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CHAPTER 2

THEORIES OF CAUSATION IN
PSYCHOLOGICAL SCIENCE

William R. Shadish and Kristynn J. Sullivan

Causal inference is central to psychological science.
It plays a key role in psychological theory, a role that
is made salient by the emphasis on experimentation
in the training of graduate students and in the exe-
cution of much basic and applied psychological
research. For decades, many psychologists have
relied on the work of Donald Campbell to help guide
their thinking about causal inference (e.g., Camp-
bell, 1957; Campbell & Stanley, 1963; Cook &
Campbell, 1979; Shadish, Cook, & Campbell, 2002).
It is a tribute to the power and usefulness of Camp-
bell’s work that its impact has lasted more than 50
years. Yet the decades also have seen new theories of
causation arise in disciplines as diverse as econom-
ics, statistics, and computer science. Psychologists
often are unaware of these developments, and when
they are aware, often struggle to understand them
and their relationship to the language and ideas that
dominate in psychology. This chapter reviews some
of these recent developments in theories of causa-
tion, using Campbell’s familiar work as a touchstone
from which to examine newer work by statistician
Donald Rubin and computer scientist Judea Pearl.

Campbell received both his bachelor’s degree in
psychology and doctorate in social psychology, in
1939 and 1947 respectively, from the University of
California, Berkeley. The majority of his career was
spent at Northwestern University, and most of his
causal inference work was generated in the 1950s,
1960s, and 1970s. Much of the terminology in

psychological discussions of causation theory, such
as internal and external validity and quasi-experiment,
can be credited to Campbell. In addition, he invented
quasi-experimental designs such as the regression
discontinuity design, and he adapted and popularized
others. The theory he developed along with his many
colleagues is the most pervasive causation theory in
the fields of psychology and education. As a result, he
is one of the most cited psychologists in these fields.

Rubin also received a bachelor’s degree in psy-
chology from Princeton University in 1965, followed
by a doctorate in statistics from Harvard in 1970. He
briefly worked at the University of Chicago and the
Educational Testing Service, but then returned to
Harvard as a statistician. His work on causal infer-
ence occurred later than most of Campbell's. Rubin’s
theory is followed more in other fields, such as statis-
tics and economics, and is relatively unknown within
psychology. He is, however, responsible for many
novel contributions to the field of statistics, such as
the use of multiple imputation for addressing miss-
ing data (e.g., Little & Rubin, 2002). He is one of the
top 10 most cited statisticians in the world.

Pearl received a bachelor’s degree in electrical
engineering from the Technion in Israel in 1960, a
master’s degree in physics from Rutgers University
in 1965, and a doctorate in electrical engineering
from the Polytechnic Institute of Brooklyn in 1965.
He worked at RCA Research Laboratories on super-
conductive parametric and storage devices and at
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Electronic Memories, Inc., on advanced memory
systems. He then joined the School of Engineering at
UCLA in 1970, where he is currently a professor of
computer science and statistics and director of the
cognitive systems laboratory. His work on causal
inference is of slightly more recent vintage compared
with that of Campbell and Rubin, with roots in the
1980s (Burns & Pearl, 1981; Pearl & Tarsi, 1986)
but with its major statements mostly during the
1990s and later (e.g., Pearl, 2000, 2009a, 2010a). Not
surprisingly given his background in engineering and
computer science, his work—at least until recently—
has had its greatest impact in fields like cognitive sci-
ence, artificial intelligence, and machine learning.
The three models share nontrivial common
ground, despite their different origins. They have
published classic works that are cited repeatedly and
are prominent in their spheres of influence. To vary-
ing degrees, they bring experimental terminology
into observational research. They acknowledge the
importance of manipulable causes. Yet they also
have nontrivial differences. Campbell and Rubin, for
example, focus most heavily on simple descriptive
inferences about whether A caused B; Pearl is as
concerned with the mechanisms that mediate or
moderate that effect. Campbell and Rubin strongly
prefer randomized experiments when they are feasi-
ble; such a preference is less apparent in Pearl.
These three theories, however, rarely have been
compared, contrasted, combined, or even cross-
referenced to identify their similarities and differ-
ences. This chapter will do just that, first by
describing each theory in its own terms and then by
comparing them on superordinate criteria.

A PRIMER ON THREE CAUSAL MODELS

[t is an oversimplification to describe the broad-ranging
work of any of these three scholars as a model. The lat-
ter implies a compactness, precision, and singular
focus that belies their breadth and depth. At the core of
each of these approaches, however, a finite group of
terms and ideas exists that is its unique key contribu-
tion. Therefore, for convenience’s sake in this chapter,
we refer to Campbell’s causal model (CCM), Pearl’s
causal model (PCM), and Rubin’s causal model
(RCM), the latter being a commonly used acronym in
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the literature (e.g., Holland, 1986). In this chapter,
PCM and CCM are convenient counterpoints to that
notation, intended to facilitate contrasts. These abbre-
viations also allow inclusive reference to all those who
worked on CCM, PCM, and RCM. For instance, parts
of CCM were developed by Cook (e.g., Cook, 1990,
1991; Cook & Campbell, 1979), parts of RCM by
Rosenbaum (e.g., Rosenbaum, 2002), and parts of
PCM by Tian (e.g., Tian & Pearl, 2000). Accordingly,
references to these aIcronyms in this chapter refer to the
models rather to Campbell, Rubin, or Pearl themselves.

Campbell’s Causal Model
The core of CCM is Campbell's validity typology
and the associated threats to validity. CCM uses
these tools to take a critical approach to the design
of new studies and critique of completed studies
that probe causal relationships. CCM's work first
appeared as a journal article (Campbell, 1957), then
as a greatly expanded book chapter (Campbell &
Stanley, 1963), and finally as a reprint of that chap-
ter as a freestanding book (Campbell & Stanley,
1966) that was revisited and expanded in book form
twice over the next 4 decades (Cook & Campbell,
1979; Shadish et al., 2002) and elaborated in many
additional works.

At its start, CCM outlined a key dichotomy, that
scientists make two general kinds of inferences from
experiments:

m Inferences about “did, in fact, the experimental
stimulus make some significant difference in this
specific instance” (Campbell, 1957, p. 297).

m Inferences about “to what populations, settings,
and variables can this effect be generalized”
(Campbell, 1957, p. 297).

Campbell labeled the former inference internal { ;
validity and the latter external validity, although he Z
often interchanged the term external validity with
representativeness or generalizability.

Later, the dichotomy was expanded into four
validity types (Cook & Campbell, 1979; Shadish
etal., 2002):

m Statistical conclusion validity: The validity of
inferences about the correlation (covariation)
between treatment and outcome.



s Internal validity: The validity of inferences about
whether observed covariation between A (the
presumed treatment) and B (the presumed out-
come) reflects a causal relationship from A to B,
as those variables were manipulated or measured.

m Construct validity: The validity with which infer-
ences are made from the operations in a study to
the theoretical constructs those operations are
intended to represent.

m External validity: The validity of inferences about
whether the observed cause-effect relationship
holds over variation in persons, settings, treat-
ment variables, and measurement variables.

These validity types give CCM a broad sweep
both conceptually and practically, pertinent to quite
different designs, such as case studies, path models,
and experiments. The boundaries between the valid-
ity types are artificial but consistent with common
categories of discourse among scholars concerned
with statistics, causation, language use, and
generalization.

Threats to validity include the errors we may
make about the four kinds of inferences about statis-
tics, causation, language use, and generalizability.
These threats are the second part of CCM. Regard-
ing internal validity, for example, we may infer that
results from a nonrandomized experiment support
the inference that a treatment worked. We may be
wrong in many ways: Some event other than treat-
ment may have caused the outcome (the threat of
history), the scores of the participants may have
changed on their own without treatment (matura-
tion or regression), or the practice provided by
repeated testing may have caused the participants to
improve their performance without treatment (test-
ing). Originally, Campbell (1957) presented eight
threats to internal validity and four to external valid-
ity. As CCM developed, the lists proliferated,
although they seem to be asymptoting: Cook and
Campbell (1979) had 33 threats, and Shadish et al.
(2002) had 37. Presentation of all threats for all four
validity types is beyond the scope of the present
chapter as well as unnecessary to its central focus.

The various validity types and threats to validity
are used to identify and. if possible. prevent prob-
lems that may hinder accurate casual inference. The

Theories of Causation in Psychological Science

focus is on preventing these threats with strong
experimental design, but if that is not possible, then
to address them in statistical analysis after data have
been collected—the third key feature of CCM. Of
the four validity types, CCM always has prioritized
internal validity, saying first that “internal validity is
the prior and indispensable condition” (Campbell,
1957, p. 310) and later that “internal validity is the
sine qua non” (Campbell & Stanley, 1963, p. 175).
From the start, this set Campbell at odds with some
contemporaries such as Cronbach (1982). CCM
focuses on the design of high-quality experiments
that improve internal validity, claiming that it makes
no sense to experiment without caring if the result is
a good estimate of whether the treatment worked.

In CCM, the strategy is to design studies that
reduce “the number of plausible rival hypotheses
available to account for the data. The fewer such
plausible rival hypotheses remaining, the greater the
degree of ‘confirmation’ (Campbell & Stanley,
1963, p. 206). The second line of attack is to assess
the threats that were not controlled in the design,
which is harder to do convincingly. The second
option, however, is often the only choice, as in situa-
tions in which better designs cannot be used for
logistical or ethical reasons, or when criticizing com-
pleted studies. With their emphasis on prevention of
validity threats through design, CCM is always on
the lookout for new design tools that might improve
causal inference. This included inventing the regres-
sion discontinuity design (Thistlethwaite & Camp-
bell, 1960), but mostly extended existing work, such
as Chapin’s (1932, 1947) experimental work in soci-
ology, McCall's (1923) book on designing education
experiments, Fisher's (1925, 1926) already classic
work on experimentation in agriculture, and Lazars-
feld’s (1948) writings on panel designs. CCM now
gives priority among the nonrandomized designs to
regression discontinuity, interrupted time series
with a control series, nonequivalent comparison
group designs with high-quality measures and stable
matching, and complex pattern-matching designs, in
that order. The latter refer to designs that make com-
plex predictions in which a diverse pattern of results
must occur, using a study that may include multiple
nonrandomized designs each with different pre-
sumed biases: “The more numerous and independent
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the ways in which the experimental effect is demon-
strated, the less numerous and less plausible any
singular rival invalidating hypothesis becomes”
(Campbell & Stanley, 1963, p. 206).

This stress on design over analysis was summed up
well by Light, Singer, and Willett (1990): “You can’t
fix by analysis what you bungled by design” (p. viii).
The empbhasis of the CCM, then, is on the reduction
of contextually important, plausible threats to valid-
ity as well as the addition of well-thought-out design
features. If possible, it is better to rule out a threat to
validity with design features than to rely on statisti-
cal analysis and human judgment to assess whether
a threat is plausible after the fact. For example, for a
nonrandomized experiment, a carefully chosen con-
trol group (one that is in the same locale as the
treatment group and that focuses on the same kinds
of person) is crucial within the CCM tradition. Also
called a focal local control, this type of selection is
presumed to be better than, for example, a random
sample from a national database, such as economists
have used to construct control groups. Simply put,
in the CCM, design rules (Shadish & Cook, 1999).

Lastly, remember that Campbell’s thinking about
causal inference was nested within the context of his
broader interests. In one sense, his work on causal
inference could be thought of as a special case of his
interests in biases in human cognition in general.
For example, as a social psychologist, he studied
biases that ranged from basic perceptual illusions to
cultural biases; and as a meta-scientist, he examined
social psychological biases in scientific work. In
another sense, CCM also fits into the context of
Campbell’s evolutionary epistemology, in which
Campbell postulated that experiments are an evalua-
tive mechanism used to select potentially effective
ideas for retention in the scientific knowledge base.
Although discussions of these larger frameworks are
beyond the scope of this article, it is impossible to
fully understand CCM without referencing the con-
texts in which it is embedded.

Rubin’s Causal Model

Rubin has presented a compact and precise concep-
tualization of causal inference (RCM; e.g., Holland,
1986), although Rubin frequently has credited the
model to Neyman (1923/1990). A good summary is
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found in Rubin (2004). RCM features three key ele-
ments: units, treatments, and potential outcomes.
Let Y be the outcome measure. Y(1) would be
defined as the potential outcome that would be
observed if the unit (participant) is exposed to the
treatment level of an independent variable W (W =
1). Then, Y(0) would be defined as the potential
outcome that would be observed if the unit was not
exposed to the targeted treatment (W = 0). Under
these assumptions, the potential individual casual
effect is the difference between these two potential
outcomes, or Y(1) - Y(0). The average casual effect
is then the average of all units' individual casual
effects. These are potential outcomes, however, only
until the treatment begins. Necessarily, once treat-
ment begins, only Y(1) or Y(0) can be observed per
unit (as the same participant cannot simultaneously
be given the treatment and not given the treatment).
Because of this factor, the problem of casual infer-
ence within RCM is how to estimate the missing
outcome, or the potential outcome that was not
observed. These missing data sometimes are called
counterfactuals because they are not actually
observed. In addition, it is no longer possible to esti-
mate individual causal effects as previously defined
[Y(1) - Y(0)] because one of the two required vari-
ables will be missing. Average causal effect over all
of the units still can be estimated under certain con-
ditions, such as random assignment.

The most crucial assumption that RCM makes is
the stable-unit-treatment-value assumption
(SUTVA). SUTVA states that the representation of
potential outcomes and effects outlined in the pre-
ceding paragraph reflect all possible values that
could be observed in any given study. For example,
SUTVA assumes that no interference occurs between
individual units, or that the outcome observed on
one unit is not affected by the treatment given to
another unit. This assumption is commonly violated
by nesting (e.g., of children within classrooms), in
which case the units depend on each other in some
fashion. Nesting is not the only way in which SUTVA’s
assumption of independence of units is violated,
however. Another example of a violation of SUTVA
is that one person'’s receipt of a flu vaccine may
affect the likelihood that another will be infected. or
that one person taking aspirin for a headache may




affect whether another person gets a headache from
listening to the headache sufferer complain. These
violations of SUTVA imply that each unit no longer
has only two potential outcomes that depend on
whether they receive treatment or no treatment.
Instead, each unit has a set of potential outcomes
depending on what treatment condition they receive
as well as what treatment condition other partici-
pants receive. This set of potential outcomes grows
exponentially as the number of treatment conditions
and participants increase. Eventually, the number of
potential outcomes will make computations impos-
sibly complex. For example, consider an experiment
with just two participants (P1 and P2). With
SUTVA, P1 has only two potential outcomes, one if
P1 receives treatment [Y(1)] and the other if P1
receives the comparison condition [ Y(0)]. But with-
out SUTVA, P1 now has four potential outcomes,
Y(1) if P2 receives treatment, Y(1) if P2 receives the
comparison condition, Y(0) if P2 receives treatment,
and Y(0) if P2 receives the comparison condition. If
the number of participants increases to three, the
number of potential outcomes assuming SUTVA is
still two for each participant, but without SUTVA it
is eight. With the number of participants that are
characteristic of real experiments, the number of
potential outcomes for each participant without
SUTVA is so large as to be intractable. In addition,
even if no interference occurs between the units,
without SUTVA, we may have to worry that within
the ith unit, more than one version of each treat-
ment condition is possible (e.g., an ineffective or an
effective aspirin tablet). SUTVA, therefore, is a sim-
plification that is necessary to make causal inference
possible under real-world complexities. Under these
same real-world complexities, however, SUTVA is
not always true. So, although the assumption that
units have only one potential outcome in fact may
be an essential simplification, it is not clear that it is
always plausible. Most readers find SUTVA as well
as the implications of violations of SUTVA, to be
one of the more difficult concepts in RCM.

Also crucial to RCM is the assignment mecha-
nism by which units do or do not receive treatment.
Although it is impossible to observe both potential
outcomes on any individual unit, random assign-
ment of all units to treatment conditions allows for

m
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obtaining an unbiased estimate of the population
causal effect, by calculating the average causal effect
of the studied units. Randomly assigning units to
groups creates a situation in which one of the two
possible potential outcomes is missing completely at
random. Formal statistical theory (Rubin, 2004) as
well as intuition state that unobserved outcomes
missing completely at random should not affect the
average over the observed units, at least not with a
large enough sample size. Any individual experi-
ment may vary slightly from this statement because
of sampling error, but the assumption is that it gen-
erally will be true. When random assignment does
not occur, the situation becomes more complex. In
some cases, assignment is not totally random, but it
is made on the basis, in whole or in part, of an
observed variable. Examples of this include regres-
sion discontinuity designs, in which assignment to
conditions is made solely on the basis of a cutoff on
an observed variable (Shadish et al., 2002), or an
experiment in which random assignment occurs in
conjunction with a blocking variable. These types of
assignment are called ignorable because although
they are not completely random, potential outcomes
still are unrelated to treatment assignment as long as
those known variables are included in the model.
With this procedure, an unbiased estimate of effect
can be obtained. In all other cases of nonrandom
assignment, however, assignment is made on the
basis of a combination of factors, including unob-
served variables. Unobserved variables cannot be
specifically included in the model, and as such,
assignment is nonignorable, which makes estimat-
ing effects more difficult and sometimes impossible.
The assignment mechanism affects not only the
probability of being assigned to a particular condi-
tion, but also how much the researcher knows about
outside variables affecting that probability. Take, for
example, an experiment in which units are assigned
to either a treatment or a no-treatment condition by
a coin toss. The probability of being assigned to
either group is widely understood to be p = .50; and,
in addition, it is intuitively understood that no other
variables (e.g., gender of the participant) will be
related systematically to that probability. In RCM,
the assignment probabilities are formalized as pro-
pensity scores, that is, predicted probabilities of
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assignment to each condition. In practice, random-
ized experiments are subject to sampling error (or
unlucky randomization) in which some covariates
from a vector of all possible covariates X (measured
or not) may be imbalanced across conditions (e.g., a
disproportionate number of males are in the treat-
ment group). In those cases, the observed propen-
sity score is related to those covariates and varies
randomly from its true value (Rubin & Thomas,
1992).

When a nonrandom but ignorable (as defined in
the previous paragraph) assignment mechanism is
used, the true propensity score is a function of the
known assignment variables. In this situation, X
takes on a slightly different meaning than it did in a
randomized experiment. For example, in a regres-
sion discontinuity design, participants are assigned
to conditions on the basis of whether they fall above
or below a cutoff score of a specific assignment vari-
able. In this situation, X must contain that assign-
ment variable in addition to any other covariates the
researcher is interested in measuring. According to
Rubin (2004), designs in which covariates in X fully
determine assignment to conditions are called regu-
lar designs. When assignment is nonrandomized and
not controlled, as in observational studies, regular
designs form the basis of further analysis. Ideally, in
these designs, X would contain all the variables that
determined whether a unit received treatment. In
practice, however, those variables are almost never
fully known with certainty, which in turn means
that the true propensity score is also unknown. In
this situation, the propensity score is estimated
using methods, such as logistic regression, in which
covariates are used to predict the condition in which
a unit is placed. RCM suggests rules for knowing
what constitutes a good propensity score, but much
of that work is preliminary and ongoing. Good pro-
pensity scores can be used to create balance over
treatment and control conditions across all observed
covariates that are used to create the propensity
scores (e.g., Rubin, 2001), but this alone is not suffi-
cient for bias reduction, The strong ignorability
assumption, a critical assumption discussed in the
next paragraph, also must be met.

RCM then uses propensity scores to estimate
effect size for studies in which assignment is not
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ignorable. For example, in nonrandom designs, pro-
pensity scores can be used to match or stratify units.
Units matched on propensity scores are matched on
all of the covariates used to create the propensity
scores, and units stratified across scores are similar
on all of the included covariates. If it can be cor-
rectly argued that all of the variables pertinent to the
assignment mechanism were included in the pro-
pensity score calculation, then the strongly ignor-
able treatment assignment assumption has been met,
and RCM argues that assignment mechanism now
can be treated as unconfounded, as in random
assignment. The strongly ignorable treatment
assignment assumption is essential, but as of yet, no
direct test can be made of whether this assumption
has been met in most cases. This is not a flaw in
RCM. however, because RCM merely formalizes the
implicit uncertainty that is present from the lack of
knowledge of an assignment in any nonregular
design. Furthermore, RCM treats the matching or
stratification procedure as part of the design of a
good observational study, rather than a statistical
test to perform after the fact. In that sense, creating
propensity scores, assessing their balance, and con-
ducting the initial matching or stratification are all
essential pieces of the design of a prospective experi-
ment and ought to be done without looking at the
outcome variable of interest. These elements are
considered to be part of the treatment, and standard
analyses then can be used to estimate the effect of
treatment. Again, RCM emphasizes that the success
of propensity score analyses rests on the ignorability
assumption and does provide ways 10 assess how
sensitive results might be to violations of this
assumption (Rubin, 2001).

After laying this groundwork, RCM moves on to
more advanced topics. For example, one topic deals
with treatment crossovers and incomplete treatment
implementation, combining RCM with econometric
instrumental variable analysis to deal successfully
with this key problem if some strong but often plau-
sible assumptions are met (Angrist, Imbens, &
Rubin, 1996). Another example addresses getting
better estimates of the effects of mediational vari-
ables (coming between treatment and outcome,
caused by treatment and mediating the effect; Fran-
gakis & Rubin, 2002). A third example deals with




missing data in the covariates used to predict the
propensity scores (D'Agostino & Rubin, 2000). Yet
another example addresses how to deal with cluster-
ing issues in RCM (Frangakis, Rubin, & Zhou,
2002). These examples provide mere glimpses of
RCM’s yield in the design and analysis of studies
investigating causal links.

As with Campbell, knowledge of the larger con-
text of Rubin’s other work is necessary to fully
understand RCM. Rubin’s mentor was William G.
Cochran, a statistician with a persistent and detailed
interest in estimation of effects from nonrandomized
experiments. Rubin’s dissertation reflected this inter-
est and concerned the use of matching and regres-
sion adjustments in nonrandomized experiments.
This mentorship undoubtedly shaped the nature of
his interests in field experimentation. Rubin is also a
pioneer in methods for dealing with missing data
(e.g., Little & Rubin, 2002; Rubin, 1987). His work
on missing data led him to conceptualize the ran-
domized experiment as a study in which some
potential outcomes are, by virtue of random assign-
ment, missing completely at random. Similarly, that
work also led to the use of multiple imputation in
explaining a Bayesian understanding of computing
the average causal effect (Rubin, 2004).

Pearl’s Causal Model

PCM provides a language and a set of statistical
rules for causal inference in the kinds of models that
variously are called path models, structural equation
models, or causal models. In the latter case, the very
use of the word causal has been controversial (e.g.,
Freedman, 1987). The reason for this controversy is
that statistics, in general, has not had the means by
which to move to safe causal inferences from the
correlations and covariances that typically provide
the data for causal models, which often are gathered
in observational rather than experimental contexts.
Statistics did not have the means to secure causal
inference from a combination of theoretical assump-
tions and observational data. PCM is not limited to
observational data, but it is with observational data
that its contributions are intended to provide the
most help. Good introductions to PCM have been
provided by Morgan and Winship (2007), Hayduk
etal. (2003), and Pearl (1998, 2010b), on which this
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presentation of PCM relies heavily. For convenience
given the number of new terms introduced in PCM,
Table 2.1 summarizes some of the common terms in
PCM and path analysis to clarify their overlap; read-
ers familiar with path analysis may benefit from
reading that table before continuing. New terms are
italicized in text on first use.

PCM often works with graphs called directed acy-
clic graphs (DAGs). DAGs look like graphs that are
common in path analysis, although they differ in
important ways. The principles of PCM are based on
nonparametric structural equation models (SEMs),
augmented with ideas from both logic and graph
theory. Yet PCM differs in important ways from
SEM. Most implementations of SEM are parametric
and require knowledge of the functional form of the
relationships among all the variables in the model.
PCM is nonparametric, so that one only need specify
the relationships in the model, not whether the rela-
tionship between nodes is linear, quadratic, cubic,
and so forth, PCM falls back on parametric model-
ing only when the nonparametric formulation of
high dimensional problems is not practical. DAGs
are Markovian, that is, they are acyclic in cases in
which all the error terms in the DAG are jointly
independent. PCM does not rely on these restric-
tions in many cases, however, when it allows corre-
lation among error terms in the form of bidirected
arrows or latent variables. DAGs may not include
cycles (i.e., paths that start and eventually end at the
same node). DAGs and PCM more generally do not
assign any important role to the kinds of overall
goodness-of-fit tests common to SEM, noting that
support for a specific causal claim depends mostly
on the theoretical assumptions embedded in the
DAG that must be ascertained even if the model fits
the data perfectly.

The starting point in PCM is the assertion that
every exercise in causal analysis must commence
with a set of theoretical or judgmental causal
assumptions and that such assumptions are best
articulated and represented in the form of directed
acyclic graphs (DAGs). Consider Figure 2.1, for
example. The letters each identify an observed
random variable, called a node, represented by the
solid black dot (#). A single-headed arrow like that
going from X to Y indicates the direction of a
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TABLE 2.1

Novel and Related Terms in Pearl’s Causal Model and Path Analysis

Pearl’s causal model Path analysis

Node Variable

Edge Path

Directed edge Direct path

Bidirected edge Curved path with arrowhead
on each end

Directed acyclic graphs Path models, structural

(DAGS) equation models, causal

models

Parent, grandparent, ancestor,
child, descendent

Collider

d-separation Vanishing partial correlation

Back-door path

Back-door criterion

Fork of mutual dependence

Inverted fork of mutual
causation

do(x) operator

Probably synonymous.

An edge is always one arrow, which may be unidirected or
bidirected, whereas a path in both Pearl's causal model and
path analysis is a consecutive sequence of edges or arrows
connecting two variables.

Probably synonymous, both are represented as straight arrows
from one variable to another representing the direction of
presumed causal effect.

A bidirected edge is the usual curved path where a common but
unobserved node causes both nodes where the arrowheads
point.

DAGs look very much like path models. However, DAGs are mostly
nonparametric They are called Markovian if all error terms are
jointly independent and no paths start and eventually end at the
same node. They are semi-Markovian if errors are dependent
(shown as bidirected edges).

These terms have no equivalent terms in path analysis, but they
do have the obvious equivalent cases in path models. They
refer to particular kinds of relationships among nodes in DAGs
specifying various kinds of degrees of separation of nodes.
Terms like exogenous, endogenous and mediating variables in
path models may sometimes meet the definition of these terms
in DAGS.

Another term with no equivalent specific term in path models. A
collider is a node that is a mutual direct descendent of two (or
more) nodes in a DAG, and, if conditioned on, creates spurious
association between these nodes.

d-separation (directional separation) is a graphic test for
determining when any two sets of nodes in a DAG are
statistically independent after controlling for a third set.

A back-door path from X'to Yis a path from X'to Ythat includes
a directed edge pointing directly at X from an ancestor of X. No
equivalent term exists in path analysis, but such paths would be
identified by Wright's (1921) rules as a path contributing to the
covariation between Xand V.

A graphic test for determining when causal effects can be
estimated consistently by controlling for a set of covariates in
the DAG.

In a DAG, a set of edges where a third variable € causes Xand Y.
No equivalent path analysis term exists.

In a DAG, a set of edges where Xand Y both cause C, which is
therefore a collider. No equivalent path analysis term exists.

This operator replaces the random variable Xin a DAG with a
constant x that is a specific value of X such as x; = received
treatment or x; = did not receive treatment. It also removes all
arrows pointing to X and, thus, mimics experimental control.
No equivalent path analysis term.
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FIGURE 2.1. A directed acyclic graph. From
Counterfactuals and Causal Inference (Figure 1.1), by
S. L. Morgan and C. Winship, 2007, Cambridge,
England: Cambridge University Press. Copyright 2007
by Cambridge University Press. Adapted with the
permission of Cambridge University Press.

presumed causal relationship from one node to
another and is called a directed edge. Curved,
dashed, double-headed arrows like that between A
and B, called bidirected edges, indicate that a com-
mon but unobserved node causes both nodes that
appear where the arrowheads point. A path is a con-
secutive sequence of edges, whether directed or
bidirected, connecting two variables. If an arrow
exists between X and Y in Figure 2.1, with the obvi-
ous hypothesis that X causes Y, then X is a parent of
Y, and Y is the child of X. Causes of parent variables
are grandparents, so A, B, and C are grandparents of
Y in Figure 2.1. All direct and indirect causes of a
variable are its ancestors, and all variables that
receive direct or indirect effects of a variable are its
descendents. A mutual direct descendent of two (or
more) variables is called a collider. Both X and Y in
Figure 2.1 are colliders resulting from A, B, C, and
F, G, X, respectively. The intuition is that the effects
of A, B, and C collide at X. A is also a collider
because it descends from both the common cause of
A and B, and the common cause of A and F, repre-
sented by the bidirected edges in the DAG.

The assumption that all error terms (not shown
explicitly in the DAG) are independent permits one
to predict conditional dependencies between any
sets of nodes in the model using a graphic test called
d-separation. If any two variables in a DAG are
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d-separated (directional separation), then they must
be statistically independent after controlling for one
or more other variables. In Figure 2.1, for example,
A and Y are d-separated controlling for X and F
because no paths remain to get from A to Y; but con-
trolling only for X does not result in d-separation
because the path A — F — Y remains a permissible
path from A to Y. Less obvious, d-separation of two
variables can be thwarted by controlling for their
mutual causal descendent(s), for example, control-
ling for a collider directly descended from them.
Indeed, observing a common consequence of two
causes can produce a relationship between those
causes even if they originally were independent.
Controlling for the descendant of just one of the two
variables, however, will not induce that relationship.

The logic of d-separation generates empirically
testable hypotheses about the conditional indepen-
dencies that would have to hold between any two
variables of interest (sometimes called focal vari-
ables). Two variables that are d-separated in a DAG
should have a zero partial correlation when control-
ling for the covariates that block all paths between
the two variables—in the previous example, the par-
tial correlation between X and Y controlling for A.
The researcher can use the logic of d-separation to
identify, before gathering data, a set of empirically
testable hypotheses that are implied by the model
and, when data are gathered, apply those test to vali-
date or refute the model. Once tested, PCM decides
whether the causal assumptions embedded in the
model are sufficient to yield an unbiased causal
claim. Calling this the identification phase, Pearl
(2010a) has said that it “is the most neglected step
in current practice of quantitative analysis” (p. 108).
So using the logic of d-separation is itself indepen-
dent of any empirical test.!

In addition to identifying the testable implications
of a given causal structure, PCM can also tell which
variables in this DAG must be observed and included
in the analysis to estimate a causal relationship
between any two variables, say, X and Y. This can be
done in PCM in three nonexhaustive ways. The first
is to find a set of observed covariates that block (i.e.,
d-separate) all back-door paths from X to Y, that is, a

'The next four paragraphs delve into technical details about d-separation and may be skipped by readers with no interest in those details,
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path from X to Y that includes a directed edge point-
ing directly at X from an ancestor of X. In Figure 2.1,
the paths X~ A~F-Yand X-B-A-F-Yare
back-door paths. The directed edge from X to Yis not
a back-door path because it contains no directed
edge pointing to X. One can identify a causal effect
from X to Y by conditioning on observed variables
that block each back-door path, in cases in which
conditioning is done using standard control methods
as stratification, matching, or regression with those
variables. Conditioning on such variables in the
graph is equivalent to satisfying the requirement of
“strong ignorability” in the RCM (Pearl, 2009a,
pp- 341-344).

Pearl (2000, 20092) defined a variable or set of
variables Z to block a back-door path if

1. the back-door path includes a mediational path
fromXtoY(X—=C—Y) whereCisinZ, or

2. the back-door path includes a fork of mutual
dependence (X <~ C = Y), that is, where C causes
XandY,and Cisin Z, or

3. the back-door path includes an inverted fork of
mutual causation (X — C < Y), where X and Y
both cause C, and neither C nor its descendents
are in Z,

The latter requirement means that Z cannot
include a collider that happens to be on the back-
door path unless Z also blocks the pathways to that
collider. According to these requirements, the back-
door paths from X to Y are blocked by conditioning
on variables F or B A. Stratifying on A alone would
not do because the backdoor path X—-B-A-F-Y
will remain unblocked.

The second strategy is to use an instrumental
variable for X to estimate the effect of X on Y. In Fig-
ure 2.1, C is an instrument because it has no effect
on Y except by its effect on X. Economists frequently
use this approach, and it assumes the effect of C on
X and X on Y are both linear. The latter assumption
holds if C and X are dichotomous (e.g., a treatment
dummy variable) and Y is at least interval-scaled,
both of which often hold in many observational
studies. The estimate of the causal effect of X on Y is
then the ratio of the effectof Con Yand X on Y. A
problem would occur, however, if a directed edge
from C to G is introduced into Figure 2.1. This
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violates the definition of an instrument by creating a
new back-door path from X to Y through C and G.
The causal estimate from X to Y, however, still can
be obtained by using C as an instrument while at the
same time conditioning on G to block the back-door
path—which also illustrates that these three strate-
gies for estimating causal effects can be combined.
The third strategy is illustrated in Figure 2.2
where M and N have no parents other than X, and
they also mediate the causal relationship between X
and Y. The effect of X on Y can be estimated even if
variables A and F are unobserved, and the backdoor
path X — A — F — Y remains unblocked. One estimates
the causal effect of X on M and N, and then of M and
Non Y, stratifying on X, and then combining the
two estimates to construct the desired effect of X on
Y. This can be done because M and N have no par-
ents other than X in this DAG, so the effect of X on Y
is completely captured by the mediators M and N.
PCM introduces the mathematical operator
called do(x) to help model causal effects and coun-
terfactuals. The operator do(x) mimics in the model
what the manipulation of X can do in, say, a ran-
domized experiment—that is, it can remove all
paths into X. This operator replaces the random
variable X in a DAG with a constant x that is a
specific value of X such as x, = received treatment or
X, = did not receive treatment. For instance, if we set
X in Figure 2.1 to x,, Figure 2.3 would result. Now

FIGURE 2.2. A DAG with a mediating mechanism
that completely accounts for the causal effect of X on Y.
From Counterfactuals and Causal Inference (Figure 1.2),
by S. L. Morgan and C. Winship, 2007, Cambridge,
England: Cambridge University Press. Copyright 2007
by Cambridge University Press. Adapted with the
permission of Cambridge University Press.
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FIGURE 2.3. A DAG figure from Figure 2.1 with a
do(x) operator.

X is independent of all the variables that previously
were its ancestors (A, B, and C), and no back-door
paths exist. By comparing how results vary when
setting x; versus X, PCM can emulate the effect of
an intervention and express that effect mathemati-
cally, in terms of the (known and unknown) distri-
butions that govern the variables in the graph. If
that effect can be expressed in terms of observed dis-
tributions, the effect is identifiable, that is, it can be
estimated without bias. Furthermore, the do(x)
operator in PCM does not require that X be manipu-
lable. It can stand for a manipulable treatment, or a
nonmanipulable treatment, such as gender, or the
gravitational constant (Pearl, 2010a).

Three other points are implied by the preceding
discussion. First, estimating causal effects does not
require conditioning on all available variables; in
many examples, a subset of these variables will sul-
fice. In the case of an ancestral collider variable,
conditioning should not be done. PCM provides
rules for knowing which variables are sufficient,
given the DAG, and which would be harmful. Sec-
ond, when more than one of these three strategies
can be applied to a given DAG, similar estimates
from them may bolster confidence in the estimated
effect conditional on the DAG. Third, the creation of
a DAG leads to an explanatory model of causation,
that is, a more elaborate depiction of the conditions
under which, and mechanisms by which, X causes
Y. So the DAG facilitates discussions among scien-
tists to refine assumptions and confirm or refute
their scientific plausibility. Morgan and Winship
(2007), Hayduk et al. (2003), and Pearl (2000,
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2009a, 2010a) have extensively elaborated these basic
strategies and many other more complex examples.
PCM potentially enables the researcher to do
many tasks. We have assumed the researcher is
interested in only two focal variables, X and Y in our
example; but the researcher may be interested in the
causal effects of more than one pair of focal vari-
ables. For each pair of focal variables, the back-door
paths, descendants, and control variables may differ,
so in principle, the task becomes logistically more
complex as more pairs of focal variables are of inter-
est. Still, the DAG provides this information suc-
cinctly without having to remodel things from
scratch when the focus changes. When the data are
available, the researcher need not test the entire
model at once, as is currently practiced, but rather
can focus on the empirical implications of the
model, keeping track of which tests are relevant to
the target quantity, and which tests are more power-
ful or costly. A given causal claim might pass all the
suggested tests, or some of them, or might not be
testable for others. Hayduk et al. (2003) suggested
that these tasks eventually will benefit from com-
puter programs to conduct the tests and keep track
of the results. Such programs are as yet in their
infancy (Pearl, 2000, pp. 50-54; Scheines, Spirtes,
Glymour, & Meek, 1994; Shipley, 2000, p. 306).
The most crucial matter in PCM is the creation of
the DAG. The results of most of the logic and empir-
ical tests of a DAG, and their implications for causal
conclusions, depend on the DAG containing both
the correct nodes and the correct set of edges con-
necting those nodes. These assumptions, in various
disguises, must be made in every causal inference
exercise, regardless of the approach one takes; hence
the importance of making them explicit and trans-
parent. This universal requirement is emphasized in
numerous variants in PCM. For instance, in the pro-
cess of discussing the relationship between PCM
and Wright's (1921) work on path analysis, Pearl
(2010a) said, “Assuming of course that we are pre-
pared to defend the causal assumptions encoded in
the diagram” (p. 87). Still later in the same paper he
said, “The lion’s share of supporting causal claims
falls on the shoulders of untested causal assump-
tions” (p. 35), and he regretted the current tendency
among propensity score analysts to “play down the
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cautionary note concerning the required admissibil-
ity of S” (p. 37). PCM asks researchers to do the
homework necessary to create a plausible DAG dur-
ing the design of the data-gathering study, recogniz-
ing, first, that this is likely to be a long-term iterative
process as the scientific theory bolstering the DAG is
developed, tested, and refined, and, second, that this
process cannot be avoided regardless if one chooses
to encode assumptions in a DAG or in many other
alternative notational systems.

ANALYSIS OF THE THREE MODELS

We have now described the basic features of CCM,
RCM, and PCM, and we move on to further com-
pare and contrast the three models. Specifically, we
address several of the models' core characteristics,
including philosophies of causal inference, defini-
tions of effect, theories of cause, external validity,
matching, quantification, and emphases on design
versus analysis. Finally, the chapter concludes with
a discussion of some of the key problems in all these
models.

Philosophies of Causal Inference

RCM, CCM, and PCM have casual inference as their
central focus. Consistently, however, CCM is more
wide-ranging in its conceptual and philosophical
scope; whereas RCM and PCM have a more narrow
focus but also a more powerful formal statistical
model. CCM courses widely through both descrip-
tive and normative epistemological literature
(Campbell, 1988; Shadish, Cook, & Leviton, 1991).
This includes philosophy of causal inference (Cook
& Campbell, 1986); but Campbell’s epistemological
credentials extend quite diversely into sociology of
science, psychology of science, and general philoso-
phy of science. For example, in the sociology of sci-
ence, Campbell has weighed in on the merits of
weak relativism as an approach to knowledge con-
struction; in psychology of science, he discussed the
social psychology of tribal leadership in science; and
in the philosophy of science, Campbell coined the
term evolutionary epistemology (Campbell, 1974)
and is considered a significant contributor to that
philosophical literature. Campbell's extensive
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background in various aspects of philosophy of sci-
ence thus brought an unusual wealth and depth to
his discussions of the use of experiments as a way in
which to construct knowledge in both science and
day-to-day life.

CCM’s approach to causation is tied more explic-
itly to the philosophical literature than RCM or
PCM. For example, Cook and Campbell (1979)
described their work as “derived from Mill’s induc-
tivist canons, a modified version of Popper’s falsifica-
tionism, and a functionalist analysis of why cause is
important in human affairs” (p. 1). CCM explicitly
acknowledges the impact on Cook and Campbell’s
thinking of the work of the philosopher John Stuart
Mill on causation. For instance, the idea that identi-
fying a causal relationship requires showing that the
cause came before the effect, that the cause covaries
with the effect, and that alternative explanations of
the relationship between the cause and effect are all
implausible relates clearly to Mill's work. The threats
to validity that CCM outline reflect these require-
ments. The threats to internal validity include Mill’s
first temporal requirement (ambiguous temporal
precedence) and the remaining threats (history, mat-
uration, selection, attrition, testing, instrumentation,
regression to the mean) are examples of alternative
explanations that must be eliminated to establish
causation. CCM also acknowledges the influence of
Mill's Methods of Experimental Inquiry (White,
2000). Certain design features are direct offshoots of
this influence. For instance, CCM thinks about
experimental methods not as identifying causes but
rather eliminating noncauses (PCM sees this as a key
feature of a DAG, as well), it acknowledges the dis-
tinct differences between casual inference from
observation and casual inference by intervention,
and it agrees that experimental inquiry methodology
must be tailored to previous scientific knowledge as
well as the real-world conditions in which the
researcher is operating.

From philosopher Karl Popper (1959), CCM
places the idea of falsifying hypotheses in a crucial
role. Specifically, the model advises the experimenter
to gather data that force causal claims to compete
with alternative explanations epitomized by the
threats to validity, complementing Mill's idea of




eliminating noncauses. Ideally, of course, CCM
advocates designing studies that avoid validity
threats in the first place; but, if that is not possible,
CCM advises researchers to collect data about vari-
ables other than the treatment that might have
caused the effect. The application of this falsification
logic is uneven in practice, but good examples exist
(Duckart, 1998; Reynolds & West, 1987). Even with
well-designed and executed studies, CCM recognizes
that researchers can quite easily create doubts as to
whether threats to validity actually exist. For this
reason, CCM is skeptical about the results of any one
study; instead encouraging research programs in
which studies are designed out of various theoretical
biases. Perhaps more important, CCM invites criti-
cisms by rivals who do not agree with the causal con-
clusions and who therefore may be situated in a
better position to offer compelling counter explana-
tions for individual study findings.

Lastly, CCM ties the human development of
understanding of casual inferences to evolutionary
pressures and natural selection. Such processes
reward those who could perceive macrolevel causes
in their environments (e.g., large predators), and
who recognize the value of manipulations, such as
starting fires or making weapons in response to such
causes (Cook & Campbell, 1979). The general con-
text for scientific casual inference is situated within
this framework of the natural human activity of
making casual inferences. CCM strongly stresses the
influence of social psychological factors on con-
struction of scientific knowledge (Campbell, 1984,
1988). It is a deeply psychological theory of how sci-
entists as human beings make causal inferences.
especially in nonrandomized designs. The theory
has as much in common with the social psychology
of Heider (1958) as with the philosophies of Mill
and Popper (Cordray, 1986).

RCM is less intimately tied with the formal philo-
sophical literature. The common reference to RCM
as a counterfactual theory of causation (e.g., Dawid,
2000; Holland, 1986; Morgan & Winship, 2007;
Winship & Morgan, 1999) is an important excep-
tion. A counterfactual is a condition that would
occur if an event in the world was different than in
reality. Under a counterfactual theory, causal state-
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ments are also counterfactual statements because
the effect of a cause or treatment is the difference
between what actually happened to the person who
received the cause (the fact), and what would have
happened to that person had they not received the
cause (the counterfactual). Lewis (1973) credited
the 18th-century Scottish philosopher David Hume
with the first clear statement of a counterfactual the-
ory of causation:

We may define a cause to be an object
followed by another, and where all the
objects, similar to the first, are followed by
objects similar to the second. Or, in other
words, where, if the first object had not
been, the second never had existed. (Hume,
1748/1963, Section VII)

The last sentence of Hume’s statement is a coun-
terfactual claim, but Hume did not further develop
counterfactual causation, focusing instead on a more
positivist analysis (Cook & Campbell, 1979). Since
this first mention, other philosophers have devel-
oped counterfactual theories (Collins, Hall, & Paul,
2004).

Despite the frequent referent to RCM as a coun-
terfactual theory, Rubin (2005) preferred not to
characterize it as such. He preferred to conceptual-
ize the theory using a potential outcome language.
From this view, all potential outcomes could be
observed (in principle) until treatment is assigned.
Some can be observed after assignment, but by defi-
nition, counterfactuals never can be observed. RCM
assumes the possibility of observing any of the
potential outcomes. Despite their seemingly contra-
dictory properties, potential outcomes and counter-
factuals are not at odds. The RCM potential
outcomes analysis is a formal statistical model, not a
philosophy of causation like the counterfactual the-
ory. So rather than an opposing theory, RCM is a
statistical model of effects that is consistent with a
counterfactual philosophy of causation. When
potential outcomes are not observed in an experi-
ment, they become counterfactuals.

RCM also has features of falsification, but these
features are a much weaker component than in
CCM. For example, hidden bias analysis is used to
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falsify claimed effects by estimating how much bias
(resulting from unmeasured variables) would have
to be present before the effect’s point and confidence
interval changed. However, although this provides a
change point, it does not tell whether hidden bias
actually exists within the study. This can be an
important point, as illustrated in a study described
by Rosenbaum (1991) that seemed invulnerable to
hidden biases. The study caused assignment proba-
bilities ranging from .09 to .91; these probabilities
cover almost the full range of possible nonrandom
assignments (random assignment into two condi-
tions with equal sample sizes would use a true prob-
ability of .50, to put this into context). According to
Rosenbaum (1991), later research showed that a
larger bias probably existed. In addition to bias
assessment, propensity score analysis includes an
examination of balance over groups after propensity
score adjustment. If the data set is still extremely
unbalanced, it is possible that the researcher will
conclude that causal inference is not possible with-
out heroic assumptions. This is a falsification of the
claim that a causal inference can be tested well in
the specific quasi-experiment. But these are minor
emphases on falsification as compared with CCM,
which is centrally built around the concept.

Although on the surface the philosophical dif-
ferences between CCM and RCM appear quite
numerous, practically no real disagreement
results. For example, both models emphasize the
necessity of manipulable experimental causes and
advise against easy acceptance of proposed casual
inference because of the fallibility of human judg-
ment. It also is possible that they would agree on
topics CCM addresses but RCM fails to mention.
For instance, Cook and Campbell (1979) ended
their discussion of causation with eight claims,
such as “the effects in molar causal laws can be
the results of multiple causes” (p. 33), and
“dependable intermediate mediational units are
involved in most strong molar laws” (p. 35).
Although the specific statistical emphasis of RCM
is not likely to have generated those claims, it is
also unlikely that the model would disagree with
any of them. Conversely, RCM philosophical writ-
ings are not extensive enough to generate true dis-
cord between the models.
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The methodological machinery of PCM makes
little explicit reference to philosophies of causation,
but closer inspection shows both knowledge and use
of them. The epilogue of Pearl (2000), for example,
briefly reviewed the history of philosophy of causa-
tion, including Aristotle, David Hume, Bertrand
Russell, and Patrick Suppes. Similarly, PCM
acknowledges specific intellectual debts to Hume’s
framing of the problem of extracting causal infer-
ences from experience (in the form of data) and to
philosophical thinking on probabilistic causation
(e.g., Eells, 1991). The most commonly cited philos-
ophers in his book come mostly from the latter tra-
dition or ones related to it, including not only Ellery
Eels and Patrick Suppes but also Nancy Cartwright
and Clark Glymour.

Where PCM differs most significantly from CCM
and RCM is in its much greater emphasis on explan-
atory causation (the causal model within which X
and Y are embedded) than descriptive causation (did
X cause Y?). This is not to say PCM is uninterested
in the latter; clearly, all the rules for d-separation
and do(x) operators are aimed substantially at esti-
mating that descriptive causal relationship. Rather,
it is that the mechanism PCM uses to get to that goal
is quite different from RCM or CCM. The latter ide-
alize the randomized experiment as the method to
be emulated given its obvious strength in estimating
the direct effect of X on Y. PCM gives no special
place to that experiment. Rather, PCM focuses on
developing a sufficiently complete causal model
(DAG) with valid causal assumptions (about what
edges are not in the model, in particular). In some
senses, this is a more ambitious goal than in RCM or
CCM, for it requires more scientific knowledge
about all the variables and edges that must be (or
not be) in the model. At its best, this kind of model
helps to explain the observed descriptive causal rela-
tionship. Those explanations, in turn, provide a
basis for more general causal claims, for they ideally
can specily the necessary and sufficient conditions
required for replicating that descriptive causal rela-
tionship in other conditions.

Possibly the most important difference in the
philosophies of these three models is the greater
stress on human (and therefore scientific) fallibility
in CCM, Paradoxically, CCM is skeptical about the




possibility of performing tasks it sometimes requires
to generate good causal inferences. Humans are poor
at making many kinds of causal judgments, prone to
confirmation biases, blind to apparent falsifications,
and lazy about both design and identifying alterna-
tive explanations. Yet when CCM's first line of
defense, strong methodology and study design,
either fails or is not practical to use, the next plan of
attack often relies strongly on the above judgments
to identify threats. Fallible human judgment is used
to assess whether the identified threats have been
rendered moot or implausible. This approach is
especially true in weaker nonrandomized experi-
ments. Because of the weight placed on human judg-
ment, CCM argues that the responsibility to be
critical lies within the community of scholars rather
than with any one researcher, especially a commu-
nity whose interests would lead them to find fault
(Cook, 1985). As technology advances, tools such as
propensity score analysis or DAGs sometimes can
make it possible to substitute more objective mea-
sures or corrections for the fallible judgments.

Neither RCM nor PCM share the sweeping sense
of fallibility in CCM. Yet they are self-critical in a
different way. They focus less on the sense of falli-
bilism inherent in scientific work (as all scientists
are also humans) and more on continually clarifying
assumptions and searching for tests of assumptions.
This results in many technical advances that reduce
the reliance that CCM has on human judgment. For
example, RCM emphasizes the importance of mak-
ing and testing assumptions about whether a data
set can support a credible propensity score analysis.
PCM stresses the importance of careful and constant
attention to the plausibility of a causal model. As of
yet, however, the suggestions of PCM and RCM
address only a fraction of the qualitative judgments
made in CCM’s wide-ranging scope.

Ironically, these senses of fallibilism are perhaps
the hardest features of all three models to transfer
from theory into general practice. Many are the
researchers who proudly proclaimed the use of a
quasi-experimental design that Campbell would
have found wanting. Many are the researchers who
use propensity score analysis with little attention to
the plausibility of assumptions like strong ignorabil-
ity. And many more may cite PCM as justification
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for causal inferences without the caveats about the
plausibility of the model. As Campbell (1994) once
said, “My methodological recommendations have
been over-cited and under-followed” (p. 295).

Definition of Effect

One of RCM’s defining strengths is its explicit con-
ceptual definition of an effect. In comparison, CCM
never had an explicit definition of effect on a con-
ceptual level until it adopted RCM's (Shadish et al.,
2002). This is quite a substantial lapse given the
centrality of finding the effects of causes within
CCM. Implicitly, CCM defined effect using the
counterfactual theory that RCM eschews in favor of
the potential outcomes definition. The implicit defi-
nition governing CCM is most clearly outlined in
Campbell’s (1975) article “Degrees of Freedom and
the Case Study,” in which he addressed causal infer-
ence within a one-group pretest—posttest design. He
supported using this type of design to infer effects
only when substantial prior knowledge exists about
how the outcome variable acts in the absence of the
intervention, or in other words, with confident
knowledge of the counterfactual.

Other than this example, however, CCM has
treated effects as differences between two facts
rather than two potential outcomes. For example,
instead of thinking of it as the difference between
what happened and what could haye happened
within one unit, CCM conceptualizes effects as what
happened to the treatment group when compared
with what happened to the control group, or what
happened before treatment versus what happened
posttreatment. This is not so much a conceptual def-
inition of what effects are or should be in general as
it is a computation to find observed differences. The
computation worked reliably only in randomized
experiments, and with other designs, it was consid-
ered valid only to the extent that the researcher was
confident the quasi-experiment ruled out plausible
alternative explanations, as randomized experiments
can. In both models, then, the randomized experi-
ment is upheld as the gold standard in design.

RCM does so by building propensity score logic for
nonrandomized studies on the basis of what is
known about “regular” designs (Rubin, 2004), and
CCM does so by acknowledging, as Campbell (1986)
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noted, that “backhandedly, threats to internal valid-
ity were, initially and implicitly, those for which ran-
dom assignment did control” (p. 68). CCM reaches
the correct counterfactual only if those threats are
implausible, and in this sense, threats to internal
validity are counterfactuals. They are things that
might possibly have happened if the treatment units
had not received treatment. They are not all possible
counterfactuals, however, as neither model has any
way of fully knowing all possible counterfactuals.

Despite the fact that CCM has now incorporated
RCM'’s definition of effect into its model, this is
probably not enough. For example, CCM discusses
why random assignment works (Shadish et al.,
2002, Chapter 8), utilizing several explanations that
are all partly true, but all of which might be better
presented in the context of the potential outcomes
model. Hypothetically then, CCM could present
RCM’s potential outcomes model, and then easily
transition into how randomized experiments are a
practical way in which to estimate the average causal
effects that the model introduces on a conceptual
level. Rubin (2005) has done the work for random-
ized experiments, and he and others have done the
same for many nonrandomized experiments (e.g.,
Angrist & Lavy, 1999; Hahn, Todd, & Vand er
Klaauw, 2001; Morgan & Winship, 2007; Rubin,
2004; Winship & Morgan, 1999).

PCM'’s definition of effect relies on solving a set
of equations representing a DAG to estimate the
effect of X = x on Y, or more technically, to “the
space of probability distributions on Y” (Pearl, 2000,
p. 70), using the do(x) operator. Practically, this cal-
culation most likely would be expressed as a regres-
sion coefficient, for example, from a SEM. This
approach is more similar to how CCM would mea-
sure an effect than to RCM’s definition of an effect.
Yet PCM points out that it also can estimate a causal
effect defined as the difference in the effect between
the model where X = x, and X = x,. The latter is nei-
ther a potential outcome nor a counterfactual defini-
tion of effect in RCM'’s sense because it is made on
the basis of the difference between two estimates,
whereas counterfactuals and potential outcomes
cannot always be observed.

Most of CCM'’s approach to estimating effects
could otherwise adopt the DAGs and associated
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logic as a way of picturing effect estimation in their
wide array of experimental and quasi-experimental
designs. Probably the same is true of RCM. What
most likely prevents such adoption is skepticism
about two things. First, both RCM and CCM prefer
design solutions to statistical solutions, although all
three causal models use both. Second, both RCM
and CCM have little confidence that those who do
cause-probing studies in field settings can create an
accurate DAG given the seemingly intractable nature
of unknown selection biases. In their discussion of
SEM, for example, Shadish et al. (2002) repeatedly
stress the vulnerability of these models to misspeci-
fication. This remains one of the most salient differ-
ences between PCM on the one hand and RCM and
CCM on the other.

Theory of Cause
Of the three approaches, CCM has paid far more
attention to a theory of cause than either RCM or
PCM. This may occur for different reasons in PCM
versus RCM. In the case of RCM, its focus on esti-
mating effects in field settings requires practically no
attention to the nature of causes: “The definition of
‘cause’ is complex and challenging, but for empirical
research, the idea of a causal effect of an agent or
treatment seems more straightforward or practically
useful” (Little & Rubin, 2000, p. 122). In the case of
PCM, its origins in mathematics, computer science,
and graph theory may have given it a context in
which causes were more often symbols or hypotheti-
cal examples than the kinds of complex social, edu- :
cational, medical, or economic interventions in the 1 |
real world that motivated RCM and CCM. 1f experi- '
ments really are about discovering the effects of
manipulations, and if one’s theory of causal infer- _
ence is limited to experimental demonstrations that l
measure the effect, then this rudimentary definition
of cause is possibly all that is needed. Even if it is
not necessary, a more developed theory of cause still .
can be quite useful in understanding results. i
The only knowledge we have about cause in an )
experiment often may be the actions the researcher
took to manipulate the treatment. This is quite par-
tial knowledge. CCM aspires to more, which is ;
reflected specifically in the development of con-
struct validity for the cause. For example, Campbell s




(1957) stated that participant reactivity to the exper-
imental manipulation is a part of the treatment; and
he emphasized that experimental treatments are not
single units of intervention, but rather multidimen-
sional packages consisting of many components:
“The actual X in any one experiment is a specific
combination of stimuli, all confounded for interpre-
tive purposes, and only some relevant to the experi-
menter’s intent and theory” (p. 309). Cook and
Campbell (1979) elaborated a construct validity of
causes. Later work in CCM adopted Mackie’s (1974)
conception of cause as a constellation of features, of
which researchers often focus on only one, despite
the fact that all of the causes may be necessary to
produce an effect (Cook & Campbell, 1986; Shadish
etal., 2002). Furthermore, CCM stresses the neces-
sity of programs of research to identify the nature
and defining characteristics of a cause, using many
studies investigating the same question, but with
slight variations on the features of the causal pack-
age. This method will reveal some features that are
crucial to the effectiveness of the causal package,
whereas others will prove irrelevant.

To some extent, Campbell's interest in the nature
of cause is a result of the context in which he
worked: social psychology. Experiments in social
psychology place high importance on knowing about
cause in great detail because pervasive arguments
often occur about whether an experimental interven-
tion actually reflects the construct of interest from
social psychology theory. By contrast, the highly
abstract nature of PCM has not required great atten-
tion to understanding the cause; and applied experi-
ments of the kind most common to RCM tend to be
less theoretically driven than experiments in social
psychology. But even those applied experiments
could benefit from at least some theory of cause. For
example, in the late 1990s, a team of researchers in
Boston headed by the late Judah Folkman reported
that a new drug called endostatin shrank tumors by
limiting their blood supply (Folkman, 1996). Other
respected researchers could not replicate the effect
even when using drugs shipped to them from Folk-
man’s lab. Scientists eventually replicated the results
after they traveled to Folkman’s lab to learn how to
properly manufacture, transport, store, and handle
the drug and how to inject it in the right location at
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the right depth and angle. An observer called these
contingencies the “in-our-hands” phenomenon, say-
ing, “Even we don't know which details are impor-
tant, so it might take you some time to work it out”
(Rowe, 1999, p. 732). The effects of endostatin
required it to be embedded in a set of conditions that
were not even fully understood by the original inves-
tigators and still may not be understood in the 21st
century (Pollack, 2008).

Another situation in which a theory of cause is a
useful tool is when considering the status of causes
that are not manipulable. Both CCM and RCM agree
that nonmanipulable agents cannot be causes within
an experiment. CCM and PCM both entertain
hypotheses about nonmanipulable causes, for
instance, of genetics in phenylketonuria (PKU),
despite the fact that the pertinent genes cannot be
manipulated (Shadish et al., 2002). RCM is less clear
on whether it would entertain the same ideas. This
leads to debates within the field about the implica-
tions of manipulability for RCM and, more broadly,
for the field of causal inference (Berk, 2004; Hol-
land, 1986 Reskin, 2003; Woodward, 2003). Mor-
gan and Winship (2007) made two points about
this. First, it may be that RCM might not apply to
causes that are not capable of being manipulated,
because it is impossible to calculate an individual
causal effect when the probability of a person being
assigned to a condition is zero. Second, the counter-
factual framework built into RCM encourages think-
ing about nonmanipulable causes to clarify the
nature of the specific causal question being asked to
specify the circumstances that have to be considered
when defining what the counterfactual might have
been. This is more complicated and ambiguous
when dealing with nonmanipulable causes. For
example, is the counterfactual for a person with
PKU a person who is identical in every aspect except
for the presence of the genetic defect from the
moment it first appeared? Or, does it include a per-
son with every other result that the genetic defect
could result in, such as the diet commonly used to
treat PKU? PCM and CCM would consider all ver-
sions of these questions to be valid. PCM, for exam-
ple, might devise multiple DAGs to represent each
of the pertinent scenarios, estimating the causal
effect for each.
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So CCM has a more functionally developed theory
of cause than either PCM or RCM. This probably
speaks again to the different goals the models have.
CCM aspires to a generalized casual theory, one that
covers most aspects (such as general cause theory) of
the many kinds of inferences a researcher might make
from various types of cause-probing studies. RCM has
a much more narrow purpose: to define an effect
clearly and precisely to better measure the effect in a
single experiment. PCM has a different narrow pur-
pose: to state the conditions under which a given
DAG can support a causal inference, no matter what
the cause. None of the three theories can function
well without a theory of the effect; and all three could
do without much theory of cause if effect estimation
were the only issue. But this is not the case.

Causal Generalizations: External and
Construct Validity

CCM pays great attention to generalizability in the
form of construct and external validity. Originally
(e.g., Campbell, 1957; Campbell & Stanley, 1966),
CCM merely identifies these concepts of generaliza-
tion as important (“the desideratum”; Campbell &
Stanley, 1966, p. 5), with little methodology devel-
oped for studying generalization except the multi-
trait-multimethod matrix for studying construct
validity (Campbell & Fiske, 1959). Cook and
Campbell (1979) extended the theory of construct
validity of both the treatment and the outcome, and
identified possible alternatives to random sampling
that could be used to generalize findings from
experiments. Cook (1990, 1991) developed both
theory and methodology for studying the mecha-
nisms of generalization, laying the foundation for
what became three chapters on the topic in Shadish
etal. (2002; Cook, 2004). Over the course of the 50
years this work spans, the theory and methodology
have become more developed. For example, meta-
analytic techniques now play a key role in analyzing
how effects vary over different persons, locations,
treatments, and outcomes across multiple studies.
Another important technique is identifying and
modeling casual explanations that mediate between
a cause and an effect; as such, explanations contex-
tualize knowledge in a way that makes labeling and
transferring the effect across conditions easier.

40

RCM has made contributions to meta-analysis
and meditational modeling, both conceptual (e.g..
Rubin, 1990, 1992) and statistical (e.g., Frangakis &
Rubin, 2002; Rosnow, Rosenthal, & Rubin, 2000),
but the model rarely overtly ties these methods to
the generalization of causes. One notable exception
is Rubin’s (1990, 1992) work on response surface
modeling in meta-analysis. This work builds from
the premise that a literature may not contain many
or any studies that precisely match the meta-
analyst’s methodological or substantive question of
interest. Rubin’s approach to this problem is to use
the available data from literature to project results to
an ideal study that may not exist in literature but
that would provide the test desired in a perfect
world. This is a crucial form of external validity gen-
eralization; however, it has been little developed
either statistically (Vanhonacker, 1996) or in appli-
cation (Shadish, Matt, Navarro, & Phillips, 2000;
Stanley & Jarrell, 1998).

PCM has little to say explicitly about generaliza-
tions of any sort. To the extent that CCM is correct
in its claim that causal explanation is a key facilitator
of causal generalization, the DAGs in PCM are useful
tools for the task if they are used to generate and test
such explanations. An example might be the use of
DAG technology to generate and test explanatory
models of, say, causal mediation within randomized
experiments. In addition, researchers who have a
DAG and a data set against which to compare it can
manipulate the operationalizations of the DAG to
test various hypotheses that might bear on some
generalizations. The logic would be similar to that of
the do(x) operator, in which case the researcher fixes
some variable to the value dictated by the desired
generalization, for example, limiting the gender vari-
able first to males and second to females, to test
whether a treatment effect varies by gender.

Neither RCM nor CCM have been overly suc-
cessful in translating their respective ideas and the-
ory concerning causal generalizations into practical
applications. This lack of success might be the result
of the emphasis that is put on internal validity
throughout applied scientific thinking and funding.
An exception to this general rule is again meta-analysis,
which has seen increased use and funding over the
years. The increase in meta-analysis cannot be




directly credited to RCM or CCM, however. Rather,
the increase seems to be focused on getting better
effect size estimates instead of the more generaliza-
tion-relevant exploration of how effects vary over
person, treatment, or other study characteristics. In
fact, a perusal of thousands of systematic reviews in
the Cochrane Collaboration Library confirms that
many meta-analyses include few or no tests of mod-
erators that could be used for the latter aim, and
these reviews report only the overall effect size for
the intervention. The assumption among applied
researchers seems to be that knowledge about causal
generalization emerges fairly organically from pro-
grams of research and occasional reviews of them.
Researchers appear to feel little need for active guid-
ance on the topic.

By contrast, the kinds of explanatory models that
PCM encourages are, in many respects, the heart of
basic scientific theory. Scientists pursue those theo-
ries in multiple ways, from programs of research
that explore moderators and mediators one ata time
experimentally, to meditational models consistent
with PCM. The main question would be whether the
particular methods that PCM recommends are per-
ceived by that community as having sufficiently
novel and useful suggestions to warrant the effort to
adopt them. The jury is still out on that question,
perhaps not surprising given that PCM is the newest
of the three theories.

Quantification

Both PCM and RCM are much more thorough and
successful in quantification than CCM. After all,
Rubin is a statistician and Pearl is a computer scien-
tist with an appointment in statistics. RCM has gen-
erated the highly quantitative potential outcomes
model, pays careful attention to statistical assump-
tions, and has created statistical tools to improve
effect estimation such as propensity scores and hid-
den bias analysis as well as other me thodological
developments, such as the use of instrumental vari-
able analyses in the presence of partial treatment
implementation (Angrist et al., 1996). PCM has gen-
erated a theory of causal modeling with roots in
mathematics, graph theory, and statistics, a theory
that aspires to be the most general integration of the
available quantitative approaches to causal inference.
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On the surface, it may not appear that CCM is
quantitative given its more broad theoretical focus,
but this is a bit deceiving. Few of the many students
coming out of the tradition were quantitative
(Brewer & Collins, 1981; Campbell, 1988), but
notable exceptions have included Reichardt and
Gollob (1986) and Trochim and Cappelleri (1992).
Although Campbell himself was not a statistician,
he successfully collaborated with the statisticians
of his day for much of his work on specific method-
ology, such as regression discontinuity design
(Cook, 2007) and the multitrait=multimethod
matrix (Boruch & Wolins, 1970). The multitrait—
multimethod matrix is not really a part of CCM, but
regression discontinuity designs certainly are, and
both lines of research are still pursued in the 21st
century. In addition, CCM has attracted the atten-
tion of both statisticians and economists (Meyer,
1995; Meyer, Viscusi, & Durbin, 1995), although
that attention often is critical (e.g., Cronbach, 1982;
Rogosa, 1980).

Perhaps it is a more accurate assessment (o say
that CCM is quantitative on issues on the periphery
of the CCM tradition. That is, CCM has given little
attention to how to quantify matters that concern its
validity typology, threats to validity, or how design
features can be used to reduce the plausibility of
threats. Fortunately, the omission of statistical appli-
cations within the theoretical framework is at least
partially remediable. For example, much work has
been done to quantify the effects of attrition on bias
in randomized experiments, both within and outside
of the CCM tradition (e.g,, Deluccchi, 1994; Shad-
ish, Hu, Glaser, Kownacki, & Wong, 1998; Shih &
Quan, 1997; Verbeke & Molenberghs, 2000; Yeaton,
Wortman, & Langberg, 1983). In addition, some
work exists that quantifies the effects of testing
threats to internal validity and outlines specific ways
in which CCM could be more quantitative (Braver &
Braver, 1988; Reichardt, 2000; Reichardt & Gollob,
1987: Solomon, 1949). Other research has been
done to quantify CCM and join analysis to design,
including the work by Winship and Morgan (1999)
and Haviland, Nagin, and Rosenbaum (2007), which
uses multiple pretests to improve inferences in non-
randomized designs. Clearly, CCM needs to begin to
incorporate these developments more explicitly.
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Quantification of CCM can only go so far
because many issues concerning causation are more
qualitative than quantitative. For example, one
threat to internal validity is history, that is, an event
not part of treatment occurred at the same time as
treatment and was actually responsible for part or all
of the observed effect. Another is the threat of
instrumentation, for instance, a change in the
instrument used to assess outcome across data
points in a time-series design (Neustrom & Norton,
1993). It is difficult to see how to include a covariate
in a propensity score analysis that detects or adjusts
for such threats, or to build those variables into a
DAG. In addition, DAGS and propensity scores do
little to assess threats to construct or external valid-
ity, and they are not designed to detect cases in
which the qualitative and quantitative inferences
differ, as when quantitative analysis suggests a treat-
ment is effective, but an ethnographer identifies seri-
ous problems with it (Reichardt & Cook, 1979). It
is possible that the qualitative features of CCM
eventually might be quantifiable in a grand statisti-
cal theory of causal inference. The breadth that this
would necessarily cover makes it implausible that
this will be developed in the near future. For this
reason, the heavy focus of RCM and PCM on quanti-
fication necessitates that only a small subsection of
casual theory is covered in these models. The parts
that have been successfully quantified are the pieces
connected most closely to the measurements of
effects. These contributions are important but not
sufficient on their own to assist the cause-probing
researcher in all the pertinent tasks.

Design and Analysis

Both RCM and especially CCM have a preference for
strong designs, in particular randomized experi-
ments, whenever possible. Except for matching
designs, however, RCM focuses on analysis, and
CCM focuses more on design. The best example of
this difference is regression discontinuity design.
Thistlethwaite and Campbell (1960) invented the
design, but a statistical proof of the design was not
published until Rubin (1977; an earlier unpublished
proof was provided by Goldberger, 1972). Similarly,
when time series are discussed in the RCM tradition
(e.g., Winship & Morgan, 1999), such work focuses
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entirely on analysis, whereas Campbell’s treatment
of the subject is much more design oriented. For
example, CCM discusses such variations as adding a
control group or nonequivalent dependent variable
and using repeated and removed treatments, nega-
tive treatments, or staggered implementation across
locations, which are aimed at increasing the confi-
dence about any of the conclusions drawn about
effects. .

In most cases, these divergent emphases are quite
complementary. CCM is strong on design and broad
conceptual issues, but it lacks analytic sophistica-
tion as well as practical tools that move conclusions
about confidence in effects from the qualitative to
the quantitative realm when using a nonrandomized
design. Conversely, RCM is strong on analysis, but
some researchers utilize the statistical procedures
without implementing careful design first, as both
models would advocate. Yet the strengths of both
models are essential: Good design makes for better
analytic results, and better analyses can improve a
potentially lower yield from a weak design. Exam-
ples of this are evident in the field; for instance, it is
clear that tools like propensity scores can be used to
remedy the reliance of CCM on qualitative judg-
ments by scientists who often are not good at identi-
fying and ruling out alternative casual explanations.
Caution is necessary to implement the tools that
RCM makes available, however. It can be tempting
for scientists to take the lazy way out of difficult
design issues and run less well-designed studies,
hoping that the analytic tools can be used to fix bun-
gled design.

RCM, like most statistical approaches to causa-
tion, appears to value design most when it contrib-
utes to a quantitative result (e.g., an effect size,
confidence interval, or significance test). CCM
expands on this approach and models how to use
information even if it is only possible to do so in a
qualitative fashion. For example, propensity score
adjustment is an excellent tool to deal with a subset
of threats to internal validity, namely, the selection
threat and perhaps also maturation and regression,
as special forms of selection bias. In this instance,
the quantitative adjustment may be used to improve
inferences about treatment effects. However, pro-
pensity score analysis does not address the internal
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validity threats of history, testing, or instrumenta-
tion, despite the fact that all of these can produce a
spurious effect. CCM accounts for this qualitatively
and thus raises these concerns in a way that RCM
does not. It would be best to have a way to quantify
these concerns as well, but as of yet, neither CCM
nor RCM has done so.

One noticeable exception to RCM’s general pref-
erence for analysis exists in the method of matching.
Both CCM and RCM have considered the method of
matching carefully, as it is frequently used as a seem-
ingly plausible method for creating comparable
groups when random assignment is not feasible.
Until recently, CCM has maintained a generally
skeptical stance toward matching in nonrandomized
experiments, as evidenced in such comments as the
two groups have an inevitable systematic difference
on the factors determining the choice involved, a dif-
ference which no amount of matching can remove”
(Campbell, 1957, p. 300). The best-developed early
study of this issue in CCM is that of Campbell and
Erlebacher (1970), who analyzed the pernicious
effects of matching on effect estimation in a study by
Cicirelli and Associates (1969) concerning the effec-
tiveness of the early Head Start program. The latter
group of researchers presented startling results: that
a matched group of children who did not receive the
intervention performed better than the Head Start
children. In response, Campbell and Erlebacher
(1970) showed how the results actually could be due
to a combination of selection bias on the true under-
lying variables and measurement unreliability. These
problems together could have caused the groups to
regress in opposite directions, thereby creating an
inflated and invalid negative estimate of the treat-
ment effect. This latter interpretation was supported
by a reanalysis of the original data (Magidson,
1977). This event firmly embedded a general skepti-
cism toward matching within the CCM tradition.
More recently, however, CCM has relaxed the over-
arching skepticism and supported the use of match-
ing on variables that are stable and reliable, such as
achievement scores, aggregated to the school level
and across years of pretest data (e.g., Millsap et al.,
2000), and well-developed propensity scores.

Through the development of propensity scores,
RCM has revived matching along with similar
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designs, such as stratification (Rubin, 2006).
Because propensity scores are created by combining
several covariates, they are more likely to be more
stable and more reliable than the individual vari-
ables of which they consist. In this way, their use
converges with the instances laid out by CCM in
which matching is acceptable practice. The kinds of
stable matching variables CCM originally endorsed
were fairly uncommon, however, whereas propen-
sity scores ‘are more easily available. In addition,
matching across propensity scores has clearer theo-
retical rationales for creating better estimates of
effect. Despite this, in practice, results as to whether
propensity scores actually do create better estimates
seem to be mixed (Dehejia & Wahba, 1999; Glazer-
man, Levy, & Myers, 2003). Studies addressing this
question with arguably better methodology, how-
ever, appear to be more optimistic (Luellen, Shad-
ish, & Clark, 2005; Shadish, Clark, & Steiner, 2008;
Shadish, Luellen, & Clark, 2006). Even in this
latter group, however, propensity scores appear o
be quite sensitive to how missing data in the covari-
ates (that make up the score) are handled, quality of
pretest covariate measurement might be more
important than the specific statistics used to gener-
ate propensity scores, and research so far does not
show a strong advantage of propensity scores over
ordinary regression in reducing bias (e.g., Cook,
Steiner & Pohl, 2009; Steiner, Cook, & Shadish, in
press; Steiner, Cook, Shadish, & Clark, in press).
Clearly, however, much more work needs to be
done to identify the conditions under which one can
be fairly confident that matching consistently
reduces, rather than increases, bias.

Designs like randomized or nonrandomized
experiments receive little attention in PCM, so it is
difficult to know where PCM fits into this discus-
sion. Nowhere in PCM does one find the granting of
any special status to randomized experiments in
estimating effects, although one might deduce from
its discussion of the analogy between a do(x) opera-
tor and the physical operation of random assign-
ment that PCM acknowledges the advantages of
randomization for making causal estimation in a
DAG easier to do. Discussions of randomized exper-
iments in PCM tend to characterize them as a
restricted paradigm because causal questions are
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much broader than can be addressed by a random-
ized experiment.

Most of the prose in PCM is aimed at analysis, or
at the conceptual work that goes into creating a
DAG and a defensible causal claim before the analy-
sis. That conceptual work might be considered a
form of design in the same way that RCM considers
attention to balancing tests before estimating effects
to be a form of design. That is, both should occur
without knowledge of the outcome analysis and
should aim to set up the conditions to be met before
a valid analysis of effects should occur. This is a
much weaker form of design than present in CCM.
Yet as a general conceptual structure, PCM can be
adapted to any design and to the use of propensity
score analysis and matching,

PCM has less enthusiasm for the kind of empiri-
cal comparisons of randomized to adjusted nonran-
domized experiments that RCM and CCM have used
to test, for example, whether propensity score
adjustments in nonrandomized experiments yield
the same answer as a parallel randomized experi-
ment. Pearl (2010a) has noted that such tests pro-
vide no logical or mathematical proof of the
similarity of the two methods and depend greatly on
the particular context (setting, intervention, units,
outcome measures, and perhaps even time) in which
the study was run. Not surprisingly, then, we are
aware of no empirical comparisons of effect esti-
mates from randomized experiments versus an anal-
ysis based in PCM.

DISCUSSION

Discussing the relative merits of CCM, RCM, and
PCM is made more difficult by substantial differ-
ences in terminology across the three theories. For
example, imagine that CCM wishes to assess
whether PCM or RCM give the same priority to
internal validity that CCM does. Neither PCM nor
RCM much mention that phrase, nor any of the
other validity types and pertinent threats. Similarly,
RCM'’s SUTVA is obtuse to many readers (Rubin,
2010; Shadish, 2010), with authors sometimes com-
bining discussions of SUTVA with discussions of
CCM’s validity types in ways that perhaps neither
RCM nor CCM would recognize or endorse (e.g.,

44

Dawid, 2000, p. 414; Oakes, 2004, p. 1943). And
PCM has adopted a different language for talking
about causation, so that the familiar terms in path
analysis or structural equation modeling as used in
CCM or RCM need translation into PCM terms that
are not always cognates—a directed edge is not the
same thing as a path, and not all structural equation
models are directed acyclic graphs. These are, then,
different models for approaching causation, and it is
doubtful that any scholar has a sufficient grasp of all
three to compare and evaluate them with full accu-
racy. In the present case, we are far more familiar
with CCM than the other two models, and we are
especially new to PCM. Still, the effort must be made
to advance the interdisciplinary theory of causation
that seems to be emerging in the past few decades.

One start to the comparison is to speculate about
the key problems in each of the three models.
Although the next three paragraphs will describe the
problems in terms unique to each model, we will
conclude that the problems all have a similar root—
they are all limited in one way or another by the
state of knowledge about the key variables and the
relationships among them. Starting with CCM, its
concepts yield the broadest approach to causation of
the three models. In particular, the attention to
issues of construct and external validity are
unmatched in the other two theories. Its key prob-
lem is its general lack of quantification, a point
made by Rosenbaum (1999) in response to Shadish
and Cook’s (1999) early effort to compare parts of
CCM to RCM. Threats to validity are central to
CCM, for instance, yet CCM does not offer compel-
ling quantitative ways to show how those threats
affect an inference. Attrition is a good example, in
part because it is a threat for which some quantita-
tive work has been done (e.g., Deluccchi, 1994;
Shadish et al., 1998; Shih & Quan, 1997; Verbeke &
Molenberghs, 2000; Yeaton et al., 1983). Measuring
attrition is simple; but CCM has no canonical
method for showing what attrition rates result in a
more or less accurate descriptive causal inference in
a given study. Especially as applied in practice,
many researchers simply note the amount of attri-
tion that is present, and if it exceeds a subjectively
formulated percentage, they allow that attrition may
be a problem. Lack of quantification is to some




degree inevitable in CCM given the breadth of its
concepts, but it also results from a failure of many
researchers within the CCM tradition even to try to
generate such answers.

With RCM, two key problems emerge. One is the
pivotal role of the strong ignorability assumption, an
assumption that so far cannot be tested within RCM
yet that is absolutely central to the success of the
methods that RCM suggests for observational stud-
ies. We have made only small steps in understand-
ing how to select pretest covariates that might meet
this condition (e.g., Cook et al., 2009; Steiner, Cook,
& Shadish, in press; Steiner, Cook, Shadish, &
Clark, in press). PCM asserts that it has completely
solved this problem in theory, to the maximum
extent allowed by available scientific knowledge, yet
the available knowledge in many practical endeavors
is so scant that we are skeptical whether one can
take full advantage of this solution. The second
problem is its failure, at least until recently, to give
sufficient attention to the design of good observa-
tional studies. Most of the early examples that RCM
gave relied on observational data sets that already
has been gathered by other researchers for other
purposes, with RCM doing a secondary analysis to
try to improve the accuracy of the effect estimate.
Only in the past few years has RCM begun to write
about the importance of good prospective design of
observational studies: both the use of better design
elements like carefully selected control groups, and
the deliberate development of measures of the selec-
tion process through such means as interviewing
participants and providers to discover and accu-
rately describe those processes (Rubin, 2007, 2008).

Two key problems also emerge with PCM. The
first is the necessity in PCM of knowing that the
DAG is correct, for otherwise the results of the logi-
cal and empirical tests in PCM may be incorrect. A
mature research topic sometimes may be confident
of the key variables and the relationships among
them, especially if the problem is investigated in a
closed system with a limited number of variables
known to be relevant. Some parts of cognitive sci-
ence might approximate these conditions, for exam-
ple. The applied causal questions of most interest to
RCM and CCM, however, almost certainly do not do
s50. As a corollary, then, PCM'’s approach to strong

ignorability also relies on correct specification of the
DAG, with the same implications of an incorrect
DAG for the accuracy of the test. The second prob-
lem is the paucity of examples of practical applica-
tions of PCM. This may in part be what Imbens
(2010) referred to when he said,

My personal view is that the proponents
of the graphical approach . . . have not
demonstrated convincingly to econo-
mists that adopting (part) of their frame-
work offers sufficient benefits relative to
the framework currently used by econo-
mists. (p. 47)

Morgan and Winship (2007) have provided some
examples, but their book so thoroughly mixes RCM
and PCM that the benefits specific to PCM are not
necessarily transparent. Indirect evidence of the
potential usefulness of PCM is the fact that many
economists and social scientists use structural equa-
tion models that are closely related to DAGs, despite
lingering difficulties in interpreting their causal con-
tent (difficulties that PCM claims to have eliminated).

One common theme across the problems in all
three theories is that despite the different ways that
each theory has approached causal inference, in
observational studies, one must make assumptions
of some sort to make progress. With CCM, it is the
assumption that the researcher has ruled out threats
to validity (alternative explanations for the effect);
with RCM, it is the assumption that strong ignor-
ability holds; and, with PCM, it is the assumption
that the DAG is correct. In all three, of course, one
can use data or logic or experience to probe the
validity of these assumptions, measuring some of
the threats to see whether they remain plausible,
showing that one obtains balance with propensity
scores, or showing that the DAG is consistent with
the observed data or past research. But these are
profoundly fallible probes, they only test parts of the
relevant assumptions or are only weakly related to
the assumption, and they are incapable in principle
of proving the assumptions are valid. With observa-
tional studies, we have no free lunch, no royal road
to valid effect estimation.

PCM claims to offer some visibility from this
treacherous road. For example, it claims that a recent
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proof of the completeness of the “do-calculus”
(Shpitser & Pearl, 2008) implies that no method can
do better than PCM, given the same uncertainty about
the science underlying a problem. For PCM, Halpern's
(1998) proof that RCM and PCM are logically equiva-
lent, differing merely in emphasis and convenience,
further implies that an informative comparison
between the two should examine separately each
phase of the inference process (as was done in Pearl,
2010b). PCM aims to demonstrate the benefit of a
hybrid strategy whereby scientific knowledge is articu-
lated via graphs, and algebraic derivations are pursued
in RCM notation. But this is difficult to do correctly.

Herein lies a dilemma. PCM requires knowledge
of two things: (a) the right set of variables and (b) the
right model of the relationship between those vari-
ables. For many or perhaps nearly all applications
that might be characterized by such terms as program
evaluation or applied quasi-experimentation or cog-
nates, most researchers regard the first task as nearly
hopeless given how unknown selection bias typically
is. To aspire to the second task if the first one is hope-
less seems not only doubly hopeless but also more
time-consuming than the benefits likely will warrant.
This suggests a complementary interpretation to that
of Imbens (2010), that a failure to adopt PCM to
these applied problems reflects a justifiable skepti-
cism about the value of the additional work.

RCM's program of research seems aimed at the
first of these two tasks in hopes that its tools like
propensity score adjustment might be able to do
good enough in making correct causal assessments
from observational data. Consider, for example, recent
empirical efforts to understand the conditions under
which statistical adjustments of quasi-experiments
can be made to match findings from randomized
experiments (e.g., Cook, Shadish, & Wong, 2008;
Cook et al., 2009; Dehejia & Wahba, 1999; Glazer-
man et al., 2003; Shadish et al., 2008: Steiner, Cook,
& Shadish, in press; Steiner, Cook, Shadish, &
Clark, in press). One might think of such studies as
a program of research conducted on the basis of
induction. Such studies take existing suggestions for
improving causal estimates, such as propensity score
analysis or the use of DAG methods, and test those
suggestions empirically. No single test of this kind
can escape its context, so any generalizations from
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one such a study would be extremely speculative.
But a program of research of this kind, where
multiple investigators vary many key features of the
study (persons, settings, times, treatments, out-
comes, etc.), has the potential to produce an empiri-
cal basis for making inductive hypotheses about
what does and does not work in generating accurate
causal estimates. Given the problem of induction
(that we may never know if we will observe a falsify-
ing instance), such results never can be logically
conclusive. Indeed, we cannot rule out the possibil-
ity that the program will fail to identify any useful
hypotheses. If such a program were to be successful,
however, it would help us to understand the condi-
tions under which we might be able to create causal
estimates that are good enough (accurate enough by
some criterion to be agreed on by the community of
scholars), albeit not optimal. This is a different
approach from PCM'’s provision of a causal logic that
allows the researcher to deduce causal inferences
from a given set of conditions, a more challenging
task but one that eventually might lead to a solution
more likely to be optimal if it could be successful.

CCM falls in between the other two models in its
approach to this dilemma, but probably with more
affinity to RCM than PCM. On the one hand, CCM
always has allowed that if you fully know the speci-
fication of the selection process and measure that
process perfectly, then the researcher can use meth-
ods like structural equation modeling to generate
accurate causal estimates. Adding the benefits of
PCM'’s approach to this claim would probably
strengthen CCM’s understanding and explication of
the conditions under which this can be done. On the
other hand, CCM shares the skepticism of RCM
about being able to solve PCM'’s second task. Ulti-
mately, CCM prefers advocating stronger experi-
mental and quasi-experimental design approaches
that are less formalized and more reliant on fallible
but inevitable plausibility judgments; and CCM
takes the inductive program of research as its best
current hope for solving the applied causal inference
problems of most interest to CCM and RCM.

We can give two reasonable responses to these
reservations, however. First, we must make the
effort to do both tasks if we really want to advance
scientific and practical understanding of what




works. After all, if we do not try to model the rela-
tionships among variables in a serious way now,
then when should we do so? Should we wait for the
inductive program to reach its limits or fail? Should
we pursue both inductive and deductive tasks simul-
taneously, and if so, what incentive is there for
applied researchers to take on the harder task?
Surely, however, we should not simply abandon the
second task just because it is harder to do both tasks
than just the first.

The second reasonable response is that PCM has
identified some specific conditions under which
adjusting for certain pretest variables, whether in
propensity scores or ordinary regression, can
increase bias of causal estimates. The most salient of
them is the collider variable, a variable that is a
mutual direct descendent of two (or more) variables,
which if controlled can increase bias. A second
example is certain uses of instrumental variables
that might also increase bias (Pearl, 2009b). A useful
project would be to begin to identify and catalog
such conditions, probably separately for each sub-
stantive area of interest. The project is formidable
because knowing that a variable is an instrument or
a collider depends on knowing the relationships
among variables. But the project is probably not
impossible to begin.

Most likely, we need multiple approaches to
solving these difficult causal inference issues. We
need the inductivist investigators who use results
from many studies to create a theory of when tools
like propensity score analysis might help. We need
the deductivist investigators who will create the
SEMs and DAGs that better embody the goals of sci-
ence involving creation of better scientific theories
about the phenomena we study. Who will do each
kind of research will no doubt depend on many fac-
tors, including but not limited to a researcher’s per-
ception of whether the knowledge base in a field is
mature enough to support strong model develop-
ment and whether the perceived payoff of investing
resources into doing each task compared with the
alternatives is worth the effort.

Elsewhere we have described other gaps in RCM
and CCM (Shadish, 2010). PCM helps fill some but
not all of those gaps. One was that CCM and RCM
both focus primarily on field experimentation. PCM
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may connect a bit better to laboratory experimenta-
tion in which tight experimental control and careful
attention to theoretically based construction of
causal models might make a DAG more likely to be
plausible. A second gap was that RCM and CCM
both focus somewhat more on the simple descrip-
tive inference that A caused B, and less so on the
explanatory mediators and moderators of the effect.
Again PCM attends more to the latter as a by-prod-
uct of the construction of a valid DAG. A third gap
is that all of these three theories devote far more
attention to finding the effects of known causes than
to finding the unknown causes of known effects.
PCM has put the most effort of the three into creat-
ing fully developed theories of causes of effects,
including attribution, regret, explanation, and other
counterfactual relationships (see Pearl, 2009a,
Chapters 9 and 10). The latter is often the province
of epidemiology, especially retrospective case con-
trol studies. Perhaps a further iteration of this com-
parison of theories of causation might include the
work of James Robins, and epidemiologist and bio-
statistician whose work might help fill this gap (e.g.,
Robins, Hernan, & Brumback, 2000).

What is encouraging about all these develop-
ments, however, is the possible emergence of a truly
interdisciplinary theory of causation applied to the
conduct of social science (Imbens. 2010). Many
economists and statisticians have begun to use the
common terminology supplied by the potential out-
comes model in RCM to talk about causation (e.g.,
Angrist et al., 1996). Statisticians have begun to
write much more about the importance of good
design and pretest measurement to the statistical
adjustments they suggest (Rubin, 2007, 2008). Psy-
chologists have begun to incorporate analytic mod-
els from RCM into their work (Shadish et al., 2002,
2008). Sociologists have combined RCM and PCM
in a synthesis that also includes more extensive dis-
cussion of good design (Morgan & Winship, 2007).
Because of the sheer number of disciplines involved,
and the many terminological differences across
PCM, CCM, and RCM (and others), the going is
slow and the progress is incremental, measured in
decades. But progress it is, and a shared theory of
causal inference that moves beyond CCM, RCM,
and PCM does now indeed seem feasible.
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