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Approximate Pseudoinverse Solutions
to lll-Conditioned Linear Systems’

ALLEN KLINGER?

Communicated by R. E. Kalaba

Abstract. A new method for the numerical solution to ill-conditioned
systems of linear equations based on the matrix pseudoinverse is presented.
Some illustrative numerical results are provided.

1. Introduction

If a system of linear equations
Ax=b ()

is ill-conditioned, its numerical solution becomes difficult, since small errors
in the vector b may lead to large errors in the solution vector x. Such unstable
systems arise in many contexts, e.g., fitting high-degree polynomials to data
by least squares and sequential digital filtering. Since in practice roundoff
introduces errors, numerical solutions of ill-conditioned systems are often
distorted. This may interfere with the use of digital computers to process
large quantities of data.

The computed solution to a perturbation of (1) less sensitive to errors
in b may be more useful than that computed from (1) itself. The perturbed

system
Ax =b @)

can be solved iteratively for different parameters e, until a solution is found
which meets a physical criterion concerning x or some function of x. In Refs. 1
and 2, such iterative solutions via perturbed systems gave meaningful results
when direct solution of the ill-conditioned systems themselves did not.
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In this paper, we present a particular perturbation which is shown to
have desirable stability and statistical properties and illustrate its application
by examples. This perturbation improves those of Refs. 1 and 2. There, the
minimum weighted sum of squared norms of x or £(x) and Ax — b yields
an A, corresponding to the chosen weight. Here, the same two quantities are
to have minimum norm, with the stronger requirement described below,
which yields the approximate pseudoinverse perturbation. The statistical
properties of this perturbation make possible a matching of the perturbation
to the computer used via a stochastic model of roundoff. This and the relevance
of the pseudoinverse to ill-conditioned systems comprise the remaining
contributions of this paper.

2. Approximate Pseudoinverse Perturbation

The matrix pseudoinverse A" (Refs. 3-8) provides a solution to (1)
when A4 is any m X n matrix of rankr < # < m. Specifically, A'b is the unique
vector such that -
| A = min | x|

. | 3)
M = (x| min|| 4y —b? = | 4x — b )

In other words, whether A is rectangular, inconsistent, or singular, x = A'b
has minimum norm among those x that minimize || 4x — b . (The Euclidean
norm is used here and throughout this paper.) Furthermore, A" = A~ when
r = n =M

One definition of the pseudoinverse is (Ref. 3)

At = lim (44 + D) 4 (4)
where prime denotes transpose. Hence, we define the approximate pseudoinverse

by ‘
At = (A'A + Iy A = A7 (5)

and note that it is the inverse of a matrix given by
A, = A+ «4) (6)

which we propose to use for the perturbation (2).
The motivation for this particular perturbation is twofold. The limit,
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the pseudoinverse, yields a solution with the property (3) for singular systems;
one way of describing the instabilities of ill-conditioned systems is to say that
they are almost singular. The minimum norm property (3) is a desirable one
when accumulating errors destroy the usefulness of the numerical result
obtained by computing 4A-'b. Furthermore, it implies that the weighted
sum of the squares of || x| and || 4x — b/ is a minimum.

3. Properties of the Approximate Pseudoinverse

First, we consider whether A4.'b = A 'b is relatively more insensitive
to errors in b than A-'b. This can be put quantitatively by defining the
P-condition number (Ref. 9) of the nonsingular matrix 4 as

max | A; ]
Fd)= (7)

min [ X, |

where the symbols {);} are the eigenvalues of 4; a large P-condition number
corresponds to an ill-conditioned matrix 4. Then, for complex square,
nonsingular 4, where A* is the conjugate transpose, we have the following
theorem (Brown, Ref. 10):

Theorem. If 4 is normal, i.e., AA* = A*A, then, for all ¢ >0,
[4 e d)Hx =b ®)

is better conditioned than
4dx =b 9)

in terms of the P-condition number, unless P(A) = 1, in which case the
condition numbers of the two systems are equal. More precisely,

P(4 + (A% < P(4) if P(4) > 1 (10)
P(A + (A% = P(4)  if P(4) =1 (11)

Proof. By Schur’s theorem, there exists a matrix T such that 77* =T
and
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Thus,
TA*T* = 4%, I = A*T(A%IT*, (4% = T(4%)1 T*
But
1A, 0 0 0
G RN LR
0 0 0 1,

where the bar denotes conjugate quantities. Thus,

Ndkely 8 O e 0
B e, O s 0

..........................

0 w00 A.eh,

T[A + (A*)1 T* =

Now, arg(1/A) = arg A and, thus,
X4 eA| = || +¢lA]
Let A; and A, be two eigenvalues of 4. If | Al = | Ay ], then
l’\1+€/)‘1| =
[ A + ¢/A, |
If | A ] > | A |, then
A /1A ] > 1> |2 |/1 A ]
Therefore,
|/\1|'!/\2]+€|)‘1‘/|/\2[>|’\1|’|’\2|+€|)‘2f/[’\1|
l’\1 [l A | + ¢/l 1> f’\2|[|)‘1 | + ¢/l A 1]
[ >|’\1+€/§\1|
[ s ] |)\2+€/)\2|

On the other hand, if | A, | < | A, |, then

AP+ e> A2+
”\2"“/\2|+5/|)‘2”>|’\1|’[!/\1!+€/|’\1|]
l’\2|>|)‘1+€f§1|
|’\1| I’\2+€///\2|

This concludes the proof.
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The approximative pseudoinverse solution is also a meaningful statistical
quantity. Consider the following formulation based on the original linear
system?:

Proposition. If x and v are zero mean Gaussian random vectors with
covariance matrices e~/ and /, respectively, and

Ax +v=b (12)
then
x7 = Ab = (A'A + )L 4'b (13)
is the conditional expectation of x for given b, i.e.,

xY = A'b = E(x| b) (14)

The implication is that, if the roundoff error is represented by addition
of the random vector v and the randomness of x, the relative variances can be
estimated to select a range of values of € for the approximate pseudoinverse
perturbations.*

4. Numerical Example

Newman (Ref.9) gives the following ill-conditioned system with

P(4) ~ 3000:

10 7 8 7 32
7 5 6 5 23

Ax = 8 6 10 9] *= |33 =b (15)
7 5 9 10 31

the corresponding inverse and solution:

25 —41 10 —6
—41 68 —17 10

= — A1 —

= 0 =17 5 —g b a—h

—6 10 -3 2

(16)

ok ok ke

3 See Albert and Sittler, Ref. 3, p. 390. The proposition was stated without proof.
* Note, however, that

o 0
lim var[x."] = lim(1/e)] = l ]

€0 €50 0 ©
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Table 1. Approximate Pseudoinverse Solutions and Sensitivity

€ 0 10=° 10" 104 103 10-2 10+
%y 1.024 0.962 1.028 1.006 1.1113  1.1209 1.12109
% = | *2 0.966 1.048 0.956 0.986 . 0.8179 0.79928 0.7973
<7 | % 1.011 0.994 1.017 1.002 1.0465 1.05058  1.0524
Xy 0.995 1.006 0.994 0.9978 0.9727 0.97002  0.96912
%2 9.204 9.11 8.515 5.192 1.8555  1.1813 1.10967
b x| —12.607 —12.447 —11.433  —5.965 —0.4385  0.67667  0.79846
€ | esd 4.498 4.461 4.206 2.835 1.4457  1.1647 1.12598
%l —1.102 —1.079 —0.927 —0.1119 0.7116  0.87843  0.90306
[ xell 1.998 2.006 1.998 1.996 1.986 2.036 1.985
I x&1 16.282 16.093 14.892 8.402 2.496 1,995 1.988
| xe — x& |l 16.361 16.275 14.947 8.392 1.536 0.193 0.100
Se 818.7 811.3 748.0 420.5 77.34 9.475 5.016
S 100.5 101.1 100.4 99.89 61.54 9.668 5.007

and the solution:

3.1 9.2
22.9 T

5 — A-11% — A4-1 -

= d b =2 e 4.5 (17)
30.9 L1

when =+0.1 errors are introduced in b. For this example, we define the scalar
sensitivity to errors -8 in b as

P x|

=l

where the errors are placed as in (17) and x? is obtained from b = [4, 4§,
b, — 8, by + 8, by— 81’5 Then, from (16) and (17), S(0.1) = 818.7%.
Alternatively, S’(0.1) = 100.5%, where S’(3) is the sensitivity relative to x?,
that is, (18) with the roles of x and x® interchanged (in practical situations, we
have no knowledge whether b or b? is the exact quantity).

se) = 1= - 100%, (18)

5 The errors shown yield the worst solution. We could make a more general definition of sensitivity
by inserting supremum over all possible errors in (18).
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The results of the approximate pseudoinverse solutions to Ax = b and
Ax® = b’ x,and %%, and the corresponding sensitivities are given in Table 1
for e = 0, 107% 10-5,..., 107 They show that there are three regions for e:
(a) large values, where the sensitivity is reduced to an insignificant amount,
but the problem is changed so that true solution is x, ~ [1.12, 0.80, 1.05, 0.971
instead of x = (1, 1, 1, 1]’; (b) small values, where sensitivity and solution
tend toward those of the usual solution; and (c) intermediate values (10~ < ¢
<< 107%), where the results are in between for both the sensitivity and the
solution. (Solutions and sensitivity versus e could be calculated for several
b vectors likely to give rise to instabilities, and an arbitrary e-value selected
from the intermediate range we noted above, based on this detailed prior
analysis.)

5. Conclusion

The approximate pseudoinverse provides an approach to improving
stability for numerical solutions of ill-conditioned linear systems. However,
since no a priort criterion exists for choosing the degree of perturbation of
the original unstable system, and since many ill-conditioned systems become
unstable only for certain error vectors, care should be taken in applying the
approximate pseudoinverse and interpreting the results it yields.
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