t) �
V0

I0
 I(t).

t 	 t0,
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To summarize, a counterfactual statement might well be interpreted as conveying a
set of predictions under a well-defined set of conditions – those prevailing in the factual
part of the statement. For these predictions to be valid, two components must remain in-
variant: the laws (or mechanisms) and the boundary conditions. Cast in the language of
structural models, the laws correspond to the equations 5 fi6, and the boundary conditions
correspond to the state of the background variables U. Thus, a precondition for the va-
lidity of the predictive interpretation of a counterfactual statement is the assumption that
U will not change when our predictive claim is to be applied or tested.

This is best illustrated by using a betting example. We must bet heads or tails on the
outcome of a fair coin toss; we win a dollar if we guess correctly and lose one if we don’t.
Suppose we bet heads and win a dollar, without glancing at the outcome of the coin. Con-
sider the counterfactual “Had I bet differently I would have lost a dollar.” The predictive
interpretation of this sentence translates into the implausible claim: “If my next bet is
tails, I will lose a dollar.” For this claim to be valid, two invariants must be assumed: the
payoff policy and the outcome of the coin. Whereas the former is a plausible assumption
in a betting context, the latter would be realized only in rare circumstances. It is for this
reason that the predictive utility of the statement “Had I bet differently I would have lost
a dollar” is rather low, and some would even regard it as hindsighted nonsense. It is the
persistence across time of U and f(x, u) that endows counterfactual expressions with
predictive power; absent this persistence, the counterfactual loses its obvious predictive
utility.

However, there is an element of utility in counterfactuals that does not translate imme-
diately to predictive payoff and thus may serve to explain the ubiquity of counterfactuals
in human discourse. I am thinking of explanatory value. Suppose, in the betting story,
coins were tossed afresh for every bet. Is there no value whatsoever to the statement
“Had I bet differently I would have lost a dollar?” I believe there is; it tells us that we
are not dealing here with a whimsical bookie but instead with one who at least glances
at the bet, compares it to some standard, and decides a win or a loss using a consistent
policy. This information may not be very useful to us as players, but it may be useful
to, say, state inspectors who come every so often to calibrate the gambling machines and so
ensure the state’s take of the profit. More significantly, it may be useful to us players,
too, if we venture to cheat slightly – say, by manipulating the trajectory of the coin, or
by installing a tiny transmitter to tell us which way the coin landed. For such cheating to
work, we should know the payoff policy y � f(x, u), and the statement “Had I bet
differently I would have lost a dollar” reveals important aspects of that policy.

Is it far-fetched to argue for the merit of counterfactuals by hypothesizing unlikely
situations where players cheat and rules are broken? I suggest that such unlikely oper-
ations are precisely the norm for gauging the explanatory value of sentences. It is the
nature of any causal explanation that its utility be proven not over standard situations but
rather over novel settings that require innovative manipulations of the standards. The util-
ity of understanding how television works comes not from turning the knobs correctly but
from the ability to repair a TV set when it breaks down. Recall that every causal model
advertises not one but rather a host of submodels, each created by violating some laws.
The autonomy of the mechanisms in a causal model thus stands for an open invitation to
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remove or replace those mechanisms, and it is only natural that the explanatory value of
sentences be judged by how well they predict the ramifications of such replacements.

Counterfactuals with Intrinsic Nondeterminism

Recapping our discussion, we see that counterfactuals may earn predictive value under
two conditions: (1) when the unobserved uncertainty-producing variables (U) remain
constant (until our next prediction or action); or (2) when the uncertainty-producing
variables offer the potential of being observed sometime in the future (before our next
prediction or action). In both cases, we also need to ensure that the outcome-producing
mechanism f(x, u) persists unaltered.

These conclusions raise interesting questions regarding the use of counterfactuals in
microscopic phenomena, as none of these conditions holds for the type of uncertainty
that we encounter in quantum theory. Heisenberg’s die is rolled afresh billions of times
each second, and our measurement of U will never be fine enough to remove all uncer-
tainty from the response equation y � f(x, u). Thus, when we include quantum-level
processes in our analysis we face a dilemma: either dismiss all talk of counterfactuals (a
strategy recommended by some researchers, including Dawid 2000) or continue to use
counterfactuals but limit their usage to situations where they assume empirical meaning.
This amounts to keeping in our analysis only those U that satisfy conditions (1) and (2)
of the previous paragraph. Instead of hypothesizing U that completely remove all uncer-
tainties, we admit only those U that are either (1) persistent or (2) potentially observable.

Naturally, coarsening the granularity of the background variables has its price: the
mechanism equations ui, � fi(pai, ui) lose their deterministic character and hence should
be made stochastic. Instead of constructing causal models from a set of deterministic
equations 5 fi6, we should consider models made up of stochastic functions 5 fi*6, where
each fi* is a mapping from to some intrinsic probability distribution P*(yi) over
the states of Vi. This option leads to a causal Bayesian network (Section 1.3) in which
the conditional probabilities represent intrinsic nondeterminism (some-
times called “objective chance”; Skyrms 1980) and in which the root nodes represent
background variables U that are either persistent or potentially observable. In this rep-
resentation, counterfactual probabilities can still be evaluated using the
three steps (abduction, action, and prediction) of Theorem 7.1.7. In the abduction phase,
we condition the prior probability P(u) of the root nodes on the evidence available, e,
and so obtain In the action phase, we delete the arrows entering variables in set
X and instantiate their values to X � x. Finally, in the prediction phase, we compute the
probability of Y � y resulting from the updated manipulated network. 

This evaluation can, of course, be implemented in ordinary causal Bayesian networks
(i.e., not only in ones that represent intrinsic nondeterminism), but in that case the re-
sults computed would not represent the probability of the counterfactual Yx � y. Such
evaluation amounts to assuming that units are homogeneous, with each possessing the
stochastic properties of the population – namely, Such an
assumption may be adequate in quantum-level phenomena, where units stands for spe-
cific experimental conditions, but it will not be adequate in macroscopic phenomena,
where units may differ appreciably from each other. In the example of Chapter 1 (Sec-
tion 1.4.4, Figure 1.6), the stochastic attribution amounts to assuming that no individual

P(yi � pai, u) � P(yi � pai).

P(u � e).

P(Yx � y � e)

P*(yi � pai, ui)

V�U
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is affected by the drug (as dictated by model 1) while ignoring the possibility that some
individuals may, in fact, be more sensitive to the drug than others (as in model 2).

7.2.3 Causal Explanations, Utterances, and Their Interpretation 

It is a commonplace wisdom that explanation improves understanding and that he who
understands more can reason and learn more effectively. It is also generally accepted that
the notion of explanation cannot be divorced from that of causation; for example, a
symptom may explain our belief in a disease, but it does not explain the disease itself.
However, the precise relationship between causes and explanations is still a topic of much
discussion (Cartwright 1989; Woodward 1997). Having a formal theory of causality and
counterfactuals in both deterministic and probabilistic settings casts new light on the
question of what constitutes an adequate explanation, and it opens new possibilities for
automatic generation of explanations by machine (Halperm and Pearl 2005a,b).

A natural starting point for generating explanations would be to use a causal Bayesian
network (Section 1.3) in which the events to be explained (explanadum) consist of some
combination e of instantiated nodes in the network, and where the task is to find an in-
stantiation c of a subset of e’s ancestors (i.e., causes) that maximizes some measure of
“explanatory power,” namely, the degree to which c explains e. However, the proper
choice of this measure is unsettled. Many philosophers and statisticians argue for the

likelihood ratio as the proper measure of the degree to which c is a bet-

ter explanation of e than . In Pearl (1988b, chap. 5) and Peng and Reggia (1986),
the best explanation is found by maximizing the posterior probability Both
measures have their faults and have been criticized by several researchers, including
Pearl (1988b), Shimony (1991, 1993), Suermondt and Cooper (1993), and Chajewska and
Halpern (1997). To remedy these faults, more intricate combinations of the probabilistic
parameters have been suggested, none of which seems to
capture well the meaning people attach to the word “explanation.”

The problem with probabilistic measures is that they cannot capture the strength of
a causal connection between c and e; any proposition h whatsoever can, with a small
stretch of imagination, be thought of as having some influence on e, however feeble.
This would then qualify h as an ancestor of e in the causal network and would permit h
to compete and win against genuine explanations by virtue of h having strong spurious
association with e.

To rid ourselves of this difficulty, we must go beyond probabilistic measures and
concentrate instead on causal parameters, such as causal effects and counter-
factual probabilities as the basis for defining explanatory power. Here
x and range over the set of alternative explanations, and Y is the set of response vari-
ables observed to take on the value y. The expression is read as: the
probability that Y would take on a different value, , had X been (instead of the actual
values x). (Note that The developments of computational
models for evaluating causal effects and counterfactual probabilities now make it possi-
ble to combine these parameters with standard probabilistic parameters and so synthesize
a more faithful measure of explanatory power that may guide the selection and genera-
tion of adequate explanations.

P(y � do(x)) � P(Yx � y).)
x�y�

P(Yx� � y� � x, y)
x�

P(Yx� � y� � x, y),
P(y � do(x))

[P(e � c), P(e � c�), P(c), P(c�)]

P(c � e).
c�

L �
P(e � c)

P(e � c�)
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These possibilities trigger an important basic question: Is “explanation” a concept
based on general causes (e.g., “Drinking hemlock causes death”) or singular causes (e.g.,
“Socrates’ drinking hemlock caused his death”)? Causal effect expressions 
belong to the first category, whereas counterfactual expressions belong
to the second, since conditioning on x and y narrows down world scenarios to those
compatible with the most specific information at hand: X � x and Y � y. 

The classification of causal statements into general and singular categories has been
the subject of intensive research in philosophy (see, e.g., Good 1961; Kvart 1986; Cartwright
1989; Eells 1991; see also discussions in Sections 7.5.4 and 10.1.1). This research has
attracted little attention in cognitive science and artificial intelligence, partly because it has
not entailed practical inferential procedures and partly because it is based on problem-
atic probabilistic semantics (see Section 7.5 for discussion of probabilistic causality). In
the context of machine-generated explanations, this classification assumes both cogni-
tive and computational significance. We discussed in Chapter 1 (Section 1.4) the sharp
demarcation line between two types of causal queries, those that are answerable from the
pair (the probability and diagram, respectively, associated with model
M) and those that require additional information in the form of functional specifica-
tion. Generic causal statements often fall into the first category
(as in Chapter 3), whereas counterfactual expressions fall
into the second, thus demanding more detailed specifications and higher computational
resources.

The proper classification of explanation into a general or singular category depends
on whether the cause c attains its explanatory power relative to its effect e by virtue of c’s
general tendency to produce e (as compared with the weaker tendencies of c’s alterna-
tives) or by virtue of c being necessary for triggering a specific chain of events leading to
e in the specific situation at hand (as characterized by e and perhaps other facts and obser-
vations). Formally, the difference hinges on whether, in evaluating explanatory powers
of various hypotheses, we should condition our beliefs on the events c and e that actually
occurred. 

Formal analysis of these alternatives is given in Chapters 9 and 10, where we discuss
the necessary and sufficient aspects of causation as well as the notion of single-event
causation. In the balance of this section we will be concerned with the interpretation and
generation of explanatory utterances, taking the necessary aspect as a norm.

The following list, taken largely from Galles and Pearl (1997), provides examples of
utterances used in explanatory discourse and their associated semantics within the mod-
ifiable structural model approach described in Section 7.1.1.

• “X is a cause of Y” if there exist two values x and of X and a value u of U such
that 

• “X is a cause of Y in the context Z � z” if there exist two values x and of X and
a value u of U such that 

• “X is a direct cause of Y” if there exist two values x and of X and a value u of U
such that where r is some realization of 

• “X is an indirect cause of Y” if X is a cause of Y and X is not a direct cause of Y.

V \ 5X, Y6.Yxr(u) � Yx�r(u),
x�

Yxz(u) � Yx�z(u).
x�

Yx(u) � Yx�(u).
x�

(e.g., P(Yx� � y � x, y))
(e.g., P(y � do(x)))

�P(M), G(M)�

P(Yx� � y� � x, y)
P(y � do(x))

222 The Logic of Structure-Based Counterfactuals



• “Event X � x always causes Y � y” if:
(i) Yx(u) � y for all u; and
(ii) there exists a value of U such that for some 

• “Event X � x may have caused Y � y” if:
(i) X � x and Y � y are true; and
(ii) there exists a value u of U such that X(u) � x, Y(u) � y, and for 

some 

• “The unobserved event X � x is a likely cause of Y � y” if:
(i) Y � y is true; and

(ii) is high for all 

• “Event Y � y occurred despite X � x” if:
(i) X � x and Y � y are true; and
(ii) P(Yx � y) is low.

The preceding list demonstrates the flexibility of modifiable structural models in for-
malizing nuances of causal expressions. Additional nuances (invoking such notions as
enabling, preventing, sustaining, producing, etc.) will be analyzed in Chapters 9 and 10.
Related expressions include: “Event A explains the occurrence of event B”; “A would
explain B if C were the case”; “B occurred despite A because C was true.” The ability to
interpret and generate such explanatory sentences, or to select the expression most appro-
priate for the context, is one of the most intriguing challenges of research in man–machine
conversation.

7.2.4 From Mechanisms to Actions to Causation

The structural model semantics described in Section 7.1.1 suggests solutions to two prob-
lems in cognitive science and artificial intelligence: the representation of actions and the
role of causal ordering. We will discuss these problems in turn, since the second builds
on the first.

Action, Mechanisms, and Surgeries

Whether we take the probabilistic paradigm that actions are transformations from proba-
bility distributions to probability distributions or the deterministic paradigm that actions
are transformations from states to states, such transformations could in principle be infi-
nitely complex. Yet in practice, people teach each other rather quickly the normal results
of actions in the world, and people predict the consequences of most actions without
much trouble. How? 

Structural models answer this question by assuming that the actions we normally in-
voke in common reasoning can be represented as local surgeries. The world consists of a
huge number of autonomous and invariant linkages or mechanisms, each corresponding
to a physical process that constrains the behavior of a relatively small group of variables.
If we understand how the linkages interact with each other (usually, they simply share
variables), then we should also be able to understand what the effect of any given action
would be: simply respecify those few mechanisms that are perturbed by the action; then
let the mechanisms in the modified assembly interact with one another and see what state

x� � x.P(Yx � y, Yx� � y � Y � y)

x� � x.
Yx�(u) � y

x� � x.Yx(u�) � yu�
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will evolve at equilibrium. If the specification is complete (i.e., if M and U are given),
then a single state will evolve. If the specification is probabilistic (i.e., if P(u) is given),
then a new probability distribution will emerge; if the specification is partial (i.e., if some
fi are not given), then a new, partial theory will be created. In all three cases we should
be able to answer queries about postaction states of affair, albeit with decreasing levels of
precision.

The ingredient that makes this scheme operational is the locality of actions. Standing
alone, locality is a vague concept because what is local in one space may not be local in
another. A speck of dust, for example, appears extremely diffused in the frequency (or
Fourier) representation; conversely, a pure musical tone requires a long stretch of time
to be appreciated. Structural semantics emphasizes that actions are local in the space of
mechanisms and not in the space of variables or sentences or time slots. For example,
tipping the leftmost object in an array of domino tiles does not appear to be “local” in
physical space, yet it is quite local in the mechanism domain: only one mechanism is
perturbed, the gravitational restoring force that normally keeps that tile in a stable erect
position; all other mechanisms remain unaltered, as specified, obedient to the usual equa-
tions of physics. Locality makes it easy to specify this action without enumerating all its
ramifications. The listener, assuming she shares our understanding of domino physics,
can figure out for herself the ramifications of this action, or any action of the type: “tip
the i th domino tile to the right.” By representing the domain in the form of an assem-
bly of stable mechanisms, we have in fact created an oracle capable of answering queries
about the effects of a huge set of actions and action combinations – without our having
to explicate those effects.

Laws versus Facts

This surgical procedure sounds trivial when expressed in the context of structural equa-
tion models. However, it has encountered great difficulties when attempts were made to
implement such schemes in classical logic. In order to implement surgical procedures in
mechanism space, we need a language in which some sentences are given different status
than others. Sentences describing mechanisms should be treated differently than those
describing other facts of life (e.g., observations, assumptions, and conclusions), because
the former are presumed to be stable, whereas the latter are transitory. Indeed, the equa-
tions describing how the domino tiles interact with one another remain unaltered even
though the states of the tiles themselves are free to vary with circumstances.

Admitting the need for this distinction has been a difficult transition in the logical
approach to actions and causality, perhaps because much of the power of classical logic
stems from its representational uniformity and syntactic invariance, where no sentence
commands special status. Probabilists were much less reluctant to embrace the distinc-
tion between laws and facts, because this distinction has already been programmed into
probability language by Reverend Bayes in 1763: Facts are expressed as ordinary propo-
sitions and hence can obtain probability values and can be conditioned on; laws, on
the other hand, are expressed as conditional probability sentences (e.g., P(accident ƒ
careless driving) � high) and hence should not be assigned probabilities and cannot be
conditioned on. It is because of this tradition that probabilists have always attributed non-
propositional character to conditional sentences (e.g., birds fly), refused to allow nested
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conditionals (Levi 1988), and insisted on interpreting one’s confidence in a conditional
sentence as a conditional probability judgment (Adams 1975; see also Lewis 1976). Re-
markably, these constraints, which some philosophers view as limitations, are precisely
the safeguards that have kept probabilists from confusing laws and facts, protecting them
from some of the traps that have ensnared logical approaches.11

Mechanisms and Causal Relationships

From our discussion thus far, it may seem that one can construct an effective repre-
sentation for computing the ramifications of actions without appealing to any notion of
causation. This is indeed feasible in many areas of physics and engineering. For instance,
if we have a large electric circuit consisting of resistors and voltage sources, and if we are
interested in computing the effect of changing one resistor in the circuit, then the notion
of causality hardly enters the computation. We simply insert the modified value of the re-
sistor into Ohm’s and Kirchhoff’s equations and proceed to solve the set of (symmetric)
equations for the variables needed. This computation can be performed effectively with-
out committing to any directional causal relationship between the currents and voltages.

To understand the role of causality, we should note that (unlike our electrical circuit
example) most mechanisms do not have names in common everyday language. We say:
“raise taxes,” or “make him laugh,” or “press the button” – in general, do(q), where q is
a proposition, not a mechanism. It would be meaningless to say “increase this current” or
“if this current were higher . . .” in the electrical circuit example, because there are many
ways of (minimally) increasing that current, each with different ramifications. Evidently,
commonsense knowledge is not as entangled as a resistor network. In the STRIPS lan-
guage (Fikes and Nilsson 1971), to give another example, an action is not characterized
by the name of the mechanisms it modifies but rather by the action’s immediate effects
(the ADD and DELETE lists), and these effects are expressed as ordinary propositions.
Indeed, if our knowledge is organized causally, then this specification is sufficient, be-
cause each variable is governed by one and only one mechanism (see Definition 7.1.1).
Thus, we should be able to figure out for ourselves which mechanism it is that must be
perturbed in realizing the effect specified, and this should enable us to predict the rest of
the scenario.

This linguistic abbreviation defines a new relation among events, a relation we nor-
mally call “causation”: Event A causes B if the perturbation needed for realizing A entails
the realization of B.12 Causal abbreviations of this sort are used very effectively for spec-
ifying domain knowledge. Complex descriptions of what relationships are stable and
how mechanisms interact with one another are rarely communicated explicitly in terms
of mechanisms. Instead, they are communicated in terms of cause-effect relationships
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between events or variables. We say, for example: “If tile i is tipped to the right, it causes
tile i � 1 to tip to the right as well”; we do not communicate such knowledge in terms of
the tendencies of each domino tile to maintain its physical shape, to respond to gravita-
tional pull, and to obey Newtonian mechanics.

7.2.5 Simon’s Causal Ordering

Our ability to talk directly in terms of one event causing another (rather than an action
altering a mechanism and the alteration, in turn, producing the effect) is computation-
ally very useful, but at the same time it requires that the assembly of mechanisms in our
domain satisfy certain conditions that accommodate causal directionality. Indeed, the
formal definition of causal models given in Section 7.1.1 assumes that each equation is
designated a distinct privileged variable, situated on its left-hand side, that is considered
“dependent” or “output.” In general, however, a mechanism may be specified as a func-
tional constraint

without identifying any “dependent” variable.
Simon (1953) devised a procedure for deciding whether a collection of such symmet-

ric G functions dictates a unique way of selecting an endogenous dependent variable for
each mechanisms (excluding the background variables, since they are determined out-
side the system). Simon asked: When can we order the variables in such
a way that we can solve for each Vi without solving for any of Vi’s successors? Such
an ordering, if it exists, dictates the direction we attribute to causation. This criterion
might at first sound artificial, since the order of solving equations is a matter of com-
putational convenience, whereas causal directionality is an objective attribute of physical
reality. (For discussion of this issue see De Kleer and Brown 1986; Iwasaki and Simon
1986; Druzdzel and Simon 1993.) To justify the criterion, let us rephrase Simon’s ques-
tion in terms of actions and mechanisms. Assume that each mechanism (i.e., equation)
can be modified independently of the others, and let Ak be the set of actions capable of
modifying equation Gk (while leaving other equations unaltered). Imagine that we have
chosen an action ak from Ak and that we have modified Gk in such a way that the set of
solutions to the entire system of equations differs from what it
was prior to the action. If X is the set of variables directly constrained by Gk, we can ask
whether there is one member of X, say Xk, that accounts for the changes in all the other
solutions. If the identity of that predictive member remains the same for all choices of
ak and u, then we designate Xk as the dependent variable in Gk.

Formally, this property means that changes in ak induce a functional mapping from
the domain of Xk to the domain of all changes in the system (generated by ak)
can be attributed to changes in Xk. It would make sense, in such a case, to designate Xk
as a “representative” of the mechanism Gk, and we would be justified in replacing the
sentence “action ak caused event Y � y” with “event Xk � xk caused Y � y” (where Y
is any variable in the system). The invariance of Xk to the choice of ak is the basis for
treating an action as a modality do(Xk � xk) (Definition 7.1.3). It provides a license for
characterizing an action by its immediate consequence(s), independent of the instrument

5V \ Xk6;

(V1(u), V2(u), p , Vn(u))

(V1, V2, p , Vn)

Gk(x1, p , xl 
; u1, p , um) � 0
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that actually brought about those consequences, and it defines in fact the notion of “local
action” or “local surgery.”

It can be shown (Nayak 1994) that the uniqueness of Xk can be determined by a
simple criterion that involves purely topological properties of the equation set (i.e., how
variables are grouped into equations). The criterion is that one should be able to form a
one-to-one correspondence between equations and variables and that the correspondence
be unique. This can be decided by solving the “matching problem” (Serrano and Gos-
sard 1987) between equations and variables. If the matching is unique, then the choice
of dependent variable in each equation is unique and the directionality induced by that
choice defines a directed acyclic graph (DAG). In Figure 7.1, for example, the direction-
ality of the arrows need not be specified externally; it can be determined mechanically
from the set of symmetrical constraints (i.e., logical propositions)

(7.18)

that characterizes the problem. The reader can easily verify that the selection of a privi-
leged variable from each equation is unique and hence that the causal directionality of
the arrows shown in Figure 7.1 is inevitable.

Thus, we see that causal directionality, according to Simon, emerges from two as-
sumptions: (1) the partition of variables into background (U) and endogenous (V) sets;
and (2) the overall configuration of mechanisms in the model. Accordingly, a variable
designated as “dependent” in a given mechanism may well be labeled “independent”
when that same mechanism is embedded in a different model. Indeed, the engine causes
the wheels to turn when the train goes uphill but changes role in going downhill.

Of course, if we have no way of determining the background variables, then several
causal orderings may ensue. In (7.18), for example, if we were not given the informa-
tion that U is a background variable, then either one of 5U, A, B, C6 could be chosen as
background, and each such choice would induce a different ordering on the remaining
variables. (Some would conflict with commonsense knowledge, e.g., that the captain’s
signal influences the court’s decision.) However, the directionality of 
would be maintained in all those orderings. The question of whether there exists a parti-
tion 5U, V6 of the variables that would yield a causal ordering in a system of symmetric
constraints can also be solved (in polynomial time) by topological means (Dechter and
Pearl 1991).

Simon’s ordering criterion fails when we are unable to solve the equations one at a
time and so must solve a block of k equations simultaneously. In such a case, all the k
variables determined by the block would be mutually unordered, though their relation-
ships with other blocks may still be ordered. This occurs, for example, in the economic
model of Figure 7.4, where (7.9) and (7.10) need to be solved simultaneously for P and
Q and hence the correspondence between equations and variables is not unique; either
Q or P could be designated as “independent” in either of the two equations. Indeed,
the information needed for classifying (7.9) as the “demand” equation (and, respectively,
(7.10) as the “price” equation) comes not from the way variables are assigned to equa-
tions but rather from subject-matter considerations. Our understanding that household
income directly affects household demand (and not prices) plays a major role in this
classification.

A S  D d B

S � 5G1(C, U), G2(A, C), G3(B, C), G4(A, B, D)6
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In cases where we tend to assert categorically that the flow of causation in a feed-
back loop goes clockwise, this assertion is normally based on the relative magnitudes of
forces. For example, turning the faucet would lower the water level in the water tank, but
there is practically nothing we can do to the water in the tank that would turn the faucet.
When such information is available, causal directionality is determined by appealing,
again, to the notion of hypothetical intervention and asking whether an external control
over one variable in the mechanism necessarily affects the others. This consideration
then constitutes the operational semantics for identifying the dependent variables Vi in
nonrecursive causal models (Definition 7.1.1).

The asymmetry that characterizes causal relationships in no way conflicts with the
symmetry of physical equations. By saying that “X causes Y and Y does not cause X,”
we mean to say that changing a mechanism in which X is normally the dependent vari-
able has a different effect on the world than changing a mechanism in which Y is normally
the dependent variable. Because two separate mechanisms are involved, the statement
stands in perfect harmony with the symmetry we find in the equations of physics.

Simon’s theory of causal ordering has profound repercussions on Hume’s problem
of causal induction, that is, how causal knowledge is acquired from experience (see
Chapter 2). The ability to deduce causal directionality from an assembly of symmetri-
cal mechanisms (together with a selection of a set of endogenous variables) means that
the acquisition of causal relationships is no different than the acquisition (e.g., by exper-
iments) of ordinary physical laws, such as Hooke’s law of suspended springs or Newton’s
law of acceleration. This does not imply that acquiring physical laws is a trivial task, free
of methodological and philosophical subtleties. It does imply that the problem of causal
induction – one of the toughest in the history of philosophy – can be reduced to the more
familiar problem of scientific induction.

7.3 AXIOMATIC CHARACTERIZATION

Axioms play important roles in the characterization of formal systems. They provide a
parsimonious description of the essential properties of the system, thus allowing compar-
isons among alternative formulations and easy tests of equivalence or subsumption among
such alternatives. Additionally, axioms can often be used as rules of inference for deriv-
ing (or verifying) new relationships from a given set of premises. In the next subsection,
we will establish a set of axioms that characterize the relationships among counterfac-
tual sentences of the form Yx(u) � y in both recursive and nonrecursive systems. Using
these axioms, we will then demonstrate (in Section 7.3.2) how the identification of causal
effects can be verified by symbolic means, paralleling the derivations of Chapter 3 (Sec-
tion 3.4). Finally, Section 7.3.3 establishes axioms for the notion of causal relevance,
contrasting those that capture informational relevance.

7.3.1 The Axioms of Structural Counterfactuals

We present three properties of counterfactuals – composition, effectiveness, and re-
versibility – that hold in all causal models.
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Property 1 (Composition)

For any three sets of endogenous variables X, Y, and W in a causal model, we have

(7.19)

Composition states that, if we force a variable (W) to a value w that it would have had
without our intervention, then the intervention will have no effect on other variables in
the system. That invariance holds in all fixed conditions do(X � x).

Since composition allows for the removal of a subscript (i.e., reducing Yxw(u) to
Yx(u)), we need an interpretation for a variable with an empty set of subscripts, which
(naturally) we identify with the variable under no interventions.

Definition 7.3.1 (Null Action)

Corollary 7.3.2 (Consistency)

For any set of variables Y and X in a causal model, we have

(7.20)

Proof

Substituting X for W and for X in (7.19), we obtain 
Null action (Definition 7.3.1) allows us to drop the leaving 

Yx(u). n
The implication in (7.20) was called “consistency” by Robins (1987).13

Property 2 (Effectiveness)

For all sets of variables X and W, Xxw(u) � x.

Effectiveness specifies the effect of an intervention on the manipulated variable itself –
namely, that if we force a variable X to have the value x, then X will indeed take on the
value x.

Property 3 (Reversibility)

For any two variables Y and W and any set of variables X,

(7.21)

Reversibility precludes multiple solutions due to feedback loops. If setting W to a value
w results in a value y for Y, and if setting Y to the value y results in W achieving the

(Yxw (u) � y) & (Wxy (u) � w) 1 Yx (u) � y.

X(u) � x 1 Y(u) �0,
Y0 (u) � x 1 Y0 (u) � Yk(u).0

X(u) � x 1  Y(u) � Yx(u).

Y0(u) � Y(u).

Wx(u) � w 1  Yxw(u) � Yx(u).
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value w, then W and Y will naturally obtain the values w and y (respectively), without
any external setting. In recursive systems, reversibility follows directly from composi-
tion. This can easily be seen by noting that, in a recursive system, either Yxw(u) � Yx(u)
or Wxy(u) � Wx(u). Thus, reversibility reduces to 
Yx(u) � y (another form of composition) or to 
Yx(u) � y (which is trivially true).

Reversibility reflects “memoryless” behavior: the state of the system, V, tracks the
state of U regardless of U’s history. A typical example of irreversibility is a system of
two agents who adhere to a “tit-for-tat” strategy (e.g., the prisoners’ dilemma). Such a
system has two stable solutions – cooperation and defection – under the same external
conditions U, and thus it does not satisfy the reversibility condition; forcing either one of
the agents to cooperate results in the other agent’s cooperation (Yw(u) � y, Wy(u) � w),
yet this does not guarantee cooperation from the start (Y(u) � y, W(u) � w). In such
systems, irreversibility is a product of using a state description that is too coarse, one
where not all of the factors that determine the ultimate state of the system are included
in U. In a tit-for-tat system, a complete state description should include factors such as
the previous actions of the players, and reversibility is restored once the missing factors
are included.

In general, the properties of composition, effectiveness, and reversibility are inde-
pendent – none is a consequence of the other two. This can be shown (Galles and Pearl
1997) by constructing specific models in which two of the properties hold and the third
does not. In recursive systems, composition and effectiveness are independent while re-
versibility holds trivially, as just shown.

The next theorem asserts the soundness14 of properties 1–3, that is, their validity.

Theorem 7.3.3 (Soundness)

Composition, effectiveness, and reversibility are sound in structural model semantics;
that is, they hold in all causal models.

A proof of Theorem 7.3.3 is given in Galles and Pearl (1997).
Our next theorem establishes the completeness of the three properties when treated as

axioms or rules of inference. Completeness amounts to sufficiency; all other properties
of counterfactual statements follow from these three. Another interpretation of complete-
ness is as follows: Given any set S of counterfactual statements that is consistent with
properties 1–3, there exists a causal model M in which S holds true.

A formal proof of completeness requires the explication of two technical properties –
existence and uniqueness – that are implicit in the definition of causal models (Definition
7.1.1).

Property 4 (Existence)

For any variable X and set of variables Y,

(7.22)Ex H X   s.t.  Xy(u) � x.

(Yx(u) � y) & (Wxy(u) � w) 1
(Yxw (u) � y) & (Wx(u) � w) 1
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Property 5 (Uniqueness)

For every variable X and set of variables Y,

(7.23)

Definition 7.3.4 (Recursiveness)

Let X and Y be singleton variables in a model, and let stand for the inequal-
ity for some values of x, w, and u. A model M is recursive if, for any
sequence we have

(7.24)

Clearly, any model M for which the causal diagram G(M) is acyclic must be recursive.

Theorem 7.3.5 (Recursive Completeness)

Composition, effectiveness, and recursiveness are complete (Galles and Pearl 1998;
Halpern 1998).15

Theorem 7.3.6 (Completeness)

Composition, effectiveness, and reversibility are complete for all causal models (Halpern
1998).

The practical importance of soundness and completeness surfaces when we attempt to
test whether a certain set of conditions is sufficient for the identifiability of some coun-
terfactual quantity Q. Soundness, in this context, guarantees that if we symbolically
manipulate Q using the three axioms and manage to reduce it to an expression that in-
volves ordinary probabilities (free of counterfactual terms), then Q is identifiable (in the
sense of Definition 3.2.3). Completeness guarantees the converse: if we do not succeed
in reducing Q to a probabilistic expression, then Q is nonidentifiable – our three axioms
are as powerful as can be.

The next section demonstrates a proof of identifiability that uses effectiveness and
decomposition as inference rules.

7.3.2 Causal Effects from Counterfactual Logic: An Example

We revisit the smoking–cancer example analyzed in Section 3.4.3. The model associated
with this example is assumed to have the following structure (see Figure 7.5):

V � 5X (smoking), Y (lung cancer), Z (tar in lungs)6,
U � 5U1, U26, U1�� U2,

X1 S X2, X2 S X3, p , Xk�1 S Xk 1 Xk  
S  X1.

X1, X2, p , Xk,
Yxw(u) � Yw(u)

X S Y

Xy(u) � x & Xy(u) � x� 1 x � x�.
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in the model. Halpern further provided a set of axioms for cases where the solution of Yx(u) is not
unique or does not exist.



x � f1(u1),

z � f2(x, u2),

y � f3(z, u1).

This model embodies several assumptions, all of which are represented in the diagram
of Figure 7.5. The missing link between X and Y represents the assumption that the ef-
fect of smoking cigarettes (X) on the production of lung cancer (Y) is entirely mediated
through tar deposits in the lungs. The missing connection between U1 and U2 represents
the assumption that even if a genotype (U1) is aggravating the production of lung cancer,
it nevertheless has no effect on the amount of tar in the lungs except indirectly (through
cigarette smoking). We wish to use the assumptions embodied in the model to derive an
estimable expression for the causal effect that is based on
the joint distribution P(x, y, z).

This problem was solved in Section 3.4.3 by a graphical method, using the axioms of
do-calculus (Theorem 3.4.1). Here we show how the counterfactual expression P(Yx � y)
can be reduced to ordinary probabilistic expression (involving no counterfactuals) by
purely symbolic operations, using only probability calculus and two rules of inference:
effectiveness and composition. Toward this end, we first need to translate the assump-
tions embodied in the graphical model into the language of counterfactuals. In Section
3.6.3 it was shown that the translation can be accomplished systematically, using two
simple rules (Pearl 1995a, p. 704).

Rule 1 (exclusion restrictions): For every variable Y having parents PAY and for every
set of variables disjoint of PAY, we have

(7.25)

Rule 2 (independence restrictions): If is any set of nodes in V not con-
nected to Y via paths containing only U variables, we have

(7.26)

Equivalently, (7.26) holds if the corresponding U terms are jointly
independent of UY.

Rule 1 reflects the insensitivity of Y to any manipulation in V, once its direct causes PAY
are held constant; it follows from the identity yi � fi(pai, ui) in Definition 7.1.1. Rule 2
interprets independencies among U variables as independencies between the counterfac-
tuals of the corresponding V variables, with their parents held fixed. Indeed, the statistics

(UZ1
, p , UZk

)

YpaY
 �� 5Z1paZ1

, p , ZkpaZk
 6.

Z1, p , Zk

YpaY
(u) � YpaYz

(u).

Z ( V

P(Y � y � do(x)) � P(Yx � y)
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of YpaY is governed by the equation Y � fy(paY, uY); therefore, once we hold PAY
fixed, the residual variations of Y are governed solely by the variations in UY.

Applying these two rules to our example, we see that the causal diagram in Figure 7.5
encodes the following assumptions:

(7.27)

(7.28)

(7.29)

(7.30)

Equations (7.27)–(7.29) follow from the exclusion restrictions of (7.25), using

Equation (7.27), for instance, represents the absence of a causal link from Y to Z, while
(7.28) represents the absence of a causal link from Z or Y to X. In contrast, (7.30) fol-
lows from the independence restriction of (7.26), since the lack of a connection between
(i.e., the independence of) U1 and U2 rules out any path between Z and 5X, Y6 that con-
tains only U variables.

We now use these assumptions (which embody recursiveness), together with the prop-
erties of composition and effectiveness, to compute the tasks analyzed in Section 3.4.3.

Task 1

Compute P(Zx � z) (i.e., the causal effect of smoking on tar).

from (7.30)

by composition

(7.31)

Task 2

Compute P(Yz � y) (i.e., the causal effect of tar on cancer).

(7.32)

Since (7.30) implies we can write

from (7.30)

by composition

by composition (7.33)

Substituting (7.33) into (7.32) yields

(7.34)P(Yz � y) � a
x

P(y � x, z) P(x).

� P(y � x, z).

� P(Yz � y � x, z)

P(Yz � y � x) � P(Yz � y � x, Zx � z)

Yz �� Zx  � X,

P(Yz � y) � a
x

P(Yz � y � x)P(x).

� P(z � x).

� P(Z � z � x)

P(Zx � z) � P(Zx � z � x)

PAX � 0,   PAY � 5Z6,   and   PAZ � 5X6.

Zx��5Yz, X6.
Yz(u) � Yzx(u),

Xy(u) � Xzy(u) � Xz(u) � X(u),

Zx(u) � Zyx(u),
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Task 3

Compute P(Yx � y) (i.e., the causal effect of smoking on cancer).
For any variable Z, by composition we have

Since (from (7.29)),

where zx � Zx(u). (7.35)

Thus,
P(Yx � y) � P(Yzx � y) from (7.35)

by composition

from (7.30) (7.36)

The probabilities P(Yz � y) and P(Zx � z) were computed in (7.34) and (7.31), respec-
tively. Substituting gives us 

(7.37)

The right-hand side of (7.37) can be computed from P(x, y, z) and coincides with the
front-door formula derived in Section 3.4.3 (equation (3.42)).

Thus, P(Yx � y) can be reduced to expressions involving probabilities of observed vari-
ables and is therefore identifiable. More generally, our completeness result (Theorem
7.3.5) implies that any identifiable counterfactual quantity can be reduced to the cor-
rect expression by repeated application of composition and effectiveness (assuming
recursiveness).

7.3.3 Axioms of Causal Relevance 

In Section 1.2 we presented a set of axioms for a class of relations called graphoids
(Pearl and Paz 1987; Geiger et al. 1990) that characterize informational relevance.16 We
now develop a parallel set of axioms for causal relevance, that is, the tendency of cer-
tain events to affect the occurrence of other events in the physical world, independent of
the observer–reasoner. Informational relevance is concerned with questions of the form:
“Given that we know Z, would gaining information about X give us new information

P(Yx � y) � a
z

P(z � x)a
x�

P(y � z, x�) P(x�).

� a
z

P(Yz � y) P(Zx � z).

� a
z

P(Yz � y � Zx � z) P(Zx � z)

� a
z

P(Yzx � y � Zx � z) P(Zx � z)

YX(u) � Yxzx
(u) � Yz (u),

Yxz (u) � Yz(u)

Yx(u) � Yxz (u)   if  Zx(u) � z.
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16 “Relevance” will be used primarily as a generic name for the relationship of being relevant or ir-
relevant. It will be clear from the context when “relevance” is intended to negate “irrelevance.”



about Y?” Causal relevance is concerned with questions of the form: “Given that Z is
fixed, would changing X alter Y?” We show that causal relevance complies with all the
axioms of path interception in directed graphs except transitivity.

The notion of causal relevance has its roots in the philosophical works of Suppes (1970)
and Salmon (1984), who attempted to give probabilistic interpretations to cause–effect
relationships and recognized the need to distinguish causal from statistical relevance (see
Section 7.5). Although these attempts did not produce a probabilistic definition of causal
relevance, they led to methods for testing the consistency of relevance statements against
a given probability distribution and a given temporal ordering among the variables (see
Section 7.5.2). Here we aim at axiomatizing relevance statements in themselves – with
no reference to underlying probabilities or temporal orderings.

The axiomization of causal relevance may be useful to experimental researchers in
domains where exact causal models do not exist. If we know, through experimentation,
that some variables have no causal influence on others in a system, then we may wish
to determine whether other variables will exert causal influence (perhaps under different
experimental conditions) or may ask what additional experiments could provide such in-
formation. For example, suppose we find that a rat’s diet has no effect on tumor growth
while the amount of exercise is kept constant and, conversely, that exercise has no effect
on tumor growth while diet is kept constant. We would like to be able to infer that con-
trolling only diet (while paying no attention to exercise) would still have no influence on
tumor growth. A more subtle inference problem is deciding whether changing the am-
bient temperature in the cage would have an effect on the rat’s physical activity, given
that we have established that temperature has no effect on activity when diet is kept con-
stant and that temperature has no effect on (the rat’s choice of) diet when activity is kept
constant.

Galles and Pearl (1997) analyzed both probabilistic and deterministic interpretations
of causal irrelevance. The probabilistic interpretation, which equates causal irrelevance
with inability to change the probability of the effect variable, has intuitive appeal but is
inferentially very weak; it does not support a very expressive set of axioms unless further
assumptions are made about the underlying causal model. If we add the stability assump-
tion (i.e., that no irrelevance can be destroyed by changing the nature of the individual
processes in the system), then we obtain the same set of axioms for probabilistic causal
irrelevance as the set governing path interception in directed graphs.

In this section we analyze a deterministic interpretation that equates causal irrelevance
with inability to change the effect variable in any state u of the world. This interpretation
is governed by a rich set of axioms without our making any assumptions about the causal
model: many of the path interception properties in directed graphs hold for deterministic
causal irrelevance.

Definition 7.3.7 (Causal Irrelevance)

A variable X is causally irrelevant to Y, given Z (written ) if, for every set W
disjoint of we have

(7.38)

where x and are two distinct values of X.x�

�  (u, z, x, x�, w),   Yxzw(u) � Yx�zw(u), 

X � Y � Z,
X  
S  Y � Z
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This definition captures the intuition “If X is causally irrelevant to Y, then X cannot af-
fect Y under any circumstance u or under any modification of the model that includes
do(Z � z).”

To see why we require the equality Yxzw(u) � Yx�zw(u) to hold in every context W �
w, consider the causal model of Figure 7.6. In this example, W follows X, and
hence Y follows X; that is, Yx�0(u) � Yx�1(u) � u2. However, since y(x, w, u2)
is a nontrivial function of x, X is perceived to be causally relevant to Y. Only holding W
constant would reveal the causal influence of X on Y. To capture this intuition, we must
consider all contexts W � w in Definition 7.3.7. 

With this definition of causal irrelevance, we have the following theorem.

Theorem 7.3.8 

For any causal model, the following sentences must hold. 

Weak Right Decomposition:17

Left Decomposition:

Strong Union:

Right Intersection:

Left Intersection:

This set of axioms bears a striking resemblance to the properties of path interception in a
directed graph. Paz and Pearl (1994) showed that the axioms of Theorem 7.3.8, together
with transitivity and right decomposition, constitute a complete characterization of the

(X   
S  Y � ZW) & (W   
 S  Y � ZX) 1  (XW   
S  Y � Z).

(X   
S  Y � ZW) & (X   
S  W � ZY) 1  (X   
S  YW � Z).

(X  
S  Y � Z) 1  (X  
S  Y � ZW) � W.

(XW  
S  Y � Z) 1  (X  
S Y � Z)  & (W  
S  Y � Z).

(X  
 S  YW � Z) & (X  
 S Y � ZW) 1  (X  
 S Y � Z).

Z � 0,
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Figure 7.6 Example of a causal model that requires the examination of submodels to determine
causal relevance.

17 Galles and Pearl (1997) used a stronger version of right decomposition:
But Bonet (2001) showed that it must be weakened to render the axiom system

sound.
(X  
S  Y � Z).

(X  
S  YW � Z) 1



relation when interpreted to mean that every directed path from X to Y in
a directed graph G contains at least one node in Z (see also Paz et al. 1996).

Galles and Pearl (1997) showed that, despite the absence of transitivity, Theorem 7.3.8
permits one to infer certain properties of causal irrelevance from properties of directed
graphs. For example, suppose we wish to validate a generic statement such as: “If X has
an effect on Y, but ceases to have an effect when we fix Z, then Z must have an effect
on Y.” That statement can be proven from the fact that, in any directed graph, if all paths
from X to Y are intercepted by Z and there are no paths from Z to Y, then there is no
path from X to Y. 

Remark on the Transitivity of Causal Dependence

That causal dependence is not transitive is clear from Figure 7.6. In any state of (U1, U2),
X is capable of changing the state of W and W is capable of changing Y, yet X is inca-
pable of changing Y. Galles and Pearl (1997) gave examples where causal relevance in the
weak sense of Definition 7.3.7 is also nontransitive, even for binary variables. The ques-
tion naturally arises as to why transitivity is so often conceived of as an inherent property
of causal dependence or, more formally, what assumptions we tacitly make when we
classify causal dependence as transitive.

One plausible answer is that we normally interpret transitivity to mean the follow-
ing: “If (1) X causes Y and (2) Y causes Z regardless of X, then (3) X causes Z.” The
suggestion is that questions about transitivity bring to mind chainlike processes, where
X influences Y and Y influences Z but where X does not have a direct influence over Z.
With this qualification, transitivity for binary variables can be proven immediately from
composition (equation (7.19)) as follows. 

Let the sentence “X � x causes Y � y,” denoted be interpreted as the joint
condition (in words, x and y hold, but chang-
ing x to would change y to We can now prove that if X has no direct effect on Z,
that is, if

(7.39)

then

(7.40)

Proof

The l.h.s. of (7.40) reads

From (7.39) we can rewrite the last term as Composition further per-
mits us to write 

which, together with X(u) � x and Z(u) � z, implies n

Weaker forms of causal transitivity are discussed in Chapter 9 (Lemmas 9.2.7 and 9.2.8).

x S z.

Yx�(u) � y� & Zy�x�(u) � z� 1  Zx�(u) � z�, 

Zy�x�(u) � z�.

X(u) � x,   Y(u) � y,   Z(u) � z,   Yx�(u) � y�,   Zy�(u) � z�.

x S y & y S z 1  x S z.

Zy�x� � Zy�,

y�).x�

5X(u) � x, Y(u) � y, Yx� (u) � y� � y6
x S y,

(X  
S  Y � Z)G
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7.4 STRUCTURAL AND SIMILARITY-BASED 

COUNTERFACTUALS

7.4.1 Relations to Lewis’s Counterfactuals

Causality from Counterfactuals 

In one of his most quoted sentences, David Hume tied together two aspects of causation,
regularity of succession and counterfactual dependency:

we may define a cause to be an object followed by another, and where all the objects, simi-
lar to the first, are followed by objects similar to the second, Or, in other words, where, if 
the first object had not been, the second never had existed. (Hume 1748/1958, sec. VII).

This two-faceted definition is puzzling on several accounts. First, regularity of suc-
cession, or “correlation” in modern terminology, is not sufficient for causation, as even
nonstatisticians know by now. Second, the expression “in other words” is too strong,
considering that regularity rests on observations, whereas counterfactuals rest on mental
exercise. Third, Hume had introduced the regularity criterion nine years earlier,18 and
one wonders what jolted him into supplementing it with a counterfactual companion.
Evidently, Hume was not completely happy with the regularity account, and must have
felt that the counterfactual criterion is less problematic and more illuminating. But how
can convoluted expressions of the type “if the first object had not been, the second never
had existed” illuminate simple commonplace expressions like “A caused B”?

The idea of basing causality on counterfactuals is further echoed by John Stuart Mill
(1843), and it reached fruition in the works of David Lewis (1973b, 1986). Lewis called
for abandoning the regularity account altogether and for interpreting “A has caused B” as
“B would not have occurred if it were not for A.” Lewis (1986, p. 161) asked: “Why not
take counterfactuals at face value: as statements about possible alternatives to the actual
situation . . . ?”

Implicit in this proposal lies a claim that counterfactual expressions are less ambigu-
ous to our mind than causal expressions. Why else would the expression “B would be
false if it were not for A” be considered an explication of “A caused B,” and not the other
way around, unless we could discern the truth of the former with greater certitude than
that of the latter? Taken literally, discerning the truth of counterfactuals requires generat-
ing and examining possible alternatives to the actual situation as well as testing whether
certain propositions hold in those alternatives – a mental task of nonnegligible propor-
tions. Nonetheless, Hume, Mill, and Lewis apparently believed that going through this
mental exercise is simpler than intuiting directly on whether it was A that caused B. How
can this be done? What mental representation allows humans to process counterfactu-
als so swiftly and reliably, and what logic governs that process so as to maintain uniform
standards of coherence and plausibility?
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18 In Treatise of Human Nature, Hume wrote: “We remember to have had frequent instances of the
existence of one species of objects; and also remember, that the individuals of another species of
objects have always attended them, and have existed in a regular order of contiguity and succes-
sion with regard to them” (Hume 1739, p. 156).



Structure versus Similarity

According to Lewis’s account (1973b), the evaluation of counterfactuals involves the
notion of similarity: one orders possible worlds by some measure of similarity, and the
counterfactual A nS B (read: “B if it were A”) is declared true in a world w just in case
B is true in all the closest A-worlds to w (see Figure 7.7).19

This semantics still leaves questions of representation unsettled. What choice of sim-
ilarity measure would make counterfactual reasoning compatible with ordinary concep-
tions of cause and effect? What mental representation of worlds ordering would render
the computation of counterfactuals manageable and practical (in both man and machine)?

In his initial proposal, Lewis was careful to keep the formalism as general as possi-
ble; save for the requirement that every world be closest to itself, he did not impose any
structure on the similarity measure. However, simple observations tell us that similarity
measures cannot be arbitrary. The very fact that people communicate with counterfactuals
already suggests that they share a similarity measure, that this measure is encoded parsi-
moniously in the mind, and hence that it must be highly structured. Kit Fine (1975) further
demonstrated that similarity of appearance is inadequate. Fine considers the counterfac-
tual “Had Nixon pressed the button, a nuclear war would have started,” which is generally
accepted as true. Clearly, a world in which the button happened to be disconnected is
many times more similar to our world, as we know it, than the one yielding a nuclear blast.
Thus we see not only that similarity measures could not be arbitrary but also that they must
respect our conception of causal laws.20 Lewis (1979) subsequently set up an intricate
system of weights and priorities among various aspects of similarity – size of “miracles”
(violations of laws), matching of facts, temporal precedence, and so forth – in attempt-
ing to bring similarity closer to causal intuition. But these priorities are rather post hoc
and still yield counterintuitive inferences (J. Woodward, personal communication). 

Such difficulties do not enter the structural account. In contrast with Lewis’s the-
ory, counterfactuals are not based on an abstract notion of similarity among hypothetical
worlds; instead, they rest directly on the mechanisms (or “laws,” to be fancy) that pro-
duce those worlds and on the invariant properties of those mechanisms. Lewis’s elusive
“miracles” are replaced by principled minisurgeries, do(X � x), which represent the
minimal change (to a model) necessary for establishing the antecedent X � x (for all u).
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Figure 7.7 Graphical representation of Lewis’s closest-world
semantics. Each circular region corresponds to a set of worlds
that are equally similar to w. The shaded region represents the set
of closest A-worlds; since all these worlds satisfy B, the coun-
terfactual sentence A nS B is declared true in w.

19 Related possible-world semantics were introduced in artificial intelligence to represent actions and
database updates (Ginsberg 1986; Ginsberg and Smith 1987; Winslett 1988; Katsuno and Mendel-
zon 1991).

20 In this respect, Lewis’s reduction of causes to counterfactuals is somewhat circular.



Thus, similarities and priorities – if they are ever needed – may be read into the do(.)
operator as an afterthought (see discussion following (3.11) and Goldszmidt and Pearl
1992), but they are not basic to the analysis.

The structural account answers the mental representation question by offering a par-
simonious encoding of knowledge from which causes, counterfactuals, and probabilities
of counterfactuals can be derived by effective algorithms. However, this effectiveness is
partly acquired by limiting the counterfactual antecedent to conjunction of elementary
propositions. Disjunctive hypotheticals, such as “if Bizet and Verdi were compatriots,”
usually lead to multiple solutions and hence to nonunique probability assignments.

7.4.2 Axiomatic Comparison

If our assessment of interworld distances comes from causal knowledge, the question
arises of whether that knowledge does not impose its own structure on distances, a struc-
ture that is not captured in Lewis’s logic. Phrased differently: By agreeing to measure
closeness of worlds on the basis of causal relations, do we restrict the set of counterfac-
tual statements we regard as valid? The question is not merely theoretical. For example,
Gibbard and Harper (1976) characterized decision-making conditionals (i.e., sentences
of the form “If we do A, then B”) using Lewis’s general framework, whereas our do(.)
operator is based on functions representing causal mechanisms; whether the two for-
malisms are identical is uncertain.21

We now show that the two formalisms are identical for recursive systems; in other
words, composition and effectiveness hold with respect to Lewis’s closest-world frame-
work whenever recursiveness does. We begin by providing a version of Lewis’s logic for
counterfactual sentences (from Lewis 1973c).

Rules

(1) If A and are theorems, then so is B.

(2) If is a theorem, then so is 

Axioms

(1) All truth-functional tautologies.

(2)

(3)

(4)

(5)

(6) A & B) 1  A �S  B.

A �S  B) 1  A 1  B.

(((A ¡ B) �S  C) � (A �S  C)  & (B �S  C)).

((A ¡ B) �S  A) ¡ ((A ¡ B) �S B) ¡
(A �S  B) & (B �S  A) 1  (A �S  C) � (B �S  C).

A �S  A.

(A �S  C).
((A �S  B1) p ) 1(B1  & p ) 1  C

A 1  B
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21 Ginsberg and Smith (1987) and Winslett (1988) have also advanced theories of actions based on
closest-world semantics; they have not imposed any special structure for the distance measure to
reflect causal considerations.



The statement stands for “In all closest worlds where A holds, B holds as
well.” To relate Lewis’s axioms to those of causal models, we must translate his syntax.
We will equate Lewis’s world with an instantiation of all the variables, including those
in U, in a causal model. Values assigned to subsets of variables in a causal model will
stand for Lewis’s propositions (e.g., A and B in the stated rules and axioms). Thus, let A
stand for the conjunction and let B stand for the conjunction

Then 

(7.41)

Conversely, we need to translate causal statements such as Yx(u) � y into Lewis’s
notation. Let A stand for the proposition X � x and B for the proposition Y � y. Then

(7.42)

Axioms (1)–(6) follow from the closest-world interpretation without imposing any
restrictions on the distance measured, except for the requirement that each world w be
no further from itself than any other world . Because structural semantics defines
an obvious distance measure among worlds, , given by the minimal number
of local interventions needed for transforming w into all of Lewis’s axioms should
hold in causal models and must follow logically from effectiveness, composition, and
(for nonrecursive systems) reversibility. This will be shown explicitly first. However, to
guarantee that structural semantics does not introduce new constraints we need to show
the converse: that the three axioms of structural semantics follow from Lewis’s axioms.
This will be shown second.

To show that Axioms (1)–(6) hold in structural semantics, we examine each axiom in
turn.

(1) This axiom is trivially true.

(2) This axiom is the same as effectiveness: If we force a set of variables X to have
the value x, then the resulting value of X is x. That is, Xx(u) � x.

(3) This axiom is a weaker form of reversibility, which is relevant only for nonre-
cursive causal models.

(4) Because actions in structural models are restricted to conjunctions of literals,
this axiom is irrelevant.

(5) This axiom follows from composition.

(6) This axiom follows from composition.

To show that composition and effectiveness follow from Lewis’s axioms, we note that
composition is a consequence of axiom (5) and rule (1) in Lewis’s formalism, while ef-
fectiveness is the same as Lewis’s axiom (2).

w�,
d(w, w�)

w� � w

Yx(u) � y � A �S  B.

Ymx1,p , xn
(u) � ym.

o

&  Y2x1,p , xn
(u) � y2

A �S B � Y1x1,p , xn
(u) � y1

Y1 � y1, p , Ym � ym.
X1 � x1, p , Xn � xn,

A �S B
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In sum, for recursive models, the causal model framework does not add any restric-
tions to counterfactual statements beyond those imposed by Lewis’s framework; the very
general concept of closest worlds is sufficient. Put another way, the assumption of recur-
siveness is so strong that it already embodies all other restrictions imposed by structural
semantics. When we consider nonrecursive systems, however, we see that reversibility is
not enforced by Lewis’s framework. Lewis’s axiom (3) is similar to but not as strong as
reversibility; that is, even though Y � y may hold in all closest w-worlds and W � w in
all closest y-worlds, Y � y still may not hold in the actual world. Nonetheless, we can
safely conclude that, in adopting the causal interpretation of counterfactuals (together
with the representational and algorithmic machinery of modifiable structural equation
models), we are not introducing any restrictions on the set of counterfactual statements
that are valid relative to recursive systems.

7.4.3 Imaging versus Conditioning

If action is a transformation from one probability function to another, one may ask whether
every such transformation corresponds to an action, or if there are some constraints that
are peculiar to those transformations that originate from actions. Lewis’s (1976) formu-
lation of counterfactuals indeed identifies such constraints: the transformation must be
an imaging operator.

Whereas Bayes conditioning transfers the entire probability mass from states
excluded by e to the remaining states (in proportion to their current P(s)), imaging works
differently; each excluded state s transfers its mass individually to a select set of states
S*(s) that are considered “closest” to s. Indeed, we saw in (3.11) that the transformation
defined by the action do can be interpreted in terms of such a mass-transfer
process; each excluded state (i.e., one in which ) transferred its mass to a select
set of nonexcluded states that shared the same value of pai. This simple characterization
of the set S*(s) of closest states is valid for Markovian models, but imaging generally
permits the selection of any such set. 

The reason why imaging is a more adequate representation of transformations associ-
ated with actions can be seen through a representation theorem due to Gardenfors (1988,
thm. 5.2, p. 113; strangely, the connection to actions never appears in Gardenfors’s anal-
ysis). Gardenfors’s theorem states that a probability update operator is
an imaging operator if and only if it preserves mixtures; that is,

(7.43)

for all constants all propositions A, and all probability functions P and .
In other words, the update of any mixture is the mixture of the updates.22

This property, called homomorphy, is what permits us to specify actions in terms of
transition probabilities, as is usually done in stochastic control and Markov decision
processes. Denoting by the probability resulting from acting A on a known
state , the homomorphism (7.43) dictates that s�

PA(s � s�)

P�1 	 � 	 0,

[�P(s) � (1 � �) P�(s)]A � �PA(s) � (1 � �)P�A(s)

P(s) S  PA (s)

Xi � x�i

(Xi � x�i)

P(s � e)
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22 Property (7.43) is reflected in the (U8) postulate of Katsuno and Mendelzon (1991):
where o is an update operator, similar to our do (.) operator. (K1om) ¡ (K2om),

(K1 ¡ K2)om �



(7.44)

this means that, whenever s’ is not known with certainty, PA(s) is given by a weighted
sum of over s�, with the weight being the current probability function P(s�).

This characterization, however, is too permissive; although it requires any action-
based transformation to be describable in terms of transition probabilities, it also accepts
any transition probability specification, howsoever whimsical, as a descriptor of some
action. The valuable information that actions are defined as local surgeries is ignored in
this characterization. For example, the transition probability associated with the atomic
action Ai � do(Xi � xi) originates from the deletion of just one mechanism in the
assembly. Hence, the transition probabilities associated with the set of atomic actions
would normally constrain one another. Such constraints emerge from the axioms of ef-
fectiveness, composition, and reversibility when probabilities are assigned to the states
of U (Galles and Pearl 1997).

7.4.4 Relations to the Neyman–Rubin Framework

A Language in Search of a Model

The notation Yx(u) that we used for denoting counterfactual quantities is borrowed from
the potential-outcome framework of Neyman (1923) and Rubin (1974), briefly introduced
in Section 3.6.3, which was devised for statistical analysis of treatment effects.23 In that
framework, Yx(u) (often written Y(x, u)) stands for the outcome of experimental unit 
u (e.g., an individual or an agricultural lot) under a hypothetical experimental condi-
tion X � x. In contrast to the structural modeling, however, this variable is not derived
from a causal model or from any formal representation of scientific knowledge, but is
taken as a primitive – that is, an unobserved variable that reveals its value only when x
coincides with the treatment actually received, as dictated by the consistency rule

(equation (7.20)). Consequently, the potential-outcome framework
does not provide a mathematical model from which such rules could be derived or on
the basis of which an axiomatic characterization could be attempted in order to decide,
for example, whether additional rules should be deployed, or whether a given collection
of potential-outcome expressions is redundant or contradictory.

The structural equation model formulated in Section 7.1 provides in fact the formal
semantics lacking in the potential-outcome framework, since each such model assigns
coherent truth values to the counterfactual quantities used in potential-outcome studies.
From the structural perspective, the quantity Yx(u) is not a primitive but rather is derived
mathematically from a set of equations F that represents, transparently, one’s knowledge
about the subject matter. This knowledge is expressed qualitatively through the variables
participating in those equations, without committing to their precise functional form.
The variable U represents any set of background factors relevant to the analysis, not nec-
essarily the identity of a specific individual in the population.

X � x  1  Yx � Y

PA(s � s�)

PA(s) � a
s�

PA(s � s�) P(s�);
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23 A related (if not identical) framework that has been used in economics is the switching regression.
For a brief review of such models, see Heckman (1996; see also Heckman and Honoré 1990 and
Manski 1995). Winship and Morgan (1999) provided an excellent overview of the two schools.



Using this semantics, in Section 7.3 we established an axiomatic characterization
of the potential-response function Yx(u) and its relationships with the observed vari-
ables X(u) and Y(u). These basic axioms include or imply restrictions such as the con-
sistency rule (equation (7.20)), which were taken as given by potential-outcome
researchers.

The completeness result further assures us that derivations involving counterfactual
relationships in recursive models may safely be managed with two axioms only, effec-
tiveness and composition. All truths implied by structural equation semantics are also
derivable using these two axioms. Likewise – in constructing hypothetical contingency
tables for recursive models (see Section 6.5.3) – we are guaranteed that, once a table sat-
isfies effectiveness and composition, there exists at least one causal model that would
generate that table. In essence, this establishes the formal equivalence of structural equa-
tion modeling, which is popular in economics and the social sciences (Goldberger 1991),
and the potential-outcome framework as used in statistics (Rubin 1974; Holland 1986;
Robins 1986).24 In nonrecursive models, however, this is not the case. Attempts to evalu-
ate counterfactual statements using only composition and effectiveness may fail to certify
some valid conclusions (i.e., true in all causal models) whose validity can only be recog-
nized through the use of reversibility.

Graphical versus Counterfactual Analysis 

This formal equivalence between the structural and potential-outcome frameworks cov-
ers issues of semantics and expressiveness but does not imply equivalence in conceptu-
alization or practical usefulness. Structural equations and their associated graphs are
particularly useful as means of expressing assumptions about cause-effect relationships.
Such assumptions rest on prior experiential knowledge, which – as suggested by ample
evidence – is encoded in the human mind in terms of interconnected assemblies of
autonomous mechanisms. These mechanisms are thus the building blocks from which
judgments about counterfactuals are derived. Structural equations 5 fi6 and their graphical
abstraction G(M) provide direct mappings for these mechanisms and therefore constitute
a natural language for articulating or verifying causal knowledge or assumptions. The
major weakness of the potential-outcome framework lies in the requirement that assump-
tions be articulated as conditional independence relationships involving counterfactual
variables. For example, an assumption such as the one expressed in (7.30) is not easily
comprehended even by skilled investigators, yet its structural image evokes an
immediate process-based interpretation.25

U1  �� U2
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24 This equivalence was anticipated in Holland (1988), Pratt and Schlaifer (1988), Pearl (1995a), and
Robins (1995) and became a mathematical fact through the explicit translation of equation (3.51)
followed by the completeness result of Theorem 7.3.6.

25 These views are diametrically opposite to those expressed by Angrist et al. (1996), who stated:
“Typically the researcher does not have a firm idea what these disturbances really represent.”
Researchers who are knowledgeable in their respective subjects have a very clear idea what these
disturbances represent, and those who don’t would certainly not be able to make realistic judg-
ments about counterfactual dependencies. Indeed, researchers who shun structural equations or
graphs tend to avoid subject matter knowledge in their analyses (e.g., Rubin 2009).



A happy symbiosis between graphs and counterfactual notation was demonstrated in
Section 7.3.2. In that example, assumptions were expressed in graphical form, then trans-
lated into counterfactual notation (using the rules of (7.25) and (7.26)), and finally sub-
mitted to algebraic derivation. Such symbiosis offers a more effective method of analysis
than methods that insist on expressing assumptions directly as counterfactuals. Additional
examples will be demonstrated in Chapter 9, where we analyze probability of causation.
Note that, in the derivation of Section 7.3.2, the graph continued to assist the procedure
by displaying independence relationships that are not easily derived by algebraic means
alone. For example, it is hardly straightforward to show that the assumptions of (7.27)–
(7.30) imply the conditional independence but do not imply the con-
ditional independence Such implications can, however, easily be tested in
the graph of Figure 7.5 or in the twin network construction of Section 7.1.3 (see Figure 7.3).

The most compelling reason for molding causal assumptions in the language of graphs
is that such assumptions are needed before the data are gathered, at a stage when the
model’s parameters are still “free” (i.e., still to be determined from the data). The usual
temptation is to mold those assumptions in the language of statistical independence, which
carries an aura of testability and hence of scientific legitimacy. (Chapter 6 exemplifies the
futility of such temptations.) However, conditions of statistical independence – regardless
of whether they relate to V variables, U variables, or counterfactuals – are generally sensi-
tive to the values of the model’s parameters, which are not available at the model con-
struction phase. The substantive knowledge available at the modeling phase cannot sup-
port such assumptions unless they are stable, that is, insensitive to the values of the
parameters involved. The implications of graphical models, which rest solely on the inte-
rconnections among mechanisms, satisfy this stability requirement and can therefore be
ascertained from generic substantive knowledge before data are collected. For example,
the assertion which is implied by the graph of Figure 7.5, remains valid
for any substitution of functions in 5 fi6 and for any assignment of prior probabilities to
U1 and U2.

These considerations apply not only to the formulation of causal assumptions but
also to the language in which causal concepts are defined and communicated. Many
concepts in the social and medical sciences are defined in terms of relationships among
unobserved U variables, also known as “errors” or “disturbance terms.” We have seen in
Chapter 5 (Section 5.4.3) that key econometric notions such as exogeneity and in-
strumental variables have traditionally been defined in terms of absence of correlation
between certain observed variables and certain error terms. Naturally, such definitions
attract criticism from strict empiricists, who regard unobservables as metaphysical or def-
initional (Richard 1980; Engle et al. 1983; Holland 1988), and also (more recently) from
potential-outcome analysts, who mistakenly regard the use of structural models as an
unwarranted commitment to a particular functional form (Angrist et al. 1996). This crit-
icism will be considered in the following section. 

7.4.5 Exogeneity and Instruments: Counterfactual and Graphical Definitions

The analysis of this chapter provides a counterfactual interpretation of the error terms in
structural equation models, supplementing the operational definition of (5.25). We have

(X �� Y � Z, U1),

(Yz �� Zx � Z).
(Yz �� Zx � 5Z, X6)
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seen that the meaning of the error term uY in the equation Y � fY(paY, uY) is captured
by the counterfactual variable . In other words, the variable UY can be interpreted
as a modifier of the functional mapping from PAY to Y. The statistics of such modifica-
tions is observable when paY is held fixed. This translation into counterfactual notation
may facilitate algebraic manipulations of UY without committing to the functional form
of fY. However, from the viewpoint of model specification, the error terms should still
be viewed as (summaries of) omitted factors. 

Armed with this interpretation, we can obtain graphical and counterfactual definitions
of causal concepts that were originally given error-based definitions. Examples of such
concepts are causal influence, exogeneity, and instrumental variables (Section 5.4.3).
In clarifying the relationships among error-based, counterfactual, and graphical defini-
tions of these concepts, we should first note that these three modes of description can be
organized in a simple hierarchy. Since graph separation implies independence, but inde-
pendence does not imply graph separation (Theorem 1.2.4), definitions based on graph
separation should imply those based on error-term independence. Likewise, since for
any two variables X and Y the independence relation implies the counterfac-
tual independence (but not the other way around), it follows that defini-
tions based on error independence should imply those based on counterfactual inde-
pendence. Overall, we have the following hierarchy:

The concept of exogeneity may serve to illustrate this hierarchy. The pragmatic defini-
tion of exogeneity is best formulated in counterfactual or interventional terms as follows.

Exogeneity (Counterfactual Criterion)

A variable X is exogenous relative to Y if and only if the effect of X on Y is identical to
the conditional probability of Y given X – that is, if

(7.45)

or, equivalently,

(7.46)

this in turn is equivalent to the independence condition named “weak ignora-
bility” in Rosenbaum and Rubin (1983).26

This definition is pragmatic in that it highlights the reasons economists should be con-
cerned with exogeneity by explicating the policy-analytic benefits of discovering that a
variable is exogenous. However, this definition fails to guide an investigator toward

Yx ��  X,

P(Y � y � do (x)) � P(y � x);

P(Yx � y) � P(y � x)

graphical criteria 1  error-based criteria 1  counterfactual criteria.

XpaX �� YpaY

UX  �� Uy

YpaY
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26 We focus the discussion in this section on the causal component of exogeneity, which the economet-
ric literature has unfortunately renamed “superexogeneity” (see Section 5.4.3). Epidemiologists
refer to (7.46) as “no-confounding” (see (6.10)). We also postpone discussion of “strong ignora-
bility,” defined as the joint independence to Chapter 9 (Definition 9.2.3).5Yx, Yx�6 �� X,



verifying, from substantive knowledge of the domain, whether this independence condi-
tion holds in any given system, especially when many equations are involved (see Section
11.3.2). To facilitate such judgments, economists (e.g., Koopmans 1950; Orcutt 1952)
have adopted the error-based criterion of Definition 5.4.6.

Exogeneity (Error-Based Criterion)

A variable X is exogenous in M relative to Y if X is independent of all error terms that
have an influence on Y that is not mediated by X.27

This definition is more transparent to human judgment because the reference to error
terms tends to focus attention on specific factors, potentially affecting Y, with which sci-
entists are familiar. Still, to judge whether such factors are statistically independent is a
difficult mental task unless the independencies considered are dictated by topological
considerations that assure their stability. Indeed, the most popular conception of exo-
geneity is encapsulated in the notion of “common cause”; this may be stated formally as
follows. 

Exogeneity (Graphical Criterion)

A variable X is exogenous relative to Y if X and Y have no common ancestor in G(M)
or, equivalently, if all back-door paths between X and Y are blocked (by colliding
arrows).28

It is easy to show that the graphical condition implies the error-based condition, which in
turn implies the counterfactual (or pragmatic) condition of (7.46). The converse implica-
tions do not hold. For example, Figure 6.4 illustrates a case where the graphical criterion
fails and both the error-based and counterfactual criteria classify X as exogenous. We
argued in Section 6.4 that this type of exogeneity (there called “no confounding”) is
unstable or incidental, and we have raised the question of whether such cases were meant
to be embraced by the definition. If we exclude unstable cases from consideration, then
our three-level hierarchy collapses and all three definitions coincide.

Instrumental Variables: Three Definitions

A three-level hierarchy similarly characterizes the notion of instrumental variables (Bow-
den and Turkington 1984; Pearl 1995c; Angrist et al. 1996), illustrated in Figure 5.9. The
traditional definition qualifies a variable Z as instrumental (relative to the pair (X, Y)) if
(i) Z is independent of all variables (including error terms) that have an influence on Y
that is not mediated by X and (ii) Z is not independent of X.
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27 Independence relative to all errors is sometimes required in the literature (e.g., Dhrymes 1970,
p. 169), but this is obviously too strong. 

28 As in Chapter 6 (note 19), the expression “common ancestors” should exclude nodes that have no
other connection to Y except through X and should include latent nodes for every pair of depend-
ent errors. Generalization to conditional exogeneity relative to observed covariates is straightfor-
ward in all three definitions.



The counterfactual definition29 replaces condition (i) with ( ): Z is independent of
Yx. The graphical definition replaces condition (i) with (i��): every unblocked path con-
necting Z and Y must contain an arrow pointing into X (alternatively,
Figure 7.8 illustrates this definition through examples.

When a set S of covariates is measured, these definitions generalize as follows.

Definition 7.4.1 (Instrument) 

A variable Z is an instrument relative to the total effect of X on Y if there exists a set
of measurements S � s, unaffected by X, such that either of the following criteria
holds.

1. Counterfactual criterion:

(i)

(ii)

2. Graphical criterion:

(i)

(ii)

In concluding this section, I should reemphasize that it is because graphical definitions are
insensitive to the values of the model’s parameters that graphical vocabulary guides and
expresses so well our intuition about causal effects, exogeneity, instruments, confound-
ing, and even (I speculate) more technical notions such as randomness and statistical
independence. 

(Z   
��  X � S)G.

(Z �� Y � S)GX
;

Z  
��  X � S � s.

Z �� Yx � S � s;

(Z �� Y)GX
).

i�
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Figure 7.8 Z is a proper instrumental variable in the models of (a), (b), and (c), since it satisfies
It is not an instrument in (d) because it is correlated with W, which influences Y.Z �� UY.

29 There is, in fact, no agreed-upon generalization of instrumental variables to nonlinear systems.
The definition here, taken from Galles and Pearl (1998), follows by translating the error-based def-
inition into counterfactual vocabulary. Angrist et al. (1996), who expressly rejected all reference to
graphs or error terms, assumed two unnecessary restrictions: that Z be ignorable (i.e., random-
ized; this is violated in Figures 7.8(b) and (c)) and that Z affect X (violated in Figure 7.8(c)).
Similar assumptions were made by Heckman and Vytlacil (1999), who used both counterfactu-
als and structural equation models. Shunning graphs has its hazzards.



7.5 STRUCTURAL VERSUS PROBABILISTIC CAUSALITY

Probabilistic causality is a branch of philosophy that attempts to explicate causal relation-
ships in terms of probabilistic relationships. This attempt was motivated by several ideas
and expectations. First and foremost, probabilistic causality promises a solution to the
centuries-old puzzle of causal discovery – that is, how humans discover genuine causal
relationships from bare empirical observations, free of any causal preconceptions. Given
the Humean dictum that all knowledge originates with human experience and the (less
compelling but then fashionable) assumption that human experience is encoded in the
form of a probability function, it is natural to expect that causal knowledge be reducible
to a set of relationships in some probability distribution that is defined over the variables
of interest. Second, in contrast to deterministic accounts of causation, probabilistic
causality offers substantial cognitive economy. Physical states and physical laws need
not be specified in minute detail because they can instead be summarized in the form of
probabilistic relationships among macro states so as to match the granularity of natural
discourse. Third, probabilistic causality is equipped to deal with the modern (i.e., quantum-
theoretical) conception of uncertainty, according to which determinism is merely an epis-
temic fiction and nondeterminism is the fundamental feature of physical reality. 

The formal program of probabilistic causality owes its inception to Reichenbach
(1956) and Good (1961), and it has subsequently been pursued by Suppes (1970), Skyrms
(1980), Spohn (1980), Otte (1981), Salmon (1984), Cartwright (1989), and Eells (1991).
The current state of this program is rather disappointing, considering its original aspira-
tions, but not surprising considering our discussion of Section 1.5. Salmon has abandoned
the effort altogether, concluding that “causal relations are not appropriately analyzable in
terms of statistical relevance relations” (1984, p. 185); instead, he has proposed an analy-
sis in which “causal processes” are the basic building blocks. More recent accounts by
Cartwright and Eells have resolved some of the difficulties encountered by Salmon, but at
the price of either complicating the theory beyond recognition or compromising its origi-
nal goals. The following is a brief account of the major achievements, difficulties, and
compromises of probabilistic causality as portrayed in Cartwright (1989) and Eells (1991).

7.5.1 The Reliance on Temporal Ordering

Standard probabilistic accounts of causality assume that, in addition to a probability
function P, we are also given the temporal order of the variables in the analysis. This is
understandable, considering that causality is an asymmetric relation, whereas statistical
relevance is symmetric. Lacking temporal information, it would be impossible to decide
which of two dependent variables is the cause and which the effect, since every joint dis-
tribution P(x, y) induced by a model in which X is a cause of Y can also be induced by a
model in which Y is the cause of X. Thus, any method of inferring that X is a cause of Y
must also infer, by symmetry, that Y is a cause of X. In Chapter 2 we demonstrated that,
indeed, at least three variables are needed for determining the directionality of arrows
in a DAG and, more serious yet, no arrow can be oriented from probability information
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alone – that is, without the added (causal) assumption of stability or minimality. By
imposing the constraint that an effect never precede its cause, the symmetry is broken
and causal inference can commence.

The reliance on temporal information has its price, as it excludes a priori the analysis
of cases in which the temporal order is not well-defined, either because processes overlap
in time or because they (appear to) occur instantaneously. For example, one must give up
the prospect of determining (by uncontrolled methods) whether sustained physical exer-
cise contributes to low cholesterol levels or if, conversely, low cholesterol levels enhance
the urge to engage in physical exercise. Likewise, the philosophical theory of probabilis-
tic causality would not attempt to distinguish between the claims “tall flag poles cause
long shadows” and “long shadows cause tall flag poles” – where, for all practical pur-
poses, the putative cause and effect occur simultaneously. 

We have seen in Chapter 2 that some determination of causal directionality can be
made from atemporal statistical information, if fortified with the assumption of mini-
mality or stability. These assumptions, however, implicitly reflect generic properties of
physical processes – invariance and autonomy (see Section 2.9.1) – that constitute the
basis of the structural approach to causality.

7.5.2 The Perils of Circularity

Despite the reliance on temporal precedence, the criteria that philosophers have devised
for identifying causal relations suffer from glaring circularity: In order to determine
whether an event C is a cause of event E, one must know in advance how other factors
are causally related to C and E. Such circularity emerges from the need to define the
“background context” under which a causal relation is evaluated, since the intuitive idea
that causes should increase the probability of their effects must be qualified by the con-
dition that other things are assumed equal. For example, “studying arithmetic” increases
the probability of passing a science test, but only if we keep student age constant; other-
wise, studying arithmetic may actually lower the probability of passing the test because
it is indicative of young age. Thus, it seems natural to offer the following.

Definition 7.5.1

An event C is causally relevant to E if there is at least one condition F in some background
context K such that 30

But what kind of conditions should we include in the background context? On the one
hand, insisting on a complete description of the physical environment would reduce prob-
abilistic causality to deterministic physics (barring quantum-level considerations). On
the other hand, ignoring background factors altogether – or describing them too coarsely –
would introduce spurious correlations and other confounding effects. A natural compromise

P(E � C, F) 	 P(E � ¬ C, F).
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30 The reader can interpret K to be a set of variables and F a particular truth-value assignment to
those variables.



is to require that the background context itself be “causally relevant” to the variables in
question, but this very move is the source of circularity in the definition of probabilistic
causality. 

The problem of choosing an appropriate set of background factors is similar to the
problem of finding an appropriate adjustment for confounding, as discussed in several
previous chapters in connection with Simpson’s paradox (e.g., Sections 3.3, 5.1.3, and
6.1). We have seen (e.g., in Section 6.1) that the criterion for choosing an appropriate
set of covariates for adjustment cannot be based on probabilistic relationships alone but
must rely on causal information. In particular, we must make sure that factors listed as
background satisfy the back-door condition, because the inequality in Definition 7.5.1
can always be satisfied by conditioning on some imagined factor F (as in Figure 6.2(c))
that generates spurious associations between C and E. Here we see the emergence of
circularity: In order to determine the causal role of C relative to E (e.g., the effect of the
drug on recovery), we must first determine the causal role of every factor F (e.g., gen-
der) relative to C and E.

One may try to escape this circularity by conditioning on all factors preceding C,
but, unfortunately, other factors that cannot be identified through temporal ordering
alone must also be weighed. Consider the betting example used in Section 7.2.2. I
must bet heads or tails on the outcome of a fair coin toss; I win if I guess correctly and
lose if I don’t. Naturally, once the coin is tossed (and while the outcome is still
unknown), the bet is deemed causally relevant to winning, even though the probabili-
ty of winning is the same whether I bet heads or tails. In order to reveal the causal rel-
evance of the bet (C), we must include the outcome of the coin (F) in the background
context even though F does not meet the common-cause criterion – it does not affect
my bet (C), nor is it causally relevant to winning (E) (unless we first declare the bet is
relevant to winning). Worse yet, we cannot justify including F in the background con-
text by virtue of its occurring earlier than C because whether the coin is tossed before
or after my bet is totally irrelevant to the problem at hand. We conclude that temporal
precedence alone is insufficient for identifying the appropriate background context,
even if we resort to what Eells (1991) called “interacting causes” – namely, (simpli-
fied) factors F that (i) are not affected causally by C and (ii) jointly with C (or 
increase the probability of E.

Because of the circularity inherent in all definitions of causal relevance, probabilistic
causality cannot be regarded as a program for extracting causal relations from temporal–
probabilistic information; rather, it should be viewed as a program for validating whether a
proposed set of causal relationships is consistent with the available temporal-probabilistic
information. More formally, suppose someone gives us a probability distribution P and
a temporal order O on a (complete) set of variables V. Furthermore, any pair of vari-
able sets (say, X and Y) in V is annotated by a symbol R or I, where R stands for
“causally relevant” and I for “causally irrelevant.” Probabilistic causality deals with test-
ing whether the proposed R and I labels are consistent with the pair and with
the doctrine that causes should both precede and increase the probability of their
effects.

Currently, the most advanced consistency test is the one based on Eells’s (1991) cri-
terion of relevance, which may be translated as follows.

�P, O�

¬ C)
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Consistency Test

For each pair of variables labeled R(X, Y), test whether

(i) X precedes Y in O, and

(ii) there exist x, , y such that for some z in Z, where Z is
a set of variables in the background context K such that I (X, Z) and R
(Z, Y).

This now raises additional questions.

(a) Is there a consistent label for every pair ?

(b) When is the label unique?

(c) Is there a procedure for finding a consistent label when it exists?

Although some insights into these questions are provided by graphical methods (Pearl
1996), the point is that, owing to circularity, the mission of probabilistic causality has
been altered: from discovery to consistency testing.

It should also be remarked that the basic program of defining causality in terms of
conditionalization, even if it turns out to be successful, is at odds with the natural concep-
tion of causation as an oracle for interventions. This program first confounds the causal
relation with epistemic conditionalization and then removes spuri-
ous correlations through steps of remedial conditionalization, yielding The
structural account, in contrast, defines causation directly in terms of Nature’s invariants
(i.e., submodel Mx in Definition 7.1.2); see the discussion following Theorem 3.2.2.

7.5.3 Challenging the Closed-World Assumption, with Children

By far the most critical and least defensible paradigm underlying probabilistic causal-
ity rests on the assumption that one is in the possession of a probability function on all
variables relevant to a given domain. This assumption absolves the analyst from worry-
ing about unmeasured spurious causes that might (physically) affect several variables in
the analysis and still remain obscure to the analyst. It is well known that the presence
of such “confounders” may reverse or negate any causal conclusion that might be drawn
from probabilities. For example, observers might conclude that “bad air” is the cause
of malaria if they are not aware of the role of mosquitoes, or that falling barometers are
the cause of rain, or that speeding to work is the cause of being late to work, and so on.
Because they are unmeasured (or even unsuspected), the confounding factors in such ex-
amples cannot be neutralized by conditioning or by “holding them fixed.” Thus, taking
seriously Hume’s program of extracting causal information from raw data entails coping
with the problem that the validity of any such information is predicated on the untestable
assumption that all relevant factors have been accounted for. 

This raises the question of how people ever acquire causal information from the envi-
ronment and, more specifically, how children extract causal information from experience.
The proponents of probabilistic causality who attempt to explain this phenomenon through
statistical theories of learning cannot ignore the fact that the child never operates in a
closed, isolated environment. Unnoticed external conditions govern the operation of

P(E � C, F).
P(E � C)P(E � do(C))

�P, O�

P(y � x, z) 	 P(y � x�, z)x�
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every learning environment, and these conditions often have the potential to confound
cause and effect in unexpected and clandestine ways. 

Fortunately, that children do not grow in closed, sterile environments does have its
advantages. Aside from passive observations, a child possesses two valuable sources of
causal information that are not available to the ordinary statistician: manipulative exper-
imentation and linguistic advice. Manipulation subjugates the putative causal event to
the sole influence of a known mechanism, thus overruling the influence of uncontrolled
factors that might also produce the putative effect. “The beauty of independent manipu-
lation is, of course, that other factors can be kept constant without their being identified”
(Cheng 1992). The independence is accomplished by subjecting the object of interest to
the whims of one’s volition in order to ensure that the manipulation is not influenced by
any environmental factor likely to produce the putative effect. Thus, for example, a child
can infer that shaking a toy can produce a rattling sound because it is the child’s hand,
governed solely by the child’s volition, that brings about the shaking of the toy and the
subsequent rattling sound. The whimsical nature of free manipulation replaces the sta-
tistical notion of randomized experimentation and serves to filter sounds produced by the
child’s actions from those produced by uncontrolled environmental factors.

But manipulative experimentation cannot explain all of the causal knowledge that
humans acquire and possess, simply because most variables in our environment are not
subject to direct manipulation. The second valuable source of causal knowledge is lin-
guistic advice: explicit causal sentences about the workings of things which we obtain
from parents, friends, teachers, and books and which encode the manipulative experience
of past generations. As obvious and uninteresting as this source of causal information
may appear, it probably accounts for the bulk of our causal knowledge, and understand-
ing how this transference of knowledge works is far from trivial. In order to comprehend
and absorb causal sentences such as “The glass broke because you pushed it,” the child
must already possess a causal schema within which such inputs make sense. To further
infer that pushing the glass will make someone angry at you and not at your brother, even
though he broke the last glass, requires a truly sophisticated inferential machinery. In
most children, this machinery is probably innate (Gopnik et al. 2004).

Note, however, that linguistic input is by and large qualitative; we rarely hear parents
explaining to children that placing the glass at the edge of the table increases the prob-
ability of breakage by a factor of 2.85. The probabilistic approach to causality embeds
such qualitative input in an artificial numerical frame, whereas the structural approach
to causality (Section 7.1) builds directly on the qualitative knowledge that we obtain and
transmit linguistically.

7.5.4 Singular versus General Causes

In Section 7.2.3 we saw that the distinction between general causes (e.g., “Drinking hem-
lock causes death”) and singular causes (e.g., “Socrates’ drinking hemlock caused his
death”) plays an important role in understanding the nature of explanations. We have
also remarked that the notion of singular causation (also known as “token” or “single-
event” causation) has not reached an adequate state of conceptualization or formaliza-
tion in the probabilistic account of causation. In this section we elaborate the nature of
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these difficulties and conclude that they stem from basic deficiencies in the probabilistic
account.

In Chapter 1 (Figure 1.6) we demonstrated that the evaluation of singular causal claims
requires knowledge in the form of counterfactual or functional relationships and that such
knowledge cannot be extracted from bare statistical data even when obtained under con-
trolled experimentation. This limitation was attributed in Section 7.2.2 to the temporal
persistence (or invariance) of information that is needed to sustain counterfactual state-
ments – persistence that is washed out (by averaging) in statistical statements even when
enriched with temporal and causally relevant information. The manifestations of this
basic limitation have taken an interesting slant in the literature of probabilistic causa-
tion and have led to intensive debates regarding the relationships between singular and
generic statements (see, e.g., Good 1961; Cartwright 1989; Eells 1991; Hausman 1998).

According to one of the basic tenets of probabilistic causality, a cause should raise
the probability of the effect. It is often the case, however, that we judge an event x to be
the cause of y when the conditional probability is lower than For exam-
ple, a vaccine (x) usually decreases the probability of the disease (y), and yet we often
say (and can medically verify) that the vaccine itself caused the disease in a given per-
son u. Such reversals would not be problematic to students of structural models, who can
interpret the singular statement as saying that “had person u not taken the vaccine 
then u would still be healthy .” The probability of this counterfactual statement

can be high while the conditional probability as well as
is low, with all probabilities evaluated from the same structural model

(Section 9.2 provides precise relationships between the three quantities). However, this
reversal is traumatic to students of probabilistic causation, who mistrust counterfactu-
als for various reasons – partly because counterfactuals carry an aura of determinism
(Kvart 1986, pp. 256–63) and partly because counterfactuals are perceived as resting on
a shaky formal foundation “for which we have only the beginnings of a semantics (via
the device of measures over possible worlds)” (Cartwright 1983, p. 34).

In order to reconcile the notion of probability increase with that of singular causa-
tion, probabilists claim that, if we look hard enough at any given scenario in which x is
judged to be a cause of y, then we will always be able to find a subpopulation Z � z in
which x raises the probability of y – namely,

(7.47)

In the vaccine example, we might identify the desired subpopulation as consisting of in-
dividuals who are adversely susceptible to the vaccine; by definition, the vaccine would
no doubt raise the probability of the disease in that subpopulation. Oddly, only a few
philosophers have noticed that factors such as being “adversely susceptible” are defined
counterfactually and that, in permitting conditionalization on such factors, one opens a
clandestine back door for sneaking determinism and counterfactual information back into
the analysis.

Perhaps a less obvious appearance of counterfactuals surfaces in Hesslow’s example
of the birth-control pill (Hesslow 1976), discussed in Section 4.5.1. Suppose we find that
Mrs. Jones is not pregnant and ask whether taking a birth-control pill was the cause of
her suffering from thrombosis. The population of nonpregnant women turns out to be

P(y � x, z) 	 P(y � x�, z).

P(y � do(x)),
P(y � x)P(Yx� � y� � x, y)

(y�)
(x�)

P(y � x�).P(y � x)
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too coarse for answering this question unequivocally. If Mrs. Jones belongs to the class
of women who would have become pregnant but for the pill, then the pill might actu-
ally have lowered the probability of thrombosis in her case by preventing her pregnancy.
If, on the other hand, she belongs to the class of women who would not have become
pregnant regardless of the pill, then her taking the pill has surely increased the chance of
thrombosis. This example is illuminating because the two classes of test populations do
not have established names in the English language (unlike “susceptibility” in the vaccine
example) and must be defined explicitly in counterfactual vocabulary. Whether a woman
belongs to the former or latter class depends on many social and circumstantial contin-
gencies, which are usually unknown and are not likely to define an invariant attribute of a
given person. Still, we recognize the need to consider the two classes separately in eval-
uating whether the pill was the cause of Mrs. Jones’s thrombosis. 

Thus we see that there is no escape from counterfactuals when we deal with token-
level causation. Probabilists’ insistence on counterfactual-free syntax in defining token
causal claims has led to subpopulations delineated by none other than counterfactual ex-
pressions: “adversely susceptible” in the vaccine example and “would not have become
pregnant” in the case of Mrs. Jones.31

Probabilists can argue, of course, that there is no need to refine the subclasses Z � z
down to deterministic extremes, since one can stop the refinement as soon as one finds a
subclass that increases the probability of y, as required in (7.47). This argument borders
on the tautological, unless it is accompanied by formal procedures for identifying the
test subpopulation Z � z and for computing the quantities in (7.47) from some reason-
able model of human knowledge, however hypothetical. Unfortunately, the probabilistic
causality literature is silent on questions of procedures and representation.32

In particular, probabilists face a tough dilemma in explaining how people search for
that rescuing subpopulation z so swiftly and consistently and how the majority of people
end up with the same answer when asked whether it was x that caused y. For example
(due to Debra Rosen, quoted in Suppes 1970), a tree limb (x) that fortuitously deflects
a golf ball is immediately and consistently perceived as “the cause” for the ball finally
ending up in the hole, though such collisions generally lower one’s chances of reaching
the hole (y). Clearly, if there is a subpopulation z that satisfies (7.47) in such examples
(and I doubt it ever enters anyone’s mind), it must have at least two features. 

(1) It must contain events that occur both before and after x. For example, both the
angle at which the ball hit the limb and the texture of the grass on which the ball
bounced after hitting the limb should be part of z.
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31 Cartwright (1989, chap. 3) recognized the insufficiency of observable partitions (e.g., pregnancy)
for sustaining the thesis of increased probability, but she did not emphasize the inevitable coun-
terfactual nature of the finer partitions that sustain that thesis. Not incidentally, Cartwright was a
strong advocate of excluding counterfactuals from causal analysis (Cartwright 1983, pp. 34–5).

32 Even Eells (1991, chap. 6) and Shafer (1996), who endeavored to uncover discriminating patterns
of increasing probabilities in the actual trajectory of the world leading to y, did not specify what
information is needed either to select the appropriate trajectory or to compute the probabilities
associated with a given trajectory.



(2) It must depend on x and y. For, surely, a different conditioning set would
be necessary in (7.47) if we were to test whether the limb caused an alternative
consequence – say, that the ball stopped two yards short of the hole.

And this brings us to a major methodological inconsistency in the probabilistic ap-
proach to causation: If ignorance of x and y leads to the wrong z and if awareness of x
and y leads to the correct selection of z, then there must be some process by which peo-
ple incorporate the occurrence of x and y into their awareness. What could that process
be? According to the norms of probabilistic epistemology, evidence is incorporated into
one’s corpus of knowledge by means of conditionalization. How, then, can we justify ex-
cluding from z the very evidence that led to its selection – namely, the occurrence of x
and y?

Inspection of (7.47) shows that the exclusion of x and y from z is compelled on syn-
tactic grounds, since it would render undefined and make 
Indeed, in the syntax of probability calculus we cannot ask what the probability of event
y would be, given that y has in fact occurred – the answer is (trivially) 1. The best we can
do is detach ourselves momentarily from the actual world, pretend that we are ignorant
of the occurrence of y, and ask for the probability of y under such a state of ignorance.
This corresponds precisely to the three steps (abduction, action, and prediction) that gov-
ern the evaluation of (see Theorem 7.1.7), which attains a high value
(in our example) and correctly qualifies the tree limb (x) as the cause of making the hole
(y). As we see, the desired quantity can be expressed and evaluated by ordinary condi-
tionalization on x and y, without explicitly invoking any subpopulation z.33

Ironically, by denying counterfactual conditionals, probabilists deprived themselves
of using standard conditionals – the very conditionals they were trying to preserve – and
were forced to accommodate simple evidential information in roundabout ways. This
syntactic barrier that probabilists erected around causation has created an artificial ten-
sion between singular and generic causes, but the tension disappears in the structural
account. In Section 10.1.1 we show that, by accommodating both standard and coun-
terfactual conditionals (i.e., Yx), singular and generic causes no longer stand in need of
separate analyses. The two types of causes differ merely in the level of scenario-specific
information that is brought to bear on a problem, that is, in the specificity of the evidence
e that enters the quantity 

7.5.5 Summary

Cartwright (1983, p. 34) listed several reasons for pursuing the probabilistic versus the
counterfactual approach to causation:

[the counterfactual approach] requires us to evaluate the probability of counterfactuals for
which we have only the beginnings of a semantics (via the device of measures over possi-
ble worlds) and no methodology, much less an account of why the methodology is suited

P(Yx � y � e).

P(Yx� � y� � x, y)

P(y � x, z) � 1.P(y � x�, z)

y�

z�
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and Yx(u) � y�.



to the semantics. How do we test claims about probabilities of counterfactuals? We have no
answer, much less an answer that fits with our nascent semantics. It would be preferable
to have a measure of effectiveness that requires only probabilities over events that can be
tested in the actual world in the standard ways.

Examining the progress of the probabilistic approach in the past three decades, it seems
clear that Cartwright’s aspirations have materialized not in the framework she advocated
but rather in the competing framework of counterfactuals, as embodied in structural mod-
els. Full characterization of “effectiveness” (“causal effects” in our vocabulary) in terms
of “events that can be tested” emerged from Simon’s (1953) and Strotz and Wold’s (1960)
conception of modifiable structural models and culminated in the back-door criterion
(Theorem 3.3.2) and to the more general Theorems 3.6.1 and 4.4.1, of which the prob-
abilistic criteria (as in (3.13)) are but crude special cases. The interpretation of singular
causation in terms of the counterfactual probability has enlisted the sup-
port of meaningful formal semantics (Section 7.1) and effective evaluation methodology
(Theorem 7.1.7 and Sections 7.1.3–7.2.1), while the probabilistic criterion of (7.47)
lingers in vague and procedureless debates. The original dream of rendering causal
claims testable was given up in the probabilistic framework as soon as unmeasured enti-
ties (e.g., state of the world, background context, causal relevance, susceptibility) were
allowed to infiltrate the analysis, and methodologies for answering questions of testa-
bility have moved over to the structural–counterfactual framework (see Chapter 9 and
Section 11.9).

The ideal of remaining compatible with the teachings of nondeterministic physics
seems to be the only viable aspect remaining in the program of probabilistic causation,
and this section questions whether maintaining this ideal justifies the sacrifices. It further
suggests that the basic agenda of the probabilistic causality program is due for a serious
reassessment. If the program is an exercise in epistemology, then the word “probabilistic”
is oxymoronic – human perception of causality has remained quasi-deterministic, and
these fallible humans are still the main consumers of causal talk. If the program is an
exercise in modern physics, then the word “causality” is nonessential – quantum-level
causality follows its own rules and intuitions, and another name (perhaps “qua-sality”)
might be more befitting. However, regarding artificial intelligence and cognitive science,
I would venture to predict that robots programmed to emulate the quasi-deterministic
macroscopic approximations of Laplace and Einstein would far outperform those built
on the correct but counterintuitive theories of Born, Heisenberg, and Bohr.
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