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Abstract

The paper provides a simple test for deciding, from a given causal diagram, whether two

sets of covariates have the same bias-reducing potential under adjustment. The test requires

that one of the following two conditions holds: either (1) both sets are admissible (i.e., satisfy

the back-door criterion) or (2) the Markov boundaries surrounding the treatment variable(s)

are identical in both sets. Applications to covariate selection and model testing are discussed.

1 Introduction

The common method of reducing confounding bias in observational studies is to adjust for a

set of covariates judged to be “confounders,” that is, variables capable of producing spurious

associations between treatment and outcome, not attributable to their causal dependence. It is

now a common understanding that the bias-reducing potential of any set of covariates depends

crucially on the causal relationships among all variables affecting treatment or outcome, hidden

as well as visible, and that such relationships can effectively be represented in the form of

directed acyclic graphs (DAG’s) (Pearl, 1995; Lauritzen, 2001; Spirtes et al., 2000; Glymour and

Greenland, 2008).

Most studies of covariate selection have aimed to define and identify “admissible” sets

of covariates, also called “sufficient sets,” namely, a set of covariates that, if adjusted for,

1

Kaoru
Text Box
r343-working
6/20/2010



would yield asymptotically unbiased estimates of the causal effect of interest (Stone, 1993;

Greenland et al., 1999; Pearl, 2000). A graphical criterion for selecting an admissible set is

given by the “back-door” test (Pearl, 1993, 2000) which was shown to entail zero-bias, or “no

confoundedness,” assuming correctness of the causal assumptions encoded in the DAG. Related

notions are “exchangeability” (Greenland and Robins, 1986), “exogeneity” (Engle et al., 1983),

and “strong ignorability” (Rosenbaum and Rubin, 1983).

This paper addresses a different question: Given two sets of covariates in a DAG, decide if

the two are equally valuable for adjustment, namely, whether adjustment for one set is guarnteed

to yield the same asymptotic bias as adjustment for the other.

The reasons for posing this question are several. First, an investigator may wish to assess,

prior to taking any measurement, whether two candidate sets of covariates, differing substantially

in dimensionality, measurement error, cost, or sample variability are equally valuable in their

bias-reduction potential. Second, assuming that the structure of the underlying DAG is only

partially known, one may wish to assess, using c-equivalence tests, whether a given structure is

compatible with the data at hand; structures that predict equality of post-adjustment associations

must be rejected if, after adjustment, such equality is not found in the data. Finally, tests for bias

equality offer computational advantages over tests for conditional independencies; characterizing

graphs in term of the former, may lead to more effective ways of inferring graph structures from

data.

2 Preliminaries: c-equivalence and admissibility

Let X, Y , and Z be three disjoint subsets of discrete variables, and P (x, y, z) their joint

distribution. We are concerned with expressions of the type

A(x, y, Z) =
∑

z

P (y|x, z)P (z) (1)

Such expressions, which we name “adjustment estimands,” are often used to approximate

the causal effect of X on Y , where the set Z is chosen to include variables judged to be

“confounders.” By adjusting for these variables, one hopes to create conditions that eliminate

spurious dependence and thus obtain an unbiased estimate of the causal effect of X and Y , written

P (y|do(x)) (see Pearl (2000) for formal definition and methods of estimation).

Definition 1. (c-equivalence)

Define two sets, T and Z as c-equivalent (relative to X and Y ), written T ≈ Z, if the following

equality holds for every x and y:

∑

t

P (y|x, t)P (t) =
∑

z

P (y|x, z)P (z) ∀ x, y (2)

or

A(x, y, T ) = A(x, y, Z) ∀ x, y

This equality guarantees that, if adjusted for, sets T and Z would produce the same asymptotic

bias relative to the target quantity.
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Definition 2. (Admissibility)

Let P (y|do(x)) stand for the “causal-effect” of X on Y , i.e., the distribution of Y after setting

variable X to a constant X = x by external intervention. A set Z of covariates is said to be

“admissible” (for adjustment) relative to the causal effect of X on Y , if the following equality

holds: ∑

z

P (y|x, z)P (z) = P (y|do(x)) (3)

Equivalently, one can define admissibility using the equalities:

P (y|do(x)) = P (Yx = y) =
∑

u

P (y|x, u)P (u) (4)

where Yx is the counterfactual or “potential outcome” variable (Neyman, 1923; Rubin, 1974) and

U ranges over all variables that affect either X or Y , hidden as well as observables (Stone, 1993).

The equivalence of the three definitions is demonstrated in Pearl (2000).1

Definition 3. (d-separation)

A set S of nodes in a graph G is said to block a path p if either (i) p contains at least one arrow-

emitting node that is in S, or (ii) p contains at least one collision node that is outside S and has no

descendant in S. If S blocks all paths from X to Y , it is said to “d-separate X and Y,” and then,

X and Y are independent given S, written X⊥⊥Y |S, in every probability distribution that can be

generated by a process structured along G (Pearl, 1988).

Lemma 1. (The back-door criterion)

Let G be a directed acyclic graph (DAG) that encodes the causal relationships between variables in

a problem, observables as well as unobservable. A sufficient condition for a subset S of covariates

to be admissible is that it satisfies the following two conditions (Pearl, 1993):

1. No element of S is a descendant of X

2. The elements of S “block” all “back-door” paths from X to Y , namely all paths that end

with an arrow pointing to X.

For proof and intuition behind the back-door test, especially the requirement of no

descendants, see (Pearl, 2009, p. 339).

Clearly, if two subsets Z and T are admissible they must be c-equivalent, for their

adjustment estimands coincide with the causal effect P (y|do(x)). Therefore, a trivial graphical

condition for c-equivalence is for Z and T to satisfy the back-door criterion of Lemma 1. This

condition, as we shall see in the next section, is rather weak; c-equivalence extends beyond

admissible sets.

1The do(x) notation is preferred here because it rests on realizable variables and explicit causal processes. The

expression
∑

u
P (y|x, u)P (u) has the appearance of a standard statistical parameter, but is in fact a causal notion,

for it assumes knowledge of “all causes” and cannot be defined in terms of distributions of observed variables (Pearl

2000, Chapter 6; 1998).
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3 Conditions for c-equivalence

Theorem 1. A sufficient condition for the c-equivalence of T and Z is that Z satisfies:

(X⊥⊥Z|T ) (i)
(Y⊥⊥T |X, Z) (ii)

Proof:

Conditioning on Z, (ii) permits us to rewrite the left-hand side of (2) as

A(x, y, T ) =
∑

t
P (t)

∑
z
P (y|z, x, t)P (z|t, x)

=
∑

t
P (t)

∑
z
P (y|z, x)P (z|t, x)

and (i) further yields P (z|t, x) = P (z|t), from which (2) follows:

A(x, y, T ) =
∑

t

∑
z
P (y|z, x)P (z, t)

=
∑

z
P (y|z, x)P (z)

= A(x, y, Z)

Corollary 1. A sufficient condition for the c-equivalence of T and Z is that either one of the

following two conditions holds:

C∗ : X⊥⊥Z|T and Y⊥⊥T |Z, X

C∗∗ : X⊥⊥T |Z and Y⊥⊥Z|T, X
(5)

Proof:

C∗ permits us to derive the right hand side of Eq. (2) from the left hand side, while C∗∗ permits us

to go the other way around.

The conditions offered by Theorem 1 and Corollary 1 do not characterize all equivalent

pairs, T and Z. For example, consider the graph in Fig. 1, in which each of T = {V1, W2} and

2VV1

W1 2W

X Y

Figure 1: The sets T = {V1, W1} and Z = {V2, W2} satisfy the conditions of Theorem 1. The

sets T = {V1, W2} and Z = {V2, W2} block all back-door paths between X and Y , hence they are

admissible and c-equivalent. Still they do not satisfy the conditions of Theorem 1.
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Z = {V2, W1} is admissible (by virtue of satisfying the back-door criterion); they must therefore

be c-equivalent. Yet neither C∗ nor C∗∗ holds in this case.

On the other hand, condition C∗ can detect the c-equivalence of some non-admissible sets,

such as T = {W1} and Z = {W1, W2}. These two sets are non-admissible for they fail to block

the back-door path X ← V1 → V2 → Y , yet they are c-equivalent according to Theorem 1; (i) is

satisfied by d-separation, while (ii) is satisfied by subsumption (T ⊆ Z).

It is interesting to note however that Z = {W1, W2}, while c-equivalent to {W1}, is not

c-equivalent to T = {W2}, though the two sets block the same paths in the graph.2 Indeed, this

pair does not meet the test of Theorem 1; choosing T = {W2} and Z = {W1, W2} violates

condition (i) since X is not d-separated from W1, while choosing Z = {W2} and T = {W1, W2}
violates condition (ii) by unblocking the path W1 → X ← V1 → V2 → Y . Likewise, the sets

T = {W1} and Z = {W2} block the same path and, yet, are not c-equivalent; they fail indeed to

satisfy condition (ii) of Theorem 1.

We are now ready to broaden the scope of Theorem 1 and derive a condition (Theorem 2

below) that detects all c-equivalent subsets in a graph.

Definition 4. (Markov boundary)

For any set of variables S, let Sm be the minimal subset of S that satisfies the condition

X⊥⊥S|Sm (6)

In other words, measurement of Sm renders X independent of all other members of S, and no

proper subset of Sm has this property. This minimal subset is called the Markov Boundary of X

relative to S, or “Markov boundary” for short.

The Markov boundary as defined above is known to be unique for all strictly positive

distributions (Pearl, 1988, p. 97). We can also define this notion relative to a graph G by

interpreting the ⊥⊥ sign in Eq. (6) to denote d-separation. We will not distinguish between

the graphical and statistical definitions because all our theorems would be valid in both

interpretations.3

Lemma 2. Every set of variables, S, is c-equivalent to its Markov boundary Sm.

Proof.

Choosing Z = S and T = Sm satisfies the two conditions of Theorem 1; (i) is satisfied by the

definition of Sm, while (ii) is satisfied by subsumption (T ⊆ Z).

Theorem 2. Let Z and T be two sets of variables containing no descendant of X. A necessary and

sufficient conditions for Z and T to be c-equivalent is that at least one of the following conditions

holds:

1. Zm = Tm

or

2. Z and T are admissible

2The reason is that the strength of the association between X and Y , conditioned on W2, depends on whether we

also condition on W1. Else, P (y|x, w2) would be equal to P (y|x, w1, w2) which would render Y and W1 independent

given X and W2. But this is true only if the path (X, V1, V2, Y ) is blocked.
3Note however that the graphical definition gives rise to a unique minimal subset Sm that satisfies Eq. (6). This

follows from the intersection property of d-separation (Pearl, 1988, p. 97).
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Proof

1. Proof of sufficiency:

Condition 2 is sufficient since admissibility renders the two adjustment estimands in (2)

equal to the causal effect. Condition 1 is sufficient by reason of Lemma 2, which yields:

Z ≈ Zm ≈ Tm ≈ T

2. Proof of necessity:

If exactly one of (Z, T ) is admissible then Z and T are surely not c-equivalent, for their

adjustment estimands would differ for some parameterization of the graph. Assume that

both Z and T are not admissible or, equivalently, that none of Zm or Am is admissible. Then

there is a back-door path p from X to Y that is not blocked by either Zm or Tm. If, in

addition, condition (1) is violated (i.e., Zm differs from Tm) then, excluding the degenerate

case where Tm and Zm are both disconnected from X, there must be a path p1 from either

Zm to X that is not blocked by Tm or a path p2 from Tm to X that is not blocked by Zm.

Assuming the former case, we conclude that if (1) and (2) are both violated, there must be an

unblocked path p1 from Zm to X followed by a back door path p from X to Y . The existence

of this path implies that for some values z′ and z′′ of Z and for all t of T we have

P (y|z′, t, x) 6= P (y|t, x)

P (z′′|x, t) 6= P (z′′|t)

Thus, conditional on t, Z acts as an instrumental variable with respect to the pair (X, Y )
and, based on the examples in Wooldridge (2009), there is a parametrization of the graph

that would yield the inequality A(x, y, Tm) 6= A(x, y, Zm). This proves the necessary part

of Theorem 2.

2W W3

V1 V2

W1 W4

X Y

Figure 2: W3 and W4 are non-admissible yet c-equivalent; both having ∅ as a Markov boundary.

However, W2 and W3 are not c-equivalent with Markov boundaries W2 and ∅, respectively.

Figure 2 illustrates the power of Theorem 2. In this model, no subset of {W1, W2, W3}
is admissible (because of the back-door path through V1 and V2) and, therefore, equality of

Markov boundaries is necessary and sufficient for c-equivalence among any two such subsets.

Accordingly, we can conclude that T = {W1, W2} is c-equivalent to Z = {W1, W3}, since

Tm = W1 and Zm = W1. Note that W1 and W2, though they block the same set of paths, are not
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c-equivalent since Tm = W1 6= Zm = W2. Indeed, each of W1 and W2 is an instrumental variable

relative to {X, Y }, with potentially different strengths, hence potentially different adjustment

estimands. Sets W4 and W3 however are c-equivalent, because the Markov boundary of each is

the null set, {∅}.
At this point it is worth noting that, based on Theorem 2, c-equivalence can be tested by a

step-wise process,

T ≈ T1 ≈ T2 ≈ . . . ≈ Z

where each intermediate set is obtained from its predecessor by an addition or deletion of one

variable only. This can be seen by organizing the chain into three sections.

T ≈ . . . ≈ Tm ≈ . . . ≈ Zm ≈ . . . ≈ Z

The transition from T to Tm entails the deletion from T of all nodes that are not in Tm; one at

a time, in any order. Similarly, the transition from Zm to Z builds up the full set Z from its

Markov boundary Zm; again, in any order. Finally, the middle section, from Tm to Zm, amounts

to traversing a chain of admissible sets, using both deletion and addition of nodes, one at a time.

A Theorem due to Tian et al. (1998) ensures that such a step-wise transition is always possible

between any two admissible sets. In case T or Z are non-admissible, the middle section must

degenerate into an equality Tm = Zm, or else, c-equivalence does not hold.

Figure 2 can be used to illustrate this stepwise transition from T = {W1, W2, V1} to

Z = {V2, W3}. Starting with T , we obtain:

T = {W1, W2, V1} ≈ {W2, V1} ≈ {V1} ≈ {V1, V2} ≈ {V2} ≈ {V2, W3} = Z

If, however we were to attempt a stepwise transition between T = {W1, W2, V1} and Z = {W3},
we would obtain:

T = {W1, W2, V1} ≈ {W2, V1} ≈ {V1}

and would be unable to proceed toward Zm = {W3}. The reason lies in the non-admissibility of

Z which necessitates the equality Tm = Zm, contrary to Markov boundaries shown in the graph.

Note also that each step in the process T ≈ . . . ≈ Tm (as well as Zm ≈ . . . ≈ Z) is licensed

by condition (i) of Theorem 1, while each step in the intermediate process Tm ≈ . . . ≈ Zm is

licensed by condition (ii). Both conditions are purely statistical and do not invoke the causal

reading of “admissibility.” This means that condition 2 of Theorem 2 may be replaced by the

requirement that Z and T satisfy the back-door test in any diagram compatible4 with P (x, y, z, t);
the direction of arrows in the diagram need not convey causal information. Further clarification of

the statistical implications of the admissibility condition, is given in the next section.

4 Discussion and refinements

Theorem 2, while providing a necessary and sufficient condition for c-equivalence, raises

an interesting theoretical question. Admissibility is a causal notion, (i.e., resting on causal

assumptions about the direction of the arrows in the diagram) while c-equivalence is purely

4A diagram G is said to be compatible with a probability function P if G can generate P , i.e., if every d-separation

in G corresponds to a valid conditional independence in P .
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statistical. Why need one resort to causal assumptions to characterize a property that relies on no

such assumption? Evidently, the notion of admissibility as it was used in the proof of Theorem

2 was merely a surrogate carrier of statistical information; its causal reading was irrelevant.

The question then is whether Theorem 2 could be articulated using purely statistical conditions,

avoiding admissibility altogether, as is done in Theorem 1.

We will show that the answer is positive; Theorem 2 can be rephrased using a statistical

test for c-equivalence. It should be noted though, that the quest for statistical characterization is

of merely theoretical interest; rarely is one in possession of prior information about conditional

independencies, (as required by Theorem 1), that is not resting on causal knowledge (of the kind

required by Theorem 2). The utility of statistical characterization surfaces when we wish to

confirm or reject the structure of the diagram. We will see that the statistical reading of Theorem 2

has testable implication that, if failed to fit the data, may help one select among competing graph

structures.

Our first step is to apply Theorem 1 to the special case where T is a subset of Z.

Theorem 3. (Set-subset equivalence)

Let T and S be two disjoint sets. A sufficient condition for the c-equivalence of T and Z = T ∪ S

is that S can be partitioned into two subsets, S1 and S2, such that:

(i′) S1⊥⊥X|T

and

(ii′) S2⊥⊥Y |S1, X, T

Proof:

Starting with

A(x, y, T ∪ S) =
∑

t

∑

s1

∑

s2

P (y|x, t, s1, s2)P (s1, s2, t)

(ii′) permits us to remove s2 from the first factor and write

A(x, y, T ∪ S) =
∑

t

∑
s1

∑
s2

P (y|x, t, s1)P (s1, s2, t)
=

∑
t

∑
s1

P (y|x, t, s1)P (s1, t)

while (i′) permits us to reach the same expression from A(x, y, T ):

A(x, y, T ) =
∑

t

∑
s1

P (y|x, t, s1)P (s1|x, t)P (t)
=

∑
t

∑
s1

P (y|x, t, s1)P (s1, t)

which proves the theorem.

Theorem 3 generalizes similar theorems by Stone (1993) and Robins (1997), in which

T ∪ S is assumed to be admissible (see also (Greenland et al., 1999)). The importance of this

generalization was demonstrated by several examples in Section 3. Theorem 3 on the other
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hand invokes only the distribution P (x, y, z, t) and makes no reference to P (y|do(x)) or to the

“all-causes” set U , as in Eq. (3) or (4).

Theorem 3 can also be proven by double application of Theorem 1; first showing the

c-equivalence of T and {T ∪ S1} using (i) (with (ii) satisfied by subsumption), then showing the

c-equivalence of {T ∪ S1} and {T ∪ S1 ∪ S2} using (ii) (with (i) satisfied by subsumption).

The advantage of Theorem 3 over Theorem 1 is that it allows certain cases of c-equivalence

to be verified in a single step. In Fig. 1, for example, both (i′) and (i′′) are satisfied for

T = {V1, W2}, S1 = {V2}, and S2 = {W1}), Therefore, T = {V1, W2} is c-equivalent to

{T ∪ S} = {V1, V2, W1, W2}
The weakness of Theorem 3 is that it is applicable to set-subset relations only. A natural

attempt to generalize the theorem would be to posit the condition that T and Z each be

c-equivalent to T ∪ Z, and use Theorem 3 to establish the required set-subset equivalence. While

perfectly valid, this condition is still not complete; there are cases where T and Z are c-equivalent,

yet none is c-equivalent to their union. For example, consider the path

X → T ← L→ Z ← Y

Each of T and Z leaves the path between X and Y blocked, which renders them c-equivalent, yet

{T ∪Z} unblocks that path. Hence, T ≈ Z and T 6≈ T ∪Z. This implies that sets T and Z would

fail the proposed test, even though they are c-equivalent.

The remedy can be obtained by re-invoking the notion of Markov boundary (Definition 4)

and Lemma 2.

Theorem 4. Let T and Z be two sets of covariates, containing no descendant of X and let Tm and

Zm be their Markov boundaries. A necessary and sufficient condition for the c-equivalence of T

and Z is that each of Tm and Zm be c-equivalent to Tm ∪Zm according to the set-subset criterion

of Theorem 3.

Proof

1. Proof of sufficiency:

If Tm and Zm are each c-equivalent to Tm ∪Zm then, obviously, they are c-equivalent them-

selves and, since each is c-equivalent to its parent set (by Lemma 2) T and Z are c-equivalent

as well.

2. Proof of necessity:

We need to show that if either Tm or Zm is not c-equivalent to their union (by the test of The-

orem 3), then they are not c-equivalent to each other. We will show that using “admissibility”

as an auxiliary tool. We will show that failure of Zm ≈ Tm ∪ Zm implies non-admissibility,

and this, by the necessary part of Theorem 2, negates the possibility of c-equivalence be-

tween Z and T . The proof relies on the monotonicity of d-separation over minimal subsets

(Appendix 1), which states that, for any graph G, and any two subsets of nodes T and Z, we

have:

(X⊥⊥Y |Zm)G & (X⊥⊥Y |Tm)G ⇒ (X⊥⊥Y |Zm ∪ Tm)G

Applying this to the subgraph consisting of all back-door paths from X to Y , we conclude

that admissibility is preserved under union of minimal sets. Therefore, the admissibility of
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Zm and Tm (hence of Zand T ) entails admissibility of Zm ∪ Tm. Applying Theorem 2, this

implies the necessity part of Theorem 3.

Theorem 4 unveils the statistical implications of the admissibility requirement in Theorem

2. Admissibility ensures the two c-equivalence conditions:

Tm ≈ {Tm ∪ Zm} (7)

Zm ≈ {Tm ∪ Zm} (8)

In other words, given any DAG G compatible with the conditional independencies of P (x, y, t, z),
whenever Z and T are admissible in G, we should be able to prove Eqs. (7) and (8) using the

set-subset conditions of Theorem3. Applying these conditions yields two alternative conditions

which subsume Tm = Zm and permit us to reformulate Theorem 2 in purely probabilistic terms,

clear of the graphical notion, of admissibility and back-door. We explicate this formulation in a

Theorem.

Theorem 5. A necessary and sufficient conditions for Z and T to be c-equivalent is that the fol-

lowing conditions both hold:

{Tm ∪ Zm}m⊥⊥Y |X, Zm (9)

{Tm ∪ Zm}m⊥⊥Y |X, Tm (10)

Proof:

To establish Zm ≈ {Zm ∪ Tm} it is necessary and sufficient to establish

Zm ≈ {Zm ∪ Tm}m
∆
= Um

Let us establish the equivalence Zm ≈ Um in two steps each involving set-subset relations.

First, establish Um ≈ {Um ∪ Zm} then {Um ∪ Zm} ≈ Zm.

The first equivalence is satisfied automatically, with no added prerequisites; being a Markov

boundary of {Tm ∪ Zm}, Um must also be a Markov boundary of any subset of {Tm ∪ Zm} that

includes Um. ((X⊥⊥S|Z) =⇒ (X⊥⊥S ′|Z) for any subset S ′ of S.)

Now let us examine what conditions are required to establish the second c-equivalence,

(Um ∪ Zm) ≈ Zm

The left hand side can be partitioned into two disjoint sets Zm and {Um ∪ Zm}\Zm = Um\Zm.

Our task then is to establish

(Um\Zm ∪ Zm) ≈ Zm

According to Theorem 3 this c-equivalence holds iff Um\Zm can be partitioned into two parts, T1

and T2, satisfying

(i′) T1⊥⊥X|Zm and (ii′) T2⊥⊥Y |X, T1, Zm

We will show that T2 = Um\Zm, T1 = 0 is the only partition that can satisfy (i′) and (ii′).

Indeed, since Um\Zm is contained in the Markov boundary of a set (e.g., {Tm ∪Zm}), no member
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of it can be separated from X by a subset of that set (like Zm). (We are assuming intersection

here). Thus, choosing T1 = 0, yields the condition:

Um\Zm⊥⊥Y |X, Zm

with a symmetrical condition for Tm. However, since one can always add part of the conditioning

set (Zm) to the left hand side of a conditional independence statement, we get

Um⊥⊥Y |X, Zm

with a symmetrical condition for Tm:

Um⊥⊥Y |X, Tm

This completes the proof. 2

Theorem 5 explicates the statistical role that admissibility plays in the definition of

c-equivalence. It further translates the statistical notion of c-equivalence into the language of

conditional independence and provides us, therefore with another graphical test of characterizing

the former.

We illustrate these conditions using Fig. 2. Taking T = {W2, V2} and Z = {V1, W3}, we

have:

Tm = {W2, V2}, Zm = {V1},
{Tm ∪ Zm}m = {W2, V1, V2}m = {W2, V1}

We find that the tests of (9) and (10) translate into:

{W2, V1}⊥⊥Y |X, V1

{W2, V1}⊥⊥Y |X, V2, W2

and are satisfied in the graph, thus implying Z ≈ T .

That test would fail had we taken Z = {W3, W4}, which is inadmissible, because then we

would have:

Tm = {W2, V2}, Zm = {W4}.
{Tm ∪ Zm}m = {W2, V2, W4}m = {W1, V2}

and the requirement (9)

{Tm ∪ Zm}m⊥⊥Y |X, Zm

or

{W1, V2}⊥⊥Y |X, W4

would not be satisfied.

Since conditions (9) and (10) are surrogate of the admissibility requirement in Theorem 2,

we can pose them as graph-theoretic consequences of the back-door criterion:

Corollary 2. In any DAG G, if two sets of nodes, T and S, satisfy the backdoor criterion, they

must also satisfy the d-separation conditions expressed in (9) and (10).
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5 Empirical ramifications of c-equivalence tests

Having explicated the statistical implications of admissibility vis a vis c-equivalence, we may ask

the inverse question: What can c-equivalence tests tell us about admissibility? It is well known

that no statistical test can ever confirm or refute the admissibility of a given set Z (Pearl 2000,

Chapter 6; 1998). The discussion of Section 4 shows however that the admissibility of two sets,

T and Z, does have testable implications. In particular, if both sets fail the c-equivalence test,

they cannot both be admissible. This might sound obvious, given that admissibility entails zero

bias for each of T and Z (Eq. (5)). Still, Eq. (7) implies that it is enough for Zm (or Tm) to fail the

c-equivalence test vis a vis {Zm ∪ Tm} for us to conclude that Z and T cannot both be admissible.

This finding can be useful when measurements need be chosen (for adjustment) with

only partial knowledge of the causal graph underlying the problem. Assume that two candidate

graphs recommend two different measurements for confounding control, one graph predicts the

admissibility of T and Z, and the second does not. Failure of the c-equivalence test

Tm ≈ {Tm ∪ Zm} ≈ Zm

can then be used to rule out the former.

(a) (b) (c)

T Z

YX YX YX

T Z T Z

Figure 3: Failing the T ≈ {T ∪ Z} test should reject Model (a) in favor of (b) or (c). Failing

Z ≈ {T ∪ Z} should reject Models (a) and (b) in favor of (c).

Figure 3 illustrates this possibility. Model 3(a) deems measurements T and Z as equally

effective for bias removal, while models 3(b) and 3(c) deem T to be insufficient for adjustment.

Submitting the data to the c-equivalence tests of Eq. (7) and Eq. (8) may reveal which of the three

models should be ruled out. If both tests fail, we must rule out Models 3(a) and 3(b), while if only

Eq. (8) fails, we can rule out only Model 2(a) (Eq. (7) may still be satisfied in Model 2(c) by

incidental cancellation).

Of course, the same model exclusion can be deduced from conditional independence tests.

For example, Models 3(a) and 3(b) both predict T⊥⊥Y |X, Z which, if violated in the data, would

leave Model 3(c) as our choice and behoove us to adjust for both T and Z. However, such

tests are generally more expensive (and less reliable) than c-equivalence test, for they require

conditioning on large sets of covariates. c-equivalence tests, on the other hand, can take advantage

of propensity score methods (Rosenbaum and Rubin, 1983) which reduce the dimensionality of

the conditioning set to a single scalar.

Figure 4 illustrates this potential more acutely. It is not easy to tell whether models (a) and

(b) are observationally distinguishable, since they embody the same set of missing edges. Yet

whereas Model 4(a) has no admissible set (among the observables), its contender, Model 4(b) has

three (irreducible) such sets: {Z1, W1, W2}, {W1, W2, Z2} are {V, W1, W2}. This difference in

12



(a) (b)

Z1

W1

2Z

2W

X Y

V

Z1 2Z
2WW1

X Y

V

Figure 4: A model that is almost indistinguishable from that of Fig. 4(a), save for advertising one

additional independency: {Z1, V }⊥⊥Y |X, W1, W2, Z2. It deems three sets to be admissible (hence

c-equivalent): {V, W1, W2}, {Z1, W1, W2}, and {W1, W2, Z2}, and would be rejected therefore if

any pair of them fails the c-equivalence test.

itself does not make the two models distinguishable (see Fig. 5); for example, X → Z → Y is

indistinguishable from X ← Z → Y , yet Z is admissible in the latter, not in the former. However,

noting that the three admissible subsets of 4(b) are not c-equivalent in 4(a) – their Markov

boundaries differ – tells us immediately that the two models differ in their statistical implications.

Indeed, Model 4(b) should be rejected if any pair of the three sets fails the c-equivalence test.

Visually, the statistical property that distinguishes between the two models is not easy to

identify. If we list systematically all their conditional independence claims, we find that both

models share the following:

V ⊥⊥ {W1, W2} X ⊥⊥ {V, Z2}|{Z1, W2, W1}
Z1 ⊥⊥ {W2, Z2}|{V, W2} V ⊥⊥ Y |{X, Z2, W2, Z1, W1}
Z2 ⊥⊥ {W1, Z1, X}|{V, W2}

They disagree however on one additional (and obscured) independence relation,

Z1⊥⊥Y |X, W1, W2, Z2, V , that is embodied in Model 4(b) and not in 4(a). The pair (Z1, Y ),
though non-adjacent, has no separating set in the diagram of Fig. 4(a). While a search for such

distinguishing independency can be tedious, c-equivalence comparisons tell us immediately where

models differ and how their distinguishing characteristic can be put to a test.

For completeness, Fig. 5 present two models that are observationally indistinguishable, yet

they differ in admissibility claims. Model 5(a) deems {T1} and {T1, T2} to be admissible while

Model 5(b) counters (a) and deems {Z1} and {Z1, Z2} to be admissible. Indistinguishability

requires that c-equivalence be preserved and, indeed, the relations {T1} ≈ {T1, T2} and

{Z1} ≈ {Z1, Z2} are held in both (a) and (b).

This raises the interesting question of whether the discrimination power of c-equivalence

equals that of conditional independence tests. We know from Theorem 5 that all c-equivalence

conditions can be derived from conditional independence relations. The converse, however, is an

open question.
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(b)(a)

X Y

Z1 2Z Z1 2Z

T1 2TT1 2T

X Y

Figure 5: Two observationally indistinguishable models that differ in their admissible sets. Both

confirm the c-equivalence {T1} ∼ {T1, T2} and {Z1} ∼ {Z1, Z2} but for different reasons.

6 Conclusions

Theorem 2 provides a simple graphical test for deciding whether one set of covariates has

the same bias-reducing potential as another. The test requires either that both sets satisfy the

back-door criterion or that their Markov boundaries be identical. Both conditions can be tested by

fast, linear time algorithms, and could be used to guide researchers in deciding what measurement

sets are worth performing. We have further shown that the conditions above are valid in causal as

well as associational graphs, and translated them to conditional-independence claims. Finally, we

postulate that c-equivalence tests could serve as valuable tools in a systematic search for graph

structures that are compatible with the data.
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A Appendix

We prove that, for any graph G, and any two subsets of nodes T and Z, we have:

(X⊥⊥Y |Zm)G & (X⊥⊥Y |Tm)G ⇒ (X⊥⊥Y |Zm ∪ Tm)G

Where Zm and Tm are minimal subsets of S and T , respectively that satisfy the left hand

side of the expression above.

The following notation will be used in the proof: A TRAIL will be a sequence of nodes

v1, . . . , vk such that vi is connected by an arc to v(i + 1). A collider Z is EMBEDED in a trail if 2

of his parents belong to the trail it. A PATH is a trail that has no embeded collider. We will use

the “moralized graph” test of Lauritzen et al. (1990) to test for d-separation (“L-test,” for short).

Theorem 6. Given a DAG and two vertices x and y in the DAG and a set of minimal separators

between x and y{Z1, . . . , Zk}. The union of the separators in the set, denoted by Z!, is a separator.

Proof.

We mention first two observations:

(a) Given a minimal separator Z between x and y. If Z contains a collider w then there must be

a path between x and y which is intercepted by w. This folows from the minimality of Z. If

the condition does not hold then w is not required in Z.

(b) It follows from (a) above that w as defined in a. and his ancestors must belong to the ancestral

subgraph of x and y.

Let us apply the L-test to the triplet (x, y|Z1). As Z1 is a separator, the L-test must show this. In

the first stage of the L-test. The ancestral graph of the above triplet is constructed. By observation

(b) it must include all the colliders that are included in any Zi. In the next stage of the L-test. The

parents of all colliders in the ancestral graph are moralized and the directions remuved. The result

will be an undircted graph including all the colliders in the separators Zi and their moralized

parents and their ancestors. In this resulting graph, Z1 still separates between x and y. Therefore

adding to Z1 all the colliders in Zi, i = 1 to k , will result in a larger separator. Adding the

noncolliders from all the Zi to Z1 will still keep the separator property of the enlarged set of

vertices (trivial). It follows that Z! is a separator. End of proof.
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